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We reconstruct the mass balance of the Greenland Ice Sheet using
a comprehensive survey of thickness, surface elevation, veloc-
ity, and surface mass balance (SMB) of 260 glaciers from 1972
to 2018. We calculate mass discharge, D, into the ocean directly
for 107 glaciers (85% of D) and indirectly for 110 glaciers (15%)
using velocity-scaled reference fluxes. The decadal mass balance
switched from a mass gain of +47 + 21 Gt/y in 1972-1980 to a loss
of 51 £+ 17 Gt/y in 1980-1990. The mass loss increased from 41 +
17 Gt/y in 1990-2000, to 187 4+ 17 Gt/y in 2000-2010, to 286 + 20
Gt/y in 2010-2018, or sixfold since the 1980s, or 80 + 6 Gt/y per
decade, on average. The acceleration in mass loss switched from
positive in 2000-2010 to negative in 2010-2018 due to a series
of cold summers, which illustrates the difficulty of extrapolat-
ing short records into longer-term trends. Cumulated since 1972,
the largest contributions to global sea level rise are from north-
west (4.4 + 0.2 mm), southeast (3.0 &= 0.3 mm), and central west
(2.0 &= 0.2 mm) Greenland, with a total 13.7 &= 1.1 mm for the ice
sheet. The mass loss is controlled at 66 1+ 8% by glacier dynamics
(9.1 mm) and 34 4 8% by SMB (4.6 mm). Even in years of high
SMB, enhanced glacier discharge has remained sufficiently high
above equilibrium to maintain an annual mass loss every year
since 1998.

Greenland | glaciology | sea level | climate change | glaciers

n the last several decades, the Greenland Ice Sheet (GIS) has

lost mass to the ocean (1-5). The mass loss has been quantified
by three independent techniques using changes in ice volume (6,
7), time-variable gravity (8), and input versus output fluxes or
mass budget method (1, 2, 4, 9-11), for the time period 1992—
2016 or 2002-2016. The mass budget method is the only one
that provides information about the physical processes control-
ling the mass loss, i.e., the partitioning between surface mass
balance (SMB) processes (accumulation minus runoff and other
forms of ablation) and glacier dynamics (ice mass flux into the
ocean), which is important to inform numerical models. A draw-
back of this method is that it requires comprehensive, precise
glacier fluxes into the ocean and reconstruction of SMB over
the ice sheet, i.e., the differencing of two large numbers. The
gravity method does not extend before 2002. The ice volume
method does not extend before 1992 with satellite data. Aerial
photos were used to quantify ice volume changes in coastal
areas from 1900 to 1980s using a single Digital Elevation Model
(DEM) (5).

Here, we extend the mass budget method to the start of
the Landsat historical archive in 1972, 20 years longer than
with altimetry, and 30 years longer than with gravity. The revi-
sion benefits from a more complete time series of ice velocity
(12-16), improvements in ice thickness from NASA’s Opera-
tion IceBridge (OIB) (17, 18), bathymetric surveys from NASA’s
Ocean Melting Greenland (OMG), and gravity surveys from OIB
and the Gordon and Betty Moore Foundation (19-21). A mass-
conservation method constrained with a high-resolution velocity
vector map yielded a high-resolution (350 m) ice thickness and
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bed elevation map of Greenland, named “BedMachine” (22, 23),
based on physical principles instead of an interpolation (24). We
use BedMachine Version 3 combined with new gravity inversion
data in southeast Greenland. We benefit from major improve-
ments in surface topography mapping. We use a 30-m-spacing
Greenland Ice Mapping Project DEM for 2007-2008 (25),
8-m-spacing time series of WorldView DEMs (Polar Geospatial
Center, University of Minnesota) for 2011-2018, and a 30-m-
spacing historic DEM for 1980s (26). When combined with ice
thickness and bed elevation at the date of the radar surveys,
OIB and pre-OIB airborne laser altimetry from 1993-2017, the
DEMs yield a time series of glacier thickness to calculate glacier
fluxes with precision since 1972. Finally, regional atmospheric
climate models used to reconstruct SMB have improved in spa-
tial resolution (5.5 km downscaled to 1 km instead of 11 km)
to match, in size, the typical width of outlet glaciers, which
improves the fidelity of reconstruction of ice melt at low eleva-
tion (27, 28). We present the methodology; discuss the history
of Greenland mass balance over the last 46 years until the most
recent data, glacier by glacier, region by region, for the entire
ice sheet; compare the estimates with prior work; and conclude
on the recent and near-term contributions of the GIS to sea
level rise.

Significance

We reconstruct the mass balance of the Greenland Ice
Sheet for the past 46 years by comparing glacier ice dis-
charge into the ocean with interior accumulation of snowfall
from regional atmospheric climate models over 260 drainage
basins. The mass balance started to deviate from its natural
range of variability in the 1980s. The mass loss has increased
sixfold since the 1980s. Greenland has raised sea level by
13.7 mm since 1972, half during the last 8 years.
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Fig. 1. (A) Glacier catchments/basins for the GIS and seven regions overlaid on a composite map of ice speed (12). (B-D) For 1972-2018, the percentage (B)

thickness change, (C) acceleration in ice flux from each basin, and (D) cumulative loss per basin. The surface area of each circle is proportional to the change
in ice discharge caused by a change in (B) thickness or (C) speed; the (blue/red) color indicates the (positive/negative) sign of the change in (B) thickness, (C)

speed, and (D) mass.

Results

We divide Greenland, including its peripheral glaciers and ice
caps, into 260 basins (Fig. 14 and Dataset S1; ref. 29) grouped
in seven regions: (i) southwest (SW), (if) central west (CW), (iii)
northwest (NW), (iv) north (NO), (v) northeast (NE), (vi) central
east (CE), and (vii) southeast (SE). These regions are selected
based on ice flow regimes (30), climate (31), and the need to par-
tition the ice sheet into zones comparable in size (200,000 km? to
400,000 km?) and ice production (50 Gt/y to 100 Gt/y, or bil-
lion tons per year). Out of the 260 surveyed glaciers, 217 are
marine-terminating, i.e., calving into icebergs and melting in con-
tact with ocean waters, and 43 are land-terminating, i.e., with
zero discharge at the terminus (Dataset S2). The actual number
of land-terminating glaciers is far larger than 43, but we lump
them into larger units for simplification because we only need
the total SMB to conduct the assessment. Peripheral glaciers and
ice caps are assumed to be in balance at the beginning of our
survey, and only SMB processes are considered afterward (32).
We calculate the mass balance as SMB over the drainage basin
minus ice discharge, D, at the glacier grounding line, or at the ice
front if the glacier does not develop a floating section. Results are
added by regions and for the entire ice sheet (Dataset S2). We
calculate mass balance on a decadal time scale to reduce errors.
For SMB, we use the output products from the recent Regional
Atmospheric Climate Model v2.3p2 downscaled at 1 km (28).
We use BedMachine to calculate the eustatic sea level equivalent
(SLE) of each basin and region.

SW holds a 74-cm SLE over an area of 216,207 km? controlled
at 72% by land-terminating glaciers. Twelve tidewater glaciers
discharge, on average, 30 + 5 Gt/y in 1972-2018. Changes in
D are controlled by Qajuutap Sermia (4.5 £ 1.1 Gt/y in 1987),
Ukaasorsuaq (6.4 £ 1.9 Gt/y), and Kangiata Nunaata Sermia
(6.4 £ 1.9 Gt/y). We find no trend in D during 1972-2018. In con-
trast, SMB decreased from 59 + 4 Gt/y in 1972-1980, 40 & 4 Gt/y
in 1990-2000 (SI Appendix, Fig. S14 and Dataset S2), and —13 +
2 Gt/y in 2010-2018. The total mass balance decreased
from +29 £ 6 Gt/y in the 1970s to —43 + 4 Gt/y in 2010-2018
(Fig. 2). Overall, SW gained 426 + 80 Gt between 1972 and 2001
(Fig. 34) and lost 486 + 17 Gt between 2001 and 2018, for a net
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loss of 63 4+ 98 Gt or 0.2 & 0.3 mm eustatic SLR, the smallest
contributor in Greenland.

CW holds a 134-cm SLE over an area of 236,648 km? drained
at 91% by 15 tidewater glaciers (SI Appendix, Fig. S1B). Jakob-
shavn Isbra controls 45% of D (30.0 £ 7.7 Gt/y in 1975),
followed by 32% from Store Gletscher (8.6 & 1.4 Gt/y in 1975)
and Rink Isbre (11.0 + 1.4 Gt/y in 1984). D decreased from
68 + 4 Gtfy in 1972-1980 to 65 £ 1 Gt/y in 1990-2000 due to
a slowdown of Jakobshavn Isbrae (33), jumped to 93 £ 8 Gt/y in
2013 due to the speed up of Jakobshavn Isbree, and decreased
to 78 £ 6 Gt/y in 2018. Three other glaciers, Eqip Sermia,
Kangilerngata Sermia, and Sermeq Silarleq, increased their ice
flux by almost 100% from 1984-1998 to 2018. Store Gletscher
and Rink Isbra fluctuated little. SMB dropped from 62 Gt/y in
1972-1989 to 38 + 3 Gt/y in 2010-2018, or 39%. SMB and D
were in balance between 1972 and 2000, but combined to form a
large loss (679 & 15 Gt) from 2000 to 2018 (Fig. 2). In total, CW
lost 738 + 75 Gt, or 2.0 & 0.2 mm SLR since 1972 (Fig. 3B).

NW holds a 127-cm SLE over 283,654 km? drained by 64
tidewater glaciers (Fig. 14). D decreased from 90 + 3 Gtfy
in 1972-1980 to 87 £ 1 Gt/y in 1990—2000, and increased to
112 £+ 1 Gt/y by 2010-2018, or 45% (SI Appendix, Fig. S1C). The
largest changes occurred for Upernavik Isstrgm C (+73 £ 16%
for 1993-2018), Upernavik Isstrgm N (+141 £+ 12% for 1996—
2013), Kakivfaat Sermiat (+136 £ 11% for 1995-2015), Alison
(+169 £ 10% for 1995-2018), Kjer (+372 £+ 30% for 2005-
2018), Steenstrup-Dietrichson (+93 £ 13% for 1985-2012), and
Sverdrup (+112 £ 22% for 1986-2018). A number of glaciers
with no speedup were already out of balance in the 1970s: Hayes
Gletscher M and SS, and Upernavik S. SMB averaged 78 + 2
Gt/y for 1972-1980 but dropped to 45 + 2 Gt/y in 2010-2018.
NW changed from near balance in the 1970s to a small loss in
the 1980s, then equilibrium between 1995 and 2000, before a
rapid loss from 2000 to present. The cumulative loss is 1,578 + 56
Gt, or 4.4 + 0.2 mm SLR, the largest contributor in Greenland
(Fig. 3C).

NO holds a 93-cm SLE over 263,534 km? drained at 82% by 12
tidewater glaciers (Fig. 14). D varied from 23 £+ 1 Gt/y in 1972—
1980, to 22 £ 1 Gt/y in 1990-2000, to 24 £+ 1 Gt/y in 2010-2018.

Mouginot et al.
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The largest discharge is from Humboldt (4.8 £ 1.1 Gt/y in 1975),
Petermann (10.5 + 1.4 Gt/y in 1975), Ryder (3.0 &+ 0.2 Gt/y in
1985), and Ostenfeld (1.7 £ 0.2 Gt/y in 1984). Humboldt dis-
charge increased from 4.8 £+ 1.1 Gt/y in 1972 to 6.4 + 1 Gt/y in
2018. Petermann remained relatively stable until 2010, when it
experienced major calving events (34) and increased D by 10%.
SMB decreased from 25.4 £+ 1.5 Gt/y in 1972-1980 to —5 +
2 Gt/y in 2010-2018. The cumulative mass loss is 474 £+ 30 Gt,
or 1.3 £+ 0.1 mm SLR, the largest loss per unit discharge.

NE holds a 180-cm SLE over 425,250 km? controlled at 87%
by 14 tidewater basins, mostly Nioghalfjerfjorden (60-cm SLE),
Zachariae Isstrgm (56-cm SLE), and Storstrgmmen (26-cm SLE)
(Fig. 14). D for Nioghalfjerfjorden has increased by 10% over
the entire period. Zachariz Isstrgm sped up after 2012 (35, 36),
doubling D from 10 4+ 1 Gt/y in 1972 to 18 £+ 2 Gt/y in 2018.
Storstrgmmen is a surge-type glacier with 1.2 + 1.0 Gt/y dis-
charge in 1972, 20.6 &+ 3.4 Gt/y in 1979, and 0 Gt/y after 1990
as the next surge builds up (37, 38). Overall, D increased from
36.2 + 1 Gt/y in 1972-1980, to 40 £ 1 Gt/y in 1980-1990, back to
31 £+ 1 Gt/y in 1990-2000, and up to 35 + 1 Gt/y in 2010-2018.
SMB dropped from 22 + 1.3 Gt/y in 1961-1990 to 13 + 2 Gt/y
in 2010-2018. The cumulative loss is 532 & 52 Gt since 1972, or
1.5+ 0.1 mm SLR.

CE holds a 72-cm SLE over 218,628 km? drained by 41 tide-
water glaciers (Fig. 14). The largest D is from Kangerlussuaq
(21.1 £+ 2.0 Gt/y in 1984), Unnamed Deception ¢ CN and CS
(8.2 £ 0.7 Gtly), and Daugaard-Jensen (8.9 & 0.7 Gt/y in 1980s).
D increased moderately from 75 £ 5 Gt/y in 1972-1980 to 78 + 2
Gt/y in 1990-2000, and 87 £ 2 Gt/y in 2010-2018. In single years,
D increased 20 £ 9 Gt/y in 2005, 10 &+ 7 Gt/y in 1991, and 7 +
8 Gt/y in 1996 due to the speedup of one to two glaciers. SMB
decreased from 73 + 1.5 Gt/y in 1960-1989 to 60 + 3 Gt/y for
2010-2018. The mass loss since 1972 totals 508 & 83 Gt, or 1.4 +
0.3 mm SLR.

SE holds a 55-cm SLE over 165,349 km? drained by 59 tide-
water glaciers. Its mass budget has been difficult to assess due to
uncertainties in glacier thickness and speed in an area of high
rates of snowfall with liquid water in the firn (39). Gravimet-
ric surveys (21), combined with OMG bathymetry in the fjords,
solved the problem of calculating D at the ice front. SE has the
largest D (136 £ 6 Gt/y in 1972-1980) in Greenland. D increased
to 158 + 2 Gt/y in 2000-2010 and 160 + 2 Gt/y in 2010-2018.
The rapid increase in 2000-2004 was driven by Helheimgletscher
and less well-known glaciers Kgge Bugt C and S, Umiivik Fjord,
A. P. Bernstoff, Tingmiarmiut Fjord, and Anorituup Kangerlua.
SMB decreased from 131 + 1.6 Gt/y in 1960-1989 to 111 + 3
Gt/y in 2010-2018. SE was near balance before the 1990s but has
lost 1,089 + 91 Gt since 1972, or 3.0 + 0.3 mm SLR.

Greenland’s SMB averaged 422 + 10 Gt/y in 1961-1989 (SI
Appendix, Fig. S1H). It decreased from 506 + 18 Gt/y in the 1970s
to 410 £ 17 Gt/y in the 1980s and 1990s, 251 + 20 Gt/y in 2010-
2018, and a minimum at 145 £ 55 Gt/y in 2012. In 2018, SMB was
above equilibrium at 449 £ 55 Gt, but the ice sheet still lost 105 +
55 Gt, because D is well above equilibrium and 15 Gt higher than
in 2017. In 1972-2000, D averaged 456 + 1 Gt/y, near balance, to
peak at 555 + 12 Gt/y in 2018. In total, the mass loss increased
to 286 + 20 Gt/y in 2010-2018 due to an 18 &+ 1% increase in D
and a 48 £ 9% decrease in SMB. The ice sheet gained 47 + 21
Gt/y in 1972-1980, and lost 50 + 17 Gt/y in the 1980s, 41 + 17
Gt/y in the 1990s, 187 &+ 17 Gt/y in the 2000s, and 286 £ 20 Gt/y
in 2010-2018 (Fig. 2). Since 1972, the ice sheet lost 4,976 + 400
Gt, or 13.7 + 1.1 mm SLR.

Discussion

Our assessment extends prior records in time by 20 to 30 years
and in quality by more than 20%. We have fewer velocity data in
1972-1992 compared with 1992-2018, but the glacier variations
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in speed are also less in 1972-1992 (11, 18, 40). Our long time
record makes it possible to examine decadal estimates of mass
balance instead of yearly estimates, which reduces our errors
by a factor of 3. We constrain 85% of D with precision thick-
ness and 15% from velocity-scaled reference fluxes (see Materials
and Methods). For precision thickness, we use BedMachine at
the ice front of glaciers contributing to 47% of D, contrary
to ref. 11, who use it for all glaciers. For the glaciers that we
exclude, the uncertainty in BedMachine exceeds our require-
ments (+£100 m) and yields errors in flux up to 100%. For the
remaining 38% of D, we use gravity-derived thickness (13%) and
direct radar-derived thickness upstream of ice fronts (25%). The
gravity-derived thickness used for SE (21) changes its balance
flux from 47.2 Gt/y to 64.2 Gt/y, or +37%, thereby enhancing the
role of SE in the total budget. For the glaciers using a velocity-
scaled reference flux, a 10% uncertainty in reference flux yields
a 1.5% error in total mass balance, or 4 Gt/y, which is negligible.
Our study also uses systematic corrections for ice thickness. The
uncertainty in ice thickness correction is less than 1%. Without
it, D would be 10% too high in 2018, or 55 Gt/y.

Radar altimetry indicates a loss of 269 + 51 Gt/y in 2011-
2014 (7), and laser altimetry indicates a loss 243 + 18 Gt/y for
2003-2009 (6). We find 323 + 28 Gt/y and 220 + 21 Gt/y, respec-
tively, for the same periods; that is, our estimates agree within
errors, especially laser altimetry. The loss is lower with radar
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altimetry because of the difficulty for radar altimeters to sam-
ple coastal sectors with steep slopes. With the Gravity Recovery
and Climate Experiment (GRACE), the loss of 280 £ 58 Gt/y
for 2003-2013, with an acceleration of 254 + 12 Gt/y per decade
(8), matches our 274 £+ 17 Gt/y estimate, with an acceleration of
249 + 54 Gt/y per decade. For 1992-2011, the 142 + 49 Gt/y
mass loss from multiple methods (41) is within errors of our
144 + 13 Gt/y estimate. Few estimates exist before the 2000s (42—
45), because of mission duration (GRACE launched in 2002) or
limitations over steep slopes (radar altimeters).

Our assessment indicates with certainty that the ice sheet was
near balance (—13 £ 14 Gt/y) in 1972-1990. Within that time
period, SMB was above balance in 1972-1980 and slightly below
balance in 1980-1990, whereas D was slightly above equilibrium
the entire time. This result contradicts an earlier study that con-
cluded the ice sheet was losing mass the entire time (5) based on
differences in ice elevation between two epochs 83 years apart,
with no data in the ice sheet interior. We posit that balance
conditions in 1972-1990 were compensated by periods of high
loss, e.g., in the 1920s through 1940s (46), so that the mass loss
varied significantly between the two epochs. Secondly, the same
study suggested that the contribution from glacier dynamics to
the mass loss was constant over the entire period 1900-2016. Our
annual to subannual time series show that D increased continu-
ously during 1972-2018 and overall has had a larger impact on
mass balance than SMB. SMB domination of the mass balance
is only recent. Over the past 46 years, ice dynamics contributed
66 + 8% of the mass loss versus 34 + 8% for SMB. Hence, ice
dynamics, i.e., changes in glacier flow, play a major role in the
mass budget.

In 2000-2012, half of the cumulative loss was from four gla-
ciers, (i) Jakobshavn Isbrae, (if) Kangerlussuagq, (iii) Kgge Bugt,
and (iv) Ikertivaq S (4), but, between 1972 and 2018, Ikertivaq S
gained 26 £ 15 Gt. Over 46 years, the conclusions are differ-
ent. The largest losses are from (i) Jakobshavn Isbrae (327 +
40 Gt), (ii) Steenstrup-Dietrichson in NW (219 + 11 Gt), (iii)
Kangerlussuaq in CE (158 £ 51 Gt), (iv) Humboldt in NO (152 +
7 Gt), (v) Midgérdgletscher in SE (138 + 5 Gt), and (vi) Kgge
Bugt C in SE (119 + 37 Gt), hence highlighting glaciers that
are seldom mentioned in the literature. Steenstrup-Dietrichson,
Humboldt, and Midgérdgletscher contributed to the mass loss
during the entire period, versus only after year 2000 for
Jakobshavn, Kangerlussuaq, and Helheimgletscher. This result
illustrates the risk of summarizing the ice sheet loss on the basis
of the fate of a few glaciers.

Some glaciers gained mass during the survey: Saqqap,
Majorqaq, and Russell glaciers in SW gained 282 + 18 Gt in
1972-2006. This mass gain is consistent with the glacier advance
in SW in the 1970s to 1980s (47, 48, 49) and satellite-derived ice
sheet growth (50, 51), which improves confidence in the SMB
reconstruction. Conversely, a few large glaciers did not undergo
large dynamic changes (<10%): Rink Isbree, Hayes N and NN,
Petermann, Nioghalfjerdfjorden, and Daugaard-Jensen glaciers.
We attribute their stability to the bed configuration. Daugaard-
Jensen calves on a stabilizing ridge. Nioghalfjerdfjorden retreats
along a prograde bed. Rink and Petermann are protected by a
buttressing ice shelf. Petermann and Nioghalfjerdfjorden sped
10% since 2010 and 2006, respectively, following a weakening of
their buttressing ice shelves (34, 36).

In terms of partitioning between discharge and SMB (Fig. 2),
the loss from D anomalies (deviations in D from a reference
state) decreased from 47 + 19 Gt/y in the 1970s to 41 £ 8 Gty
in the 1990s before reaching 127 + 9 Gt/y in 2010-2018, for a
cumulative 3,312 £ 124 Gt since 1972, or 9.1 £+ 0.3 mm SLE
(Fig. 3H). SMB anomalies (deviations in SMB from a refer-
ence state) were positive in 1970s (+95 £ 20 Gt/y) and near
equilibrium in the 1980s and 1990s (—1 £+ 17 Gt/y and 0 +
17 Gtly, respectively) before becoming negative in 2000-2018
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(—99 £ 17 Gt/y and —160 + 20 Gt/y for 2000-2010 and 2010-
2018, respectively), for a cumulative loss of 1,670 £ 379 Gt since
1972, or 4.6 & 1.0 mm SLE. Hence, glacier dynamics has played
a stronger role in the mass loss (66 = 8%) than SMB (34 +
10%) during the last 46 years. SMB dominated (55 £ 5%) only
in the last two decades. It is important to note, however, that
D increased by 18% during that time, versus a 38% decrease in
SMB; that is, D had a larger impact on the mass loss, because
it was already above equilibrium conditions in the 1970s. This
result has several implications. First, even in years of high SMB,
e.g., 2018, the ice sheet loses mass because D is well above equi-
librium. In fact, the ice sheet has lost mass every year since 1998.
Second, this implies that changes in glacier flow remain of pri-
mary importance in driving the mass loss of the ice sheet, even
though SMB played a larger role in the last 20 years.

In the future, SW will remain controlled by SMB processes,
whereas SE, CW, and NW will be controlled by the fate of their
tidewater glaciers, i.e., ice dynamics (64 £+ 12%, 65 + 14%, and
86 £ 4%, respectively). We expect that NW, SE, and CW will
continue to dominate the ice sheet mass budget, especially in NW
where D increased 18 + 0.1 Gt/y per decade from 1998 to 2018,
with no sign of deceleration.

In terms of long-term contribution to sea level rise, the NO
and NE sectors are of greatest importance. The loss in that
region is equally partitioned between D and SMB at present
(62 £ 11% and 60 £ 15%, respectively). The glaciers do not pro-
duce a high D (25.9 &+ 1.9 Gt/y and 39.5 £ 2.7 Gt/y, respectively,
in 2018), but the glacier speeds are low compared with those in
SE or NW; the potential for a large increase in D exists if the
glaciers lose their buttressing ice shelves and start flowing as fast
as their SE and NW counterparts, which would tap the largest
potential SLE (273 cm) in Greenland. The evolution of NO and
NE glaciers in the coming decades is therefore of greatest rele-
vance to future sea level change as the ice shelves are weakened
by climate change.

Conclusions

Using improved records of ice thickness, surface elevation, ice
velocity, and SMB, we present a 46-years reconstruction of
glacier changes across Greenland that reveals a dominance from
ice discharge over the entire record and a sixfold increase in mass
loss from the 1980s. The largest mass loss is from NW, SE, and
CW, which are controlled by tidewater glaciers. Several glaciers,
including Humboldt, Steenstrup-Dietrichson, and Kgge Bugt C.
North Greenland (NO, NE) have played a stronger role in the
total mass loss than reported previously, hence illustrating the
value of an extensive time series of mass balance that includes all
of the large glaciers. We also find that the ice sheet as a whole
was near balance over the time period 1972-1990. In the future,
we expect the mass changes in the northern part of Greenland to
become of greatest importance to sea level rise, because of the
large reserve of ice above sea level and the potential for manyfold
increase in ice discharge.

Materials and Methods

Ice Discharge. We combine ice thickness (19-22) and ice velocity (13-16)
to calculate ice flux, D (S/ Appendix). We assume no internal deformation;
that is, surface ice speed equals the depth-averaged ice speed. We apply no
firn correction. At the flux gate, D in cubic kilometers per year is the inte-
gral (trapezoidal rule) of ice velocity v; in the direction normal to the gate
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times ice thickness H;. Speed and ice thickness are sampled every 200 m.
The associated error, op, is the sum of systematic and random errors as

op=1; VioH; + 4 /Z(HiUv,-)z, where OH; is the error in ice thickness and ay;
is the error in speed. The volume flux is converted into mass using an ice den-
sity of 917.2 kg/m>. Flux gates are placed at the most-retreated grounding
line or ice front position.

With gridded data sets from mass conservation (MC) and gravimetric
inversion (GRA), we calculate the flux within 1 km of the most-retreated
grounding line or ice front position. With direct radar sounder measure-
ments (GAT), the measured flux at the flux gate is converted to a reference
ice front flux, D,ef, as in ref. 2. Namely, we correct the flux obtained at
the flux gate with the earliest velocity data by adding the average SMB for
1961-1989 (or SMB ) between the flux gate and the ice front; that is, we
assume that the discharge was in equilibrium at that time. A 2% error in that
initial value (D increased by 18% in 1972-2018 on average) would introduce
a 0.7% error in D,er. We use 61, 16, and 20 flux gates for MC, GRA, and GAT,
respectively. These 107 glaciers control 85% of D. For the other glaciers, we
use D, equal to SMB,,;. The error in D combines the error in SMB,.s and
error in the relationship between mean SMB and initial D. The linear regres-
sion between the GAT, MC, and GRA values of D before the 1990s and SMB .+
reveals a significant correlation (R? = 0.93; S/ Appendix, Fig. S2). Using a
linear least-squares fit between these variables, the unexplained variance
between mean SMB and D is +7%. Detailed results for each glacier, gate,
and area used for SMB correction are in S/ Appendix.

Annual D is calculated by scaling D,y with the speed and thickness
changes established previously. The associated error, op, is the combina-
tion of the systematic error in reference flux and independent errors on

the scaling as op = ayapop,  + \/(O(VDrerah)z + (ahDyefo oy )%, Where
is the scale factor for speed, «y, is the scale factor for thickness, and D, is
the reference flux.

For years with no velocity data, D is linearly interpolated, or kept con-
stant if at the end or beginning of the time series. If D is extended at
the end or beginning of the time series, we assume that the relative error
increases by 5% per year beyond the closest available estimate, or 100%
after 14 years. When D is interpolated, we assume a relative error increas-
ing at 2.5% per year from the closest available estimate. We assume that
errors in D are independent between individual glaciers, so the error in

Dis /> o3.

Mass Loss. Mass balance, dM/dt, is SMB minus ice discharge D. The error in
dM/dt combines the errors in SMB and in D (S/ Appendix, Fig. S2 and Dataset
S2). We estimate dM/dt yearly between 1972 and 2018 (Fig. 2). For each
basin, we compute the partitioning between anomalies in D (D — SMB ()
and anomalies in SMB (SMB s — SMB). The anomaly in D is spread spatially
using the ratio between flux density (speed times thickness) and distance to
the ice front as a proxy. The anomaly in SMB is naturally spread over the
ice sheet. Mass (in gigatons) is converted to eustatic sea level rise using 362
Gt=1 mm SLE.
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