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ACKGROUND CONTEXT: Local corticosteroids have been used to relieve symptoms of

chronic low back pain, although treatment effects have been shown to wear off relatively fast. Pro-

longing corticosteroid presence by controlled release from biomaterials may allow for longer pain

relief while circumventing adverse effects such as high bolus dosages.

PURPOSE: The purpose of this study was to evaluate the safety and efficacy of intradiscal con-

trolled release of triamcinolone acetonide (TAA) by poly(esteramide) microspheres in a canine

degenerated intervertebral disc (IVD) model.

STUDY DESIGN: In a preclinical experimental large animal model, the effect of prolonged gluco-

corticoid exposure on disc degeneration was evaluated.

METHODS: Degeneration was accelerated by nucleotomy of lumbar IVDs of Beagle dogs. After

4 weeks, microspheres loaded with 8.4 mg TAA, and 0.84 mg TAA were administered to the

degenerated IVDs by intradiscal injection (n=6 per group). Empty microspheres (n=6) and all adja-

cent non-nucleotomized noninjected IVDs were included as controls (n=24). Immediately prior to

TAA administration and after 12 weeks, magnetic resonance imaging was performed. Degenerative

changes were evaluated by disc height index, Pfirrmann grading, T1r and T2 mapping values, post-

mortem CT scans, macroscopic and microscopic grading, and biochemical/immunohistochemical

analysis of inflammation and extracellular matrix content. In addition, nerve growth factor (NGF)

protein expression, a biomarker for pain, was scored in nucleus pulposus (NP) tissues. The study

was funded by a research grant from Health Holland (1.3 million euros = 1.5 million US dollars).

RESULTS: Macroscopic evaluation and CT images postmortem were consistent with mild disc

degeneration. Other abnormalities were not observed. Nucleotomy-induced degeneration and inflam-

mation was mild, reflected by moderate Pfirrmann grades and PGE2 levels. Regardless of TAA dos-

age, local sustained delivery did not affect disc height index nor Pfirrmann grading, T1r and T2

mapping values, PGE2 tissue levels, collagen, GAG, and DNA content. However, the low dosage of

TAA microspheres significantly reduced NGF immunopositivity in degenerated NP tissue.
tus: Not approved for this indication (triamcinolone

ramide microspheres); Investigational (poly(estera-
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CONCLUSIONS: This is the first in vivo application in a preclinical large animal model of a con-

trolled release formulation of corticosteroids in mild IVD degeneration. Sustained release of TAA

locally in the IVD appeared safe and reduced NGF expression, suggesting its potential applicability

for pain relief, although beneficial effects were absent on tissue degeneration.

CLINICAL SIGNIFICANCE: The present platform seems to be promising in extending the local

controlled delivery of TAA with the potency to provide long-standing analgesia in the subset of

LBP patients suffering from discogenic pain. © 2018 Elsevier Inc. All rights reserved.
Keywords: c
hronic low back pain; intradiscal injection; controlled release; corticosteroid; triamcinolone acetonide; inter-

vertebral disc degeneration; poly(esteramide) microspheres; preclinical animal model.
Introduction

Chronic low back pain (LBP), affecting millions of peo-

ple worldwide, is strongly associated with intervertebral

disc (IVD) degeneration [1]. It is one of the most common

causes of disability and imparts a huge socioeconomic bur-

den, mostly due to decreased productivity [2]. Since popu-

lation age and associated risk factors for IVD degeneration

are increasing, prevalence is increasing [3]. During degen-

eration, the structural organization of the nucleus pulposus

(NP) and annulus fibrosus (AF) are subjected to several

morphologic and molecular changes; extracellular matrix

(ECM) proteins are lost from the framework, in particular

PGs [4,5] changing disc homeostasis toward a more cata-

bolic environment. Subsequently, water content also

decreases in the disc tissue leading to a disorganized ECM

and eventually a loss of disc height [5,6]. This finally

results in a disorder of the spine motion segment due to

reduced ability of the IVD to absorb shocks. The loss of

IVD tissue integrity can also contribute to increased insta-

bility of the spinal segment, a potential risk factor for LBP

and possible complications like degenerative slip and steno-

sis [7]. Pain is the predominant clinical symptom and even

though the mechanism is in most cases unknown, it is often

attributed to anatomical pain generators such as the IVD or

the facet joint [8]. Although there is considerable debate on

the origin of the discogenic pain signal in the degenerated

IVD, it is speculated that a degenerating IVD becomes

painful due to the secretion of growth factors such as nerve

growth factor (NGF) that can stimulate peripheral nocicep-

tive sensory neurons to grow into the IVD [9−11].

Inflammation-induced LBP is commonly treated using

anti-inflammatory agents, such as corticosteroids or nonste-

roidal drugs, which are administered orally or by local

injection [12,13]. Although corticosteroids are widely used

for their strong potency to reduce inflammation, concerns

for their long-term use arise for adverse side effects such as

glucocorticoid-induced osteoporosis [14−16]. Administra-

tion via intradiscal injection can reduce the risk of systemic

side effects and could be a good alternative therapy delay-

ing more invasive treatment options such as surgery [17].

However, the effectiveness of intradiscal steroid injections

has been subject of debate, and contradicting treatment out-

comes in terms of pain relief have been reported [18−21].
Clinical trials showed a temporary or no effect at all

[18,19,22,23]. Most of the trials showing an absence of

effects were based on intradiscal injection of Depo-Medrol,

a formulation of methylprednisolone acetate that has shown

to induce degeneration and matrix calcification in rabbit

IVDs through the polyethylene glycol (PEG)-containing

vehicle suspension [24]. Methylprednisolone succinate

injected in a sodium phosphate buffer without PEG did not

induce these effects, suggesting not only the safety of corti-

costeroids but also the importance of the delivery vehicle

used. This is further corroborated by the fact that upon

intrathecal and epidural administration, PEG-based formu-

lations were shown to be toxic [25]. Other vehicle exci-

pients used in steroid formulations, such as benzyl alcohol

or carboxymethylcellulose, were toxic in ocular tissues

upon intravitreal injection [26]. Also, ossification and calci-

fication in the spinal canal have been reported after intradis-

cal steroid injections that were likely attributable to the

excipients, although no vehicle controls were included

[20,27]. Clinical trials on intradiscal application of other

formulations of corticosteroids did show pain relief,

although generally the effect did not last longer than 1 to 6

months, most likely due to relatively rapid loss of the drug

to the circulation [17,22]. Hence, therapeutic drug delivery

approaches allowing for safe and prolonged exposure to

corticosteroids may be more appropriate to provide long-

term pain reduction.

In small animals, safety of intradiscal application of cor-

ticosteroids in ceramic capsules or poly(lactic-co-glycolic

acid) (PLGA) microparticles was shown at histologic level

in rat models of induced tail IVD degeneration [28,29].

However, rat tail IVD sizes and volumes pose a challenge

in the translation of novel treatments to human application,

and tail IVDs are comparable to human lumbar IVDs only

to a very limited extent [30]. Since the IVD degeneration

process in dogs is similar to that in humans, this represents

a clinically relevant animal model for human IVD degener-

ation [31]. The safety of intradiscal injection of several bio-

materials [32,33] including a novel biomaterial platform

consisting of poly(esteramide) microspheres (PEAMs) was

already demonstrated in a canine model of spontaneous

IVD degeneration [34]. PEAMs are mainly degraded via

enzymatic degradation, contributing to the slow release of

the incorporated corticosteroid [35]. Retention of PEAMs
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in healthy and degenerated rat knee joints was shown to last

up to 10 weeks after intra-articular injection, and when

loaded with triamcinolone acetonide (TAA), inflammation

was suppressed up to 11 weeks in osteoarthritic knee joints

[36]. Whether TAA is also suitable as therapy in a joint

with a confined space such as the IVD still has to be deter-

mined. To this end, we evaluated in a clinically relevant

large animal model the safety and anti-inflammatory

potency of prolonged exposure of TAA in two dosages on

IVD tissues and adjacent spinal bone segments.

Material and methods

Synthesis and preparation of poly(esteramide) micro-

spheres. PEA was synthesized according to previously

described methods [34,37]. PEA polymer alone (for empty

PEAMs) or loaded with 30 wt% TAA was dissolved in

dichloromethane (Merck Millipore). The homogenized

solution was sonicated in a water bath for 3 minutes. Then,

PEA solution was emulsified in 20 mL of water phase,

(poly(vinyl alcohol, Sigma-Aldrich, 1 wt% and NaCl 2.5

wt%) by the use of an ultraturrax, and stirred at 8,000 rpm

for 3 minutes. After emulsification, particles were poured

into a hardening bath of 100 mL water phase and were

hardened overnight under airflow. Particles were cooled

with an ice-bath for 1 hour and thereafter washed with

0.04% Tween 80 (Merck). Excessive surfactant was

removed by centrifugation. Before freeze-drying to remove

residual solvent, particles were suspended in 0.04% Tween

80 (Merck) in order to reach the right concentration of PEA

particles per volume; empty PEA 70 mg/mL, PEA TAA

low dosage 0.72 mg/mL, and PEA TAA high dosage

72 mg/mL particle concentration. Once dried, the particles

were weighed in individual HPLC vials to the approximate

amount of 30 to 35 mg and g-sterilized on dry ice.

Surgical procedures. All animal procedures were

approved and conducted in accordance with the guidelines

set out by the Ethics Committee of Animal Experiments of

Utrecht University (AVD# 108002015285). Six male Bea-

gle dogs (Marshall) with a median age of 1.92 years (range

1.90−1.95) and median weight of 8.8 kg (range 8.0−9.6)
underwent general clinical and orthopedic examination by

a board-certified veterinary surgeon (BM) before entering

the study. At the initiation of the study, dogs accommo-

dated to their new environment for at least 1 week and were

housed in groups.

Complying with the 3Rs principles, three Beagles were

used to study the effects of sustained TAA release, the other

three for a similar study on another small molecule drug. To

reduce animal use, thoracic IVDs (T12−T13) of the six

Beagles were injected with empty PEAMs and served as

control for both studies. Adjacent non-nucleotomized discs

(four per dog) of all six dogs were included in the analysis

as healthy controls to serve as a baseline control, hereafter

referred to as noninduced discs. Altogether, in the study,

there were 24 noninduced untreated IVDs; 6 degenerated
IVDs receiving empty PEAMs, 6 degenerated IVDs receiv-

ing PEAMs+TAA (low dosage, ld), and 6 degenerated

IVDs receiving PEAMs+TAA (high dosage, hd).

Nucleotomy-induced degeneration. Beagle dogs sponta-

neously develop mild IVD degeneration [38]. To enhance

the level of degeneration, in each dog, additional IVD

degeneration was induced by removing part of the NP tis-

sue in five alternating IVDs 4 weeks before treatment (t-4)

at level T12−T13, L1−L2, L3−L4, L5−L6, and L7−S1.
Adjacent IVDs were included as non-nucleotomized con-

trols. Overview of experimental setup is given in Table 1.

All dogs received preoperative analgesia by IV administra-

tion of carprofen (4 mg/kg) and buprenorphine (20 mg/kg).

Premedication consisted of IV dexmedetomidine (2 mg/kg/

hr), followed by induction anesthesia consisting of 1 to

2 mg/kg IV propofol. Subsequently, animals received endo-

tracheal tubes to deliver 1% to 1.5% vol/vol isoflurane gas

for maintenance anesthesia during surgery, delivered in a

1:1 (oxygen:air) mixture. Continuous rate infusion of keta-

mine (10 mg/kg/min) and dexmedetomidine (2 mg/kg/hr)

was administered by IV injection as perioperative analge-

sia. Heart rate, body temperature, respiration rate, carbon

dioxide, and oxygen levels were monitored during the sur-

gical (degeneration induction and PEAMs injection) and

diagnostic imaging procedures. Dogs were positioned in a

right recumbent position and surgery on the left lateral side

was performed under aseptic conditions. After IVDs were

localized, an 18G needle was inserted in the outer AF and

correct needle placement was confirmed by intraoperative

fluoroscopy. Lumbosacral discs were percutaneously

approached, under fluoroscopic guidance. Subsequently,

the needle was further inserted through the AF into the NP

center, and a part of the NP was aspirated using a 10 mL

syringe. Postoperatively, all animals received carprofen

(subcutaneously, 4 mg/kg) and buprenorphine (intramuscu-

larly, 20 mg/kg) as analgesia for 3 days. During the first

postoperative week, dogs were monitored daily by a veteri-

narian (AT) and thereafter at least on a weekly basis.

Poly(esteramide) microsphere injection. Four weeks

after nucleotomy-induced degeneration surgery, intradiscal

injections were done by a board-certified veterinary sur-

geon (BM) under fluoroscopic guidance to confirm correct

needle position prior to injection. PEAM injections were

done using 100 mL gastight Hamilton syringes (7656-01

model 1710 RN, Hamilton Company USA) connected to

27G needles (25 mm, 12˚ beveled point, Hamilton

Company USA). A total of 40 mL was injected slowly into

each nucleotomized IVD on the contralateral (right) side

with the same anesthesia protocol used for nucleotomy-

induced degeneration. After injection, needle was kept in

place a few seconds before retracting, to prevent leakage.

Buprenorphine (intramuscularly, 20 mg/kg) was used as

pre- and postoperative analgesia. Empty PEAMs

(70 mg/mL particles) served as control and were injected

into T12−T13 IVD, the remaining IVDs were injected with

TAA-loaded PEAMs (low dosage ld; 0.72 mg/mL particles;



Table 1

Experimental design of in vivo Beagle IVD study

Week ¡4 (t-4) 0 (t0) 12 (t12) Postmortem

IVD degeneration induction X

PEAMs injection X

MRI; X X

- DHI

- Pfirrmann

- T1r values

- T2 values

CT X

Macroscopic evaluation X

Microscopic evaluation X

Biochemical assays X

CT, computed tomography; DHI, disc height index; IVD, intervertebral disc; L, lumbar vertebrae; MRI, magnetic resonance imaging; PEAMs, polyester

amide microspheres; S, sacral vertebrae; T, thoracic vertebrae; TAA, triamcinolone acetonide.
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8.4 mg TAA and high dosage hd; 72 mg/mL particles;

0.84 mg TAA) diluted in sterile saline. TAA-PEAM condi-

tions were randomized with n=2 per dog. Overview of ran-

domized experimental setup is given in Table 2.

Magnetic resonance imaging. Magnetic resonance

images (MRI) were obtained pre- (t0) and post-treatment

(t12) using a 1.5 Tesla system (Ingenia, Philips, Best, the

Netherlands) under general anesthesia consisting of IV pro-

pofol (1−2 mg/kg). Before anesthesia induction, dogs

received IV dexmedetomidine (10 mg/kg) and butorphanol

(0.1 mg/kg) as premedication. Sagittal T2-weighted Turbo

Spin Echo (repetition time [TR]=3,000, echo time [TE]

=110 ms, acquisition matrix =124£ 261) and T1-weighted

Turbo Spin Echo (TR=400 ms, TE=8 ms, acquisition

matrix=124£ 313) images were acquired using a field of

view of 75£ 220 mm and thirteen 2 mm thick slices. To

measure T2 relaxation times, a quantitative multiple spin-
Table 2

Overview of randomized conditions per IVD in each dog

T12−T13 T13−L1 L1−L2 L2−L3 L3−L4 L4−L5 L5−L6 L6−L7 L7−S1

Dog 1 Empty PEAMs n.i. TAA ld n.i. TAA ld n.i. TAA hd n.i. TAA hd

Dog 2 Empty PEAMs n.i. TAA ld n.i. TAA hd n.i. TAA hd n.i. TAA ld

Dog 3 Empty PEAMs n.i. TAA hd n.i. TAA ld n.i. TAA hd n.i. TAA ld

Dog 4−6 Empty PEAMs n.i. n.i. n.i. n.i.

L, lumbar vertebrae; ld, low dose; hd, high dose; n.i., not injected; PEAMs, polyesteramide microspheres; S, sacral vertebrae; T, thoracic vertebrae; TAA

triamcinolone acetonide.

Nucleotomy-induced degenerated discs: T12−T13, L1−L2, L3−L4, L5−L6, L7−S1.
-

echo T2-mapping sequence was used (scan parameters:

FOV=75 £ 219 mm, acquisition matrix=96£ 273, slice

thickness=3 mm, TR=2,000, TE=13 ms to TE=104 ms with

13 ms echo spacing). A spin-lock-prepared sequence with a

3-dimensional multishot gradient echo (T1−TFE) readout
was used for T1r-weighted imaging (scan parameters:

FOV=76£ 220 mm, acquisition matrix=76£ 220 slice

thickness=2 mm, TR/TE=4.6 s/2.3, TR=5 ms, TE=2.5 ms,

TFE factor=50, flip angle=45˚, shot interval=3,000 ms).

Different spin-lock times of 0, 10, 20, 30, and 40 ms, with a

spin-lock pulse amplitude set to 500 Hz, were used to allow

for quantitative T1r mapping. Mid-sagittal slices of T2-

weighted MR images were used to determine the IVD

degeneration grade using Pfirrmann scoring [39] (MB/AT)

and the disc height index (DHI) [34] (AT/IJ) of each IVD.

Grading was done blinded to treatment location for both

time points (t0 and t12). Analysis of quantitative MR images
,
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by T1r and T2 mapping was done by voxel wise fitting and

calculation of the mean signal intensity in each ROI of the

NP, as previously published [34,40].

Postmortem computed tomography imaging and collec-

tion of spinal units. Twelve weeks after intradiscal PEAMs

injection (t12), dogs were euthanized by sedation with dex-

medetomidine followed by IV pentobarbital (200 mg/kg).

Post-mortem, computed tomography (CT) images were

obtained of the whole vertebral column to evaluate bone

structures. A third-generation 64-slice CT scanner (Siemens

Somatom Definition AS, Siemens Healthcare, The Hague,

the Netherlands) was used to obtain CT images (scan

parameters: 0.6 mm slice thickness, 120 kV, 350 mAs,

1,000 ms tube rotation time, 0.35 spiral pitch factor,

512£ 512 pixel matrix and a fixed field of view of 93 mm).

Transverse and sagittal reconstructions of 0.6 mm thick sli-

ces were made using soft tissue and bone reconstruction

kernels. Nine spinal units (one-half vertebrae − IVD −
one-half vertebrae) were harvested of each dog, and every

unit was transected mid-sagittal, still containing both NP

and AF tissues. One half was snap frozen in liquid nitrogen

and stored at ¡80˚C for biomolecular and biochemical

analysis. The other part was photographed (Olympus

BX41, Hamburg, Germany) for macroscopic evaluation

and fixed in 4% buffered formaldehyde solution (Klinipath,

Duiven, the Netherlands) for 2 weeks at room temperature

(RT). Macroscopic images of the halved IVD segments

were evaluated in a blinded fashion in random order

according to the Thompson grading scheme modified for

dogs [41] by 2 investigators (AT/IR) independently.

Histopathologic scoring. After fixation, the IVD seg-

ments were decalcified in 0.5M EDTA for 9 weeks under

continuous agitation. Every 2 weeks, tissues were refixed

4% buffered formaldehyde for 48 hours. The segments

were dehydrated in ascending alcohol series 70%, 96%,

100%, and eventually in xylene and subsequently embed-

ded in paraffin. Five micrometer tissue sections were

stained with hematoxylin & eosin and picosirius red/alcian

blue. Scoring of IVD degeneration by the Boos histopatho-

logic grading system validated for canines [42] was per-

formed in a random order by two investigators (AT/IR)

independently, blinded for treatments.

Immunohistochemistry. Immunohistochemistry was per-

formed on 5 mm paraffin sections. After deparaffinization and

rehydration, sections were washed with PBS or TBS and sub-

sequently blocked for nonspecific endogenous peroxidase for

10 minutes at RT and washed 2 times with PBS of TBS con-

taining 0.1% Tween 20 (PBST/TBST) for 5 minutes. Protocol

overview is shown in Table 3 for the respective antibodies.

Antigen retrieval was performed for 30 minutes at 37˚C. After

washing, sections were blocked for 30 minutes and incubated

overnight at 4˚C with the primary antibody (collagen type I, II

or X and NGF). The next day, sections were washed with

PBST or TBST and incubated with the secondary antibody

for 30 minutes at RT. After washing, sections were incubated

with 3,3’-Diaminobenzidine (DAB) substrate for 10 minutes,
counterstained with Mayer’s hematoxylin for 1 minute and

rinsed with running tap water for 10 minutes. Before perma-

nent mounting with Depex (06522, Sigma-Aldrich), slides

were dehydrated with series ethanol and eventually xylene.

For quantification of NGF [43], of each NP section per micro-

scope slide, six digital images were obtained and total cell

count as well as NGF immunopositive cells were manually

counted and averaged using Photoshop count tool (Adobe

Photoshop CS6, version 12.0.1£ 64).

Biochemistry: DNA, collagen, glycosaminoglycans

(GAGs). NP and AF tissue were separated during cryosec-

tioning of the snap frozen spinal unit, based on anatomical

location of the tissues and stored in Complete lysis M

EDTA-free buffer (Roche Diagnostics Nederland BV,

Almere, the Netherlands) at ¡80˚C. Solutions were over-

night spun at 4˚C and thereafter centrifuged at 1,700 rpm

for 15 minutes. Pellet and supernatant were collected sepa-

rately for each tissue (NP and AF) and stored until use at

¡20˚C. Pellets were digested overnight at 60˚C in papain

buffer (250 mg/mL papain, P3125-100 mg, Sigma-Aldrich

with 1.57 mg/mL cysteine HCL, C7880, Sigma-Aldrich).

GAG content was quantified by the 1,9-dimethylmethylene

blue (DMMB) assay [44]. Chondroitin sulfate from shark

cartilage (C4384, Sigma-Aldrich) was used as a standard to

calculate GAG concentrations and the ratio of absorption at

540 to 595 nm was measured by a microplate reader (Multi-

mode detector DTX 880, Beckman Coulter). DNA content

was determined using a Quant-iT dsDNA Broad-Range

assay kit in combination with Qubit fluorometer (Invitro-

gen, Paisley, UK) in accordance with the manufacturer’s

instructions.

Hydroxyproline content was determined using a colo-

metric assay. Hundred microliter papain-digested tissue

pellets were dried by the evaporation of the solvent in a

cooled speed vac and subsequently hydrolyzed in 100 mL

4 M NaOH for 24 hours at 108˚C. Hydrolysis was stopped

by adding 100 mL 1.4 M citric acid, vortexed, and centri-

fuged for 15 seconds at 14,000 rpm. Then, 35 mL superna-

tant was dispensed into a 96-well plate, followed by 75 mL

assay buffer with chloramine T reagent (2426, Merck,

Schiphol-Rijk, the Netherlands) and incubated for 20

minutes on a shaker at 170 rpm. Seventy-five microliter

dimethylaminobenzaldehyde (3058 Merck) was freshly

added and incubated for 20 minutes at 60˚C and cooled

down before the absorbance was read at 570 nm. Collagen

content was calculated from the hydroxyproline content by

multiplying by 7.5 [45]. GAG and collagen content were

normalized to DNA content for both NP and AF tissues.

Also, GAG was normalized to collagen to evaluate the ratio

between these tissues.

ELISA for PGE2 and TAA tissue content. The superna-

tants of the above-mentioned tissue digests were used for

analysis of TAA (as a measure of presence of TAA released

by the PEAMs at 12 weeks follow-up) and PGE2 content

(as a measure of TAA bioactivity upon release from the

PEAMs) using a competitive colometric ELISA



Table 3

Details of the immunohistochemistry protocols used

First antibody Work concentration Origin Antigen retrieval Block Washing Second antibody

Collagen type I (ab6308,

Abcam, Cambridge, UK)

0.1 mg/mL Mouse monoclonal 1 mg/mL pronase for

30 min at 37˚C

10 mg/mL HA

for 30 min at 37˚C

S2003, Dako, USA

PBS+5% BSA

PBS+0.1% Tween20 EnVision+System-HRP Goat

Anti-Mouse,

K4001, Dako, Glostrup,

Denmark

Collagen type II (II-II6B3,

DSHB, Iowa City, IA)

0.4 mg/mL Mouse monoclonal 1 mg/mL pronase for

30 min at 37˚C

10 mg/mL HA

for 30 min at 37˚C

S2003, Dako, USA

PBS+5% BSA

PBS+0.1% Tween20 EnVision+System-HRP Goat

Anti-Mouse, K4001, Dako,

Glostrup, Denmark

Collagen type X (art 1-

CO097-05,

Quartett, Germany)

50 mg/mL Mouse monoclonal 0.1% pepsin for 20 min

at 37˚C

10 mg/mL HA for

30 min at 37˚C

S2003, Dako, USA

PBS+10% normal

goat serum

PBS+0.1% Tween20 EnVision+System-HRP Goat

Anti-Mouse, K4001, Dako,

Glostrup, Denmark

Normal mouse IgG1 (3877,

Santa Cruz

Biotechnology, Heidel-

berg, Germany)

* Mouse * * * *

NGF (ab6198, Abcam,

Cambridge, UK)

1.25 mg/mL Rabbit polyclonal

antibody

10 mM

Na citrate pH 6.0 water bath for

20 min at 80˚C

TBS+0.1% Tween20 EnVision+System-HRP Goat

Anti-Rabbit, K4011, Dako,

Glostrup, Denmark

Normal rabbit IgG1

(1.25 mg/mL; X0903,

Dako,

Glostrup, Denmark

* Rabbit * * *

BSA, bovine serum albumin; HA, hyaluronidase; HRP, horseradish peroxidase; IgG, Immunoglobulin G; NGF, nerve growth factor; PBS, phosphate buffered saline; TBS, tris buffered saline.

* same as first antibody of interest.
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Fig. 1. Disc height index (DHI), Pfirrmann grades and nucleus pulposus (NP) T1r, T2-weighted values of IVDs where further degeneration was induced and

treated with TAA, compared with noninduced controls. Noninduced discs, healthy control; induced discs, nucleotomy-induced degenerated discs; PEAMs,

poly(esteramide) microspheres; TAA, triamcinolone acetonide; ld, low dosage (8.4 mg); hd, high dosage (0.84 mg). *p<0.05 and ***p<0.001.
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(Prostaglandin E2 monoclonal ELISA kit, Cayman Chemi-

cal, Ann Arbor, MI and TAA ELISA #105119, Neogen,

UK) in accordance with the manufacturer’s instructions.

PGE2 content was normalized for DNA content of NP and

AF tissues.

Statistical analysis. All data were analyzed using IBM

SPSS Statistics software (version 21). All mean outcome

values of non-nucleotomized discs were compared with

nucleotomy-induced degenerated discs at time points t0
and t12 with independent sample t tests. In the treatment

groups (induced, TAA ld and TAA hd) equality of data

variances was evaluated by Q−Q plots and homoscedas-

ticity of residuals by scatterplots. In case these assump-

tions were not met, data were logarithmically

transformed, otherwise the Kruskal-Wallis test was used

to analyze nonparametric data (TAA retention, T1r val-

ues, and Thompson score). For each tissue (NP and AF

separately), GAG values were normalized for DNA and

collagen for GAG content for all groups, and means were

compared with each other using a randomized block

design ANOVA to correct for donor variability. If statisti-

cal significant differences were found between groups,
Tukey’s post hoc analysis was used to correct for multiple

comparisons. NGF immunopositive cell averages were

analyzed with independent sample t test, Bonferroni post

hoc analysis was used to correct for multiple comparisons

(induced vs. TAA ld and induced vs. TAA hd). Statistical

significance was assumed for p<0.05.
Results

All dogs recovered from surgery uneventfully and

remained without evident clinical disorders during the 12-

week study period.

Triamcinolone acetonide administration did not alter

intervertebral disc degeneration progression

In nucleotomy-induced degenerated IVDs, progres-

sive degeneration was seen as confirmed by Pfirrmann

scores (Fig. 1, p<0.001) and reduction of the T1r val-

ues. Disc height remained unaltered at 12 weeks follow-

up regardless of the treatment group (Fig. 1) consistent

with mild degeneration. Quantitative T1r and T2 values



Fig. 2. Representative macroscopic mid-sagittal images of intervertebral discs (left column), squared boxes indicate location of region depicted for histology.

Scale bar = 1 cm. Microscopic images of ventral annulus fibrosus and nucleus pulposus stained with picosirius red/alcian blue to visualize collagens and pro-

teoglycans, respectively (middle column). Scale bar = 1 mm. Microscopic images of nucleus pulposus stained with hematoxylin and eosin (right column).

Scale bar = 50 mm. Noninduced discs, healthy control; induced discs, nucleotomy-induced degenerated discs; PEAMs, poly(esteramide) microspheres; TAA,

triamcinolone acetonide; ld, low dosage (8.4 mg); hd, high dosage (0.84 mg).
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showed no difference in IVD degeneration between

treatments at the end point of the study (Fig. 1). No

abnormalities that were treatment related were observed

on CT images postmortem. Some sclerosis of the end-

plates and very mild new bone formation occurred occa-

sionally (2/6 levels) at the location of degeneration

induction, independent of the treatment, probably due to

minor surgical trauma (data not shown). Macroscopic

and microscopic analyses showed no evidence of osteo-

porosis. Furthermore, macroscopic and microscopic

evaluation and scoring at 12 weeks follow-up showed

no clear differences in degeneration or tissue integrity

12 weeks after TAA administration (Figs. 2 and 3).
Triamcinolone acetonide detection in intervertebral disc

tissue 12 weeks after intradiscal injection

Approximately one-fourth of the NP and AF tissue of

each IVD was employed to determine TAA levels from tis-

sue extracts. NP tissue from IVDs injected with empty

microspheres did not contain appreciable levels of TAA

(data not shown). TAA was detected in AF tissue of IVDs

injected with TAA containing microspheres, 12 weeks after
injection (Fig. 4, p<0.05). No difference was noted between
the two dosages.
Extracellular matrix (immuno)histology

Histologic evaluation of the NP and AF revealed that

collagen type I was absent in the ECM of NP and inner

AF tissues for all conditions as depicted in Fig. 5 com-

patible with mild degeneration. In nucleotomy-induced

degenerated IVDs injected with empty PEAMs, collagen

type II was present only pericellularly in the NP, com-

pared with IVDs injected with TAA low dosage and

TAA high dosage, where collagen type II was also

found in the ECM. Collagen II was observed throughout

the AF in all conditions (Fig. 5). Collagen type X was

absent in the ECM of all IVDs (data not shown), while

the canine growth plate (positive control) stained appro-

priately.
Local delivery of triamcinolone acetonide-loaded

microspheres did not affect extracellular matrix content

Degeneration in nucleotomy-induced degenerated IVDs

as measured by Pfirrmann scoring was not reflected by



Fig. 3. Macroscopic (Thompson) grade and microscopic (Boos) scoring

systems were applied to evaluate IVD degeneration. Noninduced discs,

healthy control; induced discs, nucleotomy-induced degenerated discs;

PEAMs, poly(esteramide) microspheres; TAA, triamcinolone acetonide;

ld, low dosage (8.4 mg); hd, high dosage (0.84 mg).

Fig. 4. TAA retention in annulus fibrosus after 12 weeks of intradiscal

delivery. TAA was measured in induced discs injected with PEAMs+TAA

low dosage (ld) and PEAMs+TAA high dosage (hd). Amount of TAA was

corrected for DNA content of each annulus fibrosus. TAA was still

detected in most of the induced discs injected with PEAMs+TAA. PEAMs,

poly(esteramide) microspheres; TAA, triamcinolone acetonide.
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GAG/DNA or GAG/collagen content of the NP. Levels did

not differ from non-nucleotomized levels at 12 weeks fol-

low-up (Fig. 6), nor were these affected by TAA delivery.

TAA exposure did not significantly influence PGE2/DNA

levels in NP tissue (Fig. 6). In contrast to NP tissue, GAG/

DNA levels were decreased and PGE2/DNA levels

increased in AF tissues 4 weeks after induction of degener-

ation (Fig. 6, p<0.05). GAG/collagen ratio however was

not affected in nucleotomy-induced degenerated AF tissue.

Extended TAA release did not result in significant differen-

ces in GAG/collagen ratios compared with induced or non-

induced IVDs in AF tissues (Fig. 6). TAA exposure did not

alter PGE2/DNA levels in AF tissue (Fig. 6).
Nerve growth factor was decreased in nucleus pulposus

tissues treated with triamcinolone acetonide

Increased NGF levels are associated with inflamma-

tion and chronic LBP [9], and NGF released by degen-

erated NP cells can contribute to the innervation of the

degenerated IVD [46]. Therefore, the presence of NGF
in NPs of nucleotomy-induced degenerated IVDs after

exposure to extended TAA release was further investi-

gated (Fig. 7). On average, nucleotomy-induced degen-

erated IVDs (56§6.8%) contained significantly more

NGF immunopositive NP cells compared with non-

nucleotomized controls (15§3.9%; Fig. 7, p<0.001). In
the NP of IVDs exposed to the lower dosage of TAA,

significantly less NGF immunopositive cells were pres-

ent (30§4.0%) compared with nucleotomy-induced

degenerated IVDs (Fig. 7, p<0.05). Although not statis-

tically significant, also in nucleotomy-induced degener-

ated IVDs treated with the higher dosage of TAA, less

cells (42§5.6%) were immunopositive for NGF com-

pared with non-nucleotomized controls (15§3.9%).
Discussion

This is the first study to show the safety of intradiscal

delivery and extended release of TAA in a clinically rele-

vant large animal model recapitulating the process of disc

degeneration in man [47]. TAA was still detectable 12

weeks after intradiscal delivery confirming local, sustained

and prolonged drug delivery by the PEAMs and did not

affect IVD or bone integrity, based on macroscopic evalua-

tion, disc height index, T1r and T2 values, and histopatho-

logic and biochemical analyses. Prolonged TAA exposure

at the lower dosage decreased NGF immunopositivity in

NP tissue from nucleotomy-induced degenerated IVDs,

indicative of an analgesic effect, although the setup of the

current study did not allow for pain as a readout parameter.

Needle puncture of the IVD is required for local delivery

of therapeutic agents, but has been suggested to induce IVD

degeneration [48−50]. This was mainly based on one publi-

cation where discography was shown to enhance degenera-

tion in human subjects. However, this seemed to have

mainly occurred in healthy IVDs [50]. Moreover, discogra-

phy involves pressurization of the IVD and the contrast



Fig. 5. Immunohistologic staining for collagen types I and II of nucleus

pulposus (NP) and annulus fibrosus (AF) tissues. Collagen type I, scale

bar = 50 mm and collagen type II, scale bar = 20 mm. Non-induced discs,

healthy control; induced discs, nucleotomy-induced degenerated discs;

PEAMs, poly(esteramide) microspheres; TAA, triamcinolone acetonide;

ld, low dosage (8.4 mg); hd, high dosage (0.84 mg).
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agent used has been shown to reduce IVD cell proliferation

and enhance cell death [51,52]. As previous large animal

studies in which small volumes of noncytotoxic materials

were injected in mildly degenerated IVDs showed no long-

term damage to the injected IVD [32−34], the two former

factors rather than insertion of a needle itself will have

entailed the described risk. Although needle puncture is

applied to induce IVD degeneration in small experimental

animal models [49,53], this is dependent on the needle size

relative to the IVD size [49]. In large animal studies

[32−34,47], the use of 27G needles was shown safe, but

in rat IVDs, insertion of a 27G needle induced degeneration

[49]; this would be comparable to injection of a human

IVD with a needle larger than 6G (6.4 mm). Nevertheless,

the exact cutoff for needle size for safe injection in the

human IVD still warrants further investigation. It is there-

fore unlikely that the degenerative changes observed in this

study are attributed to needle puncture of the IVD.

Intradiscal glucocorticoid injections in human patients

have been investigated extensively before with pain relief

as major aim and outcome parameter [18−21,54,55]. How-
ever, the toxic formulations of steroid depots containing

PEG, carboxymethylcellulose or benzyl alcohol, might

have been an underappreciated confounder in these studies

[25,56]. Considering that TAA depot formulations also con-

sist of the latter, negative results from previous clinical

studies using these formulations may be attributed to the

excipients rather than the corticosteroids [26,57]. In the cur-

rent study, nontoxic PEAMs [34,58] were used to deliver a

relatively high dosage of TAA in the IVD without addi-

tional excipients. Considering that the high dosage of TAA

(0.84 mg) delivered to the canine IVD is the maximum

attainable dosage and slightly under the human dosage used

for other corticosteroid preparations for intradiscal injec-

tions, this platform appears to provide the opportunity to

deliver local high dosages of TAA without adding toxic

compounds to the formulation. Also, TAA crystallization,

which can also be toxic when in direct contact with cells

[57,59], is less likely to occur when using a slowly degrad-

ing biomaterial depot like PEAMs. Both the PEA biomate-

rial platform and controlled release of glucocorticoids have

been shown to be safe in other tissues [34−36]. Other side
effects of long-term glucocorticoid delivery may be osteo-

porosis [60]. In this study, the TAA released by the PEAM

platform did not influence bony structures, as was deter-

mined by CT evaluation and histologic examination of the

cortical and trabecular bones. Considering that TAA was

still detectable in the IVD 12 weeks after administration,

apparently relatively high dosages of TAA can be locally

delivered using controlled release formulations without

exerting detrimental effects. Interestingly, TAA was not

detected in NP tissues from nucleotomy-induced degener-

ated IVDs injected with TAA releasing microspheres. This

may be due to the limited amount of tissue available for

extraction and analysis (1/4 IVD) combined with TAA lev-

els in the NP around the detection limit. On the other hand,



Fig. 6. Glycosaminoglycan (GAG) corrected for collagen or DNA content and prostaglandin E2 (PGE2) corrected for DNA, in both nucleus pulposus and

annulus fibrosus tissues. Noninduced discs, healthy control; induced discs, nucleotomy-induced degenerated discs; PEAMs, poly(esteramide) microspheres;

TAA, triamcinolone acetonide; ld, low dosage (8.4 mg); hd, high dosage (0.84 mg). *p<0.05.
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TAA is known to bind to proteins [61], thereby extending

its half-life and therapeutic duration, as has been shown for

ocular pigments in applications for eye diseases [62].

Hence, another possible explanation for the presence of
TAA in the AF opposed to the NP might be the binding of

TAA to ECM proteins, which are more abundantly present

in the AF than in the NP. However, this binding has never

been subject of investigation.



Fig. 7. Immunohistologic staining for nerve growth factor (NGF). (a) His-

tologic image of nucleus pulposus (NP) cells, NGF immunopositivity is

indicated by the black arrows. Scale bar = 50 mm. (b) Quantification of

NGF immunopositive NP cells. Noninduced discs, healthy control;

induced discs, nucleotomy-induced degenerated discs; PEAMs, poly(ester-

amide) microspheres; TAA, triamcinolone acetonide; ld, low dosage (8.4

mg); hd, high dosage (0.84 mg). *p<0.05 and ***p<0.001.
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To our knowledge, the effect of sustained local TAA

release on IVD tissue in a clinically relevant larger animal

model has not been investigated before. So far, only one

study described the effect of the controlled release of corti-

costeroids, that is, cortisone, from ceramic capsules in a rat

IVD degeneration model. The implanted ceramic capsules

releasing the corticosteroid delayed progression of stab-

induced degeneration after 4 weeks compared with empty

capsules, as was determined by increased disc height and

increased cell density [28]. However, the latter is also a

hallmark for degeneration in humans and canines [42,63].

Moreover, rat tail IVDs are not well comparable to lumbar

IVDs, due to differences in size, cell composition, and

mechanical loading [64]. At the cellular level, corticoste-

roid exposure has shown to have mixed effects. Human

IVD cell proliferation in pellet culture was suppressed in

the presence of TAA, although GAG and collagen content

was not affected [65]. Dexamethasone stimulated bovine

NP and AF cell proliferation in monolayer culture [66], in

contrast to its effects found in 3D culture systems used in
other studies [67,68]. In the current study, even the rela-

tively high dosage of TAA did not induce further degenera-

tion of nucleotomy-induced IVDs, as was assessed by MRI,

macroscopic, microscopic, and biochemical evaluation.

Even so, prolonged TAA exposure could not slow down

progression of degeneration 12 weeks after intradiscal

delivery based on all the outcomes. However, in the present

study, the degeneration induced by nucleotomy was mild

(Pfirrmann grade III; supplementary Fig. 1). Furthermore,

non-nucleotomized and nucleotomy-induced degenerated

IVDs also did not differ significantly at the biochemical

and histologic ECM content and tissue PGE2 levels, even

16 weeks after induction of degeneration, except for

decreased GAG/DNA levels in the AF of induced IVDs. As

such, our study may be underpowered to detect significant

biochemical and structural effects of TAA exposure in the

degenerating IVD. Possibly after nucleotomy, intrinsic disc

repair occurs and biochemical levels normalize over a lon-

ger period of time [53].

From a clinical perspective, the present platform seems

to be promising in extending the local controlled delivery

of TAA with the potency to provide long-standing analge-

sia in the subset of LBP patients suffering from discogenic

pain. Clinical efficacy in pain reduction could not be deter-

mined, given that the present model employed a random-

ized block design to comply with the 3Rs principles and

degeneration remained at the subclinical level. However, at

the IVD tissue level, we did observe inhibition of NGF pro-

tein expression, which was statistically significant for the

lower dosage of TAA. Although the lack of significance

found for the NGF decrease in the high dosage-treated

IVDs implies a dose dependency, rather the limited number

of IVDs in each group and the inherently large biological

variation found in this type of model may have been the

culprit. NGF protein expression is thought to play a role in

the development of painful IVDs by the stimulation of

peripheral nociceptive sensory neuron growth into degener-

ated IVDs [9,69] and pain sensitization [10,11]. It has been

suggested that local chemical factors, such as PGE2, in the

IVD and nerves might render IVDs painful via spontaneous

firing of the nerve roots [70,71]. Nerve roots were shown to

increase their firing pattern upon PGE2 stimulation, which

can in turn be inhibited by TAA [72]. However, no effect

of TAA was found on PGE2 levels, possibly due to the min-

imally elevated PGE2 levels in nucleotomy-induced degen-

erated NP tissues, which was only statistically significant in

the AF. Therefore, further suppression of PGE2 by TAA

may have been impossible. NGF expression in the NP,

however, did decrease after prolonged TAA exposure in

nucleotomy-induced degenerated IVDs, by as yet unidenti-

fied mechanisms of action. One possible explanation for the

discrepancy between inflammatory and pain marker expres-

sion NP levels is that the inflammation upon induction may

have been increased temporarily, whereas the resulting pain

response in the IVD may have been chronic. The interaction

between PGE2 and NGF is not completely understood and
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sometimes their production indeed diverges. Patients

experiencing pain in different body structures do not always

show increased inflammation, as detected by PGE2 produc-

tion [73−75]. NGF production has been shown to much

more closely correlate with pain than inflammation in sev-

eral patient populations [73,75]. In line with this, anti-NGF

treatments have shown promise in pain relief in chronic

LBP patients [76] and as TAA can reduce NGF expression

in degenerated IVDs, this may be a cost-effective alterna-

tive to such expensive biologicals-based treatments. As

IVD degeneration processes and chronic LBP are common

and comparable in dogs and humans, the current preclinical

large animal model may also be used as proof of principle

in the treatment of canine patients with LBP [31]. There-

fore, to confirm clinical efficacy on pain reduction of the

controlled release of TAA by the PEA platform, a study

design in clinical trial setting with client-owned dogs or

human patients would be a logical next step, taking this

product a step closer to the bedside of human patients. As

no clear effects were noted on IVD degeneration, the

release of coadministered regenerative factors is a route

worthwhile investigating in the near future [29,77].

In conclusion, controlled release of TAA did not affect

degeneration in the nucleotomy-induced degenerated IVDs,

nor were side effects found. As NGF production was

decreased, extended TAA release holds promise in treating

pain associated with IVD degeneration.
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