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SUMMARY

Lipid membranes are the border between living cells
and their environments. The membrane’s lipid
composition defines fluidity, thickness, and protein
activity and is controlled by the intricate actions of
lipid gene-encoded enzymes. However, a compre-
hensive analysis of each protein’s contribution to
the lipidome is lacking. Here, we present such a
comprehensive and functional overview of lipid
genes in Escherichia coli by individual overexpres-
sion or deletion of these genes. We developed a
high-throughput lipidomic platform, combining
growth analysis, one-step lipid extraction, rapid LC-
MS, and bioinformatic analysis into one streamlined
procedure. This allowed the processing of more
than 300 samples per day and revealed interesting
functions of known enzymes and distinct effects of
individual proteins on the phospholipidome. Our
data demonstrate the plasticity of the phospholipi-
dome and unexpected relations between lipid clas-
ses and cell growth. Modeling of lipidomic responses
to short-chain alcohols provides a rationale for tar-
geted membrane engineering.

INTRODUCTION

Escherichia coli (E. coli) is a popular biological production plat-

form, but particularly the recombinant production of eukaryotic

membrane proteins and achieving high titers of hydrophobic

compounds remain challenging because of their interaction

with membrane phospholipids (Atsumi et al., 2008; Baumgarten

et al., 2017; Choi and Lee, 2013; Rau et al., 2016; Schlegel et al.,

2014; Yang et al., 2018). Manymembrane proteins require a spe-

cific lipid context for optimal function (Wikström et al., 2009). The

selective barrier function of membranes can be compromised

by the production of non-physiological (levels of) hydrophobic

compounds (Sikkema et al., 1995). For instance, the formation

of respiratory chain supercomplexes depends on the presence

of cardiolipin (CL) (Mileykovskaya and Dowhan, 2014; Pfeiffer

et al., 2003). Likewise, many membrane proteins bind lipids

selectively to modulate their structure and function (Laganowsky
Ce
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et al., 2014). Therefore, a thorough understanding of the phos-

pholipidome is a prerequisite for the optimal exploitation of the

potential of E. coli as a biotechnological platform.

Understanding how the phospholipidome is controlled has

been hampered mainly by two difficulties: (1) the complexity of

the phospholipidome and (2) the large number of enzymes

involved in lipid metabolism. The complexity of the phospholipi-

dome results from the presence of a variety of headgroups that

are combined with one to four fatty acyl chains of various chain

lengths, degrees of unsaturation, and presence of cyclopropane

groups (Hartler et al., 2017;Matyash et al., 2008;Murphy and Ax-

elsen, 2011). Consequently, the lipidome of E. colimay consist of

several thousand lipid species, making the lipidome more com-

plex than the (water-soluble) metabolome (Dowhan, 2017; Sud

et al., 2007; Weaver et al., 2014). The major lipid classes in

E. coli are phosphatidylethanolamine (PE), phosphatidylglycerol

(PG), andCL (Dowhan, 2013). Minor lipid classes such asN-acyl-

ated PE (acyl-PE) and O-acylated PG (acyl-PG) have also been

identified, but 32P studies have shown that many more minor

classes are yet to be identified (Cho et al., 1973; Garrett, 2016;

Mileykovskaya et al., 2009) (Raetz, 1986). To date, 70 proteins

have been shown to be involved in the synthesis, modification,

and degradation of lipids in E. coli, each lipid being a substrate

for multiple enzymes and enzymes acting on multiple lipid spe-

cies (Kanehisa, 2002). The public availability of comprehensive

collections of knockout strains and plasmids for overproduction

has allowed the successful high-throughput screening of E. coli

genes to elucidate the roles of enzymes (Baba et al., 2006; Babu

et al., 2018; Baran et al., 2013; Fuhrer et al., 2017; Kim et al.,

2017; Kitagawa et al., 2005; Sévin et al., 2017). However, a

detailed analysis of the influence of lipid catabolic and anabolic

proteins on the phospholipidome is missing because of the

lack of suitable high-throughput methods for lipid extraction,

analysis, and data interpretation (Hyötyläinen et al., 2017; Lı́sa

and Hol�capek, 2015; Schwudke et al., 2017; Simons, 2018).

Here, we present a high-throughput method for lipid analysis

that has allowed us to analyze the phospholipidome of wild-

type (WT) E. coli as well as all known lipid gene-overexpressing

mutants and all viable lipid gene knockouts. This approach re-

vealed previously unknown functions for lipid catabolic and

anabolic enzymes (here referred to as lipid enzymes). Unex-

pected relations were found between lipid classes and cell

growth. Most important, our approach unveiled an essential

lipid-modifying enzyme framework that can be manipulated for
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Figure 1. Lipid Pathways in E. coli

Reactions are classified in five categories, displayed in different background colors. These colors are consistently used in the other figures for enzymes belonging

to the corresponding category.
rational targeted membrane engineering and better exploitation

of E. coli as a production platform.

RESULTS

A High-Throughput Method for Lipidomic Analysis of
E. coli Mutants
By combining lipid-enzyme activities reported in the Kyoto Ency-

clopedia of Genes and Genomes (KEGG) pathways (Kanehisa

and Goto, 2000) with current literature, we constructed a sche-

matic overview of lipid metabolism in E. coli in which the lipid en-

zymes were classified in five pathway groups (Figure 1; Table

S1). In order to study the effect of these E. coli lipid enzymes

on the lipidome and bacterial growth rates, we developed a

high-throughput lipidomic platform (see Figure 2A for a sche-

matic overview). We grew triplicates of the 67 lipid enzyme

overexpression transformants and the corresponding 46 viable

single-gene knockout mutants in multi-well plates in a thermo-

static plate reader. Measuring the optical density at 600 nm

(OD600) at 5 min intervals, we recorded detailed growth rates of

all strains until the stationary phase was reached (Figure S1).

Transferring the cultures to glass-coated plates allowed subse-

quent, in-plate, one-step lipid extraction (see Figure S2 for a

comparison with the established Bligh and Dyer and methyl

tert-butyl ether [MTBE] lipid extraction methods; Bligh and

Dyer, 1959; Matyash et al., 2008). In our one-step protocol, the

protein-free chloroform and methanol mixture was injected

directly onto the liquid chromatography-mass spectrometry

(LC-MS) column. In a run time of only 4min, we achieved a head-

group-based separation of lipids (Brouwers et al., 2013). By

matching with our in silico-generated lipid database, 226 molec-

ular species from ten lipid classes were identified (Figure 2B; see

Figure S3 for MS2 confirmation). Because growth was also

measured, this allows linking growth to detailed lipidomic data.
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The full dataset and lipid database are available (Data S3, S4,

and S5).

A Rich Variety of Distinct Lipidomes
Principal-component analysis (PCA) of lipidomes of each of the

lipid enzyme-overexpressing strains demonstrated a direct link

between enzyme levels and the resulting phospholipidome.

Overexpression of individual lipid enzymes led to a very repro-

ducible shift in lipidome, shown as a distribution over the full

area of the PCA score plot (Figure 3A). The corresponding (Par-

eto-scaled) PCA loading plot (Figure 3B) shows a scattering of

lipid species. This demonstrates that the abundance of each lipid

species in the lipidome is controlled differently by the concerted

action of lipid enzymes. We calculated the Euclidean distance

between each overexpressing strain andWT E. coli from the first

three principal components, which accounted for 62% of the to-

tal variance in the dataset (Figure 3C). The top five of the thus

identified lipidomes that were most different from WT E. coli be-

longed to four different pathways: phospholipid metabolism

(Aas, YnbB), fatty acid synthesis (Aas, FabH), glycerol meta-

bolism (GlpD), and fatty acid degradation (FadJ). The most

distant lipidome results from overexpression of Aas (bifunctional

protein Aas, acyl-ACP synthase). Aas is a reported acyltransfer-

ase that acylates the acyl carrier protein involved in fatty acid

elongation. However, Aas is best known for its acylation of lyso-

phospholipids to their diacyl analogs (Jackowski et al., 1994).

Unexpectedly, the levels of diacyl PE and PG were much lower

in this strain (�16.3% [p < 0.01] and�11.7% [p < 0.001], respec-

tively), and the abundance of the third largest phospholipid, CL,

was only fractionally higher (Figures S4A–S4C). Overexpression

of Aas resulted in the abundant presence of two headgroup acyl-

ated lipid classes (acyl-PG and acyl-PE, both approximately

15%) (Figures S4D and S4E). Remarkably, both lipid classes

were hardly detectable in WT E. coli and most other strains.



Figure 2. High-Throughput Lipidomic Platform to Analyze E. coli

Lipid Species and Growth

(A) Schematic overview of the applied method that allows high-throughput

growth and lipid analysis.

(B) Lipid classes and species identified in this study. The base peak chro-

matogram of all overexpressing strains is plotted as an overlay. The two most

abundant molecular species of each lipid class are labeled. Lipid classes are

indicated with different colors, and these colors are consistently used in the

other figures.
Hence, Aas proves to be a promiscuous and potent acyltransfer-

ase. Apart from the changes related to its intrinsic acyltransfer-

ase activity, Aas overexpression also affected phospholipid

unsaturation and cyclopropane formation but not average acyl
chain length (Figures S4F–S4H). Similar to Aas, the other four

enzymes at highest Euclidean distance to WT E. coli (i.e.,

GlpD, FadJ, FabH, and YnbB) displayed changes to WT E. coli

lipidome that were prominent in both lipid class distribution

and acyl composition (Figure S4).

As with lipid enzyme overexpression, knockout of single-lipid

genes gave rise to a wide variety of distinct but reproducible lip-

idomes, which further confirmed that the E. coli lipidome is the

result of a complex interaction of many lipid enzymes (Figures

3D and 3E). Deletion of either fabH or cfa resulted in particularly

distinct lipidomes, as confirmed by the high Euclidean distance

of these lipidomes to theWT E. coli lipidome (Figure 3F). Notably,

two of the five knockouts resulting into the most distinct lipi-

domes were related to the first steps in fatty acid synthesis

(fabH and fabF). However, their effects on lipid class distribution

and acyl properties were markedly different (Figure S5). For

instance, whereas fabH knockout resulted in longer acyl length

than in WT E. coli, acyl chains were shorter in fabF knockouts.

This may be related to the much higher CL content of the latter

compared with the fabH knockout, as we observed a consistent

link between the abundance of CL and short acyl chains (dis-

cussed below). Knockout of pldB, currently annotated as a lyso-

phospholipase, suggested a different role for this enzyme, as it

accumulated large quantities of acyl-PG but not acyl-PE (Figures

S5D and S5E). This suggests that acyl-PG is predominantly

degraded by the phospholipase PldB. The lack of acyl-PE accu-

mulation suggests that another enzyme is responsible for the hy-

drolysis of this amide bond, possibly by a yet to be identified fatty

acid amide hydrolase homolog. Of the knockout strains, the cfa

knockout had the most distinct lipidome compared with WT and

showed a reduced presence of cyclopropane rings and a

concomitant increased unsaturations in acyl chains. At the lipid

class level, cfa knockout showed an increased CL abundance

at the expense of PG but not PE. This suggests that the enzyme

primarily responsible for CL synthesis from PG, ClsA, has a pref-

erence for straight chain-containing rather than cyclopropane-

containing fatty acyls.

The Lipid Pathway-Lipidome Interplay
Enzyme levels of each of the five lipid pathways of Figure 1

affected the composition of every lipid class (Figure 4A). Dissec-

tion of the chord diagram and zooming in on the phospholipases

PldA and PldB clearly showed the differences in substrates for

these two enzymes with similar activity (Figure 4B). Deletion of

pldA resulted in an increased level of multiple CL species and

thus suggested CL to be a substrate of PldA. This is in agreement

with the observation that total CL levels increase upon pldA dele-

tion and decrease upon overexpression (Data S1C). On the other

hand, pldB deletion was strongly correlated to an increased

amount of multiple acyl-PG species (discussed above) but also

to a decreased level of di-Lyso-CL (DLCL) species (Figure 4B).

This suggests that PldB is also involved in the deacylation of

CL to DLCL.

Lipid Molecular Species
A correlation heatmap of the 100 most abundant lipid species

shows a strong and consistent correlation between PE and PG

species with corresponding acyl composition (Figure 5). This is
Cell Reports 27, 1597–1606, April 30, 2019 1599



Figure 3. Lipidome Changes in E. coli with Altered Lipid Enzyme Expression

(A) Principal-component analysis (PCA) score plot of single lipid enzyme-overexpressing strains.

(B) PCA loading plot of overexpressing strains; the sizes of the dots correspond to relative abundance, and lipid species that contributed most to the variance are

labeled.

(C) Dissimilarity (distance) and corresponding statistical significance of lipid enzyme-overexpressing strains and WT E. coli containing the empty vector used for

overexpression.

(D) PCA score plot of E. coli lipidomes with indicated single-gene deletions.

(E) PCA loading plot resulting from single gene deletions.

(F) Dissimilarity (distance) and corresponding statistical significance of single-gene deletions and WT E. coli.
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Figure 4. Interactions between Lipids and Pathways

(A) Chord diagram connecting lipid species that changed (p < 0.05) upon either overexpression or deletion of a single-lipid gene and the corresponding pathway.

(B) Top 20 most significantly altered lipid species after knockout of pldA or pldB.
in line with the PCA loading plots, in which these PE and PG

species mapped close together (Figures 3B and 3E). Although

this may at first seem self-evident because both lipid classes

are synthesized from the same pool of cytidine diphosphate

diacylglycerol (CDP-DAG), it should be noted that in eukaryotes,

the Lands cycle results in extensive remodeling of lipid species

and lipid class-specific fingerprints (Chen et al., 2007; Lands,

1958; Wang et al., 2012; Wu et al., 2016). Thus, the combined

activity of PldA and Aas is not a substitute for the Lands cycle

in this bacterium. Notably, a class-specific acyl composition

was observed for CL, which contained short acyl chains with

few cyclopropane moieties (Figure S6). Hence, there appears

to be a species specificity in CL synthases (ClsA being the

most active), opposite to the enzymes involved in PE and PG

synthesis.

Mathematical Modeling of the E. coli Lipidome
We then wondered whether we could reliably model the lipidome

of E. coli in response to exogenous stress factors. This can be

particularly useful in engineering E. coli membrane composition

when used as a production platform for hydrophobic com-

pounds. For instance, short-chain alcohols have great economic

value and can be produced by the organism. These alcohols can

serve directly as bio-fuels in conventional combustion engines or

may be used as resource for synthesis of more complex biomol-

ecules (Green, 2011; Harvey and Meylemans, 2011; Procentese

et al., 2017; Shen and Liao, 2008). To test the effect of these al-

cohols on the E. coli lipidome, we exposed growing bacteria to

concentrations leading to approximately 30% growth inhibition:
methanol (C1, 4.5% v/v), ethanol (C2, 3.0% v/v), n-propanol (C3,

1.0% v/v), and n-butanol (C4, 0.3% v/v). We then analyzed the

corresponding lipidomes. Because cyclopropane fatty acids

have been suggested to increase alcohol tolerance in prokary-

otes (Kanno et al., 2013), we also included the Cfa-overexpress-

ing strain.

PCA of the thus obtained lipidomes identified two major lipi-

dome-discriminating factors (Figures 6A and 6B). The first, cor-

responding to principal component 1, separates empty vectors

from Cfa overexpression. The Cfa-overexpressing strains are

located at the left of the score plot (Figure 6A), and as expected,

this corresponded to higher abundance of cyclopropane-con-

taining lipid species at the left site of the corresponding loading

plot (Figure 6B). In principal component 2, we observed a rela-

tionship between the chain length of the supplied alcohol, with

shorter alcohol chain lengths corresponding to higher principal

component 2 values and, arguably, longer fatty acyl lengths in

the lipid species (Figures 6A and 6B, respectively). To further

investigate this relationship, we constructed a mixed linear

model to calculate expected lipid species abundance from its

lipid class, chain length, unsaturation, cyclopropane presence,

alcohol chain length, Cfa overexpression, and the interactions

among these factors. The final model was obtained by mini-

mizing the Akaike information criterion (Akaike, 1998). This

model with data transformations, correlations, and intercepts is

shown in Data S2. The correlation coefficient (r) between exper-

imental data andmodeled data was 0.82, and the residuals had a

close to normal distribution (represented by the straight line in

Figure 6C).Within thismodel, a very strong correlationwas found
Cell Reports 27, 1597–1606, April 30, 2019 1601



Figure 5. Heatmap of Lipid-Lipid Correlations of the 100 Most Abundant Lipid Species

Lipid ordering is based on hierarchical clustering. Highlighted are the close correlations of PE and PG species with identical acyl composition. Correlations were

calculated on the basis of all lipidomic analysis of genetic constructs (n > 300).
between the alcohol chain length and the interaction of this

parameter with the phospholipid carbon number (r = �0.987;

Data S2). The nature of this interaction can be visualized (Fig-

ure 6D). This confirmed the observations from the PCA: particu-

larly in the extremes of the fatty acyl carbon numbers, increasing

alcohol chain length results in a shift toward shorter phospholipid

acyl chains.

The Relation between Bacterial Growth Rate and
Lipidome Composition
Many overexpressing strains had altered growth rates compared

with WT E. coli, but we did not observe a clear correlation be-

tween changed growth rates and lipid pathways (Figure 7A).

ClsB, one of the three knownCL synthases, was the only enzyme

whose overexpression resulted in a more than 5% growth rate

increase (p < 0.05). Interestingly, the ClsB-overexpressing strain

uniquely had the capacity to synthesize phosphatidylethanol

(PEth) (Data S1G). This lipid class is presumably synthesized

by a combination of CL synthase-associated PLD activity and

the presence of ethanol from the stock solution of the antibiotic

used in the growth medium. Absence of PEth in any other strain

demonstrates that this is a unique activity of ClsB and that ClsB

is expressed at low levels in all other strains, including WT E. coli

(Jeucken et al., 2018). None of the single-gene knockout strains

showed an increased growth rate (Figure 7B), and remarkably,

only 9% of the knockouts had a growth inhibition of more than

20%, demonstrating the high capacity of E. coli to handle lipido-

mic changes. Correlating lipid classes and acyl properties to
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bacterial growth, we found that phosphatidic acid (PA) and

acyl-PE abundance in the lipidome correlated positively with

growth rate (Figures 7C and 7D). The positive effect of PA may

be linked to the negative correlation existing between CDP-

DAG and growth rate, because PA and CDP-DAG are each

other’s direct precursor and product in a delicate equilibrium

(Dowhan, 2013; Kong et al., 2017). In future construction of pro-

duction strains of E. coli it may therefore be of interest to monitor

and adapt the levels of these two lipids, by tweaking the expres-

sion levels of proteins we here identified to affect these lipids.

DISCUSSION

With this single study we have substantially expanded the cur-

rent knowledge on E. coli lipid metabolism by profiling the

lipidome of 113 strains. This became feasible because we devel-

oped a high-throughput lipidomic strategy in combination with a

tailored lipid database. Previously unresolvedminor lipid classes

reported in the literature could now be identified, such as CDP-

DAG, DLCL, acyl-PG and acyl-PE (Raetz, 1986).

The need for comprehensive lipid profiling in E. coli and the

richness of the resulting dataset is illustrated by the fact that

we discovered several strong clues for previously undescribed

enzyme activities and substrate specificities (Aas, ClsB, PldA,

PldB). These enzyme activities can be exploited in different fields

of biotechnological applications. The potent acyl transferase

Aas, but also the lipases PldA and PldB, can prove to be valuable

assets in the biotechnological production process of acylated



Figure 6. Lipidomic Changes upon Exposure to Linear Short-Chain Alcohols

(A) PCA score plot demonstrating a dependence of principal component 1 on the overexpression of Cfa. Values of principal component 2 proved to be dependent

on carbon length of the alcohol.

(B) Lipid loadings on principal components. In general, cyclopropane-containing lipid species had negative loadings on principal component 1, leading to lower

principal component 1 values for Cfa-overexpressing samples. Note that phospholipid chain length appears to decrease with increasing alcohol chain length

(decreasing principal component 2).

(C) Quantile-quantile plot of residuals of 1,502 modeled lipid species. Lipid color coding is as in (B).

(D) Predicted intensities of PE species of different acyl chain length upon exposure to alcohols. Particularly at the extreme carbon numbers (27–28 and 39–40), it is

visible how PE acyl chains shift toward shorter length with increasing alcohol chain length. Error bars represent the 95% confidence interval.
pharmaceuticals (Gotor-Fernández et al., 2006; Patel, 2018). The

exciting field of minimal, synthetic organisms can benefit from

our findings on ClsB (Stano and Luisi, 2013). As a single enzyme,

ClsB allows the synthesis of a variety of phospholipid classes

controlled by the availability of primary alcohols. Interestingly,

many drastic changes in the lipidome composition hardly

affected growth under our experimental conditions. The ample

plasticity of the E. coli lipidome and the organisms capacity to

effectively deal with different environments are exemplified by

the ratios between the highest and lowest relative abundance

of lipid classes in Data S1. These ratios go from relatively low

for PE and PG content, 1.5 and 2, respectively, to more than

50 for the other lipid classes. Also the fatty acid properties

length, number of unsaturated carbon-carbon bonds, and num-
ber of cyclopropane groups were found to be very flexible (Data

S1). It remains to be established whether E. coli has a similar

tolerance toward lipidomic changes when growing under

harsher, physiological conditions. We have demonstrated that

the lipidome of E. coli can be reliably modeled if a good training

dataset is provided.

The triad of lipid gene, lipidome, and growth rate is an impor-

tant step in moving lipidomics from a descriptive to a functional

technique. The detailed lipidomic analysis allows the calculation

of derived parameters such as membrane thickness (acyl chain

length) and fluidity (degree of unsaturation, cyclopropane occur-

rence, and lipid class). Together, this enables the rational design

of specifically engineered membranes for optimally fitting the

goal of the use of a bacterial strain, for instance, the production
Cell Reports 27, 1597–1606, April 30, 2019 1603



Figure 7. Effects of Lipid-Associated Genetic Perturbations on E. coli Growth Rate

(A) Volcano plot of changes in growth rates upon overexpression of individual lipid enzymes. Red dots correspond to strains with most dissimilar lipidomes (cf.

Figure 3C). Vertical lines correspond to a decrease or increase in growth rate of 5%.

(B) Volcano plot of changes in growth rates of single lipid-gene knockouts. Vertical lines correspond to the indicated changes in growth rate.

(C and D) Cumulative distributions of Pearson correlation coefficients between individual lipid ratios and E. coli growth ratios and corresponding statistics. (C)

Distributions are shown for ten different lipid classes and three pre-defined fatty acyl chain properties (colored) or for all studied lipids (gray). (D) Bar plot with log-

transformed false discovery rate (FDR)-corrected p values multiplied by the growth-rate direction of the analyzed lipid-associated properties; colors are scaled

proportional from gray to red. Horizontal lines indicate p value cutoffs of 0.01 and 0.05 for both directions.
of membrane-destabilizing hydrophobic compounds or foreign

membrane proteins (Choi et al., 2017). Moreover, lipidomic

data can now be added to a genome-scale model (GEM) (Feist

et al., 2007; Price et al., 2004), which has already many times

proved to successfully predict strains with increased target

(non-physiological) metabolites (Feist and Palsson, 2008).

The high-throughput lipidomic platform is easily applicable to

other biological systems, including those with more complex lip-

idomes (Arroyo-Olarte et al., 2015; Jeucken and Brouwers,

2019). Moreover, the approach described here can directly be

combined with other technologies, including large drug screens,

RNAi studies, automated microscopic cell screening, and

comprehensive inter-omics approaches.
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Tautenhahn, R., Böttcher, C., and Neumann, S. (2008). Highly sensitive feature

detection for high resolution LC/MS. BMC Bioinformatics 9, 504.

Wang, L., Shen, W., Kazachkov, M., Chen, G., Chen, Q., Carlsson, A.S.,

Stymne, S., Weselake, R.J., and Zou, J. (2012). Metabolic interactions be-

tween the Lands cycle and the Kennedy pathway of glycerolipid synthesis in

Arabidopsis developing seeds. Plant Cell 24, 4652–4669.

Weaver, D.S., Keseler, I.M., Mackie, A., Paulsen, I.T., and Karp, P.D. (2014). A

genome-scale metabolic flux model of Escherichia coli K-12 derived from the

EcoCyc database. BMC Syst. Biol. 8, 79.

Wikström,M., Kelly, A.A., Georgiev, A., Eriksson, H.M., Klement, M.R., Bogda-

nov, M., Dowhan, W., andWieslander, A. (2009). Lipid-engineered Escherichia

coli membranes reveal critical lipid headgroup size for protein function. J. Biol.

Chem. 284, 954–965.

Wu, H., Bogdanov, M., Zhang, Y., Sun, K., Zhao, S., Song, A., Luo, R.,

Parchim, N.F., Liu, H., Huang, A., et al. (2016). Hypoxia-mediated impaired

erythrocyte Lands’ cycle is pathogenic for sickle cell disease. Sci. Rep. 6,

29637.

Yang, J.E., Park, S.J., Kim, W.J., Kim, H.J., Kim, B.J., Lee, H., Shin, J., and

Lee, S.Y. (2018). One-step fermentative production of aromatic polyesters

from glucose by metabolically engineered Escherichia coli strains. Nat.

Commun. 9, 79.

http://refhub.elsevier.com/S2211-1247(19)30483-8/sref31
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref31
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref32
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref32
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref32
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref33
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref33
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref33
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref33
https://CRAN.R-project.org/package=pheatmap
https://CRAN.R-project.org/package=pheatmap
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref35
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref35
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref35
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref35
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref36
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref36
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref36
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref37
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref37
https://pdfs.semanticscholar.org/a755/3b15557a82ffc4ea8435f130f3953b48461e.pdf
https://pdfs.semanticscholar.org/a755/3b15557a82ffc4ea8435f130f3953b48461e.pdf
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref39
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref39
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref39
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref39
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref40
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref40
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref40
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref41
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref41
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref42
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref42
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref42
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref42
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref43
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref43
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref44
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref44
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref45
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref45
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref45
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref46
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref46
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref46
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref47
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref47
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref47
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref48
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref48
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref48
https://www.r-project.org
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref50
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref50
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref51
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref51
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref51
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref52
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref52
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref52
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref53
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref53
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref54
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref54
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref54
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref55
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref55
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref55
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref55
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref56
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref56
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref56
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref57
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref57
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref58
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref58
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref59
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref59
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref59
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref59
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref60
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref60
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref60
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref61
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref61
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref62
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref62
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref62
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref63
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref63
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref64
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref64
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref64
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref64
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref65
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref65
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref65
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref66
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref66
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref66
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref66
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref67
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref67
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref67
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref67
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref68
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref68
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref68
http://refhub.elsevier.com/S2211-1247(19)30483-8/sref68


STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

Bacterial strains and plasmids used in this study are listed in Table S2. N/A

Chemicals, Peptides, and Recombinant Proteins

Isopropyl -D-1-thiogalactopyranoside (IPTG) Melford Art.nr.: I56000-5.0

Chloramphenicol Roche Diagnostics Art.nr. 634 433

Kanamycin Sigma Art.nr. K1377

Software and Algorithms

data analysis R Development Core Team, 2016 R version 3.4.2

XCMS Smith et al., 2006; Tautenhahn

et al., 2008

N/A

venneuler Kolde, 2015 r package

pheatmaps Wilkinson, 2011 r package

pcaMethods Stacklies et al., 2007 r package

cytoscape Shannon et al., 2003 N/A

Other

glass coated 96 wells plates conical bottom Thermofisher cat# 60180-P304

Kinetex� 2.6 mm HILIC 100, LC Column 50 3 4.6 mm Phenomenex Art.nr.: 00B-4461-E0

SecurityGuard ULTRA Cartridges UHPLC HILIC 4.6mm ID Columns, 3/Pk Phenomenex Art Nr: AJ0-8772

SecurityGuard ULTRA Holder, for UHPLC Columns 2.1 to 4.6mm ID, Ea Phenomenex Art.nr.: AJ0-9000
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Jos F.

Brouwers (j.brouwers@uu.nl).

EXPERIMENTAL MODEL DETAILS

Plasmids –
Plasmids for overexpressing the lipid genes were isolated from AG1 (ME5305) host cells, part of the ASKA(-) collection (Kitagawa

et al., 2005). These pCA24N plasmids were used to transform BW25113 cells.

The used knockout mutants are part of the Keio collection (Baba et al., 2006), including BW25113 as the adequate control.

Growth Conditions –
Liquid LBmedium (10 g/l Trypton, 10 g/l NaCl, 5 g/l yeast extract) was used in all cultures of E. coli. For solid medium 15 g/l agar was

added. All growth was performed at 37�C. For strain selection purposes medium was supplemented with 34 mg/ml chloramphenicol

or 50 mg/ml kanamycin. Final concentration of 10 mM IPTG was used for induction of protein expression for the ASKA(-) clones since

the ORFs on the pCA24N plasmid are under control of IPTG-inducible promoter, P T5- lac. 150 mL cultures were grown in 96 wells

plates in a Versamaxmicrotiter plate reader (Molecular Devices, Sunnyvale, CA). The plate was covered using a clear film. The growth

was closely followed by measuring absorbance at 600 nm every 5 minutes, from which maximum specific growth rates were calcu-

lated as the slope of a linear fit to log transformed OD values.

METHOD DETAILS

Lipid Extraction –
Bacterial cultures were transferred to glass coated 96 wells plates with conical bottom, and centrifuged (1800 g, 20min, 4�C). The
obtained pellets were resuspended in 150 ml chloroform/methanol (1:1 v/v), extracted for 1h at 4�C, followed by centrifugation

(1800 g, 20min, 4�C). The plate was covered by a sheet of aluminum foil and placed in the autosampler.
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Liquid Chromatography Mass Spectrometry of Lipids –
Chromatography of 10 ml of the supernatant was performed on a hydrophilic interaction liquid chromatography (HILIC) column

(2.6 mm HILIC 100 Å, 50 3 4.6 mm, Phenomenex, Torrance, CA). Lipid classes were separated by gradient elution on a Dionex

Ultimate 3000 RS UPLC (ThermoFisher Scientific, Waltham, MA). Solvent A consisted of acetonitrile/acetone (9:1, v/v) whereas

solvent B consisted of acetonitrile/H2O (7:3, v/v) with 10mM ammonium formate. Both solvents were with 0.1% formic acid. Flow

rate was constant at 1mL/min, and the gradient was as follows (time in min,%B): (0, 0), (1, 50), (3, 50), (3.1, 100), (4, 100). Subsequent

samples were injected without re-equilibration of the column.

The column outlet of the LC was connected to a heated electrospray ionization (HESI) source of a LTQ XL mass spectrometer

(ThermoFisher Scientific, Waltham, MA) operated in negative ionization mode. Source- and capillary temperatures were set to

450�C and 400�C, respectively and the ionization voltage to �2.5 kV. Full scan spectra were collected in the range from

350–1750 or 450-1150 amu at a scan speed of 3 scans/s.

High resolution MS2 was used for confirmation of lipid classes. In this case the outlet of the LC was connected to a heated

electrospray ionization (HESI) source of an Orbitrap Fusion mass spectrometer. Temperatures for the vaporizer and ion transfer

tube were 275�C and 380�C, respectively. Parallelized data dependent MS2 experiments were done with HCD fragmentation set

at 30V, using the dual stage linear ion trap to generate up to 30 spectra per second with the resolution parameter set at ‘standard’.

In case of the E. coli samples grown in the presence of short chain-alcohols the LC outlet was connected to the atmospheric

pressure chemical ionization source of the LTQ-XL mass spectrometer.

To quantify lipids, response factors were calculated using authentic lipid standards for CL, PE and PG. The response factor of PG

was also used for PA and phosphatidylalcohols. DLCL, CDP-DAGwere quantified using the response factor of CL because of lack of

available standards.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data analysis –
Data was analyzed using R version 3.4.2 (R Development Core Team, 2016). Data were converted to mz(X)ML format and analyzed

using XCMS version 1.52.0 (Smith et al., 2006; Tautenhahn et al., 2008). Resulting rawdata are given in Data S3 (growth rates and lipid

data) and Data S5 (lipidomic changes induced by alcohols). All statistical analyses were based on triplicate cultures of individual

(genetic) conditions. In very few cases, one of the cultures showed no growth and was omitted from further analysis. Standard

deviation (SD) was used for error bars throughout the manuscript. Statistical significance was defined as p < 0.05, after multiple

testing correction for a false discovery rate of 0.05 were applicable. Euler diagrams, heatmaps and principal component analysis

were constructed and visualized with the R packages ‘venneuler’, ‘pheatmaps’ and ‘pcaMethods’, respectively (Kolde, 2015;

Wilkinson, 2011; Stacklies et al., 2007). The open source application ‘‘Cytoscape’’ was used to construct chord diagrams (Shannon

et al., 2003). Despite the existence of comprehensive lipid databases (Pauling et al., 2017; Sud et al., 2007), we constructed a new

in-silico database because of the absence of several lipid classes (e.g., acyl PG, PEth and DLCL) and cyclopropane moieties from

them. Recombination of fatty acids with chain lengths from 12 to 20, zero or one unsaturation and zero or one cyclopropanemoieties,

glycerol phosphate and known head groups were made, and the resulting masses and structure formulas were calculated (Data S4).

The presence of a cylcopropane moiety was assumed for lipid species with uneven carbon numbered acyl chains.
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