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Bacterial antimicrobial resistance (AMR) is constantly evolving and horizontal gene transfer through plasmids
plays a major role. The identification of plasmid characteristics and their association with different bacterial
hosts provides crucial knowledge that is essential to understand the contribution of plasmids to the transmission
of AMR determinants. Molecular identification of plasmid and strain genotypes elicits a distinction between
spread of AMR genes by plasmids and dissemination of these genes by spread of bacterial clones. For this reason
several methods are used to type the plasmids, e.g. PCR-based replicon typing (PBRT) or relaxase typing.
Currently, there are 28 known plasmid types in Enterobacteriaceae distinguished by PBRT. Frequently reported
plasmids [IncF, IncI, IncA/C, IncL (previously designated IncL/M), IncN and IncH] are the ones that bear
the greatest variety of resistance genes. The purpose of this review is to provide an overview of all known AMR-
related plasmid families in Enterobacteriaceae, the resistance genes they carry and their geographical
distribution.

Introduction

Even before the widespread therapeutic use of antibiotics, bacteria
with penicillinase activity were discovered that could actively
destroy penicillin in order to survive in penicillin-containing envi-
ronments.1 In the first reports on the spread of genetic material
between bacterial cells, fertility factors were noted, which were
not only capable of spreading antimicrobial resistance (AMR) but
also of curing auxotrophic mutations through R-factors.2–4 Later, it
was recognized that these factors, designated plamids, were
autonomous DNA molecules capable of self-transmission
between cells, and that they were also capable of mobilizing part
of the chromosome through a process termed high-frequency
recombination (Hfr).5 The acquisition of novel genes by plasmids
through mobile genetic elements such as transposons or insertion
sequences, and their ability to replicate in a wide range of hosts,
made them perfect vectors for the spread of AMR. Therefore, the
identification of plasmid characteristics and behaviour in different
bacterial hosts provides fundamental knowledge regarding the
transmission of AMR. Molecular identification of plasmid and strain
genotypes can distinguish whether the spread of AMR genes is
driven by epidemic plasmids to different hosts or by clonal spread
of bacterial organisms harbouring these plasmids with AMR genes.

In her review, Carattoli6 focused mainly on resistance genes
carried by ‘epidemic plasmid types’, which are defined as plasmids

that have been detected in different countries, in bacteria of differ-
ent origins and sources. The purpose of this review is to describe
the characteristics of all currently known AMR-related plasmid
families in Enterobacteriaceae, the resistance genes they carry
and their geographical distribution.

Plasmid typing

The first plasmid typing scheme was developed by Datta and
Hedges in 1971.7,8 Transfer frequencies of plasmids belonging to
different groups and their stable coexistence in bacterial cells were
determined. Five incompatibility groups were defined based on
conjugation experiments: W (based on a reference strain received
from Tsutomu Watanabe, who discovered the phenomenon of
incompatibility),4 F (fi!), I (produce I-type pili), N and P. Later, this
scheme was updated and 23 plasmid incompatibility groups were
recognized: B, C, D, E, FI, FII, FIII, FIV, H, Ia, I2, Ic, Id, If, J, K, M, N, P,
T, V, W and X.9 Some additional annotations were made: plasmids
incompatible with both IncA and IncC were designated IncA/C.
Those previously named IncL were renamed IncM and former IncS
were renamed IncH.9

Nowadays, the most frequently used plasmid typing scheme is
called Inc/rep typing. The classification by Inc/rep typing is mostly
consistent with the conjugation-based scheme. The first replicon
typing method was based on Southern hybridization with 19
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different replicons,10 which were screened for their ability to
express incompatibility towards the parental plasmids or miniplas-
mids used in their construction. Whenever possible, loci involved in
plasmid copy number control were chosen rather than partition
loci as these are present in all plasmids. Inc types have been inde-
pendently identified in three different genera. Currently, there are
28 Inc types in Enterobacteriaceae, 14 in Pseudomonas and
approximately 18 in Staphylococcus.11

Subsequently, PCR-based replicon typing (PBRT) was developed
by Carattoli et al.12 This scheme is based on a set of primers target-
ing different regions (such as rep genes, iterons, RNAI) specific for
each plasmid group. Targets for identification of additional plas-
mid groups were added to the typing method by Garcia-
Fernandez et al.13 and Villa et al.14 The method was adapted by
Boot et al.15 with the aim to speed up the procedure and to make it
more sensitive using real-time PCR, which may increase sensitivity
of detection of low-copy plasmid replicons.

Bousquet et al.16 proposed a scheme which may be used in
addition to PBRT. Different partition systems located on multidrug
resistance (MDR) plasmids were identified which led to the design
of a multiplex PCR method called plasmid partition gene typing
(PAR-T). This method can be used for the classification of plasmids
in Klebsiella pneumoniae, Escherichia coli and Salmonella enterica.

An alternative scheme for plasmid typing takes into account
the differences in mob genes encoding for relaxases, which are
important relaxosome components in both conjugative and mobi-
lizable plasmids.17 All known plasmid relaxases were divided into
six groups and each family is specific in the details of its DNA-
processing mechanism.17,18 This relaxase or MOB classification
does not detect IncR plasmids, as these do not contain a relaxase
gene.19 There is a high correlation with the PBRT scheme, which
means that plasmids of each Inc type have relaxases of a single
MOB subfamily (Figure 1). Therefore, high abundance of specific
MOB families such as MOBF and MOBP correlates with abundant
PBRT types such as the IncF complex, the IncI1 complex and the
ColE-like plasmids. Some exceptions were explained by plasmid
co-integration and secondary deletions.20

Another relaxase screening method, also called degenerate pri-
mer MOB typing (DPMT), was developed by Alvarado et al.20 This
scheme allows both typing of known plasmid groups and detec-
tion of plasmids not previously assigned to any Inc type.

Another typing scheme aimed at mob genes encoding for relax-
ases was developed by Compain et al.21 and is called plasmid
relaxase gene typing (PRaseT). This protocol distinguishes five
relaxase clades arbitrarily designated HIa, HIb, HIc, HId and HIe
among IncHI1 and IncHI2 plasmids. It also identifies IncX1–4 and
ColE plasmids, which were initially untypeable with the PBRT
method. In contrast to most other methods, PRaseT excludes a rel-
atively large number of plasmid types such as IncFIV, IncFVI,
IncFVII, IncY, IncR, IncI2, IncT, IncFIII-VII, IncJ and IncQ3
although these last three can also not be detected using the PBRT
scheme.

Within other plasmid groups, different lineages can be identi-
fied by RFLP. This method, first introduced by Kiko et al.22 in 1979,
relies on digestion of plasmid DNA with restriction enzymes and
comparison of obtained profiles.

An additional tool called plasmid multilocus sequence typing
(pMLST) was developed to further differentiate plasmids
within incompatibility groups. pMLST schemes were developed for

IncA/C, IncI and IncN plasmids to increase the discriminatory
power in the characterization of plasmids and to confirm epide-
miological and evolutionary relatedness.23–25 The IncHI2 subtyp-
ing is done by double locus sequence typing (DLST), as it includes
only two targets.26 The subtyping of F-plasmids is increasingly diffi-
cult due to their potential multireplicon status. The replicon
sequence typing scheme (RST) was developed for this purpose,
leading to the FAB formula of a plasmid.14 The FIA replicon is typed
based on the sequence encoding the iterons and the replication
protein RepA, for which 20 different alleles currently have been
reported. The FIB replicon is typed based on the sequence of the
repB gene for which 69 alleles were reported. The FII replicon is
determined by the sequence of the copA gene for which 105 alleles
were reported. Some additional species-specific FII replicons were
also described including 5 alleles of repA3 for Salmonella spp.,
12 sequence variants for the region upstream of repA in Klebsiella
spp. and 6 variants for the region downstream of repA in Yersinia
spp., respectively referred to as FIIS, FIIK and FIIY. Finally, the FII
replicon can also be replaced by the non-functional FIC for which
five variants have currently been reported. Based on that, the FAB
formula was created to type IncF plasmids.14 Unfortunately, com-
parison of IncF plasmids with a defined FAB formula to those with-
out is impossible and only general conclusions can be drawn.

One of the big challenges for plasmid replicon typing is multire-
plicon plasmids. The best known multireplicon plasmid is the
earlier-mentioned IncF which can carry an FII, FIA and/or FIB repli-
con. Additionally, some plasmids can cointegrate, creating another
type of multireplicon plasmid.27–31 These pose a difficulty for typ-
ing and further understanding of plasmid and antimicrobial resist-
ance epidemiology, as additional tests are required to distinguish
between multiple plasmids present in the cell and a cointegrate.

The first plasmid incompatibility groups were defined and con-
firmed by conjugation. Nowadays, with more plasmid sequences
publically available, it has become easier to study the genetic rela-
tionship between plasmids. We believe that in order to define new
incompatibility (sub)groups it is necessary to confirm the data
obtained through sequencing with conjugation-based incompati-
bility tests. For that reason, readers should be cautious when inter-
preting data from papers, not to mistake new replicon types for
new plasmid incompatibility groups, without confirmation of the
results by conjugation experiments.

Additionally, given the increasing availability of whole genome
sequence data, the challenge is to trace back the typing schemes
mentioned above to plasmid DNA sequences. This transition has
recently been addressed by Orlek et al.,32 who compared a curated
dataset of publicly available plasmid sequences to replicon and
MOB typing schemes.

Publication inclusion criteria

Publications chosen for this review were found on PubMed using
the key words ‘resistance plasmid’ or ‘Inc plasmid’ as search crite-
ria. Resistance determinants, described in the cited publications,
were taken into account only if there was a clear linkage between
plasmid Inc type and the resistance gene. The authors are aware
of possible bias in the created database as many publications focus
on ESBLs or carbapenemases. Additionally, the prevalence of plas-
mid types that are not included in the PBRT scheme may be
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underestimated. A description of plasmids associated with AMR is
given below. A summary of prevalent plasmids is given in Table 1.

IncF plasmids

Plasmids belonging to the IncF group, or MOBF according to relax-
ase typing,19 are low-copy number, conjugative plasmids with size
ranging from 45 to 200 kb. In the PBRT scheme, the target gene for
these plasmids is the repA gene.12 The host range is limited to the
family of Enterobacteriaceae. In contrast to most other plasmid
groups, IncF plasmids can encode several replicons; typical multi-
replicon IncF plasmids carry the FII replicon together with FIA and
FIB. Additionally, it was shown that IncF plasmids with different F
alleles are compatible.14 In addition to this multireplicon status,
IncF plasmids were reported to form cointegrates with IncI1,
where the two replicon genes were separated by IS100, and an
IncN replicon.31,29

IncF is the most frequently described plasmid type from human
and animal sources (Figure 2) and it is mainly found in E. coli. The
most frequently described resistance genes on IncF plasmids are

ESBL genes, genes encoding carbapenemases, genes encoding
aminoglycoside-modifying enzymes and plasmid-mediated qui-
nolone resistance (PMQR) genes (Figure 3). As many research proj-
ects have focused on ESBLs, the collection of plasmids reported is
likely to be biased towards those plasmids that encode ESBLs.

The spread of blaCTX-M-15 in human E. coli isolates is globally
associated with IncFII plasmids in ST131 and ST405 clones.33,34

The spread of blaCTX-M-14 is associated with IncF plasmids in Korea
and France,35,36 while in Spain this gene is mainly located on IncK
plasmids.37,38 In Korea, dissemination of blaCTX-M-14 was driven by
horizontal transfer of the same IncF plasmid rather than clonal
expansion of the host cell, since the same RST type of IncF plasmid
was carried by E. coli strains of different sequence types.35

blaCTX-M-1 located on an IncF plasmid was isolated only from ani-
mal sources.39–43 blaTEM-1 on IncF is found only in E. coli strains
mostly of human origin.35,44–49 The spread of blaNDM and the
rmtB gene (mostly reported in China) is also driven by IncF
plasmids.45,50,51

No apparent correlations have been reported between any
plasmid FAB formula and the resistance genes it encodes.

Relaxase MOB family Inc groups or prototypes PBRT targets

IncN, IncW

IncF complex

repA

iterons, repA,
RNAI, copA

iterons

RNAI

repA,B,C

not included

ori γ, taxC; repB

ColE1-like

not included

not included

not included

not included

parA-parB; iterons

repA

IncP1 complex

IncI1 complex, IncK, IncB/O

IncL/M

IncQ2

IncX, IncU

ColE1-like

IncQ1

IncHI1, IncHI2

IncA/C, ICEs: R391-like elements

ICEs: pKLC102-like elements

CloDF13-like

pYptb32953-like, ICEs: Ec1

MOBF11

MOBF12

MOBP11

MOBP12

MOBP13

MOBP14

MOBP3, P4
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Figure 1. Inc/REP family distribution of gammaproteobacterial plasmids according to relaxase type. Adapted from Alvarado et al.20 This figure
appears in colour in the online version of JAC and in black and white in the print version of JAC.
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However, trends in the prevalence of these plasmids have been
reported; F2: A#: B# is the predominant F plasmid type, F2: A1:
B#was isolated only from humans and type F33: A#: B# seems to
be disseminated mostly in China. Finally, both types F39:
A#: B#and F2: A#: B#are found in combination with the N repli-
con as multireplicon plasmids.51

IncI plasmids

The I-complex plasmids contain incompatibility groups I, K, B and
Z, which share morphological and serological similarities in their
pili.52 IncI, or MOBP according to relaxase typing, is a group of low-
copy-number, narrow-host-range, conjugative plasmids, which
vary in size from 50 to 250 kb.19 A typical feature for this plasmid
group is the presence of a shufflon region at the 30 end of the pilV
gene which enables recombination between shufflon-specific
sfx sites.53 This recombination event selects one of seven different
pilV genes, which is responsible for determination of the recipient
specificity.54 These plasmid rearrangements can cause possible
difficulties during assembly of contigs obtained by WGS reads.55

Incompatibility of IncI plasmids is expressed by a small, counter-
transcript RNA, RNAI, which is also the target in the PBRT scheme.
RNAI inhibits translation of RNA (RNAII) of the essential replication
protein, RepA.52

Several variants exist within the IncI group: I1 (also named
IncIa), I-c and I2 (also named IncId). IncI1 and I-c plasmids are

very similar. However, there are some significant differences
between their Inc RNA sequences. IncI-c plasmid R621a lacks a
stability region, which is conserved in IncI1 plasmids.56 These plas-
mids also harbour different entry exclusion proteins ExcA that rec-
ognize different segments of their cognate TraY proteins thus
allowing the transfer of IncI1 into recipient cells containing IncIc
and vice versa.57

Lv et al.58 showed in a phylogenetic analysis of IncI2 plasmids
that they are divided into three lineages. Additional phylogenetic
analysis performed by Wong et al.59 suggests that IncI2 plasmids
can migrate between different bacterial species. Furthermore,
they postulate cross-species migration with E. coli as a potential
carrier.

The currently available PBRT scheme does not distinguish IncI-c
from IncI1. All IncI plasmids typed as IncI1 by PBRT should there-
fore be designated as IncI1-Ic.60 In the past, IncI-c plasmids were
typed using alignment with previously known sequences of refer-
ence plasmids: partially sequenced R621a from E. coli, and
pSC138, isolated from the S. enterica serovar Choleraesuis.61

Recently, Hiki et al.62 proposed a PCR-RFLP method using CviAII
enzyme, to differentiate between IncI1 and IncI-c plasmids.

Garcı́a-Fernández et al.23 developed a pMLST scheme for IncI
plasmids which is based on the allelic variation of five target genes:
repI, ard, trbA, sogS, pilL. Currently there are 239 plasmid multilo-
cus sequence types described (http://pubmlst.org/, last accessed
21 September 2017).

Table 1. Summary of plasmid features

Replicon type
Relaxase

type Size (kb) Copy number Transferability Host range

IncF MOBF 45–200 low conjugative Enterobacteriaceae

IncI MOBP 50–250 low conjugative narrow

IncK, IncB/O

and IncZ

MOBP 80–150 low conjugative narrow

IncA/C MOBH 18–230 low conjugative narrow

IncH MOBH 75–400 low conjugative wide host range

(Enterobacteriaceae, several

Gram-negative organisms such

as Aeromonas salmonicida,

Vibrio anguillarum and

Yersinia ruckeri)

IncP MOBP 70–275 low conjugative broad

IncL/M MOBP 50–80 low conjugative broad

IncN MOBF 30–70 low conjugative broad

Col MOBP 6–40 1–20 mobilizable

IncX MOBP 30–50 narrow

IncR not included 40–160 mobilizable broad

IncW MOBF up to 40 low conjugative broad

IncQ MOBQ 8–14 medium

(4–12 copies/

cell)

mobilizable broad (including Alpha-

Beta- Delta- and

Gammaproteobacteria

and Cyanobacteria)

IncT MOBH �217 low conjugative narrow

IncU MOBP 29–60 low conjugative broad (Alpha-, Beta-

and Gammaproteobacteria)
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IncI2 plasmids can be distinguished from IncI1-Ic by a set of
PCR primers designed by Lv et al.58 that target the repA, rci, pilO,
nikB and finO genes.

IncI plasmids are described predominantly in Europe (Figure 2)
in E. coli and S. enterica isolated from poultry sources. ESBL and
plasmid-mediated (p)AmpC genes have been described on IncI
plasmids, mostly located in E. coli, yet genes encoding for resist-
ance to aminoglycosides, tetracyclines and quinolones are fre-
quently found in S. enterica (Figure 3).13,63–66 blaCTX-M-1 is the most
often identified gene on IncI plasmid ST7 and 3 (Table S1, available
as Supplementary data at JAC Online) and has often been asso-
ciated with E. coli ST10, 58, 117 and 131.67,68 IncI plasmids car-
rying blaCTX-M-1 have been identified all over Europe in E. coli
from poultry. These isolates are considered a possible source of

these plasmid/gene combinations in E. coli from human infec-
tions.67 IncI plasmids belonging to clonal complex 5 (ST10 and
36) carry blaTEM-52 and are frequently associated with E. coli
ST10 in livestock.67 IncI2 plasmids are found carrying blaCTX-M-55

and blaKPC-3.58,69,70 Recently, IncI2 plasmids were described to
be associated with the colistin resistance gene named mcr-1
and its variants mcr-1.3 and mcr-1.5.71–73 It was reported in both
human and animal sources in China, Japan, Denmark and
Spain.71,74–78 IncI-c plasmids carry mostly the blaCMY-2 gene.61,62

IncK, IncB/O and IncZ plasmids

IncK, IncB/O and IncZ plasmids, as they all belong to the I-plasmid
complex, are discussed together.

Human

Europe

232
124

29166
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22

19

51

183

667

4

243

45

16

82

901

21 18

60

1

85

12
20
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256

534

194

90

49

171

Total=1038 Total=727

Total=503 Total=491

Total=234 Total=100

Total=92

IncF
IncI
IncA/C
IncH
Other

Asia

Americas

Animal Environment

Figure 2. Distribution of different plasmid Inc types isolated from human, animal and environment across Europe, Asia and Americas (data from
Table S1). Group ‘other’ includes: ColE, IncB/O, IncK, IncL/M, IncN, IncP, IncR, IncT, IncU, IncW, IncX, IncY and IncZ. This figure appears in colour in the
online version of JAC and in black and white in the print version of JAC.
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According to relaxase typing, IncK and IncB/O belong to the
MOBP group.19 The IncZ plasmid is not included in this typing
scheme.19 Their sizes vary between 80 and 150 kb. The presence
of shufflons (widely distributed in the IncI plasmid family) was
confirmed in IncK and IncZ plasmids, but not for IncB/O.79,80 RNAI
encodes antisense RNA for repYZ mRNA and is one of the elements
responsible for plasmid incompatibility.

Recently it was shown that IncK plasmids can be divided into
two compatible plasmid lineages, named IncK1 and IncK2.81,82

Originally, the IncB/O plasmid group was discovered and
reported independently by two groups and termed IncB and IncO.
However, Datta and Olarte83 already mentioned that they may be
synonymous.84 Later, Bradley228 referred to the IncO plasmid as
IncB. In a review by Couturier,10 IncB/O was mentioned as a plas-
mid group.

The fact that IncK, IncB/O and IncZ RNAI sequences, which are
targets in the PBRT scheme, are very similar causes difficulties with
typing. Carattoli et al.12 already mentioned cross-reactivity
between IncK and IncB/O replicons and aspecificity of PCR prod-
ucts based on primers included in the PBRT scheme was
reported.85 Considering these complications some researchers
report IncK/B plasmid as a result of the inability to distinguish
between IncK and IncB/O replicons.86,87 In addition to IncK typing,
as there is no pMLST scheme available, Dierikx et al.88 made an
RFLP scheme, using EcoRI and HindIII to differentiate plasmid var-
iants. A recent paper by Moran et al.89 showed that IncB/O-specific
primers also detect the IncZ replicon.

The IncZ plasmid group was first discovered by Tschäpe and
Tietze.90 These plasmids could not be stably maintained together
with an IncB plasmid. The authors suggested that it was caused by
a ‘dislodgement’ phenomenon, which was defined as interactions
leading to the elimination of the resident plasmid or recombina-
tion between the two plasmids.91 However, Praszkier et al.52 later
described that IncB/O and IncZ plasmids may be incompatible
with each other.

IncK plasmids are mainly associated with the spread of blaCMY-2

and blaCTX-M-14 genes in Europe (especially in Spain and the UK)
and are frequently found in E. coli from animal sour-
ces.37,39,42,88,92–97 IncB/O plasmids are less prevalent, but carry a
greater variety of resistance genes such as blaCTX-M-1, blaCMY-2,
blaACC-4, blaSCO-1, blaTEM-1, sul1, sul2, aad, strA, strB and aacA4.
(Table S1). IncZ plasmids have been reported to carry resistance to
sulphonamides, ampicillin, tetracycline and chloramphenicol.90

IncA/C plasmids

IncA/C is a group of low-copy-number, conjugative, self-
transferable plasmids with a size range of 40–230 kb, although
smaller conjugative variants with sizes of 18–25 kb have also been
reported.98 According to relaxase typing, IncA/C belongs to
MOBH.19 In the PBRT scheme repA is the target gene. IncA/C plas-
mids have a broad host range which include members of Beta-,
Gamma- and Deltaproteobacteria.99 The reference IncA/C plas-
mid, pRA1, was isolated from Aeromonas liquefaciens in 1971.100

Within this plasmid group, two variants have been identified:
A/C1 (corresponding to the IncA plasmid, with plasmid pRA1 as
a reference) and A/C2 (corresponding to the IncC plasmid).
Although compatibility of IncA and IncC plasmids was con-
firmed,101 later they were assigned to the same plasmid group
called IncA/C.102 IncA/C1 and IncA/C2 exhibit 26 SNPs in the repA
gene.103 Later analysis based on WGS data revealed that both
plasmid groups carry regions that are unique to each backbone
type.104 Recently, two types were defined among the A/C2

group, named type 1 and type 2, which diverged because of SNP
accumulation and multiple insertions and deletions.105 The two
types differ in the rhs gene (named rhs1 and rhs2) and an open
reading frame between traA and dsbC (15 amino acid difference in
the predicted protein). In addition, two short regions, i1 and i2, are
present in type 2, but not type 1.104

A recent article by Hancock et al.25 describes both a pMLST and
a core genome pMLST (cgPMLST) for IncA/C plasmids. The pMLST
includes four essential target genes for use with conventional PCR
whereas the cgPMLST includes 28 conserved loci for a high resolu-
tion analysis of WGS data. Both schemes allow the distinction

IncF
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11 43
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98

71 72

410

109
240

489

6497

316

190

81

45
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153
169

67
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123
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10
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123
56

111
27

98
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385
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Total=1816 Total=792
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Carbapenems
Extended-spectrum beta-lactams
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Beta-lactam
Aminoglycoside
Quinolone
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Tetracycline
Other

Other
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Figure 3. Distribution of genes encoding resistance to different antimi-
crobial classes carried by different plasmid Inc types (data from
Table S1). Group ‘other’ includes genes encoding resistance to: trimetho-
prim, chloramphenicol, florfenicol, colistin, fosfomycin. This figure
appears in colour in the online version of JAC and in black and white in
the print version of JAC.
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between type 1 and 2 A/C2 plasmids.25 Currently there are 12
pMLST sequence types for IncA/C and 37 cgpMLST available
(http://pubmlst.org/, last accessed 6 March 2017). An important
feature of the IncA/C2 plasmid group is the presence of AMR islands
named ARI-A and ARI-B. ARI-A is only found in type 1, whereas
ARI-B is found in both type 1 and type 2 A/C2 plasmids.104 Both
islands carry a great variety of genes, encoding factors responsible
for resistance to many antimicrobial classes. Recently, Harmer and
Hall106 published a set of primers to distinguish IncA/C2 type 1 and
type 2 plasmids, targeting orf1832/orf1847, rhs1/rhs2 and inser-
tions i1 and i2.

Walsh et al.107 reported that blaNDM-1-carrying IncA/C plasmids
isolated from water sources have the highest transfer rate at 25 �C
or 30 �C.

IncA/C plasmids are associated with MDR (Figures 2 and 3) and
are spread worldwide. They are found in isolates from both human
and animal sources and involved in the global spread of blaCMY-2

(Table S1). IncA/C2 are also found worldwide, in many sources and
in different bacteria. IncA/C2 can encode ESBLs (blaTEM, blaSHV, but
rarely blaCTX-M), AmpC (blaCMY, blaDHA), carbapenemases (blaOXA,
blaNDM, blaIMP) and enzymes modifying groups of antibiotics: sul-
phonamides (sul1, sul2), aminoglycosides (aphA1, aadA, aadB,
strA, strB, aacC), tetracyclines tet(A), chloramphenicol (floR, catA1)
and trimethoprim (dfrA).28,105,108–111

IncH plasmids

IncHI is a group of low-copy-number plasmids with a wide host
range, including the Enterobacteriaceae and several Gram-
negative pathogens of fish such as Aeromonas salmonicida, Vibrio
anguillarum, and Yersinia ruckeri.112 The size of both plasmid sub-
groups varies from 75 to 400 kb.

Members of the IncHI plasmid group (MOBH according to relax-
ase typing19) were historically named IncH1, IncH2 and IncH3
(which contains only plasmid MIP233113). Members of each sub-
group show a high level of DNA homology within the group, but
not compared with the other two. Bradley et al.114 introduced the
new IncHII group based on incompatibility of these plasmids with
other members of the IncH group, renaming existing plasmids to
IncHI1, IncHI2 and IncHI3, respectively. The relationship between
IncHI and IncHII groups is thought to be similar to that of IncFI
with IncFII, which are related by antigenically similar pili.115

The IncHI plasmid group was divided into two groups due to
incompatibility of some members with IncF plasmids. Accordingly,
IncHI2 are compatible with IncF plasmids, but IncHI1, which pos-
sesses repFIA, are incompatible.116 These distinctions were made
based on DNA–DNA hybridization.117

To date, only four IncHII plasmids were reported.118 Bradley
et al.114 found them in K. pneumoniae and these were reported to
be unstable in the original host and E. coli K-12. Additionally, they
observed that IncHII seems to be incompatible with IncD plas-
mids. Finally, it was concluded that plasmid loss is an example of
dislodgement.

In the PBRT scheme the target site for typing IncHI1 plasmids is
parA-parB and the iterons for IncHI2, while IncHI3 and IncHII are
not included in this typing scheme. The first tool developed to char-
acterize IncHI plasmids was RFLP. Seven different patterns were
defined and a clear difference was made between plasmids iso-
lated in 1993 and 1996.119 As RFLP7 was predominant after 1996,

it is possible that this group may have acquired genetic features
which increased its fitness or its chance of survival. IncHI pMLST,
developed by Phan et al.,120 includes six loci: HCM1.043, HCM1.064,
HCM1.099, HCM1.116, HCM1.178ac, and HCM1.259. In addition,
two plasmid clusters were made based on the presence or
absence of conserved regions (named A–E) and a transposon
named Ins1056. Group 1 (containing ST1–4) consists of plasmids
carrying region Ins1056, but most of them lack regions C, D and E.
Group 2 (containing ST6–8) involves plasmids with regions C, D and
E but without Ins1056. IncHI2 DLST includes two loci: smr0018
and smr0199.26 Currently there are 14 sequence types for IncHI1
and 10 for IncHI2 available (http://pubmlst.org/, last accessed 3
June 2017).

Interestingly, the transfer rate of IncHI, but not IncHII,
is temperature-dependent.112,121 The efficiency is optimal at
22–30 �C.122 A possible explanation was suggested by Alonso
et al.,123 who showed that the trhRY genes are required for con-
jugation. Temperature dependency suggests that these plas-
mids are potential vectors for the dissemination of genes
among bacterial species in aqueous and soil environments.

IncHI1and IncHI2 plasmids have been isolated in Europe from
both human and animal sources (Figures 2 and 3). Many of them
are reported to be associated with multidrug resistance because,
besides ESBL genes, they often carry genes encoding for resistance
to sulphonamides, aminoglycosides, tetracyclines and streptomycin
(Figures 2 and 3). IncHI1 plasmids are considered as a main carrier
of a multiple resistant phenotype in Salmonella Typhi.124 IncHI2 is
occasionally reported as a multireplicon plasmid, also carrying a
P replicon.96,125 In addition to blaCTX-M-2 carried by all IncHI2/IncP
multireplicon plasmids, they can also encode blaTEM-1.41,96 Recently,
an IncHI2 plasmid was reported to be associated with the novel coli-
stin resistance genes mcr-1 and mcr-3.126–128 The IncHI3 plasmid
was reported to carry blaNDM-1 gene.129

IncHII plasmids were described to carry resistance to trimetho-
prim, streptomycin and spectinomycin, which were part of Tn7,
and ampicillin, amikacin, chloramphenicol, gentamicin, kanamycin
and tetracycline.118

IncP plasmids

IncP, MOBP according to relaxase typing,19 is a group of broad-
host-range, low-copy-number plasmids ranging in size from
70 to 275 kb. The copy number is controlled by iterons which are
also targeted in the PBRT scheme. IncP plasmids are classified in
Enterobacteriaceae as IncP and in Pseudomonas spp. as IncP-1.
Yakobson and Guiney130 proposed to divide the IncP group into
two subgroups named IncPa and IncPb. Later, six subgroups of
IncP plasmids were defined.131 Classification of plasmids into
subgroups is either based on the phylogeny of a single gene or
multiple genes.132 Within the Enterobacteriaceae family only
plasmids from the IncPa and IncPb groups have been reported.

IncP plasmids are often isolated from Salmonella Infantis from
broilers in Japan. They were reported to carry genes conferring
resistance to: (extended) spectrum b-lactams, sulphonamides,
aminoglycosides and tetracyclines (Table S1).87,94,109,133–138 IncP
plasmids in human samples were mainly isolated from E. coli and
K. pneumoniae (Table S1). Recently, an IncP plasmid was reported
to be associated with the colistin resistance gene mcr-1 and its
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variant mcr-1.6.139,140 This plasmid co-harboured dfrA1, tet(A) and
sul1 resistance genes.

IncL/M plasmids

IncL/M, MOBP according to relaxase typing, is a group of broad-
host-range plasmids that range in size from 50 to 80 kb and have a
low copy number.19 In IncL/M, together with IncI, IncK and
IncB/O, replication is regulated by antisense RNA, which is also the
determinant for plasmid incompatibility.141 The target sites used
in the PBRT scheme are repA, repB and repC.

Originally the plasmids IncL and IncM were separate groups.
Richards and Datta142 proposed placing IncL plasmids in the IncM
group because repeated incompatibility experiments showed that
IncL plasmids were incompatible with IncM plasmids. As a conse-
quence, these groups were merged and named IncL/M. In con-
trast, Carattoli et al.143 recently demonstrated that these plasmids
should indeed be interpreted as separate incompatibility groups.
This distinction was made by comparison of ExcA, TraY and TraX
proteins (35%, 59% and 75% amino acid identity, respectively)
and an update of the PBRT scheme has been proposed accordingly.
Additionally, due to the differences in the RNAI sequence of IncM
plasmids, two groups were defined and termed IncM1 and IncM2.
Incompatibility tests did not confirm compatibility of IncM1 and
IncM2 plasmids.

A 60 kb IncL plasmid, formerly designated IncL/M, is globally
reported to be associated with blaOXA-48, although this gene was
also reported on IncF and IncP plasmids (Table S1). In hospitals,
K. pneumoniae harbouring these IncL plasmids with blaOXA-48 is
considered to be a major cause of infections.144 It was described
that Tn1999, which carries blaOXA-48, inserts in the tir gene which
encodes for transfer inhibition protein.145 That may be one of the
causes of such a successful dissemination of this plasmid. IncL/M
plasmids (typed before the report of Carattoli) can also carry
blaCTX-M-1, -3, -14, -15, blaTEM-1, -10, -52, blaSHV-1 and armA genes
(Table S1).

IncN plasmids

IncN, MOBF according to relaxase typing, is a group of broad-host-
range plasmids, for which the copy number is controlled by iter-
ons.19 Their size ranges from 30 to 70 kb. The target site in the
PBRT scheme for IncN is the repA gene. It was observed that plas-
mids belonging to the IncN group are often colocalized with IncF
plasmids.146 Yang et al.147 reported a fusion of an IncN plasmid
with an F33: A#: B# IncF plasmid (see the IncF section).

Recently, a new plasmid type, named IncN2, carrying a novel
replicase gene (encoding Rep271) was described.148 In contrast to
IncN plasmids, IncN2 is not included in the PBRT scheme. A PCR to
detect IncN2 was described by Netikul et al.149

Garcia-Fernandez et al.24 developed the pMLST scheme for
IncN plasmids. It involves three target genes: repN, traJ and korA.
Currently, 16 different plasmid STs have been reported (http://
pubmlst.org/; last accessed 6 March 2017).

IncN plasmids carry a great variety of resistance determinants
against: extended-spectrum b-lactams, sulphonamides, quino-
lones, aminoglycosides, tetracyclines and streptomycin (Table S1).
The blaCTX-M-1 gene is often associated with IncN plasmid ST1. It is
disseminated throughout Europe and isolated mainly from E. coli

from animal sources. blaVIM-1 was found in Spain, Greece and Italy.
It was mainly isolated from human K. pneumoniae isolates. IncN
plasmids often carry Tn1721 encoding for tetA and tetR genes and
Tn5393 carrying strA and strB.150–153 Currently, the IncN2 plasmids
have only been found in Enterobacteriaceae isolated from human
samples from Thailand, Singapore and Australia.149,154

Colicinogenic plasmids

Colicins, which belong to the family of bacteriocins, are proteins
produced by some strains of E. coli that are lethal for related E. coli
strains. Colicins are encoded by genes predominantly located on
plasmids.155 One case of a chromosomally encoded colicin has
been reported: colicin-like bacteriocin 28b produced by Serratia
marcescens.156 Two groups of colicins have so far been described
based on cross-resistance: group A (TolA-dependent) containing
the A, E1 to E9, K, L, N, S4, U and Y proteins. Group B is TonB-
dependent and contains colicins B, D, H, Ia, Ib, M, 5 and 10.155

There are two groups of colicinogenic plasmids. The type I
plasmids are small, mobilizable plasmids of 6–10 kb that contain
approximately 20 copies per cell and mainly encode group A coli-
cins. These plasmids have been frequently used for genetic engi-
neering and biotechnology such as construction of vector
pBR322.157 The type II pCol plasmids are relatively large mono-
copy plasmids of about 40 kb that usually encode colicins of
group B.

ColE1 plasmids, MOBP according to relaxase typing,19 are regu-
lated by an antisense RNA, which by binding to a pre-primer RNA
alters its secondary structure and prevents its subsequent process-
ing to form a primer for the initiation of DNA synthesis.158

Additionally, Davison159 confirmed that incompatibility of ColE
plasmids is expressed by loop II0 of RNA I which interacts with both
the loop I and loop II regions of RNA II. A single mutation in this
region can give rise to two different ColE1 plasmids, with inde-
pendent copy numbers, replication and resistance level.160

Although ColE plasmids have been found to carry different AMR
genes, they are predominantly associated with spread of qnrS1
and qnrB19 genes.13,63,161–163 They are most often found in S.
enterica strains isolated from human samples. Surprisingly, qnrB
genes carried by ColE plasmids were found frequently (27%) in a
remote Amazonas population which had no previous exposure to
therapeutic antibiotics.164 Additionally, b-lactamases blaCTX-M-17,
blaCMY-31 and blaCMY-36 carried by ColE1-like plasmid were
described.165,166 Moreover, Herrera-Leon et al.161 reported that
ColE plasmids, in addition to qnrS1, also frequently harboured sul2,
strA/B and tetA genes. ColE plasmids were reported to carry novel
colistin resistance genes mcr-4 and mcr-5.167,168 ColE1 plasmids
bearing different AMR genes can further coexist in the same bacte-
rial host, providing multiresistant phenotypes.169

IncX

IncX, MOBP according to relaxase typing, is a group of narrow-host-
range plasmids.19 IncX plasmids have six known subtypes (X1–X6)
and their size ranges from 30 to�50 kb. PBRT includes primers that
recognize only IncX1 and 2, for which the target site is ori c, mean-
ing that the prevalence of IncX3–6 may be underestimated.
Johnson et al.170 designed a set of primers targeting the taxC
gene, which allows the differentiation of plasmids belonging to
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groups X1–4. Recently, based on differences in the taxC gene, novel
subgroups X5 and IncX6 were identified.171 Acquisition of IncX
plasmids has caused phage type conversion in Salmonella
Enteritidis.172 This is interesting from an epidemiological perspec-
tive, since phage typing was traditionally used in epidemiological
studies on Salmonella.173,174 IncX plasmids were shown to be able
to form cointegrants with pSLT (Salmonella serotype-specific plas-
mid-carrying virulence genes) which resulted in a broadening of
the host range of the new plasmid.175

IncX plasmids were present in Salmonella strains which were
isolated before antibiotics were commonly used.176 Nowadays,
IncX plasmids are isolated mainly from both Salmonella and E. coli
from human and animal sources (Table S1). These plasmids
encode primarily AMR determinants against extended-spectrum
b-lactams and quinolones. In addition, tetracycline and trimetho-
prim resistance determinants can be carried by IncX plasmids
(Table S1). Genes encoding carbapenemases (mainly blaKPC and
blaNDM) are reported on IncX plasmids.177–179 Recently, an IncX4
plasmid was reported to be associated with the colistin resistance
genes mcr-1 and mcr-2.75,126,180

Rarely detected plasmids

A number of plasmids are not often reported in literature but, as
most of them have a broad host range and can carry multiple AMR
genes, these are involved in the continuous spread of resistance
genes.

IncR

The IncR plasmids range in size from 40 to 160 kb and are not
included in the MOB typing as these plasmids do not contain a
relaxase gene.19 Sequencing results indicate that these plasmids
do not possess conjugational transfer genes.181 However, because
of their broad host range, Bielak et al.182 postulated that IncR plas-
mids are mobilizable. IncR plasmids can form multireplicon cointe-
grates with IncA/C or IncN plasmids.27,28 The first IncR plasmid
was detected from a Salmonella Montevideo isolate and conferred
a multidrug-resistance phenotype, including resistance to amino-
glycosides, chloramphenicol and tetracycline.13 In addition, IncR
plasmids have been reported to carry genes conferring resistance
to antibiotics belonging to many classes including: b-lactams, sul-
phonamides, quinolones, aminoglycosides, tetracyclines, chlor-
amphenicol and trimethoprim (Table S1).

IncW

IncW, MOBF according to relaxase typing,19 is a group of low-copy-
number, broad-host-range plasmids with sizes up to 40 kb. Host
species are Alpha-, Beta-, Gamma-, Deltaproteobacteria and
Bacteroidetes.183 IncW plasmids are considered the smallest con-
jugative plasmids. The IncW plasmid R388 was shown to be essen-
tial for mobilization of the plasmids RSF1010 (IncQ) and ColE1.184

In the PBRT scheme the repA gene is the target site.
IncW plasmids were found in many bacterial sources in the

1980s.183 Although primers recognizing these plasmids are
included in the PBRT, IncW plasmids are currently rarely detected.

The reference IncW plasmid (pSa) was shown to carry genes
conferring resistance to chloramphenicol, tetracyclines, sulphona-
mides, gentamicin and trimethoprim.185 Later, plasmids carrying a
subset of these genes were reported.183,186 IncW plasmids were
also shown to encode the carbapenemase blaKPC-2 and metallo-b-
lactamase blaVIM-1 genes.187,188

IncQ

The IncQ group can be subdivided into two major groups, of which
IncQ1 belongs to the MOBQ group, while IncQ2 belongs to the
MOBP group, according to relaxase typing. These groups are not
detected by PBRT.19 IncQ is a group of mobilizable plasmids with a
medium-range copy number (4–12 copies/cell) and a size range
from 8 to 14 kb. These plasmids have a broad host range including
Alpha-, Beta-, Delta- and Gammaproteobacteria and
Cyanobacteria. It was proposed that its broad host range is a result
of the presence of genes required for plasmid replication.189

The IncQ reference plasmid RSF1010 encodes RepA, -B and -C
proteins,190 but it also requires host-encoded single-strand binding
proteins, DNA gyrase and the c subunit of the DNA polymerase
III.191

IncQ plasmid incompatibility is expressed through direct
repeats at oriV, which was confirmed in both RSF1010 and
R1162.192,193 Becker and Mayer229 reported that introduction of
additional direct repeats into the origin of replication of R1162
resulted in a decreased copy number. This suggests that the lack
of a partitioning or stability system leads to a high copy number,
which prevents plasmid loss. Additionally, it was proven that
members of subclasses of the IncQ family are compatible with
each other due to evolution of their iteron sequences.194

Rawlings and Tietze189 suggested dividing the IncQ family into
two groups based on their Rep protein similarities. Plasmids
RSF1010, pIE1107, pIE1115, pIE1130 and pDN1 form the first
group (IncQ1), and pTF-FC2 and pTC-F14 make up the second
(IncQ2).195 Further subgroups were defined according to their
iteron sequence variability and incompatibility. Plasmids which are
incompatible with RSF1010 were designated IncQ-1a. Plasmids
that were incompatible with pIE1107, pIE1115 or pDN1 were des-
ignated IncQ-1b. IncQ-1c was assigned to plasmids which are
incompatible with pIE1130. Furthermore, IncQ2 was subdivided
into IncQ-2a for pTF-FC2 and IncQ-2b for pTC-F14.189

Additionally, after in silico alignment of repA, repB and repC
genes from known IncQ plasmids,195 Loftie-Eaton and
Rawlings195 proposed two new subclasses named IncQ3 and
IncQ4, of which the latter consists of only one member,
pPNAP08.196

IncQ plasmids were reported to carry blaCMY-4, blaGES-1 and the
sul2-strA-strB gene cluster.197–199

IncT

Rts1, a reference plasmid for the IncT group and MOBH according
to relaxase typing,19 is a low-copy-number, narrow-host-range,
217 kb plasmid originally isolated from Proteus vulgaris.200 The tar-
get site in the PBRT scheme is the repA gene. Most plasmids
belonging to this group exhibit thermosensitive replication and
conjugation, which are stable at 37 �C and 25 �C, respectively, but
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inhibited at 42 �C and 37 �C.201 Interestingly, R394 isolated from
Proteus rettgeri did not show this thermosensitive phenotype for
stability and conjugation.202 This phenomenon was later explained
by the fact that R394 is a cointegrate plasmid containing IncT and
IncN replicons.30

Early isolated IncT plasmids were carrying kanamycin- (Rst1) or
sulphonamide resistance genes (R485). Recently, a Proteus mirabilis-
carrying blaCTX-M-2 on an IncT plasmid was reported in Japan.203–205

IncT plasmids were also reported to carry blaOXA-181.206

IncU

IncU (MOBP according to relaxase typing19) is a group of broad-
host-range plasmids isolated from Alpha-, Beta- and
Gammaproteobacteria.207 These plasmids are low-copy-number
with sizes ranging between 29 and 60 kb.208 The first IncU plas-
mids were isolated from Aeromonas salmonicida.209 The stabiliza-
tion module of RA3 encodes seven homologues to IncP plasmid
products and its conjugative transfer region is highly similar to the
one from the PromA plasmid,210 which is a novel family of broad-
host-range plasmids, which seem to have no phenotypical effect
on the host (cryptic plasmids).211

Plasmid Rms149 has been classified as a novel IncG plasmid;
however, later studies showed that this plasmid is a member of
the IncU group.212,213

IncU plasmids were reported to carry resistance to: trimetho-
prim, chloramphenicol, ampicillin, tetracyclines, sulphonamides,
kanamycin and streptomycin.208,214

IncD

The first IncD plasmid was mentioned by Datta.9 Later, Coetzee
et al.215 reaffirmed existence of this group performing compatibil-
ity experiments. However, the group is not included in the PBRT
scheme.

IncD plasmids belong to the IncF-like group of plasmids based
on classification by genetic relatedness and pilus structure.216

Plasmids examined by Coetzee et al.215 were conjugative and can
be transferred between members of the Enterobacteriaceae fam-
ily. Transfer between other families has not been determined.
They can carry resistance determinants to ampicillin and kanamy-
cin. Unfortunately, no plasmid of this incompatibility group was
fully sequenced and there are no reports revealing the functional
biology or prevalence of these plasmids.

IncJ

In 1972 Coetzee et al.202 described a new plasmid called R391 and
assigned it to the new IncJ incompatibility group. Later it was dis-
covered that R391 rather belongs to the group of integrative and
conjugative elements (ICEs). These elements are integrated in the
chromosome, but after excision they circularize, replicate autono-
mously and are self-transmissible via conjugation.217

Recent work of Carraro et al.218 shows that stability of R391
family members depends on replication starting at oriT by TraI.
Additionally, these plasmids encode the toxin–antitoxin system
hipAB, although this is not highly conserved. These results suggest
that ICEs are more similar to plasmids than was previously thought
but, as these are not actually plasmids, they are not detected by
the PBRT scheme.

IncY

IncY is a group of prophages which replicate as autonomous plas-
mids. Their size range is approximately 90–100 kb and they are
low-copy-number plasmids.219 Although they contain iterons
close to the repA gene which is also the target in the PBRT scheme,
their involvement in the incompatibility reaction was not
confirmed.220

IncY were confirmed to confer resistance to ampicillin and carry
the blaSHV-2 gene.219,221 Additionally they are reported to be asso-
ciated within a cell with IncF and/or IncI plasmids or
IncHI2.96,134,222–227

Untypeable plasmids

Many authors report plasmids which they designate as ‘untype-
able’. There are reports of untypeable plasmids with variable sizes
(20–260 kb) that carry genes encoding for different antimicrobial
classes: b-lactams including cephalosporins and carbapenems,
sulphonamides, quinolones and aminoglycosides (Table S2).

Although the PBRT scheme is widely used, it is recognized that it
cannot detect all known plasmid types. The false negative results
that were described for IncL/M have been solved by a new set of
primers that was described for subdividing these plasmids. For
other plasmids such as IncX3–4 and the IncFIII-VII replicons, cur-
rently no PCR methods have been described that can be used in
addition to the PBRT scheme. Another consideration is the continu-
ous rearrangement and mutations that plasmids undergo, which
may also occur in the regions that are used for plasmid typing. This
may result in novel untypeable plasmids evolving from currently
well-studied plasmid types.

Conclusions and future perspective

Since the first incompatibility experiments performed by Couturier
et al.10 in 1988, a lot has changed. Different typing methodologies
are used in literature, which hampers a comparison of results from
these studies. Nowadays, the PBRT scheme is the most commonly
used technique for plasmid typing of Enterobacteriaceae, as it
facilitates rapid identification of the dominant replicon types. Its
use has led to a more unified way of plasmid identification, which
in turn has resulted in a large expansion of our knowledge of plas-
mid epidemiology. The commercially available PBRT kit is kept up
to date by periodic inclusion of newly described targets for plasmid
identification. The main disadvantage, however, is that it can only
detect plasmids included in the scheme, and that some plasmids
harbour more than one replication machinery. Typing plasmids
according to the relaxase gene has a higher discriminatory power,
but it misses plasmids which do not contain a relaxase gene.

Carattoli6 has provided an extensive overview of plasmids and
their associated resistance genes. The work presented here pro-
vides an update about all known resistance plasmids in
Enterobacteriaceae.

A great variety of plasmids can be found in human, animal and
environmental isolates. The most abundant plasmids, often
referred to as epidemic plasmids, are IncF, IncI, IncA/C and IncH.
There are differences in prevalence of certain plasmids from differ-
ent sources and on different continents. Animals in Europe are
mainly colonized by E.coli-carrying IncI plasmids, while in Asian
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animals the dominant plasmid is IncF and in animals from North
and South America the dominant plasmid type is IncA/C. From
human sources, IncF is the most abundant plasmid isolated in Asia
and North and South America, while in Europe isolates are more
diverse, including IncI and IncH. Next to IncF, IncA/C also seems to
be abundant among humans in North and South America.

ESBLs are the most frequently described enzymes conferring
resistance to antimicrobials encoded on plasmids. Enzymes hydro-
lysing aminoglycosides and genes encoding for resistance to qui-
nolones and sulphonamides are often co-transferred through
transposons located on a plasmid. We also show that various plas-
mids seem to be associated to a different range of antibiotic resist-
ance gene classes, e.g. IncF carry a wide variety of gene classes,
while IncI plasmids are mainly associated with ESBLs. Some plas-
mids even have a strong correlation with specific genes, like
IncL/M with blaOXA-48, or IncK plasmids with blaCMY-2 or blaCTX-M-14.
However, the exact nature of these specific relationships is still not
fully understood.

Given the fact that the number of studies performed on all con-
tinents varies and certain resistance determinants are studied
more intensively, the data presented in this article will inevitably
be slightly biased. Therefore, the observed differences should be
interpreted with care. Most papers describe data from Europe.
Additionally, most of them focus on b-lactamases, which means
that the prevalence of other antibiotic classes may be underesti-
mated. Furthermore, most plasmids are typed using the PBRT
scheme, which means that the prevalence of the plasmids not
included in that scheme can be underestimated.
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