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A B S T R A C T

The present study analysed the mathematical problem-solving processes, in terms of linearity and recursion, and
the relationship with actual and self-perceived performances of a sample of 524 students of upper elementary
students. The results showed a more linear than recursive process while performing the tasks, mainly char-
acterized by continuity. The use of planning strategies before execution and the use of revision strategies after
this phase were both significantly related to good performance, even if rates of success were low. The presence of
a linear and hierarchical resolution process was related to students’ judgments of success, while recursion, or
going back in the process, was associated with judgments of failure. Results are discussed in the light of current
research on mathematics problem-solving.

1. Introduction

Solving mathematical problems is a common task for students at all
educational levels. Problem solving is a core goal of mathematics in-
struction at school, which is justified by the great importance that this
skill has in everyday life and in the workplace. Although solving pro-
blems efficiently can be extremely beneficial in both contexts, previous
research shows that students frequently struggle with these tasks
(Babakhani, 2011; García, Rodríguez, González-Castro, González-
Pienda, & Torrance, 2016; Silver, Ghousseini, Gosen, Charalambous, &
Font Strawhun, 2005). There are different definitions of what con-
stitutes “mathematical problem-solving”, most of which emphasize the
complex nature of this activity. According to Raynal and Rieunier
(1997; in Căprioarăa, 2015), problem-solving simultaneously mobilizes
intellectual faculties such as memory, perception, reasoning, con-
ceptualization, language, as well as emotional control, motivation, self-
confidence and monitoring. On the other hand, Schoenfeld (1992) state
that problem solving implies “thinking mathematically”, which in-
volves mathematics core knowledge; problem-solving strategies such as
monitoring and control; effective use of one’s resources; having a
mathematical perspective; and engagement in mathematical practices
(p. 335). In fact, successfully solving mathematical problems has been
proven to rely on affective-motivational, cognitive, self-regulatory and

metacognitive components constantly interacting with each other
(Babakhani, 2011; Căprioarăa, 2015; García, Betts, González-Castro,
González-Pienda, & Rodríguez, 2016; Jitendra, Dupuis, & Zaslofsky,
2014; Schoenfeld, 1992). More specifically, students who struggle with
solving mathematical problems are poor at effectively implementing
metacognitive and self-regulatory strategies.On the same lines, ac-
cording to recent studies, there is also an important relationship be-
tween metacognitive and self-regulatory components and students’ own
judgments of performance (or self-perceived performance) (Dunlosky &
Rawson, 2012; Dunlosky & Thiede, 2013; Finn & Metcalfe, 2014;
García, Rodríguez et al., 2016; Hacker, Bol, & Bahbahani, 2008; Laua,
Kitsantasb, & Millerc, 2015). These studies suggest that those students
who are more accurate in their judgments commonly show higher le-
vels of metacognitive control over their own learning processes.

The studies above provide initial evidence on the important link
between the process, actual performance, and self-perceived perfor-
mance in mathematics problem-solving; a link that must be more
deeply examined. However, there is an important factor that must also
be considered, which is how the process involved in solving mathe-
matics problems is organized. From a Self-Regulated Learning based
perspective (Zimmerman, 2000, 2008), learning is characterized by a
process where planning, execution and revision phases alternate with
each other in a cyclical –recursive- relationship (Carlson & Bloom,
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2005). However, from the perspectives of other models, such as those
by Mayer (2003) and Polya (1981), learning -especially problem-sol-
ving- is defined as being a linear (rather than a recursive) cognitive
process; wherein planning, execution and revision seem to follow each
other in a sequential order. Considering these two possibilities, and
given the lack of empirical evidence on this issue to date, the current
study examines the process involved in solving mathematical problems
to see whether they can be better understood in terms of recursion or of
linearity, and to analyze whether this process is related to students’
actual and self-perceived performance in problem-solving.

1.1. Mathematical problem-solving as a process

Current problem-solving models focus on the process rather than on
the content aspects of mathematics According to Schoenfeld (1992),
problem solving implies searching for patterns, which involves ab-
straction, symbolic representation, and symbolic manipulation as main
tools. It also implies a cyclic process that goes from data to deduction to
application and that is repeated each time we face a mathematical
problem.

There are some previous studies that have examined the process
involved in solving mathematical problems at different educational
stages (García, Betts et al., 2016; García, Rodríguez et al., 2016; Jacobse
& Harskamp, 2012; Tambychika & Mohd Meerahb, 2010; Verschaffel
et al., 1999). These studies showed that difficulties in solving mathe-
matical problems may occur at any phase during performance (i.e.,
planning-execution-evaluation; Zimmerman, 2000), with the phases of
planning and evaluation commonly regarded as more problematic. In
this sense, students commonly demonstrate difficulties in planning how
to execute the problem-solving, using inadequate or insufficient stra-
tegies and devoting their efforts to performing calculations; while, for
most of them, the third phase of evaluation seems unnecessary. Thus,
most students do not usually complete the whole problem-solving
process, which commonly leads to poor performance. In this same line,
authors such as De Bock, Verschaffel, and Janssens (1998), or De Corte
and Somers (1982) found that when facing unfamiliar complex math-
ematical problems, students usually do not apply effective strategies
such as organizing the information though a drawing or sketch, di-
viding the problem into different parts, or guessing and checking. Also,
self-regulatory and metacognitive strategies are commonly scarce (i.e.
analysing the problem, monitoring the solution process, evaluating its
outcome, etc.). Instead, students frequently jump to calculations,
without considering any other alternatives even when performing
mathematical operations may not be working. Analysing this some-
times erratic process is important, because a crucial relationship be-
tween ‘process and product’ (i.e. resulting performance on the task) has
been extensively reported (Tambychika & Mohd Meerahb, 2010).

In this same line, Verschaffel et al. (1999) state that, despite the
formal education and training provided by school-teachers in the area
of mathematical problem solving, students at upper-elementary levels
do not still have the required aptitudes to approach mathematical
problems efficiently. They identify three main sources, or pro-
blem–solving components, that may cause these deficiencies: first, lack
of domain-specific knowledge and skills; second, deficits in the heur-
istic, metacognitive, and affective aspects of mathematical competence;
and last, inadequate domain-related beliefs about and attitudes towards
mathematics and problem solving. Concerning student’s beliefs about
mathematics, one of the most important components is the ability to
assess and make judgments about one’s own performance and to notice
discrepancies between one's own real –actual- performance and per-
ceived performance. The correspondence between one’s ‘perceived’
performance and one’s ‘actual’ performance is referred to as calibration,
and this measure has become an important topic of research in the last
decades (Bouffard, Vezeau, Roy, & Lengelé, 2011; Dinsmore &
Parkinson, 2013; García, Rodríguez et al., 2016; Hadwin & Webster,
2013). Literature shows that students of different ages commonly make

inaccurate evaluations or judgments of their performance, showing a
tendency towards over-confidence. The relevance of calibration me-
chanisms in mathematics has been substantially demonstrated in
mathematics problem-solving. Specifically, students with higher cali-
bration skills tend to perform more successfully than students with
lower calibration skills, and this has been explained by the greater
degree of control over problem-solving processes in students with
higher calibration abilities. However, inaccurate judgments of perfor-
mance not only affect actual performance, but also motivation, persis-
tence and interest in the task, as previous studies have suggested
(Hadwin & Webster, 2013; Jacobse & Harskamp, 2012; Lipko et al.,
2009; Rinne & Mazzocco, 2014). Those students who are less confident
may also feel that they unable to tackle the given problem, which could
thereby hinder them from utilising their full knowledge and previously
learnt strategies; on the other hand, however, over-confidence may lead
to excessive mistakes, frustration, and a lack of motivation in the face of
failure. Accordingly, the relevance of taking these two variables (actual
and perceived performance) into consideration should not be over-
looked by researchers.

Nowadays, there is a good deal of evidence supporting the im-
portance of problem-solving processes for learning, particularly re-
garding actual and self-perceived performance in mathematics pro-
blem-solving. However, there are two important questions that have
been left unresolved to date: 1) Is mathematical problem-solving a
linear or recursive process? 2) Does the organization of this process
affect actual and/or perceived performance? A linear process would
imply that there is a hierarchy, and that problem-solving is a sequential
process (Krawec, 2012; Montague, Warger, & Morgan, 2000). So ob-
stacles in the first phase would cause failure in the other phases. Al-
ternatively, if the process is recursive, this would imply that planning,
execution and evaluation may occur at any time during performance,
which means recognizing the potentially iterative nature of the pro-
blem-solving process (Boonen, 2015). While the response to this ques-
tion seems to be clear in the case of, for example, writing composition
(i.e., the writing process is a recursive cyclical process; Lei, 2008; Smet,
Brand-Gruwel, Leijten, & Kirschner, 2014), previous empirical evidence
on mathematical problem-solving has not allowed any conclusion to be
reached in this sense.

A brief description of the most representative models on mathe-
matics problem-solving is provided below. It is important to note at this
point that, while there are some models that can be easily defined as
linear or hierarchical, the possible iterative and recursive nature of the
problem-solving processes seems not to be clear in most models.

1.2. Mathematical problem-solving models

Table 1 summarizes some of the most representative models on
problem-solving. All of these models are based on different phases or
sub-processes, and (to a certain extent) involve planning, execution,
and evaluation mechanisms.

Within this context, some classical and widely-known models are
presented, such as those proposed by Mayer (2003), Polya (1981) or
Bransford and Stein (1993), or Montague et al. (2000). The problem-
solving activities that comprise these models can be typically sum-
marized in two main phases: 1) problem understanding and re-
presentation, and 2) solution development (Babakhani, 2011; Kim,
2015; Krawec, 2012). For these authors, successful problem-solving is
not possible without first interpreting and representing the problem
adequately. A proper interpretation and representation indicates that
the problem solver has understood the problem and serves as a pow-
erful tool to guide them towards the solution plan (Babakhani, 2011).
These authors also highlight the need for evaluation or revision at the
end of the process. This is important, since revision strategies have been
shown to be a determining factor for successful problem-solving, and
one of the activities with which students struggle the most while per-
forming these tasks (Cleary & Chen, 2009; García, Betts et al., 2016;
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García, Rodríguez et al., 2016; Montague, Enders, & Dietz, 2011).
However, based on this type of characterization, it is still not clear
whether evaluation and revision mechanisms are present during the
whole process.

Although it is not properly a problem-solving model, Zimmerman’s
Model (2000, 2008) is relevant in this sense, as metacognitive and self-
regulatory mechanisms are linked to successful problem-solving (Cleary
& Chen, 2009; Desoete & Roeyers, 2003; García, Rodríguez et al., 2016;
Swanson, 1990). The three main phases of Zimmerman’s model (i.e.,

Forethoughts, Performance, and Self-reflection) correspond to the
phases of planning, execution, and evaluation, referring to those ac-
tivities that occur before, during and after performing a task or
learning. This model defines the Self-Regulated Learning (SRL) as a
cyclical process in which planning, execution and revision can occur at
any time during the task. Hence, it recognizes the potential recursive or
iterative nature of the process. In this same line, the model of mathe-
matical modeling and applied problem solving of Blum and Niss (1991)
must be highlighted. These authors describe a process that implies the
following stages: creation of a mathematical model of the situation
described in the problem; working within mathematics (drawing con-
clusions, calculating and checking examples, applying known mathe-
matical methods and results as well as developing new ones, etc.) which
leads to obtain a mathematical result; and last, re-translating the result
into the real world (validation of the model). The authors also recognize
the presence of recursion within this process, as they state that various
modifications of the previous model can occur as a result of the vali-
dation stage (p. 35). There are also some models that highlight, aside
from recursion or iteration, the importance of monitoring one’s pro-
gress during the whole problem-solving process (e.g. Pretz, Naples, &
Sternberg, 2003), which implies that control and evaluation mechan-
isms, must be present in every phase of the process. This is the case of
the model proposed by Verschaffel et al. (1999). The authors con-
ceptualize this model as a genuine strategy consisting in five stages
eight heuristics that are especially valuable in the first two stages of the
model (Table 1). Conceived as the goal of a learning environment, the
model is aimed at facilitating students to become aware of the different
phases involved in a competent problem-solving process (awareness
training), developing the ability to monitor and evaluate one’s perfor-
mance during the different phases of the problem-solving process (self-
regulation training), and gaining mastery in the use of eight heuristic
strategies that are especially useful during the first two stages of
building a mental representation of the problem and deciding how to
solve the problem (heuristic strategy training) (p. 201). More recently,
Boonen (2015) empirically found some signs of recursion in mathe-
matics problem-solving, on this occasion with a sample of teachers
implementing an intervention program to support non-routine mathe-
matics word problem-solving in upper-elementary students. The author
analyzed the problem-solving process followed by teachers during the
intervention sessions, taking the phases shown in Table 1 as a frame-
work. These findings contrast with some models and research-based
programs developed to support word problem-solving, which assume
that it is a linear and hierarchical process; providing interesting evi-
dence about the presence of recursion in the process instead.

1.3. The present study

A review of the relevant literature indicates that additional evidence
should be gathered on the orchestration of the problem-solving process.
As students’ difficulties in problem-solving can occur at any phase, a
good understanding of this process and its characteristics may provide
interesting insights into the mechanisms responsible for these difficul-
ties. Certain useful guides for teachers to better approach mathematics
problem-solving might be provided through a proper understanding of
what happens during this complex activity, as theory and daily practice
should be intimately linked (Oonk, Verloop, & Gravemeijer, 2015). In
order to contribute to this goal, the present study aims to answer the
following questions:

- Do students demonstrate a linear process during mathematics pro-
blem-solving, or there is some recursion present in this process?

- Is students’ actual and self-perceived performance (i.e. success vs.
failure) related to linearity or recursion in the process?

It is expected that:

Table 1
Problem-solving Models.

Model Phases

Linear (hierarchical) models
Polya (1981) - Understanding the problem

- Planning
- Performing the plan
- Confirmation of the answer

IDEAL model (Bransford & Stein,
1993)

- Identification of the problem
- Definition of the problem
- Exploration of possible solutions
- Acting according to the solution plan
- Review of the last stages (Looking back)

Montague et al. (2000) - Read
- Paraphrase
- Visualize
- Hypothesize
- Estimate (predict the answer)
- Compute
- Check

Mayer (2003) - Translation
- Interpretation
- Planning
- Execution

Pretz et al. (2003) - Recognizing the problem
- Defining and interpreting the problem
- Developing a solution strategy
- Organizing one’s knowledge about the
problem

- Allocating mental resources to solve the
problem

- Monitoring one’s progress towards the goal
- Evaluating the solution

Recursive models
Verschaffel et al. (1999) - Build a mental representation of the

problem
Heuristics:

- Draw a picture
- Make a list, scheme or a table
- Distinguish relevant information from
irrelevant data

- Use your own real-world knowledge
- Decide how to solve the problem
Heuristics:

- Make a flowchart
- Guess and check
- Look for a pattern
- Simplify the numbers

- Execute the necessary calculations
- Interpret the outcome and formulate an
answer
- Evaluate the solution

aZimmerman’s SRL Model (2000,
2008)

- Forethoughts
- Performance
- Self-reflection

Boonen (2015) - Read the problem
- Understand the text
- Visualize the problem structure
- Hypothesize a plan to solve the problem
- Compute the required operation
- Check your answer

a Zimmerman’s Model is included as it is an example of the process involved
in general learning and supposed the basis for different models based on pro-
blem-solving.
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- Students will be mainly linear in their process, although some signs
of recursion will be present during performance.

- Statistically significant differences in the process will be found in
students with differing actual and self-perceived performance in the
problems (i.e., success-failure). As linear models seem to be more
extended than those that recognize the possible presence of recur-
sion today, it is likely that students who show a linear process will
be more successful and make more positive judgments of perfor-
mance than those showing a tendency to recursion.

2. Materials and methods

2.1. Participants

A sample of 524 fifth and sixth grade students took part in this
study. Ages ranged between 10 and 13 years old (M=10.99,
SD= .72). This sample comprised 220 students from the fifth grade
(42%) and 304 students from the sixth grade of elementary school
(58%). A total of 260 students (49.6%) were female, and 264 (50.4%)
were male.

Students were recruited from 12 state and private schools in
Northern Spain. Sample selection was made through accessibility pro-
cedures. Students volunteered for the study and presented informed
consent from families. Children with a diagnosis of special educational
needs or severe learning disabilities were excluded from the study.

2.2. Measures

As in other similar studies (García, Cueli, Rodríguez, Krawec, &
González-Castro, 2015; García, Rodríguez et al., 2016), the Triple Task
Procedure in Mathematics-TTPM-was used as a measure of the mathe-
matics problem-solving process. This procedure is a modification of the
traditional Triple Task technique, widely used in the study of the pro-
cesses involved in composition writing (Olive & Piolat, 2002; Piolat,
Olive, & Kellogg, 2005). Actual performance was obtained through the
students’ written responses to the mathematics problems, and self-
perceived performance was obtained by asking students to judge
whether they thought that they had given a correct response to each
problem included in TTPM procedure.

2.2.1. Mathematics problem-solving process
The TTPM consists of the performance of three tasks: a primary task

that elicits the cognitive process under investigation (i.e. solving a
mathematics problem in this case); a probe task, in which response
times [RTs] are measured; and a categorization task, in which students
verbalize or label the actions or thoughts that are interrupted by the
probe. The second task is used as a control task to ensure that students
stay engaged in the evaluation process (i.e., extremely long RTs may be
indicative of loss of attention or poor understanding of the instructions
given), while the first and third tasks provide information about student
performance (i.e. product or final result) and the process, respectively.

The procedure is as follows: for each mathematics problem, students
are asked to select the category that best represents the activities they
are engaged in at different times during performance (García,
Rodríguez et al., 2016). During problem-solving, students hear a one
second tone played at random intervals of between 40 and 45 s. This
time interval allows evidence of the process to be gathered while trying
to reduce possible interference in the process flow. On responding to
the tone (i.e. probe task), students are presented with a category system
that shows different activities involved in problem solving. They have
to select a category identifying their current process from one of eight
different activities: Reading the problem, drawing or summarizing, re-
calling similar problems, thinking about a solution, calculating, writing
a response, reviewing, and correcting mistakes. RTs to the tones are
registered. Students are initially trained, by means of examples, how to
recognize and relate these categories to their own problem-solving

process.
TTPM uses directed introspection in this categorization phase, as

students are asked to categorize their actions or thoughts according to a
given category system. This system is based on Zimmerman’s Self-
Regulated Learning model (SRL; Zimmerman, 2000, 2008), in combi-
nation with Bransford and Stein’s (1993) IDEAL model of problem-
solving. From the combination of both models, a system with eight
categories or sub-processes emerged (García, Rodríguez et al., 2016).
These sub-processes are organized into three higher level categories,
corresponding to the main SRL phases of Planning, Execution, and
Evaluation (Zimmerman, 2000, 2008). Table 2 shows the category
system proposed by the authors. An additional category (“other”) has
been included to reflect thoughts or activities unrelated to problem-
solving performance, such as day-dreaming (e.g., “I’m thinking about
what I’m going to do this afternoon”).

Given its design, this technique is suitable for examination of the
linearity and recursion of the process from the viewpoint of the main
SRL phases of planning, execution and revision; understanding “line-
arity” as the tendency to progress forwards and hierarchically through
the process, and “recursion” as the tendency to move backwards.
Continuity, or the tendency to stay in the same phase for a period of
time, is also evidenced by this technique, and was measured in the
present study. Fig. 1 exemplifies the process showed by two different
students. The figure represents the category choice made by the stu-
dents in each moment, providing evidence of the temporary organiza-
tion of the process, including transitions between phases (either re-
cursion or linearity) and continuity.

2.2.2. Mathematics problems
Students performed two word-based mathematical problems during

the TTPM. The problems were based on everyday situations taken from
the book “Problem-solving and comprehension” (Whimbey &
Lochhead, 1999).

Problem 1. Beatriz lends €700 to Susana. But Susana borrows €1500
from Esther and €300 from Juana. In addition, Juana owes Esther €300
and Beatriz €700. One day they meet at Beatriz’s home to settle their
debts. Who went back home with €1800 more than she brought?

Problem 2. Paula, Mari, and Juana have a total of 16 dogs, 3 of which
are poodles, 6 are greyhounds, and the rest of them are German
shepherds and Pekinese dogs. Juana does not like poodles and Pekinese
dogs, but she has 4 hounds and 2 German shepherds, leading to a total
of 6 dogs. Paula has a poodle and 2 more dogs, which are German
shepherds. Mari has 3 Pekinese dogs and several dogs of other breeds.
Which breeds, and how many dogs of each breed, does Mari have?

2.2.3. Actual and self-perceived performance
A measure of actual performance (correct - incorrect) was obtained

based on students’ written responses to the two mathematics problems.
A measure of self-perceived performance was obtained after task

Table 2
Category System of problem-solving process (as a combination of Zimmerman
and Bransford and Stein’s models).

SRL Model IDEAL Model Process categories (I am …)

Planning Identification of the problem Reading
Definition and representation Drawing or summarizing

Recalling similar problems
Exploration of possible strategies Thinking about a solution

Execution Action based on the strategy Calculating
Writing a response

Revision Look at effects of solutions Reviewing
Correcting mistakes

“Other” Doing something unrelated

Note. Retrieved from García, Rodríguez et al. (2015).
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completion, by asking students to judge whether they thought that they
had given a correct response to each problem. This variable was scored
as “success” when students provided a positive judgment of perfor-
mance, and as “failure” when they did not. This measurement system
was used in previous studies with upper-elementary students (García,
Kroesbergen, Rodríguez, González-Castro, & Gonzalez-Pienda, 2015;
García, Rodríguez et al., 2016).

2.3. Procedure

The study was conducted in accordance with the Helsinki
Declaration of the World Medical Association (Williams, 2008), which
reflects the ethical principles for research involving humans. The as-
sessment procedure was collectively administered during a regular
mathematics class. The TTPM was presented through a module enabled
on Moodle. Students accessed the platform from their personal com-
puters. They were given a username and password in order to guarantee
anonymity. Two trained examiners led the evaluations. Only two
mathematical problems were used in the present study according to the
design of the TTPM, which requires that training and TTPM adminis-
tration are conducted during the same session. This same procedure has
been used in previous studies in mathematics and writing composition
(García, Cueli et al., 2015; García, Betts et al., 2016; García, Rodríguez
et al., 2016; Torrance, Fidalgo, & Robledo, 2015).

The first part of the session consisted of explaining the evaluation
process to students. Then, they were trained in the recognition of the
different process categories. In order to determine the students’ accu-
racy in categorizing the activities involved in mathematical problem
solving, a pilot test was conducted, using the example of a student of
their age (Alex) thinking aloud while solving a mathematical problem.
Students had to recognize and categorize the sample student’s activity
at 18 different time points during the process (2 items per category,
including the category called “other”). The students’ categorizations
were subsequently compared with those of one of our expert raters.
Mean agreement between students’ codes and those of the expert was

high (mean Cohen’s κ = .89). This result is consistent with those from
recent studies on writing composition (Rodríguez, Grünke, González-
Castro, García, & Álvarez-García, 2015; Torrance et al., 2007), and
indicates a high reliability of the coding process in the current sample.
This training phase lasted about 15min.

Once the system of categories was understood, the TTPM was ad-
ministered as previously described. The TTPM lasted until students
indicated they had completed the problem, by clicking on a “finish”
button set up for that purpose. Once students clicked on the “finish”
button, a box appeared on the computer screen displaying the following
question: “Do you think that you have given the correct response to the
problem?” This allowed an indicator of students’ self-perceived per-
formance to be gathered. The same procedure was repeated for the
second problem.

The TTPM was designed so that, regardless of each student’s re-
sponse speed and the time they started or finished each problem, the
time intervals between probes were the same for all participants. As
evaluations were collectively administrated, students were provided
with headphones. However, no more than 20 students were evaluated
simultaneously.

Both the materials and the evaluation procedure were designed so
that students found them appealing and motivating. The category
system was represented through text and graphic symbols simulta-
neously. Mathematical problems were displayed on the computer
screen and also presented on paper. Students were able to use the paper
to write whatever they needed with the condition that they had to write
their answer on the paper when they finished each problem. Once data
from the process were retrieved, and the mathematics problems were
marked, students’ actual and self-perceived performance in the pro-
blems was established in terms of success (1) or failure (0).

As extreme RTs during the TTPM were not identified, data from all
the students were included in the analyses.

Students’ responses during the TTPM were coded for further ana-
lyses as follows: the reported activities in the planning phase (i.e., from
reading to thinking about solutions) were assigned the number 1; those

Fig. 1. Example of TTPM design. The figure shows the category choice made by two different students.
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within the execution phase (i.e., calculating, and writing a response)
were coded as the number 2; and those related to revision mechanisms
(i.e., reviewing, and correcting mistakes) were assigned the number 3.
Students’ responses during the TTPM were recorded for a maximum of
20 different times. They had to label their actions according to the
category systems describe previously. Each time represented a 40–45
second interval, matching the different probes presented. Based on
these time intervals, students had a maximum of 15min to solve each
problem. A significant number of students completed the task before
reaching probe number 20. Once evidence from the process was ob-
tained, transitions within the three different phases were established.

There were 19 possible transitions within phases, providing a se-
quence like this (e.g. 112223123). In this sequence, a student is per-
forming the problem during 9 probe times. Thus, eight transitions (in-
cluding continuity) are made. The student starts the task by planning
and stays in this phase for two probes; then makes a transition to the
execution phase, where they stay for a longer period of time; after that,
the student moves to the revision phase and starts a new cycle of
planning-execution-revision. In order to quantify these transitions, the
phase reported by students at a certain probe time was compared to the
phase they reported at the immediately preceding probe. Two different
possibilities arose: 1) that students stayed performing an activity within
the same phase (e.g. 11- continuity within the planning phase); or 2)
that students made a transition from one phase to another, either for-
wards (e.g. 12- transition from planning to execution- linearity) or
backwards (e.g. 21- transition from execution to planning- recursion).
The absolute frequencies of these transitions, related to staying in each
phase and transitions within phases, were calculated and used as de-
pendent variables in the statistical analyses.

The Excel counting function was used to calculate absolute fre-
quencies of transitions. Absolute frequencies for each transition were
then averaged over the 524 participants in order to perform statistical
analyses with means. In addition, and given that frequencies may
provide a more exact estimation of process organization, they were also
reported and analyzed in the present study.

2.4. Data analysis

As in previous studies, these analyses were initially based on mean
frequency counts (García, Cueli et al., 2015; García, Betts et al., 2016;
García, Rodríguez et al., 2016; Torrance et al., 2007). The dependent
variables considered were the mean frequency with which students
stayed focused on activities within the Planning, Execution and Revi-
sion phases while solving the problems, and the number of transitions
they made from one phase to another (either forward or backward). In
accordance with the objectives of the study, the data was analyzed in
two steps.

Firstly, in order to examine the processes used by the students, and
whether they were linear or recursive, means and standard deviations
of the different dependent variables were reported. As dependent
variables did not follow a normal distribution, non-parametric analyses
were conducted. At a descriptive level, means and absolute frequencies
both provided initial evidence about students’ tendency to continuity,
recursion or linearity (Table 3).

Secondly, the Mann–Whitney U-test was applied to analyze differ-
ences in the process between students with differing actual and self-
perceived performance in the mathematics problems. Cliff’s delta (δ)
was used as a measure of effect size (Macbeth, Razumiejczyk, &
Ledesma, 2011). This statistic provides a measure of dominance, or the

degree of overlap between two distributions of scores. The value of this
statistic ranges from –1 (if scores in Group 2 are larger than scores in
Group 1) to +1 (if scores in Group 2 are smaller than scores in Group
1), and takes the value of zero if the two distributions are similar (i.e.,
absence of statistically significant group differences in the measured
variables). Cohen (1988) established a bridge between Cohen’s d and
Cliff’s δ statistic: a δ value of .147 has an effect size of d= .20 (small
effect); a δ value of .330 corresponds to an effect size of d= .50
(medium effect); and a δ of .474 has an effect size of d= .80 (large
effect). Absolute frequencies of transitions were reported for each
group, as they provide a purer measure of the transition pattern than
means. Based on these frequencies, odds ratios were calculated as an
additional estimation of effect size (Tables 4 and 5). This statistic was
used as an estimation of students’ likelihood to make a transition in
comparison the total number of possible transitions. The higher the
Odds ratio, the greater the probability of making this transition. The
values of this statistic range from 0 to 1.

Separate analyses were conducted for each mathematics problem.
SPSS v.23 (Arbuckle, 2013) was used to carry out the statistical ana-
lyses, with the exception of the non-parametric effect size analysis (i.e.,
Cliff’s delta statistic), for which Cliff’s Delta Calculator (CDC: Macbeth
et al., 2011) was used. A p-value≤ .05 was established as the criterion
of statistical significance.

3. Results

3.1. Mathematics problem solving process: linearity vs. recursion

Table 3 shows descriptive statistics for each dependent variable. The
first three transitions presented in the table are indicative of recursion,
while the last three are related to linearity in the process. The second
group of variables are indicative of continuity. As can be observed, the
frequency of the different transitions is generally low, as students show
a high tendency to stay in the same phase (high continuity), particularly
in planning and execution phases. This pattern is even more visible
when absolute frequencies are considered.

Table 3
Descriptive statistics for each dependent variable (transitions within phases).
Problems 1 and 2.

Transitions Problem 1 Problem 2

M SD AF M SD AF

Recursion
rev-plan .053 .241 28 .034 .211 18
rev-exec .116 .385 61 .068 .295 36
exec-plan .431 .716 226 .316 .604 166
TOTAL .595 .898 314 .421 .762 219
Continuity
plan-plan 3.162 2.602 1657 2.774 2.864 1454
exec-exec 2.524 2.785 1323 2.509 2.470 1315
rev-rev .319 .782 167 .200 .677 105
TOTAL 6.042 3.369 3147 5.501 2.951 2873
Linearity
plan-exec 1.162 .693 609 1.068 .638 560
exec-rev .456 .576 239 .347 .503 182
plan-rev .099 .311 52 .064 .275 34
TOTAL 1.711 .947 900 1.484 .862 775

Note. M=Mean frequency of transitions within phases; AF=Absolute fre-
quencies; Rev= revision phase; Plan=planning phase; Exec= execution
phase. Total sample= 524.
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In addition to this tendency to continuity, there are some transitions
that are relatively frequent. The transition from planning to execution
(related to the linearity of the process) is considerably more frequent
than any other transition. However, the least frequently reported
transitions occur from revision to planning, and from planning to re-
vision in both mathematical problems. The first transition would be
indicative of starting a new cycle in the process, while the second one
would reflect the presence of monitoring activities from the initial
phases of the process. Transitions from execution to revision (i.e., lin-
earity), and from execution to planning (i.e., recursion) are also re-
ported by students in some cases, with a similar frequency.

3.2. Relationship between process and actual performance

Students’ actual and self-perceived performance in the two mathe-
matical problems was measured in order to analyze the relationship
between these two variables and the problem-solving process. For the
first problem, 156 students (29.8%) were successful, while 368 (70.2%)
answered incorrectly. A total of 449 (85.7%) gave a judgment of success
about their performance in this problem, while 75 (14.3%) judged their
performance as failure. For the second problem, 185 students (35.3%)
solved it correctly, while 339 (64.7%) did not. A total of 403 (76.9%)
judged their performance as successful in this problem, while 121
(23.1%) made a judgment of failure. This pattern indicates that there is
a high mismatch between students’ perception of performance and
actual performance.

Table 4 shows absolute frequencies for each dependent variable in
the groups with differing actual performance in the mathematics pro-
blems. Fig. 2, based on frequency means, shows the same tendency
observed in the general group, with the activities within the phases of
planning and execution being the most frequently reported by students.
The transition from planning to execution (i.e. linearity) remains the
most frequent observed category.

Regarding inter-subject differences in the process as a function of
students’ actual performance, statistical analyses showed that there is
an absence of statistically significant differences between the students
who solved the problem correctly and those who did not in Problem 1.
There are however some statistically significant differences in Problem
2, specifically in the execution phase, U=25665.000, p < .001,
δ= .181, as well as in transitions from planning to execution,
U=28484.500, p= .033, δ= .162, and execution to revision,
U=28347.000, p= .027, δ= .112; the latter two relate to the line-
arity of the process. The means indicate that students who successfully
solved the second problem spent significantly more time executing.
This group also reported planning before – and reviewing after- task
execution (both related to the linearity of the process) to a greater
extent than their peers with low performance in this problem (see
Fig. 2). As the δ statistic indicates, the effect size of these differences
was low. The positive sign of the statistic confirms the direction of the
differences, with higher means in the group who correctly judged their
performance. Odds ratios in Table 4 also confirmed the tendency found
regarding differences between groups, showing a higher likelihood of
making the aforementioned transitions on this group. The Odds ratio
values were very low in general, and only slightly higher in the case of
the execution phase. This is explained by the generally low frequency of
transitions that students made between the different phases, as they
tended to continuity.

Table 4
Absolute Frequencies (AF) of the groups in the dependent variables (transitions
within phases). Groups divided according to actual performance (correct vs
incorrect). Problems 1 and 2.

Problem 1 Problem 2

Correct Incorrect Correct Incorrect

Transitions AF (OR) AF (OR) AF (OR) AF (OR)
Recursion
rev-plan 8 (.002) 20 (.002) 4 (.001) 14 (.002)
rev-exec 16 (.005) 45 (.006) 12 (.003) 24 (.003)
exec-plan 56 (.018) 170 (.024) 57 (.016) 109 (.017)
Continuity
plan-plan 461 (.155) 1196 (.171) 466 (.132) 988 (.153)
exec-exec 374 (.126) 949 (.135) 532 (.152) 783 (.121)
rev-rev 45 (.015) 122 (.017) 46 (.013) 59 (.009)
Linearity
plan-exec 179 (.060) 430 (.061) 212 (.060) 348 (.054)
exec-rev 73 (.024) 166 (.023) 75 (.021) 107 (.016)
plan-rev 16 (.005) 36 (.005) 10 (.002) 24 (.003)

Note. OR=Odds Ratio; Plan=planning phase; Exec= execution phase;
Rev= revision phase; Problem 1 Correct (n= 156); Problem 1 Incorrect
(n=368), Problem 2 Correct (n= 185), Problem 2 Incorrect (n=339). Fig. 2. Mean frequency of transitions between phases (groups based on Actual

Performance).

T. García, et al. Studies in Educational Evaluation 61 (2019) 83–93

89



3.3. Relation between process and self-perceived performance

Table 5 shows absolute frequencies for each transition between
phases in the groups with differing self-perceptions of performance
(success vs. failure) in the mathematics problems. Fig. 3 shows fre-
quency means of the transitions between the different phases in both
groups. Again, a tendency towards continuity was found, and students
spent most of their time in the planning and execution phases. In terms
of linearity, the transition from planning to execution was the most
frequent transition in both groups; while in the case of recursion, the
transition from execution to planning was one of the most frequently
reported by the students.

Statistical analyses revealed that there were significant differences
between the groups with differing judgments of performance in both
problems. These differences were more notable in Problem 2. On the
one hand, students who had a positive judgment about their perfor-
mance in Problem 1 significantly differed from those that gave a
judgment of failure in the following variables: transition from execution
to planning, U=14217.500, p= .009, δ=−.155, and execution to
revision, U=12501.500, p < .001, δ= .257, as well as in the amount
of time they spent performing activities within the planning phase,
U=11644.500, p < .001, δ=−.308. Students who believed they
were correct in solving the first problem stayed in planning significantly
less, and made the transition from execution to planning (i.e., recur-
sion) to a lesser extent than the other group, while reviewing after
execution (i.e., linearity) more frequently.

On the other hand, in Problem 2, group differences were found in a
wider set of variables. Specifically, statistically significant differences
were found in the amount of time that students stay in the phases of
planning, U=18119.000, p < .001, δ=−.256, and execution,
U=19425.000, p= .001, δ= .203, as well as in the frequency of
transitions from revision to planning, U=23190.000, p= .005,
δ=−.109, planning to execution, U=20511.500, p= .001, δ= .158,
and execution to revision, U=20226.500, p= .001, δ= .170. Students
who made a judgment of success in this second problem spent sig-
nificantly less time in planning, while spending more time executing the
task, in comparison to those who made a judgment of failure. The
success group also went back from revision to planning (i.e., recursion)
less frequently, but planned before- and reviewed after- execution (i.e.,
linearity) more frequently than their peers in the failure group. The
effect size of these differences was generally low, although higher than
in the actual performance analysis. The highest effect sizes were found

in planning in both problems, and in the transition from execution to
revision in Problem 1, with values close to a medium effect size. The
sign of the δ statistic indicates the direction of the differences, the ne-
gative sign being indicative of higher means in the failure group. Odds
ratios in Table 5 showed the same direction of means and effect sizes.
The highest values of this statistic were found in the case of continuity
in planning, which indicated a higher likelihood of the students making
this transition as opposed to the others. Greater differences in Odds
ratios were found in the transitions that turned out to be statistically
significant in previous non-parametric analyses. The values of this
statistic were very low, with the exception of continuity in the planning
phase, as in previous analyses of actual performance.

4. Discussion

This study aimed to analyze the mathematical problem-solving
process in a sample of upper-elementary students in terms of linearity
and recursion, and how this organization relates to students actual and
self-perceived performance in these tasks. While the linear nature of the
problem-solving process seems to be included in most of the previous
models, some current research suggests that a form of recursion is also
possible.

Firstly, although some examples of recursion were observed in this
study (i.e. retrogressing from execution to planning), students used
noticeably more linear than recursive processes. This is consistent with
a characterization of the problem-solving process as a series of hier-
archically organized activities, where students progress towards the
solution in a linear and ordered function. This process is different from
that found in the case of writing-composition activities, which have
been demonstrated to show a cyclical nature (Lei, 2008; Smet et al.,
2014). It is also important to note that the process demonstrated by this
sample of students can be categorized as predominately continuity.

Table 5
Absolute Frequencies (AF) of the groups in the dependent variables (transitions
within phases). Groups divided according to self-perceived performance (cor-
rect vs. incorrect). Problems 1 and 2.

Problem 1 Problem 2

Correct Incorrect Correct Incorrect

Transitions AF (OR) AF (OR) AF (OR) AF (OR)
Recursion
rev-plan 23 (.002) 5 (.003) 2 (< .001) 10(.004)
rev-exec 54 (.006) 7 (.005) 27 (.003) 9 (.004)
exec-plan 185 (.021) 41 (.029) 129 (.016) 37 (.016)
Continuity
plan-plan 1.317 (.154) 340 (.238) 988 (.129) 466 (.202)
exec-exec 1.078 (.126) 245 (.171) 1075 (.140) 240 (.104)
rev-rev 149 (.017) 18 (.012) 86 (.011) 19 (.008)
Linearity
plan-exec 521 (.061) 88 (.061) 450 (.058) 110 (.047)
exec-rev 221 (.026) 18 (.012) 154 (.020) 28 (.012)
plan-rev 47 (.005) 5 (.003) 25 (.003) 9 (.004)

Note. OR=Odds Ratio; Plan=planning phase; Exec= execution phase;
Rev= revision phase; Problem 1 Correct (n= 449); Problem 1 Incorrect
(n=75), Problem 2 Correct (n= 403), Problem 2 Incorrect (n=121).

Fig. 3. Mean frequency of transitions between phases (groups based on Self-
Perceived Performance).

T. García, et al. Studies in Educational Evaluation 61 (2019) 83–93

90



Once students get involved in activities within a phase, they stay in that
phase for a long period of time. This pattern is especially evident in the
planning and execution phases, but not in revision. Revision mechan-
isms are very scarce, and when present, they seem to be sporadic. This
is coherent with previous research indicating that revision is an activity
that many students overlook or even dislike, which commonly leads to
poor performance in tasks (Cleary & Chen, 2009; García, Betts et al.,
2016; Montague et al., 2011; Pennequin, Sorel, Nanty, & Fontaine,
2010). In fact, success rates in the present sample of students were very
low for both problems.

Secondly, results showed a weak but statistically significant re-
lationship between the organization of the process and students’ actual
performance, but only in the second problem. It is worth noting in this
case that these differences were found in the frequency of transitions
related to linearity. Thus, no effect of recursion on actual performance
was found. In this sense, success in the task was related to more time
spent executing the task, the use of planning strategies before execu-
tion, and the presence of revision mechanisms once the task had been
performed (i.e. a solution was given). This is important since, despite
students not showing a great preference for revision in this study, the
presence of these mechanisms has been shown to be significantly linked
to good performance in the tasks. This finding is supported by previous
literature (Cleary & Chen, 2009; García, Betts et al., 2016; Montague
et al., 2011) recognizing the important role of planning and evaluation
strategies for problem-solving in different educational stages. Thus, an
important emphasis must be made in instructional programs to en-
courage students to put both mechanisms into practice.

Thirdly, regarding the relationship between process organization
and students’ self-perceived performance, results indicated that stu-
dents who judged their performance as correct demonstrated a more
linear process (e.g. transition from execution to revision), while those
who made a judgment of failure showed more signs of recursion (e.g.
transition from execution to planning). Thus, linearity relates to good
perceptions of one’s performance, while the presence of recursion is
perceived by students as negative for performance. This finding is co-
herent with the current scientific scenario in which most intervention
programs seem to be based on the linearity of the process (see Kim,
2015). Since most students are commonly encouraged to follow a
structured, hierarchical, and linear path, it is unsurprising that they feel
less confident when changes to this sequence are experienced. This
might be perceived as negative by students, leading to a perception of
failure. Another explanation may be that students may have found it to
be a very difficult task, one for which they could not find an adequate
strategy/solutions, which led to both recursive paths and to negative
feelings about their performance in the problem. It is also worth noting
that a large number of students in the current sample made a positive
judgment of performance, which contrasts to the low levels of success
rates in solving the tasks. Thus, there is a high mismatch between
students’ actual and self-perceived performance. This is a tendency
which has been widely reported in previous literature. Using the con-
cept of calibration, or the degree of correspondence between one’s
judgment of performance and actual performance (Hacker et al., 2008),
there is a good deal of evidence that students in upper-elementary
school commonly make inaccurate judgments, with a tendency to over-
confidence in mathematical problem-solving and other areas (Bouffard
et al., 2011; Dinsmore & Parkinson, 2013; Hadwin & Webster, 2013),
which is indicative of poor metacognitive and self-regulatory skills. It is
also important to consider the sort of problems used. Students com-
monly prefer problems that are directly solved through algorithmic
methods, rather than those that imply heuristic methods, where effort
has to be made “searching” for the solution (Căprioarăa, 2015). This
second group of problems would correspond to the problems used in the
present study, which imply understanding, planning and monitoring at
a deep level in order to be successfully solved. Thus, it might be possible
that the low rates of success could be due in part to the type of problems
involved in the present study.

4.1. Conclusions

Solving mathematical problems is a difficult cognitive activity in
many cases. This difficulty frequently comes from the complex nature
and organization of the processes involved. Taking into account the
cognitive and metacognitive nature of the process, the study of its or-
ganization can provide interesting insights into the strategies students
use and whether they follow a structured, smooth path towards the
solution or, on the contrary, it can provide information about the sub-
process or phases they struggle with (Bonner, 2013).

Findings from this study demonstrated certain characteristics in the
way students faced the task, such the use of as a linear -step by step-
approach to the solution, poor revision strategies, or a perception of
failure when they had to look back over the process and look at a new
way to tackle the problem. This is important since this pattern is ac-
companied by low rates of success in problem-solving in the present
sample, which suggests that some changes should be made in this
context.

As mentioned before, obstacles in problem-solving may occur in any
phase. Therefore, control and monitoring components should play a
more important role throughout the entire process. In the present study,
for instance, the students reported to using revision mechanisms after
performance, but not after planning. Thus, it would seem that students
do not tend to check their planning strategies. Understanding and re-
presentation of a problem usually occur during the planning phase and,
in many cases, form the basis for subsequent development of a suitable
method to solve the task (Babakhani, 2011; Kim, 2015; Krawec, 2012).
Thus, correct monitoring during this phase may lead to essential steps
in the progression towards a successful problem-solving strategy.

On the other hand, it is also worth noting that only a negligible
proportion of students made a transition from revision to planning,
which involves completing one cycle and starting another. This con-
trasts with previous conceptualizations of Self-Regulated Learning as
being a cyclical and active process, as per those proposed by
Zimmerman (2000, 2008).

Within this perspective, it is important for students to understand
that solving a mathematical problem should be seen as a flexible and
adaptive process, where they can move forwards and backwards in
order to find the best solution path. In this sense, it is becoming more
and more necessary to look at learning and teaching practices (Arslan &
Yazgan, 2015; De Bock et al., 1998; Verschaffel et al., 1999). The in-
clusion of different dynamics, such us group work, modeling, or re-
cursive prompts would greatly benefit students’ adoption of the correct
process in each case. Thus, more effort should be made in the study of
the nature and organization of mathematics problem-solving. Once
good information about this is available to educators and the scientific
community, more students will benefit from better adapted and maybe
more efficient instructional approaches.

4.2. Limitations and future lines of research

Some limitations in the present study must be acknowledged: firstly,
the use of only two mathematical problems. Including more tasks would
permit gathering a clearer and more continuous measure of both actual
and self-perceived performance (expressed in dichotomous terms in the
present study).

Secondly, another possible limitation in the present study is that the
TTPM may be intrusive for students, leading to a sort of “reactivity”
(Bowles & Leow, 2005). This is a common factor in on-line measure-
ments, and has been widely studied in the context of Thinking-aloud
and traditional Triple Task procedures, with the conclusion that, al-
though the use of these measures may increase time taken to complete
the task, simply instructing participants to verbalize their thoughts
during a task does not alter the sequence of their cognitive processes or
task performance (Bannert & Mengelkamp, 2008; Fox, Ericsson, & Best,
2011; Olive & Piolat, 2002). Nevertheless, the study of the process
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would greatly benefit from the adoption of new perspectives and
methods, such as the use of eye-tracking systems (Van Viersen, Slot,
Kroesbergen, Van’t Noordende, & Leseman, 2013), which may provide
interesting insights into student strategy use while minimizing re-
actance. The use of additional assessment techniques and instruments,
such as cognitive interviews or observation, would also help improve
the knowledge of such processes. Third, it is important to note that
some additional variables, such as task complexity and familiarity, and
the student’s general mathematics ability, must be considered as mod-
ulating variables for future studies. Both variables can influence the
linear/recursive nature of the problem-solving process. Also, the type of
instruction on mathematics problem solving received by the student
must be considered (Pelaez, Cueli, Areces, García, & Rodríguez, 2017).
Authors such as De Bock et al. (1998) suggest in this sense that, dif-
ferent aspects of the current culture and practice of school mathematics
may develop in students a tendency to use linear models also in si-
tuations in which they are not applicable. Thus, the influence of these
three components (students’ familiarity with the task, students’ general
mathematical ability, and school learning and teaching practices) and
their possible interaction must be properly analyzed in further studies.
Exploring these variables and their relation to the problem-solving
process is also important taking into account the great number of stu-
dents who did not solve the problems successfully. Lastly, the low to
medium effect sizes found in this study indicate the need for caution
about the scope of the findings. This could be partially explained by the
high inter-subject variability observed in the problem-solving process
(i.e. extremely high values of variance, skewness and kurtosis were
found). It would be interesting to establish more homogeneous groups,
maybe on the basis of additional components such as affective-moti-
vational variables or academic achievement in the subject.

In summary, our contribution can be considered as a first attempt to
answer the question about the linear or recursive nature of the math-
ematical problem-solving process. This is a question that has been
raised for years, capturing the attention of theorist in Mathematics
education. However, it seems to have no answer yet. Through the
present study, the authors sought to integrate a great part of the in-
formation gathered for decades at a theoretical level, while pointing out
the need to propose and test empirical data-analysis methods that allow
us to validate some of the theoretical models proposed up to the date,
and therefore, be closer to answering the question about whether the
order of the phases in solving mathematical problems matters.

Acknowledgments

This work was funded by the Council of Economy and Employment
of the Princedom of Asturias (Spain) (Ref. FC-GRUPIN-IDI/2018/
000199). The authors acknowledge the collaboration of the manage-
ment teams and teachers of the educational centers participating in the
study.

References

Arbuckle, J. L. (2013). SPSS (version 22.0) [Computer program]. Chicago: SPSS.
Arslan, C., & Yazgan, Y. (2015). Common and flexible use of mathematical non routine

problem solving strategies. American Journal of Educational Research, 3(12),
1519–1523. https://doi.org/10.12691/education-3-12-6.

Babakhani, N. (2011). The effect of teaching the cognitive and meta-cognitive strategies
(self-instruction procedure) on verbal math problem-solving performance of primary
school students with verbal problem-solving difficulties. Procedia — Social and
Behavioral Sciences, 15, 563–570.

Bannert, M., & Mengelkamp, C. (2008). Assessment of metacognitive skills by means of
instruction to think aloud and reflect when prompted. Does the verbalization method
affect learning? Metacognition and Learning, 3, 39–58.

Blum, W., & Niss, M. (1991). Applied mathematical problem solving, modelling, appli-
cations, and links to other subjects - state, trends and issues in mathematics in-
struction. Educational Studies in Mathematics, 22, 37–68.

Bonner, S. M. (2013). Mathematics strategy use in solving test items in varied formats.
Journal of Experimental Education, 81(3), 409–428.

Boonen, A. J. H. (2015). Comprehend, visualize & calculate: Solving mathematical word
problems in contemporary math educationDissertation Thesis.

Bouffard, T., Vezeau, C., Roy, M., & Lengelé, A. (2011). Stability of biases in self-eva-
luation and relations to well-being among elementary school children. International
Journal of Educational Research, 50, 221–229. https://doi.org/10.1016/j.ijer.2011.08.
003.

Bowles, M. A., & Leow, R. P. (2005). Reactivity and type of verbal report in SLA research
methodology. Studies in Second Language Acquisition, 27, 415–440.

Bransford, J. D., & Stein, B. S. (1993). The ideal problem solver: A guide for improving
thinking, learning and creativity (2nd ed.). New York: W.H. Freeman.

Căprioarăa, D. (2015). Problem solving - purpose and means of learning mathematics in
school. Procedia — Social and Behavioral Sciences, 191, 1859–1864. https://doi.org/
10.1016/j.sbspro.2015.04.332.

Carlson, M. P., & Bloom, I. (2005). The cyclic nature of problem solving: An emergent
multidimensional problem solving framework. Educational Studies in Mathematics,
58(1), 45–75. https://doi.org/10.1007/s10649-005-0808-x.

Cleary, T. J., & Chen, P. (2009). Self-regulation, motivation, and math achievement in
middle school: Variations across grade level and math context. Journal of School
Psychology, 47, 291–314. https://doi.org/10.1016/j.jsp.2009.04.002.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale:
Lawrence Earlbaum Associates.

De Bock, D., Verschaffel, L., & Janssens, D. (1998). The predominance of the linear model
in secondary school students’ solutions of word problems involving length and area of
similar plane figures. Education Studies in Mathematics, 35, 65–83.

De Corte, E., & Somers, R. (1982). Estimating the outcome of a task as a heuristic stratege
in arithmetic problem solving: A teacher experiment with sixth-graders. Human
Learning, 1, 105–121.

Desoete, A., & Roeyers, H. (2003). Can off-line metacognition enhance mathematical
problem solving? Journal of Educational Psychology, 95, 188–200.

Dinsmore, D. L., & Parkinson, M. M. (2013). What are confidence judgments made of?
Students’ explanations for their confidence ratings and what that means for cali-
bration. Learning and Instruction, 24, 4–14. https://doi.org/10.1016/j.learninstruc.
2012.06.001.

Dunlosky, J., & Rawson, K. A. (2012). Over-confidence produces underachievement:
Inaccurate self-evaluations undermine students’ learning and retention. Learning and
Instruction, 22, 271–280. https://doi.org/10.1016/j.learninstruc.2011.08.003.

Dunlosky, J., & Thiede, K. W. (2013). Four cornerstones of calibration research: Why
understanding students’ judgments can improve their achievement. Learning and
Instruction, 24, 58–61. https://doi.org/10.1016/j.learninstruc.2012.05.002.

Finn, B., & Metcalfe, J. (2014). Over-confidence in children’s multi-trial judgments of
learning. Learning and Instruction, 32, 1–9. https://doi.org/10.1016/j.learninstruc.
2014.01.001.

Fox, M. C., Ericsson, K. A., & Best, R. (2011). Do procedures for verbal reporting of
thinking have to be reactive? A meta-analysis and recommendations for best re-
porting methods. Psychological Bulletin, 137, 316–344. https://doi.org/10.1037/
a0021663.

García, T., Betts, L., González-Castro, P., González-Pienda, J. A., & Rodríguez, C. (2016).
On-line assessment of the process involved in maths problem-solving in fifth and sixth
grade students: Self-regulation and achievement. Revista Latinoamericana de
Investigación en Matemática Educativa, 19(2), 165–186. https://doi.org/10.12802/
relime.13.1922.

García, T., Cueli, M., Rodríguez, C., Krawec, J., & González-Castro, P. (2015).
Metacognitive knowledge and skills in students with deep approach to learning.
Evidence from mathematical problem solving. Journal of Psychodidactics, 20(2),
209–226. https://doi.org/10.1387/RevPsicodidact.13060.

García, T., Kroesbergen, E. H., Rodríguez, C., González-Castro, P., & Gonzalez-Pienda, J.
A. (2015). Factors involved in making post-performance judgments in mathematics
problem solving. Psicothema, 27(4), 374–380. https://doi.org/10.7334/
psicothema2015.25.

García, T., Rodríguez, C., González-Castro, P., González-Pienda, J. A., & Torrance, M.
(2016). Elementary students’ metacognitive processes and post-performance cali-
bration on mathematical problem-solving tasks. Metacognition and Learning, 11,
139–170. https://doi.org/10.1007/s11409-015-9139-1.

Hacker, D. J., Bol, L., & Bahbahani, K. (2008). Explaining calibration accuracy in class-
room contexts: The effects of incentives, reflection, and explanatory style.
Metacognition and Learning, 3, 101–121. https://doi.org/10.1007/s11409-008-
9021-5.

Hadwin, A. F., & Webster, E. A. (2013). Calibration in goal setting: Examining the nature
of judgments of confidence. Learning and Instruction, 24(12), 37–47. https://doi.org/
10.1016/j.learninstruc.2012.10.001.

Jacobse, A. E., & Harskamp, E. G. (2012). Towards efficient measurement of metacog-
nition in mathematical problem-solving. Metacognition and Learning, 7(2), 133–149.

Jitendra, A. K., Dupuis, D. N., & Zaslofsky, A. F. (2014). Curriculum-based measurement
and standards-based mathematics: Monitoring the arithmetic word problem-solving
performance of third-grade students at risk for mathematics difficulties. Learning
Disability Quarterly, 2, 1–11. https://doi.org/10.1177/0731948713516766.

Kim, M. K. (2015). Models of learning progress in solving complex problems: Expertise
development in teaching and learning. Contemporary Educational Psychology, 42,
1–16.

Krawec, J. L. (2012). Problem representation and mathematical problem solving of stu-
dents of varying math ability. Journal of Learning Disabilities, X, 1–13. https://doi.org/
10.1177/0022219412436976.

Laua, C., Kitsantasb, A., & Millerc, A. (2015). Using microanalysis to examine how ele-
mentary students selfregulate in math: A case study. Procedia — Social and Behavioral
Sciences, 174, 2226–2233. https://doi.org/10.1016/j.sbspro.2015.01.879.

Lei, X. (2008). Exploring a sociocultural approach to writing strategy research: Mediated
actions in writing activities. Journal of Second Language Writing, 17, 217–236.

Lipko, A. R., Dunlosky, J., Hartwig, M. K., Rawson, K. A., Swan, K., & Cook, D. (2009).

T. García, et al. Studies in Educational Evaluation 61 (2019) 83–93

92

http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0005
https://doi.org/10.12691/education-3-12-6
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0015
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0015
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0015
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0015
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0020
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0020
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0020
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0025
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0025
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0025
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0030
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0030
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0035
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0035
https://doi.org/10.1016/j.ijer.2011.08.003
https://doi.org/10.1016/j.ijer.2011.08.003
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0045
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0045
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0050
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0050
https://doi.org/10.1016/j.sbspro.2015.04.332
https://doi.org/10.1016/j.sbspro.2015.04.332
https://doi.org/10.1007/s10649-005-0808-x
https://doi.org/10.1016/j.jsp.2009.04.002
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0070
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0070
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0075
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0075
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0075
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0080
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0080
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0080
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0085
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0085
https://doi.org/10.1016/j.learninstruc.2012.06.001
https://doi.org/10.1016/j.learninstruc.2012.06.001
https://doi.org/10.1016/j.learninstruc.2011.08.003
https://doi.org/10.1016/j.learninstruc.2012.05.002
https://doi.org/10.1016/j.learninstruc.2014.01.001
https://doi.org/10.1016/j.learninstruc.2014.01.001
https://doi.org/10.1037/a0021663
https://doi.org/10.1037/a0021663
https://doi.org/10.12802/relime.13.1922
https://doi.org/10.12802/relime.13.1922
https://doi.org/10.1387/RevPsicodidact.13060
https://doi.org/10.7334/psicothema2015.25
https://doi.org/10.7334/psicothema2015.25
https://doi.org/10.1007/s11409-015-9139-1
https://doi.org/10.1007/s11409-008-9021-5
https://doi.org/10.1007/s11409-008-9021-5
https://doi.org/10.1016/j.learninstruc.2012.10.001
https://doi.org/10.1016/j.learninstruc.2012.10.001
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0145
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0145
https://doi.org/10.1177/0731948713516766
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0155
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0155
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0155
https://doi.org/10.1177/0022219412436976
https://doi.org/10.1177/0022219412436976
https://doi.org/10.1016/j.sbspro.2015.01.879
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0170
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0170


Using standards to improve middle school students’ accuracy at evaluating the
quality of their recall. Journal of Experimental Psychology Applied, 15(4), 307–318.
https://doi.org/10.1037/a0017599.

Macbeth, G., Razumiejczyk, E., & Ledesma, R. D. (2011). Cliff’s delta calculator: a non-
parametric effect size program for two groups of observations. Universitas
Psychologica, 10(2), 545–555.

Mayer, R. E. (2003). Mathematical problem solving. In J. M. Royer (Ed.). Mathematical
cognition. Greenwich, CT: Info age Publishing.

Montague, M., Warger, C., & Morgan, T. H. (2000). Solve it! Strategy instruction to im-
prove mathematical problem solving. Learning Disabilities Research & Practice, 15,
110–116. https://doi.org/10.1207/SLDRP1502_7.

Montague, M., Enders, G., & Dietz, S. (2011). Effects of cognitive strategy instruction on
math problem-solving of middle school students with learning disabilities. Learning
Disability Quarterly, 34(4), 262–272. https://doi.org/10.1177/073i9487M421762.

Olive, T., & Piolat, A. (2002). Suppressing visual feedback in written composition: Effects
on processing demands and coordination of the writing processes. International
Journal of Psychology, 37(4), 209–218. https://doi.org/10.1080/
00207590244000089.

Oonk, W., Verloop, N., & Gravemeijer, K. P. E. (2015). Enriching practical knowledge:
Exploring student teachers’ competence in integrating theory and practice of
mathematics teaching. Journal for Research in Mathematics Education, 46(5), 559–598.

Pelaez, N., Cueli, M., Areces, D., García, T., & Rodríguez, C. (2017). Effect of integrated
dynamic representation on mathematical competence and care in children with at-
tention deficit with hyperactivity disorder. Journal of Psychology and Education, 12(2),
105–115. https://doi.org/10.23923/rpye2017.12.149.

Pennequin, V., Sorel, O., Nanty, I., & Fontaine, R. (2010). Metacognition and low
achievement in mathematics: The effect of training in the use of metacognitive skills
to solve mathematical word problems. Thinking and Reasoning, 16(3), 198–220.
https://doi.org/10.1080/13546783.2010.509052.

Piolat, A., Olive, T., & Kellogg, R. T. (2005). Cognitive effort during note taking. Applied
Cognitive Psychology, 19, 291–312. https://doi.org/10.1002/acp.1086.

Polya, G. (1981). Mathematical discovery: On understanding, learning and teaching problem
solving. New York: Wile.

Pretz, J. E., Naples, A. J., & Sternberg, R. J. (2003). Recognizing defining, and re-
presenting problems. In J. E. Davidson, & R. J. Sternberg (Eds.). The psychology of
problem solving (pp. 3–30). New York: Cambridge University Press.

Raynal, F., & Rieunier, A. (1997). Pédagogie: Dictionnaire des concepts clés. Paris: ESF,
éditeur.

Rinne, L. F., & Mazzocco, M. M. M. (2014). Knowing right from wrong in mental ar-
ithmetic judgments: Calibration of confidence predicts the development of accuracy.

PLoS One, 9(7), e98663. https://doi.org/10.1371/journal.pone.0098663.
Rodríguez, C., Grünke, M., González-Castro, P., García, T., & Álvarez-García, D. (2015).

How do students with attention-deficit/hyperactivity disorders and writing learning
disabilities differ from their nonlabeled peers in the ability to compose texts? Learning
Disabilities: A Contemporary Journal, 13(2), 157–175.

Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacog-
nition, and sense-making in mathematics. In D. Grouws (Ed.). Handbook for research
on mathematics teaching and learning (pp. 334–370). New York: MacMillan.

Silver, E. A., Ghousseini, H., Gosen, D., Charalambous, C., & Font Strawhun, B. T. (2005).
Moving from rhetoric to praxis: Issues faced by teachers in having students consider
multiple solutions for problems in the mathematics classroom. Journal of
Mathematical Behavior, 24, 287–301.

Smet, M. J. R., Brand-Gruwel, S., Leijten, M., & Kirschner, K. (2014). Electronic outlining
as a writing strategy: Effects on students’ writing products, mental effort and writing
process. Computers and Education, 78, 352–366.

Swanson, H. L. (1990). Influence of metacognitive knowledge on problem solving. Journal
of Educational Psychology, 82, 306–314.

Tambychika, T., & Mohd Meerahb, T. S. (2010). Students’ difficulties in mathematics
problem-solving: What do they say? Procedia — Social and Behavioral Sciences, 8,
142–151. https://doi.org/10.1016/j.sbspro.2010.12.020.

Torrance, M., Fidalgo, R., & García, J. N. (2007). The teachability and effectiveness of
cognitive self-regularion in sixth grade writers. Learning and Instruction, 17(3),
265–285.

Van Viersen, S., Slot, E. S., Kroesbergen, E. H., Van’t Noordende, J. E., & Leseman, P.
(2013). The added value of eye-tracking in diagnosing dyscalculia: A case study.
Frontiers in Psychology, 4, 617. https://doi.org/10.3389/fpsyg.2013.00679.

Verschaffel, L., De Corte, E., Lasure, S., Van Vaerenbergh, G., Bogaerts, H., & Ratinckx, E.
(1999). Learning to solve mathematical application problems: A design experiment
with fifth graders. Mathematical Thinking and Learning, 1, 195–230.

Whimbey, A., & Lochhead, J. (1999). Problem-solving and comprehension. Hillsdale:
Erlbaum.

Williams, J. R. (2008). Revising the Declaration of Helsinki. World Medical Journal, 54,
120–125.

Zimmerman, B. (2000). Attaining self-regulation. A social cognitive perspective. In M.
Boekaerts, P. R. Pintrich, & M. Zeidner (Eds.). Handbook of self-regulation (pp. 13–39).
San Diego, CA: Academic.

Zimmerman, B. (2008). Investigating self-regulation and motivation: Historical back-
ground, methodological developments, and future prospects. American Educational
Research Journal, 45(1), 166–183. https://doi.org/10.3102/0002831207312909.

T. García, et al. Studies in Educational Evaluation 61 (2019) 83–93

93

https://doi.org/10.1037/a0017599
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0180
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0180
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0180
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0185
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0185
https://doi.org/10.1207/SLDRP1502_7
https://doi.org/10.1177/073i9487M421762
https://doi.org/10.1080/00207590244000089
https://doi.org/10.1080/00207590244000089
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0205
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0205
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0205
https://doi.org/10.23923/rpye2017.12.149
https://doi.org/10.1080/13546783.2010.509052
https://doi.org/10.1002/acp.1086
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0225
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0225
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0230
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0230
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0230
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0235
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0235
https://doi.org/10.1371/journal.pone.0098663
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0245
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0245
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0245
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0245
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0250
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0250
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0250
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0255
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0255
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0255
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0255
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0260
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0260
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0260
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0265
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0265
https://doi.org/10.1016/j.sbspro.2010.12.020
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0275
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0275
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0275
https://doi.org/10.3389/fpsyg.2013.00679
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0285
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0285
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0285
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0290
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0290
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0295
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0295
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0300
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0300
http://refhub.elsevier.com/S0191-491X(18)30291-8/sbref0300
https://doi.org/10.3102/0002831207312909

	Planning, execution, and revision in mathematics problem solving: Does the order of the phases matter?
	Introduction
	Mathematical problem-solving as a process
	Mathematical problem-solving models
	The present study

	Materials and methods
	Participants
	Measures
	Mathematics problem-solving process
	Mathematics problems
	Actual and self-perceived performance

	Procedure
	Data analysis

	Results
	Mathematics problem solving process: linearity vs. recursion
	Relationship between process and actual performance
	Relation between process and self-perceived performance

	Discussion
	Conclusions
	Limitations and future lines of research

	Acknowledgments
	References




