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Abstract: Longitudinal developmental research is often focused on patterns of change or growth across different (sub)groups of individuals.
Particular to some research contexts, developmental inquiries may involve one or more (sub)groups that are small in nature and therefore
difficult to properly capture through statistical analysis. The current study explores the lower-bound limits of subsample sizes in a multiple
group latent growth modeling by means of a simulation study. We particularly focus on how the maximum likelihood (ML) and Bayesian
estimation approaches differ when (sub)sample sizes are small. The results show that Bayesian estimation resolves computational issues that
occur with ML estimation and that the addition of prior information can be the key to detect a difference between groups when sample and
effect sizes are expected to be limited. The acquisition of prior information with respect to the smaller group is especially influential in this
context.

Keywords: latent growth model, ML estimation, Bayesian estimation, informative priors

Many researchers in the social and behavioral sciences use
latent growth modeling (LGM) to study development of
individuals over time (e.g., Little, 2013). Within LGM, it is
also possible to compare growth and the impact of variables
on growth between different groups of individuals, for
example, between a focal (i.e., small) group and a reference
group. Researchers with this objective, however, often
encounter two difficulties. In particular, the comparisons
they want to make are between groups: (1) that have rela-
tively different sample sizes, or (2) of which at least one
is considered to be very small according to common guide-
lines for implementing the statistical model.

From the literature, we know that with traditional maxi-
mum likelihood (ML) estimation, the consequences of
small sample sizes can include biased point estimates
(Boomsma & Hoogland, 2001; Depaoli, 2013; Lee & Song,
2004; Lüdtke, Marsh, Robitzsch, & Trautwein, 2011;
Meuleman & Billiet, 2009; van de Schoot, Broere, Perryck,
Zondervan-Zwijnenburg, & Van Loey, 2015), inadmissible
estimates (Boomsma & Hoogland, 2001; Can, van de
Schoot, & Hox, 2015; Hox & Maas, 2001; Meuleman &
Billiet, 2009; Tolvanen, 2000), convergence issues
(Boomsma & Hoogland, 2001; Hochweber & Hartig,

2017; Hox, Moerbeek, Kluytmans, & van de Schoot, 2014;
Lüdtke et al., 2011), and inflated Type-I error rates
(Boomsma & Hoogland, 2001; Hox & Maas, 2001; Hox
et al., 2014; Lee & Song, 2004; Meuleman & Billiet, 2009).

There is, however, little known about the consequences
of unbalanced samples (i.e., where sample sizes vary dras-
tically across the subgroups being examined, e.g., 10 partic-
ipants in the focal group vs. 500 in the reference group),
especially when latent growth models are being imple-
mented. We only know that unbalanced samples in LGM
often result in low statistical power (Muthén & Curran,
1997), but its specific effect on coverage, biased point esti-
mates, and estimation problems has not been thoroughly
examined in the literature. Altogether, these issues may
deter researchers from comparing the development of focal
and reference groups in latent growth models.

Bayesian estimation is an alternative estimation method
gaining in popularity (Kruschke, 2011; van de Schoot, Win-
ter, Ryan, Zondervan-Zwijnenburg, & Depaoli, 2017). In
Bayesian statistics, prior information is combined with the
data in the analysis, resulting in a posterior distribution.
The posterior distribution reflects probable parameter val-
ues given the prior information and the data. From the
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posterior distribution, a measure of central tendency (i.e.,
the mean, median, or mode) is usually taken as a point
estimate for the parameter of interest. Additionally, a
95% (credible) interval can be derived from the posterior
distribution containing the most probable values for the
parameter given the data. The frequentist 95% confidence
interval, in contrast, will contain the true population value
in 95% of the intervals over a long run of trials. To readers
interested in a gentle introduction into Bayesian statistics
for social scientists, we recommend Kruschke (2014) and
van de Schoot et al. (2013).

In the current paper, we conduct a simulation study to
evaluate the performance of maximum likelihood estima-
tion and Bayesian estimation for latent growth models with
small and unbalanced samples. The goal of the simulation
is to highlight best practice when dealing with subgroup
sizes that are quite different from one another.

Background on Sample Size Limits in LGM
With ML and Bayesian Estimation

Muthén and Curran (1997) investigated the effect of unbal-
anced sample sizes in experimental designs on statistical
power in LGM with sample size ratios varying from 1:1 (bal-
anced) to 1:10. In general, Muthén and Curran (1997) found
that the more extreme the sample size ratios were, the
lower the statistical power to detect a difference between
groups with ML estimation. When the ratio was more
extreme than 1:5, even samples with 1,000 participants in
total showed less than desirable power (< .80) to detect a
small effect (Cohen’s d = .20). Due to their focus on exper-
imental designs, Muthén and Curran (1997) do not cover
very small sample sizes, extreme sample size ratios, or
the inclusion of covariates to limit the impact of con-
founders. No literature was found that covered aspects
other than power under unbalanced sample sizes in LGM.

With respect to estimation in relation to total sample size
for one group, estimates from ML estimation with a sample
size as low as 50 do not substantially deviate from the pop-
ulation value (i.e., relatively unbiased) for means and factor
loadings in LGM and related multilevel models (Hox &
Maas, 2001; Maas & Hox, 2005; McNeish, 2016a, 2016b;
Meuleman & Billiet, 2009; Tolvanen, 2000). Statistical
power, however, is generally insufficient with samples
smaller than 100 for the types of effect sizes commonly
seen in empirical studies, and convergence issues also arise
(Boomsma & Hoogland, 2001; Hochweber & Hartig, 2017;
Hox & Maas, 2001; Lüdtke et al., 2011; Maas & Hox, 2005;
McNeish, 2016a; Meuleman & Billiet, 2009; Tolvanen,
2000). Bayesian estimation does not have the same issues

with small samples as ML estimation for two reasons. First,
in Bayesian estimation, the results are determined by more
than the data: Prior information is also included by means
of prior distributions. Prior distributions can be based on
information that a researcher has about parameters in the
model a priori. When no information is available, so-called
uninformative distributions can be adopted, which typically
specify a very wide range of values for the parameter as
probable. The more prior mass surrounding the population
value, the better the model estimate will represent this
value. Consequently, the non-null detection rate1 is higher,
and inference errors are less likely to occur (Depaoli, 2013;
Lee & Song, 2004; van de Schoot et al., 2015).

The second reason Bayesian estimation does not have the
same issues with small samples is that Bayesian estimation
does not rely on asymptotic assumptions about sampling
distributions akin to ML estimation (Asparouhov &Muthén,
2010). Depaoli (2013) shows in a growthmixture model that
the use of uninformative priors as compared to ML estima-
tion results in fewer problematically biased parameter esti-
mates (i.e., bias � 10%). When Bayesian estimation is
used with an uninformative prior, a sample size of 20
already results in accurate estimates in a multilevel model
(Hox, van de Schoot, & Matthijse, 2012; Hox et al., 2014).
In addition, the coverage of the population value was better
with Bayesian estimation, a result confirmed by van de
Schoot et al. (2015) for repeated-measures analyses.

The Current Investigation

In order to ensure conditions were applicable to real data
situations, the simulation study is inspired by an empirical
dataset on the development rate of working memory in
young heavy cannabis users versus their non-using peers.
The data originate from 268 young adolescents enrolled
in special education due to behavioral problems (Peeters,
Monshouwer, Janssen, Wiers, & Vollebergh, 2014). To
improve on the notion of causality, the development of both
groups was corrected (by means of a time-invariant covari-
ate) for the impact of quantity and frequency of alcohol use
at the start of the study, as recommended by Jacobus, Bava,
Cohen-Zion, Mahmood, and Tapert (2009). With this sim-
ulation set up, we aimed to compare and establish sample
size requirements to evaluate a small difference in develop-
ment between groups for ML and Bayesian estimation
when one of the groups has a sample size below 50.

By means of the simulation, we compare the sample size
requirements to evaluate a small difference in development
between groups for ML and Bayesian estimation. Regarding
Bayesian estimation, the balance between sample size

1 Statistical power is a frequentist term that involves the null hypothesis. Since the null hypothesis does not exist in Bayesian statistics, we refer
to the non-null detection rate instead.
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requirements and the required specificity of prior informa-
tion is investigated as well. Additionally, we explore how
the results are affected when a substantial amount of prior
information can be found for the reference group but not
for the focal group. It can be expected that prior informa-
tion with respect to a focal group is harder to obtain.

Method

To compare the performance of ML estimation and Baye-
sian estimation in the evaluation of small and unbalanced
samples in a latent growth model, we conducted a simula-
tion study. In this section, we elaborate on the model of
interest, the main characteristics of the simulation study,
and the evaluation criteria.

The Latent Growth Model

Figure 1 displays the latent growth model as applied in this
study. The model has four observed variables yg1 � yg4ð Þ rep-
resenting repeated measures of the same construct. In the
empirical data, this construct is performance on a working
memory task expressed in percentages. The repeated mea-
sures are the indicators for the intercept, linear slope, and
quadratic slope latent variables. The linear growth factor
in this model represents the growth rate at one time point
(typically the first time point). The model has one covariate
representing an observed time-invariant predictor, which is
a measure of alcohol use quantity and frequency at the start
of the study in the empirical data. As a result, the latent
time variables technically have intercepts instead of means.
However, to avoid confusion between the intercept growth
factor and the intercepts of the latent growth factors, the
latter will be referred to as being “means” throughout the
paper.

In order to assess the growth rate difference between
groups, a new parameter (denoted by Δα) was constructed
by subtracting the linear slope mean of group 2 (i.e., the
focal group) from that of group 1 (i.e., the reference group).
A Monte Carlo study was conducted in Mplus version 7.11
(Muthén & Muthén, 1998–2012) directed by the R-package
MplusAutomation (Hallquist, 2013) in R 3.0.1 (R Core
Team, 2015). To promote transparency and replicability,
population syntax files are provided in Appendix A, and
all input and output files are available at the project page
https://osf.io/gjzu8.

Simulation Study Design

The population parameters originated from multiple group
latent growth analyses (see Appendix A and https://osf.io/
ttybt) on empirical data. The difference between the linear

slope factors, Δα, was set at 1.60, while the disturbance of
the linear slope factors was 64.00 in order to represent a
small effect size ( 1:60

64:00 = .20 Cohen’s d; Cohen, 1988), which
is considered a realistic effect size for this parameter (see,
for instance, Jacobus et al., 2009).

For this population, we varied the sample sizes in the ref-
erence group, the sample sizes in the focal group, and the
estimation settings. The sample sizes for the reference
group were 2 {50, 100, 200, 500, 1,000, 2,000, 5,000,
10,000}, which represents a wide range of sample sizes
commonly specified in the empirical and methodological
literature. The sample sizes for the focal group were 5,
10, 25, and 50. Consequently, the sample size ratios ranged
from 1:1 to 1:2,000. The estimation methods were ML esti-
mation and Bayesian estimation.

ML estimation was applied with standard errors robust to
non-normality and nonindependence of observations
(MLR), which suits analyses with repeated measures. Mplus
uses accelerated expectation maximization (EMA) to obtain
the ML estimates (Muthén & Muthén, 1998–2012). The ML
output shows one extra parameter compared to the exact
same Bayesian specification. This “knownclass” parameter,
however, is not estimated. Therefore, we consider the mod-
els to be exactly equal.

Bayesian estimation was implemented with seven differ-
ent prior distribution settings for the means of the latent
growth factors. Normally distributed informative priors
were specified for the latent growth factor means, because
it was considered most likely that researchers would have

g = 1

g = 2

1 1 1
1 0

1 2
3 0

1 4 9

Figure 1. Multiple group latent growth model with one covariate and
groups indicated by g. yg1; y

g
2; y

g
3; and yg4 represent four assessments of

a developing construct with residual error variances. xg is a time-
invariant predictor of growth that represents the latent variable
Covariateg without measurement error. The regressions of the latent
growth factors Interceptg, Lin. slopeg, and Quad. slope on the
Covariateg are equal over groups.
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knowledge about these parameters before analyzing their
data. Theoretically, however, prior information can be
found for all parameters. The more appropriate the infor-
mation being included in the prior is, the more accurate
the parameter estimates will be. All user-specified priors
were normally distributed with mean μ0 and variance σ2

0.
The population values of the growth factor means2 were
used as prior means to understand the upper-bound perfor-
mance of Bayesian methods under these modeling circum-
stances. The prior variances σ2

0 ranged from 0.1 (i.e., very
informative) to 1010 (i.e., uninformative). Specifically,
σ2
0 2 f0:1; 0:3; 0:5; 1:0; 2:0; 5:0; 1010g. Mplus default priors

were used for the other parameters in the model. Specifi-
cally:

� A normal distribution with a mean of 0 and variance of
1010 for the mean of the covariate and the regression
coefficients,

� An improper inverse gamma with the shape parameter
set at �1, and the scale at 0 for the variance of the
covariate and the residuals of the observed variables,

� An improper inverse Wishart with 0 forming the scale
matrix, and �4 degrees of freedom for the covariances
and disturbances of the growth factors.

Furthermore, 22 Markov chains were used for the Bayesian
analyses to capture the impact of many different starting
values. Note that 22 chains may be excessive in other mod-
eling contexts due to the length of time it would take to
obtain convergence. We were able to have the large num-
ber due to the computational capacity that was available
to us. It is important to note that methods and results
described here using these 22 chains are generalizable to
situations requiring fewer chains. In order to assess conver-
gence, it is recommended that at least two chains are used
(Gelman & Rubin, 1992). The minimum number of itera-
tions (or samples) in the chain was set at 5,000, and the
maximum was set at 100,000. The first half of the
chain was discarded as burn-in, and the second half was
used to construct the posterior (Muthén & Muthén, 1998–
2012).

Convergence was assessed using the Gelman–Rubin
potential scale reduction factor (PSRF; Gelman & Rubin,
1992). When the PSRF was less than 0.05 points away from
1 for all parameters in the second half of the iterations, the
model was considered to be converged. Syntax for the anal-
yses is provided in Appendix B and at https://osf.io/qwf3r.
Altogether, the number of cells in the simulation study was
4 (focal group sample sizes) � 8 (reference group sample
sizes) � 8 (estimation settings: 1 � ML + 7 � Bayes with
varying σ2

0) = 256.

The simulation was extended with additional Bayesian
analyses to investigate what would happen if a substantial
amount of prior information (specified as having a variance
hyperparameter of σ2

0 ¼ 0:1, indicating a great deal of pre-
cision in the prior) could only be obtained for the reference
group, but not for the focal group (with a variance hyperpa-
rameter of σ2

0 ¼ 10:0, indicating less precision in the nor-
mal prior). In the focal group, σ2

0 was set at 10.0 instead
of 1010 (the Mplus default) because, even when prior infor-
mation is hard to find, researchers and experts are gener-
ally able to estimate its value to some extent. We
investigated the effects of these conditions for the largest
(i.e., best performing) focal group (n = 50). The sample size
of the reference group was again manipulated for this addi-
tional condition examined. Input for this analysis is located
at https://osf.io/xm3v5/.

Evaluation

Since the main interest in multiple group LGM is to com-
pare development between groups, the growth rate differ-
ence parameter Δα was the parameter of interest in the
simulation study. For the Bayesian cells in the design, the
median of the posterior distribution was interpreted as
the point estimate. Credible intervals were obtained by
the equal tail method, having tails on both sides that each
contains 2.5% of the posterior distribution (Muthén &
Muthén, 1998–2012).

The difference parameter Δα was evaluated in terms of
proportion of bias, coverage, statistical power or non-null
detection rates, and estimation problems. The proportional
bias was calculated by dividing the average bias over the
analyzed datasets by the value of the population estimate.
A proportional bias lower than .10 was considered accept-
able (Muthén & Muthén, 2002). Coverage is the rate of
95% confidence intervals (frequentist statistics captured
through the ML estimation condition) or credible intervals
(Bayesian statistics) that cover the population parameter
estimate. For a 95% confidence or credible interval, cover-
age should be around the advocated 95%. In the current
study, a minimum level of .90 was considered acceptable.
Statistical power and non-null detection rates were calcu-
lated as the percentage of replications in which the 95%
interval for Δα did not include zero. The acceptable mini-
mum level of statistical power or the non-null detection
rates was considered to be .80 (Muthén & Muthén,
2002). The last criterion concerned estimation problems.
Estimation problems arise when the following occur: (1)
negative variances, (2) correlations larger than one, (3) lin-
ear dependencies among more than two latent variables are

2 That is, 73.05, 71.54, 8.13, 6.53, and �2.16 for Interceptnon-users, Interceptusers, Lin. slope, Lin. slopenon-users, and Quad. slope, respectively.
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estimated, or (4) when the model does not converge. When
using ML estimation, Mplus notifies the user when one of
these problems occurred. The proportion of datasets for
which Mplus produced warnings in this respect was used
as an evaluation of estimation problems. Bayesian estima-
tion cannot result in illegitimate estimates with the prior
distributions used in this study. However, non-convergence
can occur, and this can be detected by warnings and/or by
visual inspection of the trace plots. Therefore, for every cell
in the simulation design, two sets of trace plots were ran-
domly selected and inspected for potential issues with
convergence.

Results

Maximum Likelihood Estimation

Figure 2 shows the ML results in terms of proportion of
warnings, coverage, statistical power, and proportional bias
for the four focal group sample sizes separately. As can be

seen, the proportion of bias was adequate for all combina-
tions of sample sizes, except for a focal group sample size of
5 combined with a reference sample of 100 (Figure 2A).
Coverage was in general lower than .95, but always suffi-
cient when the focal sample contained at least 25 partici-
pants (Figures 2C and 2D). With sample sizes in the focal
group of 5 and 10, reference group sample sizes at both
extreme ends did not cover the population value often
enough in the 95% confidence intervals (coverage < .90),
even though the average relative bias over datasets was
acceptable (Figures 2A and 2B). Truly worrisome, how-
ever, were the statistical power and the proportion of
warnings. Even with 10,000 participants in the reference
group, the power to detect a small effect was lower than
.50 for all focal groups, while a minimum of .80 is pursued.
The proportion of warnings with a reference group sample
size of 50 ranged from .73 to .883. These warnings con-
cerned illegitimate estimates, which make the results of
the analysis unreliable. Examples of warnings that were
obtained for ML models with estimation issues were as
follows:

(A) n = 5 (B) n = 10

(C) n = 25 (D) n = 50

Figure 2. Results for ML estimation by focal group sample size. On the x-axis, the size of the reference group increases. From top to bottom, the
static horizontal lines represent (1) the minimum acceptable value for coverage (i.e., .90), (2) the minimum acceptable value for statistical power
(i.e., 0.80), and (3) the maximum acceptable value for proportional bias (i.e., 0.10).

3 A check with the lavaan R-package (Rosseel, 2012) instead of Mplus for the focal group with 5 participants resulted in even more convergence
issues.
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THE MODEL ESTIMATION TERMINATED NORMALLY

WARNING: THE RESIDUAL COVARIANCE MATRIX

(THETA) IS NOT POSITIVE DEFINITE. THIS

COULD INDICATE A NEGATIVE VARIANCE/RESI-

DUAL VARIANCE FOR AN OBSERVED VARIABLE,

A CORRELATION GREATER OR EQUAL TO ONE

BETWEEN TWO OBSERVED VARIABLES, OR A LIN-

EAR DEPENDENCY AMONG MORE THAN TWO

OBSERVED VARIABLES. CHECK THE RESULTS

SECTION FOR MORE INFORMATION.

WARNING: THE LATENT VARIABLE COVARIANCE

MATRIX (PSI) IS NOT POSITIVE DEFINITE.

THIS COULD INDICATE A NEGATIVE VARIANCE/

RESIDUAL VARIANCE FOR A LATENT VARIABLE,

A CORRELATION GREATER OR EQUAL TO ONE

BETWEEN TWO LATENT VARIABLES, OR A LINEAR

DEPENDENCY AMONG MORE THAN TWO LATENT

VARIABLES. CHECK THE TECH4 OUTPUT FOR

MORE INFORMATION.

Bayesian Estimation

With Bayesian estimation, bias and coverage were accept-
able for every cell of the simulation design. Plots for all cells
can be found at https://osf.io/s59cz. In addition, Bayesian
estimation showed decent convergence. As a result, the
remaining aspect of interest was statistical power. Figure 3
shows for all four focal group sample sizes (i.e., n = 5, 10,
25, and 50) how many participants are in the reference
group and how much prior information is necessary to
obtain satisfactory non-null detection rates. With uninfor-
mative priors imposed on all parameters (i.e., σ2

0 ¼ 1010),
non-null detection rates were insufficient, regardless of
the sample size in the reference group. The same held
when the variances of the priors for the latent growth factor
means were decreased to 5.0. An exploration of the non-
null detection rate with a focal group of 100 and the prior
variance of the latent growth factor means at 5.0 showed an
improvement in the non-null detection rate, but still about
10,000 participants in the reference group were needed,
to acquire a non-null detection rate close to .80. Prior

(A) n = 5 (B) n = 10

(C) n = 25 (D) n = 50

Figure 3. Non-null detection rate for Bayesian estimation by focal group sample size. On the x-axis, the size of the reference group increases. The
y-axis represents the non-null detection rate. The static horizontal line represents the minimum acceptable value for (i.e., 0.80). The remaining
lines reflect the results for varying σ2

0.
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variances as specific as 0.1, on the other hand, resulted in a
non-null detection rate of 1.0 for every cell.

Unbalanced Prior Information

The simulation results presented in the previous section
show that a focal group of 50 participants combined with a
prior variance of 0.1 can lead to an optimal situation in all
respects assessed (Figure 3). Figure 4 shows that when prior
information is scarce for the focal group (σ2

0 ¼ 10), the non-
null detection rate is an issue again. Additional analyses
showed that no matter how much the prior variance in the
reference group was decreased, a satisfactory non-null
detection rate could not be achieved as long as the prior
variance in the focal groupwas 10. Due to these clear results,
the effect of unbalanced prior information was not further
investigated for cells with focal groups smaller than 50.

Conclusion

The aim of the simulation study was to investigate lower-
bound sample size issues in a multigroup LGM context,
especially when one group is much smaller than the others.
We set up the simulation in this way in order to compare
and establish sample size requirements to evaluate a small
difference in development between groups for ML and
Bayesian estimation when one of the groups has a sample
size not larger than 50.

The results showed that ML estimation has issues with
statistical power when at least one of the groups is not lar-
ger than 50. Moreover, with ML estimation, analyses based
on small sample datasets generally cannot be properly
interpreted because of nonpositive definite matrices that
yield inadmissible estimates.

By adopting Bayesian estimation, the issue of non-
interpretable output disappears and consequently smaller
samples can be analyzed. Bayesian inference with uninfor-
mative as well as minimally informative priors, however,
has non-null detection rate issues similar to ML estimation.
Specifically, even comparison groups with 10,000 partici-
pants do not yield satisfactory non-null detection rates for
a small effect. To obtain a satisfactory non-null detection
rate in the context of limited small and unbalanced sample
sizes, Bayesian estimation is necessary in combination with
the availability of very specific prior information. This may
seem trivial to those who are familiar with the Bayesian
concept, but the current simulation study provided addi-
tional insight to the effect of prior information by showing
the consequences of specific degrees of informativeness.
Note, however, that our use of an empirical model with
empirical population values limits the direct applicability
of the simulation results to other research situations. The
simulation results are only directly indicative for other
researchers under specific circumstances. The statistical
model needs to be equal (e.g., a latent growth model includ-
ing a time-invariant covariate, a multiple group confirma-
tory factor model with a covariate, or a multiple
indicators multiple causes model with the groups as a
covariate), the expected effect size small, and the growth
rate difference needs to be comparable or proportional after
taking the impact of the covariate into account. When the
growth rate is proportional, the impact of the prior vari-
ances is proportional as well. If these circumstances do
not hold, the presented simulation results are mainly useful
as inspiration for new simulation efforts.

As was shown by the simulation study with unbalanced
prior information, highly informative priors are particularly
necessary for the focal group. To be able to specify such
informative priors, the available prior information must be

Figure 4. Results for Bayesian esti-
mation with unbalanced prior infor-
mation. σ2

0 for latent growth factors
in reference group = 0.1. σ2

0 for
latent growth factors in focal group
= 10. Focal group n = 50.
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very specific and convincing. This, however, may be seldom
feasible because of the exceptionality of the group. In such
a situation, we advise researchers to publish their updated
estimates and data nevertheless. Such a publication pro-
vides a future researcher on the topic with more prior infor-
mation, and over time, the amount of prior information can
be sufficient to draw conclusions about the effect under
study. Thus, when separate analyses cannot obtain suffi-
cient power to make inferences, cumulative efforts of
researchers can overcome the issue.

Cautionary Points Regarding Bayesian
Estimation

To avoid misinterpretations of this study, we hereby provide
a disclaimer. The goal of Bayesian analyses with informative
priors is to make optimal use of all available information.
Accordingly, the simulation study shows the relation
between theamountof prior information and results in terms
of estimation and thenon-null detection rate.With this infor-
mation, researchers can observe the relation between the
specificity of prior information and other factors such as esti-
mation problems, bias, non-null detection rate, and cover-
age. This paper is not a demonstration of how prior
distributions should be manipulated to secure statistically
significant results: This would not be an ethical use of the
information, and the exact results may vary between study
variables and models. As shown in Zondervan-Zwijnenburg,
Peeters, Depaoli, and van de Schoot (2017), prior knowledge
has to be acquired systematically and specifications of prior
distributions have to be justified. Moreover, to promote
transparency, we advise to demonstrate the impact of other
priors on the results by means of a sensitivity analysis
(see also Depaoli & van de Schoot, 2015). We believe that
the manipulation of priors to obtain a “desirable” result
would fall under unethical research practices.

Another cautionary note should be made on the use of
default priors for variance parameters with small samples.
Variance and disturbance parameters were not the focus
of this study, but it has been shown, for example, by
McNeish (2016a) and van de Schoot et al. (2015) that these
estimates can be severely biased with uninformative priors.

Final Recommendations

Based on these findings, we recommend researchers with
focal groups with fewer than 200 participants to conduct
a simulation study in order to evaluate the impact of the
small sample on estimation issues, bias, coverage, and
non-null detection rate.

When maximum likelihood estimation cannot gener-
ate proper output under the circumstances of interest,

we suggest to obtain prior information. Zondervan-
Zwijnenburg et al. (2017) provide guidelines on collecting
and including prior information. If sufficiently precise prior
information can be acquired, the data can be analyzed.
If the researcher is not able to meet the requirements, sim-
pler models (e.g., descriptive statistics, case studies), waiting
until more prior information and participants become
available (e.g., by followingGoogle Scholar Alerts, RSS feeds,
and reapproaching schools in a new academic year), or con-
ducting the analysis to contribute to cumulative science
without making inferences, are alternative ways to deal with
the data.

References

Asparouhov, T., & Muthén, B. O. (2010, September). Bayesian
analysis of latent variable models using Mplus. Retrieved from
https://www.statmodel.com/techappen.shtml

Boomsma, A., & Hoogland, J. J. (2001). The robustness of LISREL
modeling revisited. In R. Cudeck, K. G. Jöreskog, & D. Sörbom
(Eds.), Structural equation models: Present and future. A
festschrift in honor of Karl Jöreskog (pp. 139–168). Lincoln-
wood, IL: Scientific Software International.

Can, S., van de Schoot, R., & Hox, J. (2015). Collinear latent
variables in multilevel confirmatory factor analysis a compar-
ison of maximum likelihood and Bayesian estimations. Educa-
tional and Psychological Measurement, 75, 406–427. https://
doi.org/10.1177/0013164414547959

Cohen, J. (1988). Statistical power analysis for the behavioral
sciences (2nd ed.). Hillsdale, NJ: Erlbaum. https://doi.org/
10.4324/9780203771587

Depaoli, S. (2013). Mixture class recovery in GMM under varying
degrees of class separation: Frequentist versus Bayesian
estimation. Psychological Methods, 18, 186. https://doi.org/
10.1037/a0031609

Depaoli, S., & van de Schoot, R. (2015). Improving transparency
and replication in Bayesian statistics: The WAMBS-checklist.
Psychological Methods, 22(2), 240–261. https://doi.org/
10.1037/met0000065

Gelman, A., & Rubin, D. B. (1992). Inference from iterative
simulation using multiple sequences. Statistical Science, 7,
457–472. https://doi.org/10.1214/ss/1177011136

Hallquist, M. (2013, October). MplusAutomation: Automating
Mplus model estimation and interpretation. Package
MplusAutomation. Retrieved from https://cran.r-project.org/
web/packages/MplusAutomation/MplusAutomation.pdf

Hochweber, J., & Hartig, J. (2017). Analyzing organizational growth
in repeated cross-sectional designs using multilevel structural
equation modeling. Methodology, 13, 83–97. https://doi.org/
10.1027/1614-2241/a000133

Hox, J., & Maas, C. J. (2001). The accuracy of multilevel structural
equation modeling with pseudobalanced groups and small
samples. Structural Equation Modeling, 8, 157–174. https://doi.
org/10.1207/S15328007SEM08021

Hox, J., Moerbeek, M., Kluytmans, A., & van de Schoot, R. (2014).
Analyzing indirect effects in cluster randomized trials. The
effect of estimation method, number of groups and group sizes
on accuracy and power. Frontiers in Psychology, 5, 78. https://
doi.org/10.3389/fpsyg.2014.00078

Hox, J., van de Schoot, R., & Matthijse, S. (2012). How few
countries will do? Comparative survey analysis from a Bayesian

Methodology (2019), 15(1), 31–43 �2018 Hogrefe Publishing

38 M. Zondervan-Zwijnenburg et al., Pushing the Limits

Th
is

 d
oc

um
en

t i
s c

op
yr

ig
ht

ed
 b

y 
th

e A
m

er
ic

an
 P

sy
ch

ol
og

ic
al

 A
ss

oc
ia

tio
n 

or
 o

ne
 o

f i
ts

 a
lli

ed
 p

ub
lis

he
rs

.
Th

is
 a

rti
cl

e 
is

 in
te

nd
ed

 so
le

ly
 fo

r t
he

 p
er

so
na

l u
se

 o
f t

he
 in

di
vi

du
al

 u
se

r a
nd

 is
 n

ot
 to

 b
e 

di
ss

em
in

at
ed

 b
ro

ad
ly

.



perspective. Survey Research Association, 6, 87–93. https://doi.
org/10.18148/srm/2012.v6i2.5033

Jacobus, J., Bava, S., Cohen-Zion, M., Mahmood, O., & Tapert, S.
(2009). Functional consequences of marijuana use in adoles-
cents. Pharmacology, Biochemistry and Behavior, 4, 559–565.
https://doi.org/10.1016/j.pbb.2009.04.001

Kruschke, J. K. (2011). Introduction to special section on Bayesian
data analysis. Perspectives on Psychological Science, 6, 272–
273. https://doi.org/10.1177/1745691611406926

Kruschke, J. K. (2014). Doing Bayesian data analysis: A tutorial
with R, JAGS, and Stan (2nd ed.). San Diego, CA: Academic Press.

Lee, S.-Y., & Song, X.-Y. (2004). Evaluation of the Bayesian and max-
imum likelihood approaches in analyzing structural equationmod-
els with small sample sizes.Multivariate Behavioral Research, 39,
653–686. https://doi.org/10.1207/s15327906mbr3904_4

Little, T. D. (2013). Longitudinal structural equation modeling. New
York, NY: Guilford Press.

Lüdtke, O., Marsh, H. W., Robitzsch, A., & Trautwein, U. (2011). A
2 � 2 taxonomy of multilevel latent contextual models: Accuracy-
bias trade-offs in full and partial error correction models. Psy-
chological Methods, 16, 444. https://doi.org/10.1037/a0024376

Maas, C. J., & Hox, J. (2005). Sufficient sample sizes for multilevel
modeling. Methodology, 1, 86–92. https://doi.org/10.1027/
1614-1881.1.3.86

McNeish, D. M. (2016a). On using Bayesian methods to address
small sample problems. Structural Equation Modeling, 23, 750–
773. https://doi.org/10.1080/10705511.2016.1186549

McNeish, D. M. (2016b). Using data-dependent priors to miti-
gate small sample bias in latent growth models: A discussion
and illustration using Mplus. Journal of Educational and
Behavioral Statistics, 41, 27–56. https://doi.org/10.3102/
1076998615621299

Meuleman, B., & Billiet, J. (2009). A Monte Carlo sample size
study: How many countries are needed for accurate multilevel
SEM? Survey Research Methods, 3, 45–58. https://doi.org/
10.18148/srm/2009.v3i1.666

Muthén, B. O., & Curran, P. J. (1997). General longitudinal mod-
eling of individual differences in experimental designs: A latent
variable framework for analysis and power estimation. Psycho-
logical Methods, 2, 371–402. https://doi.org/10.1037/1082-
989X.2.4.371

Muthén, L. K., & Muthén, B. O. (1998–2012). Mplus user’s guide
(7th ed.). Los Angeles, CA: Muthén & Muthén.

Muthén, L. K., & Muthén, B. O. (2002). How to use a Monte Carlo
study to decide on sample size and determine power. Struc-
tural Equation Modeling, 9, 599–620. https://doi.org/10.1207/
S15328007SEM0904_8

Peeters, M., Monshouwer, K., Janssen, T., Wiers, R. W., & Volle-
bergh, W. A. (2014). Working memory and alcohol use in at-risk
adolescents: A 2-year follow-up. Alcoholism: Clinical and
Experimental Research, 38, 1176–1183. https://doi.org/
10.1111/acer.12339

R Core Team. (2015). R: A language and environment for statistical
computing [Computer software manual]. Vienna, Austria.
Retrieved from https://www.R-project.org/

Rosseel, Y. (2012). lavaan: An R package for structural equation
modeling. Journal of Statistical Software, 48, 1–36. Retrieved
from https://www.jstatsoft.org/article/view/v048i02

Tolvanen, A. (2000). Latenttien kasvukäyrä- ja simplex-mallien
teoriaa ja sovelluksia pitkittäisaineistoissa kehityksen ja muu-
toksen analysointiin [Latent growth and simplex models: Theory
and applications in longitudinal models for analysis of devel-
opment and change]. Jyväskylä, Finland: Department of Statis-
tics, University of Jyväskylä.

van de Schoot, R., Broere, J. J., Perryck, K. H., Zondervan-
Zwijnenburg, M., & Van Loey, N. E. (2015). Analyzing small

data sets using Bayesian estimation: The case of posttraumatic
stress symptoms following mechanical ventilation in burn
survivors. European Journal of Psychotraumatology, 6, 25216.
https://doi.org/10.3402/ejpt.v6.25216

van de Schoot, R., Kaplan, D., Denissen, J., Asendorpf, J. B., Neyer,
F. J., & Van Aken, M. A. (2013). A gentle introduction to Bayesian
analysis: Applications to developmental research. Child Devel-
opment, 85, 842–860. https://doi.org/10.1111/cdev.12169

van de Schoot, R., Winter, S. D., Ryan, O., Zondervan-Zwijnenburg,
M., & Depaoli, S. (2017). A systematic review of Bayesian
articles in psychology: The last 25 years. Psychological Meth-
ods, 22, 217–239. https://doi.org/10.1037/met0000100

Zondervan-Zwijnenburg, M., Peeters, M., Depaoli, S., & van de
Schoot, R. (2017). Where do priors come from? Applying
guidelines to construct informative priors in small sample
research. Research in Human Development, 14, 305–320.
https://doi.org/10.1080/15427609.2017.1370966

Received February 8, 2017
Revision received August 8, 2018
Accepted September 27, 2018
Published online December 12, 2018

Mariëlle Zondervan-Zwijnenburg
Department of Methods and Statistics
Utrecht University
Padualaan 14
3584 CH Utrecht
The Netherlands
m.a.j.zwijnenburg@uu.nl

Mariëlle Zondervan-Zwijnenburg is a PhD candidate at the
Department of Social and Behavioural Sciences at Utrecht
University. Her focus is especially on the dynamics of youth, and
her additional interests are Bayesian statistics, longitudinal data
analysis, and structural equation modeling.

Sarah Depaoli (PhD, 2010) is an associate professor of Quantita-
tive Psychology at the University of California, Merced. Her re-
search interests are largely focused on issues surrounding
Bayesian estimation of latent variable models.

Margot Peeters (PhD, 2014) is an assistant professor at Utrecht
University. Her research interests are adolescent development,
behavioral control, risk behavior (alcohol, drug use, externalizing
problems, gaming), addiction, social environment and risk
behavior (peers, SES).

Rens van de Schoot (PhD) is an associate professor at Utrecht
University and extraordinary professor at the Optentia research
program, North-West University in South Africa. His interests are
Bayesian statistics, longitudinal data analysis, Mplus, multilevel
analysis, PTSD, and structural equation modeling.

Funding
The first author Marielle Zondervan-Zwijnenburg, has been supported
by the Consortium Individual Development (CID), which is funded
through the Gravitation program of the Dutch Ministry of Education,
Culture, and Science and the Netherlands Organization for Scientific
Research (NWO grant number 024.001.003). Rens van de Schoot has
been supported by Grant NWO-VIDI-452-14-006 from the Netherlands
Organization for Scientific Research (NWO).

�2018 Hogrefe Publishing Methodology (2019), 15(1), 31–43

M. Zondervan-Zwijnenburg et al., Pushing the Limits 39

Th
is

 d
oc

um
en

t i
s c

op
yr

ig
ht

ed
 b

y 
th

e A
m

er
ic

an
 P

sy
ch

ol
og

ic
al

 A
ss

oc
ia

tio
n 

or
 o

ne
 o

f i
ts

 a
lli

ed
 p

ub
lis

he
rs

.
Th

is
 a

rti
cl

e 
is

 in
te

nd
ed

 so
le

ly
 fo

r t
he

 p
er

so
na

l u
se

 o
f t

he
 in

di
vi

du
al

 u
se

r a
nd

 is
 n

ot
 to

 b
e 

di
ss

em
in

at
ed

 b
ro

ad
ly

.



Appendix A

Population Parameters
The text below shows the input file used to generate the datasets for the simulation study for the specific case with 50 par-
ticipants in the reference group and 5 in the focal group. For other group specifications, the nobs syntax was changed accordingly. The
code is annotated with text after the exclamation mark.

The covariate is simulated as a count variable, because this fitted the empirical data best. It was analyzed as a normally
distributed variable though, because (1) the scale of an exogenous variable does not affect the regression coefficients, and that is
important, (2) the predictor itself was not the variable of interest, (3) Bayesian analysis in Mplus (7.1) cannot handle count variables,
and Mplus provides a lot of possibilities for our analyses that are more important. (4) This is common practice in the social and
behavioral sciences.

The variance of the covariate, however, was allowed to differ between groups, because this fitted the empirical data best.
The empirical analysis including a quadratic factor had a better fit than without the quadratic factor (see the files named
Bayes2group.out and Bayes2groupISonly.out, respectively, at https://osf.io/gjzu8; DIC = 6861.396 vs. 6892.445, BIC = 6948.434 vs.
6960.688). We constrained Q over groups so that the difference between groups is represented in the difference between the linear
slopes.

MONTECARLO:

names = y1-y4 qft; !variable names

count = qft; !count variable

generate = qft(c); !create count variable

ngroups = 2; !2 groups

nobs = 50 5; !50 in reference group, 5 in focal

nreps = 1000; !produce 1000 datasets from the population input

seed = 4533;

repsave = all;

save = mc_5_50_*.dat; !name for data files

ANALYSIS:

type = mixture;

algorithm = integration;

processors = 2;

MODEL POPULATION:

%OVERALL% !overall set up with group invariant and g=1 values
i s q | y1@0 y2@1 y3@2 y4@3; !Intercept, Linear Slope, Quadratic Slope LGM syntax

i ON qft*-0:101; !Beta_141

s ON qft*-0:228; !Beta_24

q ON qft*0:131; !Beta_34

i WITH s*-53:669 q � 12:342; !covariance I with LS Psi_21, I with QS Psi_312

s WITH q*-14:052; !covariance LS with QS Psi_32

[qft*0:313]; !Quantity frequency alcohol use, count parameter lambda3
[i*73:050 s*8:125 q � �2:161�; !means I (alpha_1^1), LS (alpha_2^1), QS (alpha_3)
i*67:887;s � 64q � 3:958; !residual variances I (zeta_1), LS (zeta_2), QS (zeta_3)
y1*52:956 y2 � 64:049 y3 � 55:481 y4 � 19:390;

!residual variances y_11 � y1
1
(epsilon_1^1-epsilon_4^1)

%g#1% !values reference group (g=1)
[qft*0:313];

[i*73:050 s � 8:125 q � �2:161�;
%g#2% !values focal group (g=2), overwrite overall set up

[qft*2:704];

[i*71:541 s � 6:525 q � �2:161];
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Population values for β are based on a Bayesian analysis with default settings of the latent growth model as depicted in
Figure 1. The .inp syntax and .out output files named “Bayes equal q var regress” are provided at https://osf.io/gjzu8.
Population values for the covariances, disturbances, and intercepts are based on a Bayesian analysis with default settings,
but with the regression parameters estimated for both groups separately. The .inp syntax and .out output files named “Bayes
equal q” and “equal var” are provided at https://osf.io/gjzu8.

Population values for the count variable are based on the results of a nonpositive definite ML analysis of the latent growth
model, because only with these settings, Mplus could estimate the values for a count variable. The .inp syntax and .out out-
put files named “ML all par” are provided at https://osf.io/gjzu8.

Algorithm = integration was necessary to create the count data and to regress the latent variables on the count variable.
With mixture (i.e., knownclass) analyses, Mplus uses EMA optimization. With a grouping specification, Mplus does not do
this. Hence, the results can differ.

Appendix B

Syntax Analyses

Both syntax files concern the simulated data for the cell with 5 participants in the focal group, and 5 participants in the ref-
erence group. Logically, syntax for other cells included different datafile lists.

ML Estimation

For ML estimation, Algorithm = integration was necessary to obtain convergence.
DATA: FILE = "mc_5_50_list_l.dat";

TYPE = MONTECARLO;

VARIABLE: NAMES = QFT Y1 Y2 Y3 Y4 G;

CLASSES = cg(2);
KNOWNCLASS is cg(g=1 g=2);

ANALYSIS: TYPE = mixture;

ALGORITHM = integration;

PROCESSORS = 4;
MODEL:

%OVERALL%

i s q | y1@0 y2@1 y3@2 y4@3;
i ON qft*-0.101;
s ON qft*-0.228;
q ON qft*0.131;
i with s*-53.669 q*12.342;
s with q*-14.052;
[qft*0.313];
qft;

[i*73.050 s*8.125 q*-2.161];
i*67.887; s*64 q*3.958;
y1*52.956 y2*64.049 y3*55.481 y4*19.390;
%cg#1%
i s q | y1@0 y2@1 y3@2 y4@3;
[qft*0.313];
qft;
[i*73.050 s*8.125 q*-2.161] (I1 S1 Qg);
%cg#2%
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i s q | y1@0 y2@1 y3@2 y4@3;
[qft*2.704];
qft;

[i*71.541 s*6.525 q*-2.161] (I2 S2 Qg);

MODEL CONSTRAINT:

NEW(diff_s)*1.6;
diff_S = S1 - S2;
OUTPUT: TECH9;

Bayesian Estimation

The syntax below concerns the analyses in which the informative priors had a variance of 1.0. Other cells had a different
value for the variance of the prior under MODEL PRIORS.

DATA: FILE = "mc_5_50_list_l.dat";
TYPE = MONTECARLO;

VARIABLE: NAMES = QFT Y1 Y2 Y3 Y4 G;

CLASSES = cg(2);
KNOWNCLASS is cg(g=1 g=2);

ANALYSIS: TYPE = mixture;

ESTIMATOR = BAYES;

BCONVERGENCE = .05;
Chains=22;
Processors=22;
Biterations=(5000) 100000;

MODEL:

%OVERALL%

i s q | y1@0 y2@1 y3@2 y4@3;
i ON qft*-0.101;
s ON qft*-0.228;
q ON qft*0.131;
i with s*-53.669 q*12.342;
s with q*-14.052;
[qft*0.313];
qft;

[i*73.050 s*8.125 q*-2.161];
i*67.887; s*64 q*3.958;
y1*52.956 y2*64.049 y3*55.481 y4*19.390;
%cg#1%
i s q | y1@0 y2@1 y3@2 y4@3;
[qft*0.313];
qft;

[i*73.050 s*8.125 q*-2.161] (I1 S1 Qg);
%cg#2%
i s q | y1@0 y2@1 y3@2 y4@3;
[qft*2.704];
qft;

[i*71.541 s*6.525 q*-2.161] (I2 S2 Qg);

MODEL PRIORS:

I1�N(73.050,1);
S1�N(8.125,1);
I2�N(71.541,1);
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S2�N(6.525,1);
Qg�N(-2.161,1);
MODEL CONSTRAINT:

NEW(diff_s)*1.6;
diff_S = S1 - S2;
OUTPUT: TECH9;

�2018 Hogrefe Publishing Methodology (2019), 15(1), 31–43
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