Exact enumeration of self-avoiding walks

R D Schram ${ }^{1,2}$, G T Barkema ${ }^{1}$ and R H Bisseling ${ }^{2}$

${ }^{1}$ Institute for Theoretical Physics, Utrecht University, PO Box 80195, 3508 TD Utrecht, The Netherlands
${ }^{2}$ Mathematical Institute, Utrecht University, PO Box 80010, 3508 TA Utrecht, The Netherlands
E-mail: raouldschram@gmail.com, g.t.barkema@uu.nl and R.H.Bisseling@uu.nl
Received 12 April 2011
Accepted 9 June 2011
Published 27 June 2011
Online at stacks.iop.org/JSTAT/2011/P06019
doi:10.1088/1742-5468/2011/06/P06019

Abstract

A prototypical problem on which techniques for exact enumeration are tested and compared is the enumeration of self-avoiding walks. Here, we show an advance in the methodology of enumeration, making the process thousands or millions of times faster. This allowed us to enumerate self-avoiding walks on the simple cubic lattice up to a length of 36 steps.

Keywords: loop models and polymers, critical exponents and amplitudes (theory), exact results

Contents

1. Introduction 2

2. Length-doubling method 3
3. Application of the length-doubling formula 4
4. Results 6

Acknowledgments 7
References 7

1. Introduction

According to renormalization group theory, the scaling properties of critical systems are insensitive to microscopic details and are governed by a small set of universal exponents. Polymers can be considered as critical systems in the limit where their length N (the number of chained monomers) grows [1]. For instance, the free energy F_{N} of an isolated polymer in a swollen phase behaves asymptotically as $\exp \left(-F_{N}\right) \equiv Z_{N} \approx A \mu^{N} N^{\theta}$. Here, the connectivity constant μ and the amplitude A are non-universal (model-dependent) quantities. The exponent θ, however, characterizing the leading correction to the scaling behavior, is believed to be universal; it is related to the entropic exponent $\gamma=\theta+1 \approx$ 1.157. The average squared distance between the end points of such polymers scales as $N^{2 \nu}$, where $\nu \approx 0.588$ in three dimensions is also a universal critical exponent.

Universal exponents such as θ and ν can be measured most accurately in computer simulations of the most rudimentary models in the universality class of swollen polymers, which arguably is that of self-avoiding walks (SAWs) on a lattice. Estimates of these exponents can be obtained by counting the number Z_{N} of SAWs of all lengths up to $N_{\max }$, and calculating the sum P_{N} of their squared end-to-end extensions, which scales as $P_{N} \sim Z_{N} N^{2 \nu}$. The exponents can then be obtained from

$$
\begin{equation*}
\theta=\frac{N^{2}-4}{4}\left[\log \frac{Z_{N}^{2}}{Z_{N+2} Z_{N-2}}\right] \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\nu=\frac{N-1}{4}\left[\log \frac{P_{N+1}}{Z_{N+1}}-\log \frac{P_{N-1}}{Z_{N-1}}\right], \tag{2}
\end{equation*}
$$

respectively, in the limit of increasing N. In equation (1), the values of N are taken a distance two apart, so that the formula involves either only even N or only odd N; this is more accurate than mixing even and odd values. Similar considerations lead to equation (2). The accuracy of the estimates improves significantly with increasing $N_{\max }$, but unfortunately at the expense of an exponentially growing number of walks. In two dimensions, various algorithmic improvements have allowed for the enumeration of all SAWs up to $N_{\max }=71$ steps [2], but these methods cannot be used effectively in three
dimensions, which is the most relevant dimensionality for practical purposes. Hence, to date, the enumeration of three-dimensional SAWs stops at $N_{\max }=30$ steps [3].

Counting SAWs has a long history, see e.g. [4]. In a paper by Orr [5] from 1947, Z_{N} was given for all N up to $N_{\max }=6$; these values were calculated by hand. In 1959, Fisher and Sykes [6] enumerated all SAWs in three dimensions (3D) up to $N_{\max }=9$. More recently, in 1987 Guttmann [7] enumerated longer SAWs up to $N_{\max }=20$ and extended this by one step in 1989 [8]. In 1992, MacDonald et al [9] reached $N_{\max }=23$ and in 2000 MacDonald et al [10] reached $N_{\max }=26$. In 2007, Clisby et al [3] reached $N_{\max }=30$, which is currently the best result.

Here, we present the new length-doubling method which allowed us to reach $N_{\max }=$ 36 using 50000 h of computing time, a result that would have taken roughly fifty million hours with traditional methods, or alternatively we would have to wait another 20 years by Moore's law (which states that the number of transistors on a computer chip doubles every two years) before we could undertake the computation.

2. Length-doubling method

In the length-doubling method, we determine for each non-empty subset S of lattice sites the number $Z_{N}(S)$ of SAWs with length N and originating in the origin that visit the complete subset. Let $|S|$ denote the number of sites in S. The number $Z_{2 N}$ of SAWs of length 2 N can then be obtained by the length-doubling formula

$$
\begin{equation*}
Z_{2 N}=Z_{N}^{2}+\sum_{S \neq \emptyset}(-1)^{|S|} Z_{N}^{2}(S) . \tag{3}
\end{equation*}
$$

This equation can be understood as follows. Let $N \geq 1$ be fixed. Let A_{i} be the set of pairs (v, w) of SAWs of length N that both pass through lattice point i. Here, a walk v starts in 0 and then passes through v_{1}, \ldots, v_{N}. Since the distance reached from the origin is at most N, there exist only finitely many non-empty sets A_{i}. Then, the total number of SAWs of length $2 N$ equals

$$
\begin{equation*}
Z_{2 N}=Z_{N}^{2}-\left|\bigcup_{i} A_{i}\right| \tag{4}
\end{equation*}
$$

because every pair (v, w) of the Z_{N}^{2} possible pairs can be used to construct a SAW of length $2 N$, except if v and w intersect in a lattice point i. The resulting walk

$$
\begin{equation*}
(v, w) \equiv\left(v_{N-1}-v_{N}, \ldots, v_{1}-v_{N},-v_{N}, w_{1}-v_{N}, \ldots, w_{N}-v_{N}\right) \tag{5}
\end{equation*}
$$

of length $2 N$ is obtained by connecting the two walks at 0 and translating the result over a distance $-v_{N}$. The new starting point 0 is then the translated old end point of v and the new end point is the translated old end point of w. Note that from a SAW of length $2 N$ we can also create a non-intersecting pair (v, w) by using equation (5), so that indeed we have a bijection between such pairs and SAWs of length $2 N$.

The inclusion-exclusion principle from combinatorics, see for instance [11, chapter 10], states that

$$
\begin{gather*}
\left|\bigcup_{i=1}^{n} A_{i}\right|=\sum_{i}\left|A_{i}\right|-\sum_{i<j}\left|A_{i} \cap A_{j}\right|+\sum_{i<j<k}\left|A_{i} \cap A_{j} \cap A_{k}\right|+\cdots \\
+(-1)^{n+1}\left|A_{1} \cap A_{2} \cdots \cap A_{n}\right| \tag{6}
\end{gather*}
$$

for the union of n sets A_{i}. We can apply this principle, noting that for a non-empty set $S=\left\{i_{1}, \ldots, i_{r}\right\}$ the intersection $A_{i_{1}} \cap \cdots \cap A_{i_{r}}$ has $Z_{N}^{2}(S)$ elements, where $Z_{N}(S)$ is defined as the number of SAWs of length N that pass through all the sites of S. The sign of the term corresponding to the set S in the expansion (6) is $(-1)^{r+1}$, where $r=|S|$. Substituting this in equation (6) and combining with equation (4) yields the lengthdoubling formula equation (3). The length-doubling method is illustrated in figure 1.

3. Application of the length-doubling formula

The usefulness of this formula lies in the fact that the numbers $Z_{N}(S)$ can be obtained relatively efficiently:

- Each SAW of length N is generated.
- For each SAW, each of the 2^{N} subsets S of the lattice sites is generated and the counter for each specific subset is incremented. Multiple counters for the same subset S must be avoided; this can be achieved by sorting the sites within each subset in an unambiguous way.
- As the last step, the squares of these counters are summed, with a positive and negative sign for subsets with an even and odd number of sites, respectively, as in equation (3).

With Z_{N} walks of length N, each visiting 2^{N} subsets of sites, the computational complexity is $\mathcal{O}\left(2^{N} Z_{N}\right) \sim(2 \mu)^{N}$ times some polynomial in N which depends on implementation details. This compares favorably to generating all $Z_{2 N} \sim \mu^{2 N}$ walks of length $2 N$, provided $2 \mu<\mu^{2}$. This is clearly the case on the simple cubic lattice where $\mu \approx 4.684$.

A practical problem which is encountered already at relatively low N, is the memory requirement for storing the counters for all subsets. An efficient data structure to store these is based on a tree structure. The occurrence of a subset $\{a, b, c, d, e\}$, in which a, b, c, d, and e are site numbers ordered such that $a<b<c<d<e$, is stored in the path $a \rightarrow b \rightarrow c \rightarrow d \rightarrow e$, where a is directly connected to the root of the tree and e is a leaf.

We added two further refinements to the method sketched above. First, we exploit symmetry. Two subsets S_{1} and S_{2} which are related by symmetry will end up with the same counter. One can therefore safely keep track of the counter belonging to only one subset S out of each group of symmetry-related subsets. This reduces the memory requirement by a factor close to 48 (slightly less because of subsets with an inherent symmetry); in practice, the computational effort goes down by a similar factor.

The second refinement is tree splitting. Rather than computing the full tree, we split the tree into non-overlapping subtrees, using for instance as a criterion the value of the

Figure 1. Illustration of the length-doubling algorithm, using a small subset of three walks of length $N=18$. Ignoring intersections, there are $Z=3$ candidates for SAWs of length 36: the blue-red, blue-orange and red-orange combinations. Ignoring double counting, Z should be reduced by three because of the intersections $a=(2,3,1), b=(2,0,0)$ and $c=(0,-2,0)$. Correcting for double counting because of the pair of sites $S=\{a, b\}$, the number of selfavoiding combinations is thus $3-3+1=1$. Indeed, only the red-blue combination is self-avoiding. Using a computer, we applied this approach to combinations of all walks of length $N=18$.
site with the highest number. Another criterion is the subset size $|S|$. This splits up the summation in equation (3) into independent sums, which can be computed in parallel.

With the length-doubling method, it is also possible to compute the squared end-toend distance, summed over all SAW configurations. The squared end-to-end distance for walks of length N is defined by

$$
\begin{equation*}
P_{N}=\sum_{w}\left\|w_{N}\right\|^{2} \tag{7}
\end{equation*}
$$

where the sum is taken over all the SAWs of length N and $\left\|w_{N}\right\|$ is the Euclidean distance of the end point w_{N} of walk w from the origin.

The length-doubling formula for the squared end-to-end distance then becomes

$$
\begin{equation*}
P_{2 N}=2 Z_{N} P_{N}+2 \sum_{S \neq \emptyset}(-1)^{|S|}\left(Z_{N}(S) P_{N}(S)-\left\|E_{N}(S)\right\|^{2}\right) . \tag{8}
\end{equation*}
$$

Here, $P_{N}(S)$ is the total squared end-to-end distance for all walks of length N that pass through the complete set S and the extension $E_{N}(S)$ is defined as the sum of w_{N} for all such walks w. This formula can be understood again by using the inclusion-exclusion principle, but now generalized to add (squared) distances for sets A_{i} instead of just counting numbers of elements. The first term of the right-hand side of equation (8) is obtained by computing

$$
\begin{align*}
\sum_{(v, w)} \| w_{N}- & v_{N} \|^{2}=\sum_{(v, w)}\left(\left\|w_{N}\right\|^{2}+\left\|v_{N}\right\|^{2}-2 v_{N} \cdot w_{N}\right) \\
& =Z_{N} \sum_{w}\left\|w_{N}\right\|^{2}+Z_{N} \sum_{v}\left\|v_{N}\right\|^{2}-2\left(\sum_{v} v_{N}\right) \cdot\left(\sum_{w} w_{N}\right) \\
& =2 Z_{N} P_{N} \tag{9}
\end{align*}
$$

where the inner product vanishes because of the symmetry between v and $-v$. For walks passing through S a similar derivation holds, but now the inner product does not vanish and instead gives rise to the term $\left\|E_{N}(S)\right\|^{2}$. Computing $P_{2 N}$ by this formula requires additional counters for each subset S, namely for the total extension in the x-, y - and z-directions, as well as for the total squared extension $P_{N}(S)$.

4. Results

With length-doubling, we obtained Z_{N} up to $Z_{36}=2941370856334701726560$ 670, with a squared end-to-end extension of $P_{36}=230547785968352575619933376$. All values of Z_{N} and P_{N} for $N \leq 36$ are given in table 1.

The behavior of Z_{N} and P_{N} for large N is expected to follow

$$
\begin{align*}
& Z_{N} \approx A \mu^{N} N^{\gamma-1}\left(1+c_{1} N^{-\Delta}\right), \\
& P_{N} \approx D \mu^{N} N^{\gamma+2 \nu-1}\left(1+c_{2} N^{-\Delta}\right) . \tag{10}
\end{align*}
$$

Here, we left out finite-size corrections distinguishing even and odd lengths.
A preliminary analysis by Clisby, using the direct fitting method as described in [3] and utilizing the recent estimate $\Delta=0.53(1)$ [12], yields $\mu=4.6840401(50), \gamma=1.156$ 98(34), $\nu=0.58772(17), A=1.2150(22)$ and $D=1.2177(38)$. The estimates for μ and γ are significantly improved by the availability of the longer series, whereas estimates for ν, A and D are comparable in accuracy to [3]; the central estimates are shifted with respect to [3] largely due to the use of a different central value for Δ. The estimate for γ agrees with the literature value $\gamma=1.1573(2)$ as obtained by Hsu et al [13] using the prunedenriched Rosenbluth method.

In the near future, we will apply our new approach for exact enumeration to other lattices such as face-centered-cubic and body-centered-cubic, adapt it to count selfavoiding polygons and generalize it to various other models in polymer physics, such as confined and branched polymers, and to various other models in statistical physics.

Table 1. Enumeration results on the number of three-dimensional SAWs Z_{N} and the sum of their squared end-to-end distances P_{N}.

N	Z_{N}	P_{N}
1	6	6
2	30	72
3	150	582
4	726	4032
5	3534	25566
6	16926	153528
7	81390	886926
8	387966	4983456
9	1853886	27401502
10	8809878	148157880
11	41934150	790096950
12	198842742	4166321184
13	943974510	21760624254
14	4468911678	112743796632
15	21175146054	580052260230
16	100121875974	2966294589312
17	473730252102	15087996161382
18	2237723684094	76384144381272
19	10576033219614	385066579325550
20	49917327838734	1933885653380544
21	235710090502158	9679153967272734
22	1111781983442406	48295148145655224
23	5245988215191414	240292643254616694
24	24730180885580790	1192504522283625600
25	116618841700433358	5904015201226909614
26	549493796867100942	29166829902019914840
27	2589874864863200574	143797743705453990030
28	12198184788179866902	707626784073985438752
29	57466913094951837030	3476154136334368955958
30	270569905525454674614	17048697241184582716248
31	1274191064726416905966	83487969681726067169454
32	5997359460809616886494	408264709609407519880320
33	2823374272563685150118	1993794711631386183977574
34	132853629626823234210582	9724709261537887936102872
35	625248129452557974777990	47376158929939177384568598
36	2941370856334701726560670	230547785968352575619933376

Acknowledgments

Help with the series analysis by Nathan Clisby is gratefully acknowledged. Computations were carried out on the Huygens supercomputer at SARA in Amsterdam. We thank the Dutch National Computing Facilities Foundation (NCF) for providing us with computer resources under the project SH-174-10.

References

[1] de Gennes P-G, 1979 Scaling Concepts in Polymer Physics (Ithaca, NY: Cornell University Press)
[2] Jensen I, Enumeration of self-avoiding walks on the square lattice, 2004 J. Phys. A: Math. Gen. 375503
[3] Clisby N, Liang R and Slade G, Self-avoiding walk enumeration via the lace expansion, 2007 J. Phys. A: Math. Theor. 4010973
[4] Madras N and Slade G, 1993 The Self-Avoiding Walk (Boston, MA: Birkhäuser)
[5] Orr W J C, Statistical treatment of polymer solutions at infinite dilution, 1947 Trans. Faraday Soc. 4312
[6] Fisher M E and Sykes M F, Excluded-volume problem and the Ising model of ferromagnetism, 1959 Phys. Rev. 11445
[7] Guttmann A J, On the critical behaviour of self-avoiding walks, 1987 J. Phys. A: Math. Gen. 201839
[8] Guttmann A J, On the critical behaviour of self-avoiding walks: II, 1989 J. Phys. A: Math. Gen. 222807
[9] MacDonald D, Hunter D L, Kelly K and Jan N, Self-avoiding walks in two to five dimensions: exact enumerations and series study, 1992 J. Phys. A: Math. Gen. 251429
[10] MacDonald D, Joseph S, Hunter D L, Moseley L L, Jan N and Guttmann A J, Self-avoiding walks on the simple cubic lattice, 2000 J. Phys. A: Math. Gen. 335973
[11] van Lint J H and Wilson R M, 2001 A Course in Combinatorics 2nd edn (Cambridge: Cambridge University Press)
[12] Clisby N, Accurate estimate of the critical exponent ν for self-avoiding walks via a fast implementation of the pivot algorithm, 2010 Phys. Rev. Lett. 104055702
[13] Hsu H-P, Nadler W and Grassberger P, Scaling of star polymers with 1-80 arms, 2004 Macromolecules 374658

