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Abstract. A prototypical problem on which techniques for exact enumeration
are tested and compared is the enumeration of self-avoiding walks. Here, we show
an advance in the methodology of enumeration, making the process thousands or
millions of times faster. This allowed us to enumerate self-avoiding walks on the
simple cubic lattice up to a length of 36 steps.
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1. Introduction

According to renormalization group theory, the scaling properties of critical systems are
insensitive to microscopic details and are governed by a small set of universal exponents.
Polymers can be considered as critical systems in the limit where their length N (the
number of chained monomers) grows [1]. For instance, the free energy FN of an isolated
polymer in a swollen phase behaves asymptotically as exp(−FN ) ≡ ZN ≈ AµNN θ. Here,
the connectivity constant µ and the amplitude A are non-universal (model-dependent)
quantities. The exponent θ, however, characterizing the leading correction to the scaling
behavior, is believed to be universal; it is related to the entropic exponent γ = θ + 1 ≈
1.157. The average squared distance between the end points of such polymers scales as
N2ν , where ν ≈ 0.588 in three dimensions is also a universal critical exponent.

Universal exponents such as θ and ν can be measured most accurately in computer
simulations of the most rudimentary models in the universality class of swollen polymers,
which arguably is that of self-avoiding walks (SAWs) on a lattice. Estimates of these
exponents can be obtained by counting the number ZN of SAWs of all lengths up to
Nmax, and calculating the sum PN of their squared end-to-end extensions, which scales as
PN ∼ ZNN2ν . The exponents can then be obtained from

θ =
N2 − 4

4

[
log

Z2
N

ZN+2ZN−2

]
(1)

and

ν =
N − 1

4

[
log

PN+1

ZN+1
− log

PN−1

ZN−1

]
, (2)

respectively, in the limit of increasing N . In equation (1), the values of N are taken
a distance two apart, so that the formula involves either only even N or only odd N ;
this is more accurate than mixing even and odd values. Similar considerations lead to
equation (2). The accuracy of the estimates improves significantly with increasing Nmax,
but unfortunately at the expense of an exponentially growing number of walks. In two
dimensions, various algorithmic improvements have allowed for the enumeration of all
SAWs up to Nmax = 71 steps [2], but these methods cannot be used effectively in three
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dimensions, which is the most relevant dimensionality for practical purposes. Hence, to
date, the enumeration of three-dimensional SAWs stops at Nmax = 30 steps [3].

Counting SAWs has a long history, see e.g. [4]. In a paper by Orr [5] from 1947, ZN

was given for all N up to Nmax = 6; these values were calculated by hand. In 1959, Fisher
and Sykes [6] enumerated all SAWs in three dimensions (3D) up to Nmax = 9. More
recently, in 1987 Guttmann [7] enumerated longer SAWs up to Nmax = 20 and extended
this by one step in 1989 [8]. In 1992, MacDonald et al [9] reached Nmax = 23 and in 2000
MacDonald et al [10] reached Nmax = 26. In 2007, Clisby et al [3] reached Nmax = 30,
which is currently the best result.

Here, we present the new length-doubling method which allowed us to reach Nmax =
36 using 50 000 h of computing time, a result that would have taken roughly fifty million
hours with traditional methods, or alternatively we would have to wait another 20 years
by Moore’s law (which states that the number of transistors on a computer chip doubles
every two years) before we could undertake the computation.

2. Length-doubling method

In the length-doubling method, we determine for each non-empty subset S of lattice sites
the number ZN(S) of SAWs with length N and originating in the origin that visit the
complete subset. Let |S| denote the number of sites in S. The number Z2N of SAWs of
length 2N can then be obtained by the length-doubling formula

Z2N = Z2
N +

∑

S "=∅

(−1)|S|Z2
N(S). (3)

This equation can be understood as follows. Let N ≥ 1 be fixed. Let Ai be the set of
pairs (v, w) of SAWs of length N that both pass through lattice point i. Here, a walk v
starts in 0 and then passes through v1, . . . , vN . Since the distance reached from the origin
is at most N , there exist only finitely many non-empty sets Ai. Then, the total number
of SAWs of length 2N equals

Z2N = Z2
N −

∣∣∣∣∣
⋃

i

Ai

∣∣∣∣∣ , (4)

because every pair (v, w) of the Z2
N possible pairs can be used to construct a SAW of

length 2N , except if v and w intersect in a lattice point i. The resulting walk

(v, w) ≡ (vN−1 − vN , . . . , v1 − vN ,−vN , w1 − vN , . . . , wN − vN ) (5)

of length 2N is obtained by connecting the two walks at 0 and translating the result over
a distance −vN . The new starting point 0 is then the translated old end point of v and
the new end point is the translated old end point of w. Note that from a SAW of length
2N we can also create a non-intersecting pair (v, w) by using equation (5), so that indeed
we have a bijection between such pairs and SAWs of length 2N .
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The inclusion–exclusion principle from combinatorics, see for instance [11, chapter
10], states that
∣∣∣∣∣

n⋃

i=1

Ai

∣∣∣∣∣ =
∑

i

|Ai| −
∑

i<j

|Ai ∩ Aj | +
∑

i<j<k

|Ai ∩ Aj ∩ Ak| + · · ·

+ (−1)n+1|A1 ∩ A2 · · · ∩ An|, (6)

for the union of n sets Ai. We can apply this principle, noting that for a non-empty
set S = {i1, . . . , ir} the intersection Ai1 ∩ · · · ∩ Air has Z2

N(S) elements, where ZN(S) is
defined as the number of SAWs of length N that pass through all the sites of S. The sign
of the term corresponding to the set S in the expansion (6) is (−1)r+1, where r = |S|.
Substituting this in equation (6) and combining with equation (4) yields the length-
doubling formula equation (3). The length-doubling method is illustrated in figure 1.

3. Application of the length-doubling formula

The usefulness of this formula lies in the fact that the numbers ZN(S) can be obtained
relatively efficiently:

• Each SAW of length N is generated.

• For each SAW, each of the 2N subsets S of the lattice sites is generated and the
counter for each specific subset is incremented. Multiple counters for the same subset
S must be avoided; this can be achieved by sorting the sites within each subset in an
unambiguous way.

• As the last step, the squares of these counters are summed, with a positive and
negative sign for subsets with an even and odd number of sites, respectively, as in
equation (3).

With ZN walks of length N , each visiting 2N subsets of sites, the computational
complexity is O(2NZN) ∼ (2µ)N times some polynomial in N which depends on
implementation details. This compares favorably to generating all Z2N ∼ µ2N walks
of length 2N , provided 2µ < µ2. This is clearly the case on the simple cubic lattice where
µ ≈ 4.684.

A practical problem which is encountered already at relatively low N , is the memory
requirement for storing the counters for all subsets. An efficient data structure to store
these is based on a tree structure. The occurrence of a subset {a, b, c, d, e}, in which
a, b, c, d, and e are site numbers ordered such that a < b < c < d < e, is stored in the path
a → b → c → d → e, where a is directly connected to the root of the tree and e is a leaf.

We added two further refinements to the method sketched above. First, we exploit
symmetry. Two subsets S1 and S2 which are related by symmetry will end up with
the same counter. One can therefore safely keep track of the counter belonging to only
one subset S out of each group of symmetry-related subsets. This reduces the memory
requirement by a factor close to 48 (slightly less because of subsets with an inherent
symmetry); in practice, the computational effort goes down by a similar factor.

The second refinement is tree splitting. Rather than computing the full tree, we split
the tree into non-overlapping subtrees, using for instance as a criterion the value of the
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Figure 1. Illustration of the length-doubling algorithm, using a small subset
of three walks of length N = 18. Ignoring intersections, there are Z = 3
candidates for SAWs of length 36: the blue-red, blue-orange and red-orange
combinations. Ignoring double counting, Z should be reduced by three because
of the intersections a = (2, 3, 1), b = (2, 0, 0) and c = (0,−2, 0). Correcting
for double counting because of the pair of sites S = {a, b}, the number of self-
avoiding combinations is thus 3−3+1 = 1. Indeed, only the red-blue combination
is self-avoiding. Using a computer, we applied this approach to combinations of
all walks of length N = 18.

site with the highest number. Another criterion is the subset size |S|. This splits up the
summation in equation (3) into independent sums, which can be computed in parallel.

With the length-doubling method, it is also possible to compute the squared end-to-
end distance, summed over all SAW configurations. The squared end-to-end distance for
walks of length N is defined by

PN =
∑

w

||wN ||2, (7)

where the sum is taken over all the SAWs of length N and ||wN || is the Euclidean distance
of the end point wN of walk w from the origin.
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The length-doubling formula for the squared end-to-end distance then becomes

P2N = 2ZNPN + 2
∑

S "=∅

(−1)|S|(ZN(S)PN(S) − ||EN(S)||2). (8)

Here, PN(S) is the total squared end-to-end distance for all walks of length N that pass
through the complete set S and the extension EN (S) is defined as the sum of wN for all
such walks w. This formula can be understood again by using the inclusion–exclusion
principle, but now generalized to add (squared) distances for sets Ai instead of just
counting numbers of elements. The first term of the right-hand side of equation (8)
is obtained by computing
∑

(v,w)

||wN − vN ||2 =
∑

(v,w)

(||wN ||2 + ||vN ||2 − 2vN · wN)

= ZN

∑

w

||wN ||2 + ZN

∑

v

||vN ||2 − 2
(∑

v

vN

)
·
(∑

w

wN

)

= 2ZNPN , (9)

where the inner product vanishes because of the symmetry between v and −v. For walks
passing through S a similar derivation holds, but now the inner product does not vanish
and instead gives rise to the term ||EN(S)||2. Computing P2N by this formula requires
additional counters for each subset S, namely for the total extension in the x-, y- and
z-directions, as well as for the total squared extension PN (S).

4. Results

With length-doubling, we obtained ZN up to Z36 = 2 941 370 856 334 701 726 560 670, with
a squared end-to-end extension of P36 = 230 547 785 968 352 575 619 933 376. All values of
ZN and PN for N ≤ 36 are given in table 1.

The behavior of ZN and PN for large N is expected to follow

ZN ≈ AµNNγ−1(1 + c1N
−∆),

PN ≈ DµNNγ+2ν−1(1 + c2N
−∆).

(10)

Here, we left out finite-size corrections distinguishing even and odd lengths.
A preliminary analysis by Clisby, using the direct fitting method as described in [3] and

utilizing the recent estimate ∆ = 0.53(1) [12], yields µ = 4.684 0401(50), γ = 1.156 98(34),
ν = 0.587 72(17), A = 1.2150(22) and D = 1.2177(38). The estimates for µ and γ are
significantly improved by the availability of the longer series, whereas estimates for ν, A
and D are comparable in accuracy to [3]; the central estimates are shifted with respect
to [3] largely due to the use of a different central value for ∆. The estimate for γ agrees
with the literature value γ = 1.1573(2) as obtained by Hsu et al [13] using the pruned-
enriched Rosenbluth method.

In the near future, we will apply our new approach for exact enumeration to other
lattices such as face-centered-cubic and body-centered-cubic, adapt it to count self-
avoiding polygons and generalize it to various other models in polymer physics, such
as confined and branched polymers, and to various other models in statistical physics.

doi:10.1088/1742-5468/2011/06/P06019 6

http://dx.doi.org/10.1088/1742-5468/2011/06/P06019


J.S
tat.M

ech.(2011)
P

06019

Exact enumeration of self-avoiding walks

Table 1. Enumeration results on the number of three-dimensional SAWs ZN and
the sum of their squared end-to-end distances PN .

N ZN PN

1 6 6
2 30 72
3 150 582
4 726 4032
5 3534 25 566
6 16 926 153 528
7 81 390 886 926
8 387 966 4983456
9 1853 886 27 401 502

10 8809878 148 157880
11 41 934 150 790 096950
12 198842 742 4166321184
13 943974 510 21760 624254
14 4468911 678 112743 796632
15 21 175146 054 580052 260230
16 100 121875 974 2966294 589312
17 473 730252 102 15 087996 161382
18 2237723684 094 76 384144 381272
19 10576 033219 614 385066579 325550
20 49917 327838 734 1933885653 380544
21 235710 090502 158 9679153967 272734
22 1111781 983442 406 48 295148145 655224
23 5245988 215191 414 240 292643254 616694
24 24 730180 885580 790 1192 504522283 625600
25 116618841 700433 358 5904 015201226 909614
26 549493796 867100 942 29 166 829902019 914840
27 2589874864 863200 574 143 797 743705453 990030
28 12 198184788 179866 902 707 626 784073985 438752
29 57 466913094 951837 030 3476154 136334368 955958
30 270 569905525 454674 614 17 048 697 241184582 716248
31 1274191064726 416905 966 83 487 969 681726067 169454
32 5997359460809 616886 494 408264 709 609407519 880320
33 28 233 744272563 685150 118 1993794 711 631386183 977574
34 132853 629626823 234210 582 9724709 261 537887936 102872
35 625248 129452557 974777 990 47 376158 929 939177384 568598
36 2941370 856334701 726560 670 230 547785 968 352575619 933376
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