
Mondriaan sparse matrix partitioning for attacking cryptosystems by a
parallel block Lanczos algorithm — a case study

Rob H. Bisselinga, Ildikó Fleschb

aDepartment of Mathematics, Utrecht University, P.O. Box 80010, 3508 TA Utrecht, The
Netherlands (Rob.Bisseling@math.uu.nl)

bDepartment of Information and Knowledge Systems, Institute for Computing and Information
Sciences, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
(ildiko@cs.ru.nl)

Abstract. A case study is presented demonstrating the application of the Mondriaan package for
sparse matrix partitioning to the field of cryptology. An important step in an integer factorisation
attack on the RSA public-key cryptosystem is the solution of a large sparse linear system with 0/1
coefficients, which can be done by the block Lanczos algorithm proposed by Montgomery. We par-
allelise this algorithm using Mondriaan partitioning and discuss the high-level components needed.
A speedup of 10 is obtained on 16 processors of a Silicon Graphics Origin 3800 for the factorisation
of an integer with 82 decimal digits, and a speedup of 7 for 98 decimal digits.

1. Introduction

The security of the widely used RSA public-key cryptosystem [12] is based on the fact that finding
the prime factors of a large integer is extremely time-consuming. The state-of-the-art in integer
factorisation methods tells us how large the keys used in RSA must be to withstand attacks based on
trying to find the prime factors for a given public-key value.

On May 9, 2005, Bahr, Böhm, Franke, and Kleinjung [1] announced a new record factorisation:
with help of te Riele and Montgomery they factorised the 200 decimal-digit number originally posed
as the RSA-200 challenge in 1991. This factorisation used the Number Field Sieve (NFS) [9], which
is currently the best factorisation method for large integers. In practice, the NFS almost always finds
a non-trivial factor of a composite number within a few attempts. The two most time-consuming
parts of this method are the sieving step and the matrix step. The sieving step took from December
2003 to December 2004, and was done by farming out jobs to a variety of computers, taking a total
of 55 CPU years (at the equivalent speed of a 2.2 GHz Opteron processor). The matrix step is more
tightly coupled and needs more memory since it involves a large sparse matrix, with 64 million rows
and columns and 11×109 nonzeros for RSA-200. Because of this, it must be carried out on a parallel
computer. The matrix step took about three months on a cluster of 80 Opterons. The linear system
of the matrix step was solved by a block Wiedemann algorithm [5]. An alternative method would be
the block Lanczos algorithm proposed by Montgomery [10].

In the present work, we will discuss the high-level components needed in a parallel computation
of the matrix step, such as Mondriaan matrix partitioning. In this paper, we focus on the block
Lanczos algorithm, but the same high-level components are also needed for the block Wiedemann
algorithm.

819



2. Sequential algorithm

2.1. Construction of the sparse matrix
The sieving step in the factorisation of a large number n tries to find many pairs (a

j
, b

j
) of integers

such that a
j
≡ b

j
(mod n) and a

j
and b

j
are the product of squares and small primes. Let p

i
be the

ith prime, i.e., p1 = 2, p2 = 3, p3 = 5, etc. and let p0 = −1. Then we can write each a
j

uniquely as
a finite product

a
j

=
∏

i

p
mij

i
. (1)

Note that a
j

is square if and only if all exponents m
ij

are even. Define a matrix A by a
ij

=
m

ij
mod 2. The matrix A is sparse because integers have only a limited number of prime factors.

Define a similar matrix B for the integers b
j
.

The matrix step tries to construct a subset of pairs (a
j
, b

j
), j ∈ S, such that

∏

j∈S
a

j
and

∏

j∈S
b
j

are both square. Let α2 =
∏

j∈S
a

j
and β2 =

∏

j∈S
b
j
. If gcd(αβ, n) = 1, then gcd(α − β, n) is a

factor of n, and hopefully a non-trivial one. If we write S = {j : x
j

= 1}, where x is an integer
vector with 0/1 components x

j
, we see that the two products are square if and only if Ax = 0 and

Bx = 0, where all computations are carried out modulo 2, i.e., in the finite field GF(2). Let the
n1 × n2 matrix C represent the two simultaneous linear systems,

C =

[

A
B

]

.

Thus, we need to solve Cx = 0. Figure 1 shows an example matrix C.

2.2. Sequential block Lanczos algorithm
To find (part of) the nullspaceN (C) of C, we can apply the block Lanczos algorithm as proposed

by Montgomery [10]. Since this algorithm is only suitable for symmetric matrices, it is applied
to CT C in such a way that it finds a nullspace N (CTC) that is as large as possible. There is no
need to form the product CT C explicitly: multiplication by CT C is carried out as multiplication
by C followed by multiplication by CT . Furthermore, it suffices to store only C. Since N (C) ⊂
N (CTC), we hope to be able to find some vector x ∈ N (C); this can be done by a postprocessing
procedure [10] after the block Lanczos algorithm.

The block Lanczos algorithm is applied to solve CT CX = CT CY , where X and Y are n2 × N
matrices. The solution matrix X contains a set of N columns, each representing a solution x. This
way, we obtain N solutions in one run of the algorithm. The size of N is chosen as the word size
of an integer on the computer used, say N = 32. This choice enables storage of the complete
matrix X in a single one-dimensional integer array of length n2. It also allows the use of efficient
bit operations in the algorithm. The matrix Y is chosen as a random bit matrix. The aim of this
approach is to obtain many independent solutions of CT Cx = 0, given by the columns of the matrix
X − Y .

Algorithm 1 summarises the steps of the block Lanczos algorithm. At the first occurrence of a
matrix in the algorithm, its size is given as a superscript. Matrix subscripts denote the order in a
sequence of matrices. All multiplication operations are explicitly shown by using an asterisk, e.g.
C ∗ V on line 15. The result matrix is then written as CV . There is no need to store both V and
V T ; only one of the two matrices suffices. The matrix Cond represents the termination condition;
SST represents the index set S. The function generateWS generates new matrices W inv and SST .
It only involves computations on small N × N matrices. Its description is omitted for the sake of
brevity; see [10, Fig. 1] for details.

820



Figure 1. Matrix C corresponding to a sparse linear system Cx = 0 (mod 2) obtained by the Multi-
Polynomial Quadratic Sieve (MPQS) method for a 30-decimal integer. The 179× 210 matrix C has
1916 nonzero elements. Each matrix row represents a prime; each column a pair of integers (a

j
, b

j
).

The primes are sorted in increasing order, where each prime may occur at most twice. The matrix has
been partitioned for four processors of a parallel computer, shown in different grey shades, by using
the Mondriaan package [14]. Also shown is a partitioning of the input vector (above the matrix) and
output vector (left) for a sparse matrix–vector multiplication y = Cx. Matrix source: courtesy of
Richard Brent.

3. High-level components for parallel computation

The matrix step of the block Lanczos algorithm requires the following major high-level compo-
nents:

• sparse matrix–vector multiplication;

• sparse matrix partitioning;

• vector partitioning;

• dense vector inner-product computation;

• AXPY operation;

• global-local indexing mechanism.

821



Algorithm 1 The sequential block Lanczos algorithm.
Input: matrices C of size n1 × n2 and Y of size n2 ×N .
Output: matrix X , such that CT (CX) = CT (CY ).
1. Initialise:
1a. W inv N×N

−2 = W inv N×N

−1 = 0
1b. V n2×N

−2 = V n2×N

−1 = 0
1c. CV n1×N

−1 = 0
1d. K N×N

−1 = 0

1e. SST
N×N

−1
= I

N

1f. X n2×N = 0
2. V n2×N

0 = CT ∗ (C ∗ Y )
3. CV n1×N

0 = C ∗ V0

4. Cond N×N

0
= (CV0)

T ∗ CV0

5. i = 0
while Cond

i
6= 0 do

7. [W inv
i

, SST

i
] = generateWS(Cond

i
, SST

i−1
, N, i)

8. X = X + V
i
∗ (W inv

i
∗ (V T

i
∗ V0))

9. CT CV n2×N

i
= CT ∗ CV

i

10. K
i
= ((CV

i
)T ∗ (C ∗ (CT CV

i
))) ∗ SST

i
+ Cond

i

11. DN×N

i+1 = I
N
−W inv

i
∗K

i

12. EN×N

i+1 = −W inv
i−1
∗ (Cond

i
∗ SST

i
)

13. F N×N

i+1 = −W inv
i−2
∗ (I

N
− Cond

i−1 ∗W inv
i−1

) ∗K
i−1 ∗ SST

i

14. V
i+1 = CT CV

i
∗ SST

i
+ V

i
∗D

i+1 + V
i−1 ∗ E

i+1 + V
i−2 ∗ F

i+1

15. CV
i+1 = C ∗ V

i+1

16. Cond
i+1 = (CV

i+1)
T ∗ CV

i+1

17. i = i + 1
18. Return X .

These components can be viewed as building blocks that occur in many different applications; for
instance, they occur in both the block Lanczos algorithm and the block Wiedemann algorithm for
the matrix step, but also in most iterative linear system solvers.

Sparse matrix–vector multiplication involving the matrix C occurs on lines 2, 3, 9, 10, 15 of
Algorithm 1. Here, the sparse bit matrix C is multiplied by an n2 × N bit matrix, which can be
viewed as N multiplications by a bit vector of length n2, or the transpose matrix CT is multiplied.
The parallel component required is a four-phase algorithm, consisting of: (i) communication of the
components of the input vectors to exactly those processors that need them; (ii) local matrix–vector
multiplication; (iii) communication of local results to the owner of the corresponding output vector
component; (iv) and finally addition of these results. For more details, see [2, Chap. 4]. This parallel
algorithm for sparse matrix–vector multiplication improves upon that used by Montgomery [11] in
his parallel version of the block Lanczos algorithm because in our approach the communication
exploits the sparsity of the matrix C; in [11], however, the amount of communication is as large as
for a dense matrix. The algorithm should work for every possible distribution of the matrix and the
input and output vectors. Note that the algorithm is a generalisation of the regular sparse matrix–
vector multiplication to the multi-vector case.

822



Sparse matrix partitioning can be done by any of the available sparse matrix partitioners based on
multilevel hypergraph partitioners, such as hMetis [7], Mondriaan [14], Parkway [13], PaToH [4], or
Zoltan [6]. Parkway and Zoltan are able to do the partitioning itself in parallel. In the present work,
we used the sequential partitioner Mondriaan.

Vector partitioning can be done by algorithms that try to balance the communication load of the
sparse matrix–vector multiplication. Such a partitioning is incorporated in the Mondriaan package,
and an improved version is described in [3]. Note that in the block Lanczos algorithm we have
two types of vectors: those of length n1 and those of length n2. The two types can be partitioned
independently, taking the result of the preceding matrix partitioning into account.

Dense vector inner-product computation occurs on lines 4, 8, 10, 16. It is easiest to perform if all
vectors of the same length have the same distribution. The vector partitioning in Mondriaan does not
take the number of components assigned to each processor into account, although in practice this
number is not too badly balanced among the processors. A possible extension would be to perform
the vector partitioning for multiple objectives, including balancing the inner-product computation.

The AXPY operation (‘A times X Plus Y ’) is a well-known level 1 operation [8] from the Basic
Linear Algebra Subprograms (BLAS). In iterative linear system solvers, it has the form y := αx+y,
where x and y are vectors and α is a scalar. Its double-precision version is sometimes called DAXPY.
In Algorithm 1, the AXPY operation occurs on lines 8 and 14. For instance, on line 8, we can view
the multiplication of the n2×N bit matrix V

i
by an N ×N matrix as the multiplication of an integer

vector of length n2 by a small object, analogous to a scalar. An AXPY is carried out in parallel by
replicating the scalar so that every processor has a copy and letting each processor multiply the local
part of the vector by the scalar.

A global-local indexing mechanism is needed at the start of the block Lanczos algorithm. After
the matrix and vectors have been distributed, the processors know which matrix elements and vector
components they own, but they do not know where to obtain the input vector components they need
in the matrix–vector multiplication, or where to send contributions for output vectors. The solution
to this problem is that the global address of every vector component is first stored at a location that
can be inspected by all processors. This location is called the notice board in BSPedupack [2], or
the data directory in Zoltan [6], which provides many additional services besides partitioning. For
example, the address of component x

j
with global index j of a vector x can be found at processor

j mod p at local index bj/pc, where p is the number of processors. After the address has been
retrieved at the start of the block Lanczos algorithm, the current value of vector component x

j
can

be obtained from that address each time it is needed.
All other parts of Algorithm 1 are less important. Matrices of size N × N are small (only N

integers) and can easily be communicated and replicated. For instance, the computations of lines 7,
11, 12, 13 are carried out redundantly by every processor.

4. Numerical experiments

We performed numerical experiments on up to 16 processors of the Silicon Graphics Origin 3800
at SARA in Amsterdam. We used two matrices, c82 and c98a, produced by the MPQS method
during the factorisation of composite integers with 82 and 98 decimal digits, respectively. For prob-
lems of this size, MPQS is faster than NFS. The matrices originating in MPQS are similar to those
of NFS and representative of the wider class of sieving matrices. The properties of these matrices
are given in Table 1.

We implemented the parallel block Lanczos algorithm using the high-level components described
in Section 3. We partitioned the two matrices and the corresponding vectors using the Mondriaan

823



Name n1 n2 Nonzeros
c82 16307 16338 507716
c98a 56243 56274 2075889

Table 1
The properties of the two test matrices.

package [14] version 1. The execution times of the parallel program with p = 1 for c82 and c98a
are about 80 s and 1200 s, respectively. We only have a parallel version of the program available,
so we cannot use a sequential version to compare with. Thus, there will be some overhead in our
reference version, which is the parallel program run on one processor. The overhead mainly consists
of global-local index transformations and unnecessary calls to the synchronisation mechanism. This
overhead is expected to be small, because the index transformations are carried out in a preprocessing
step, and thus are removed from the main loop of the computation. Furthermore, the main loop
contains only a few synchronisations. For p = 1, all communications reduce to memory copies.
The relative speedup of the parallel program compared to the p = 1 case is given in Figures 2 and
3. Note that we achieve a higher speedup on the smaller problem, which is unusual, and which we
find hard to explain. Certainly, cache effects must play a role here. (We have partially optimised our
implementation to make it cache friendly.) The speedups achieved are reasonable, but not optimal.
One reason for this is that the vector partitioning should be improved. The current tests used the
vector partitioning of Mondriaan version 1; for version 2, we expect better results.

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10 12 14 16

R
el

at
iv

e 
sp

ee
du

p

Number of processors

Block Lanczos

Figure 2. Speedup of parallel block Lanczos algorithm for test matrix c82.

824



1

2

3

4

5

6

7

8

0 2 4 6 8 10 12 14 16

R
el

at
iv

e 
sp

ee
du

p

Number of processors

Block Lanczos

Figure 3. Speedup of parallel block Lanczos algorithm for test matrix c98a.

5. Conclusions and future work

We have studied an application in the field of cryptology, the solution of sparse linear systems
in the binary field GF(2). We have identified important high-level components for this application
and discussed their parallel aspects. This application has some particular characteristics (e.g. the
computations modulo 2), but otherwise it stands for a much larger class of applications such as
iterative methods for the solution of linear systems and eigensystems. The identified high-level
components are important for this whole class.

An issue that also emerged from this application is that we cannot balance the computational load
completely by preprocessing to find good matrix and vector partitionings. If we make use of the
current bit pattern in the vectors and in the small N × N matrices (with N = 32) to avoid certain
unnecessary operations, we save work but we also introduce a dependence of the work load on the
current state. This may lead to load imbalance. It is a challenge to find a dynamic procedure to
mitigate this effect.

Much research is carried out these days on higher-level tools for parallelisation. The high-level
components identified here could provide focus for these efforts. If the tools would help in develop-
ing efficient and flexible components for the block Lanczos algorithm, this would have an impact on
a wide range of applications.

825



Acknowledgements

We thank Richard Brent for providing the test matrices used in this paper and for many valuable
suggestions. We thank Fatima Abu Salem for interesting and helpful discussions on integer factori-
sation. We also thank Herman te Riele for useful comments on the initial version of this paper. Part
of the research has been funded by the Dutch BSIK/BRICKS MSV1-2 project. Computer time has
been partially funded by the Dutch National Computer Facilities foundation (NCF).

References

[1] Friedrich Bahr, M. Böhm, Jens Franke, and Thorsten Kleinjung. Factorisation of RSA-200. Announce-
ment, http://www.loria.fr/ zimmerma/records/rsa200, May 9, 2005.

[2] Rob H. Bisseling. Parallel Scientific Computation: A Structured Approach using BSP and MPI. Oxford
University Press, Oxford, UK, March 2004.

[3] Rob H. Bisseling and Wouter Meesen. Communication balancing in parallel sparse matrix-vector multi-
plication. Electronic Transactions on Numerical Analysis, 21:47–65, 2005. Special Issue on Combina-
torial Scientific Computing.

[4] Ümit V. Çatalyürek and Cevdet Aykanat. Hypergraph-partitioning-based decomposition for parallel
sparse-matrix vector multiplication. IEEE Transactions on Parallel and Distributed Systems, 10(7):673–
693, 1999.

[5] Don Coppersmith. Solving homogeneous linear equations over GF(2) via block Wiedemann algorithm.
Mathematics of Computation, 62(205):333–350, 1994.

[6] Karen Devine, Erik Boman, Robert Heaphy, Bruce Hendrickson, and Courtenay Vaughan. Zoltan
data management services for parallel dynamic applications. Computing in Science and Engineering,
4(2):90–97, March/April 2002.

[7] George Karypis and Vipin Kumar. Multilevel k-way hypergraph partitioning. In Proceedings 36th
ACM/IEEE Conference on Design Automation, pages 343–348. ACM Press, New York, 1999.

[8] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic Linear Algebra Subprograms for
Fortran usage. ACM Transactions on Mathematical Software, 5(3):308–323, 1979.

[9] A. K. Lenstra, H. W. Lenstra, Jr., M. S. Manasse, and J. M. Pollard. The number field sieve. In Proceed-
ings 22nd Annual ACM Symposium on the Theory of Computation, pages 564–572, 1990.

[10] Peter L. Montgomery. A block Lanczos algorithm for finding dependencies over GF(2). In Proceedings
EUROCRYPT’95, volume 921 of Lecture Notes in Computer Science, pages 151–168. Springer-Verlag,
Berlin, 1995.

[11] Peter L. Montgomery. Parallel block Lanczos. In Proceedings RSA-2000, 2000.
[12] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital signatures and

public-key cryptosystems. Communications of the ACM, 21(2):120–126, February 1978.
[13] Aleksandar Trifunovic and William J. Knottenbelt. A parallel algorithm for multilevel k-way hypergraph

partitioning. In Proceedings Third International Symposium on Parallel and Distributed Computing,
Cork, Ireland, July 2004.

[14] Brendan Vastenhouw and Rob H. Bisseling. A two-dimensional data distribution method for parallel
sparse matrix-vector multiplication. SIAM Review, 47(1):67–95, 2005.

826




