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A B S T R A C T

This systematic review gives an extensive overview of the current state of functional imaging during (chemo)
radiotherapy to predict locoregional control (LRC) and overall survival (OS) for head and neck squamous cell
carcinoma. MEDLINE and EMBASE were searched for literature until April 2018 assessing the predictive per-
formance of functional imaging (computed tomography perfusion (CTp), MRI and positron-emission tomography
(PET)) within 4 weeks after (chemo)radiotherapy initiation. Fifty-two studies (CTp: n = 4, MRI: n = 19, PET:
n = 26, MRI/PET: n = 3) were included involving 1623 patients. Prognostic information was extracted ac-
cording the PRISMA protocol. Pooled estimation and subgroup analyses were performed for comparable para-
meters and outcome. However, the heterogeneity of included studies limited the possibility for comparison.
Early tumoral changes from (chemo)radiotherapy can be captured by functional MRI and 18F-FDG-PET and
could allow for personalized treatment adaptation. Lesions showed potentially prognostic intratreatment
changes in perfusion, diffusion and metabolic activity. Intratreatment ADCmean increase (decrease of diffusion
restriction) and low SUVmax (persistent low or decrease of 18F-FDG uptake) were most predictive of LRC.
Intratreatment persistent high or increase of perfusion on CT/MRI (i.e. blood flow, volume, permeability) also
predicted LRC. Low SUVmax and total lesion glycolysis (TLG) predicted favorable OS. The optimal timing to
perform functional imaging to predict LRC or OS was 2–3 weeks after treatment initiation.

Introduction

Head and neck cancer (HNC) accounts for approximately 5% of
cancer incidence worldwide [1]. Choice of treatment depends on fac-
tors such as primary tumor location, extension into adjacent structures
and possibilities of function preservation [2]. Locally advanced tumors
often require combinations of surgery, radiotherapy and/or che-
motherapy [3].

Despite these treatment options, locoregional recurrence (LRF) rates
in the first 2 years of 15–50% are reported in patients with advanced

stage tumors [4-6]. Optimization of treatment monitoring could allow
for early escalation (e.g. increasing radiation dose, addition of che-
motherapy), de-escalation [7] (i.e., reducing overtreatment and un-
necessary toxicity in patients with good prognosis) or switch to another
treatment modality (i.e. primary surgery) [8–10].

Clinical, histopathological and anatomical imaging biomarkers are
increasingly used to perform treatment selection and response assess-
ment [3,5]. Pretreatment anatomical imaging biomarkers on computed
tomography (CT) and magnetic resonance imaging (MRI), e.g. volume,
are mainly morphologic tumor characteristics [11–13], while
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functional imaging can map physiological processes and capture in-
tratumoral heterogeneity [3,14].

Change of tumor characteristics during treatment might be pre-
dictive for treatment response and long-term outcome. Changes in
perfusion and metabolic activity due to cellular stress and damaged
cellular membranes occur early after start of treatment and may pre-
cede changes in size [15,16]. Effects of radiation and chemotherapy
start with tumoral permeability changes and reoxygenation of central
hypoxic areas. Furthermore, a reduction of venous and lymphatic
drainage by vascular collapse due to raised interstitial pressure [17].
This is followed by edema in the first 2 weeks, progressive thickening of
the connective tissue and ends with formation of fibrosis [18,19].

These physiological changes of perfusion, diffusion and metabolic
activity properties of tumor tissue may be captured by functional
imaging, such as CT-perfusion, dynamic contrast-enhanced MRI (DCE-
MRI), diffusion-weighted (DW-) MRI, intra-voxel incoherent motion
(IVIM) MRI and positron-emission tomography (PET) [20]. Imaging
techniques like CT-perfusion or DCE-MRI provide information on tumor
perfusion and permeability [21–25]. With DWI the mobility of water
molecules can be quantified using apparent diffusion coefficients (ADC)
[26,27]. Low ADC values reflect low mobility of water molecules,
which is an indication of a high cellularity and is generally associated
with malignancy [26]. The IVIM technique is an extension of the DWI
technique [28], which separates the tissue capillary perfusion fraction
from the overall diffusion signal [29]. 18F-fluorodeoxyglucose (FDG)-
PET assesses the metabolic, glycolytic activity of tissues [30], 18F-
fluoromisonidazol (FMISO) [31] measures hypoxia and 3′-Deoxy-3′-18F-
fluorothymidine (18F-FLT) assesses proliferation [32]. All these para-
meters could change during early stage of treatment and are therefore
potential prognosticators for early LRF and overall survival (OS).

The objective of this systematic review was twofold; firstly, to
evaluate the prognostic value of early functional imaging during
treatment of head and neck squamous cell carcinoma (HNSCC), with
LRF and OS as main outcome measures; secondly, to evaluate the op-
timal time to perform functional imaging after start of treatment.

Methods

The Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) statement for systematic reviews was used as gui-
dance [33].

Search strategy and study selection

PubMed (Medline) and EMBASE were searched for articles pub-
lished until April 1st 2018 on functional imaging techniques in HNSCC
performed early during (chemo)radiotherapy (within 4 weeks after in-
itiation) (See Supplement A for the full search strategy), without lan-
guage restrictions. Discrepancies were resolved by consensus. We used
the following inclusion criteria: (1) study population consisted of at
least 10 patients with HNSCC; (2) functional imaging was performed
with at least one of the following techniques: CT-perfusion, DCE-/DW-
MRI with or without IVIM or PET(CT/MRI); (3) imaging was performed
within 4 weeks after the start of (chemo)radiotherapy and was used for
predicting treatment outcome; (4) histopathology, clinical and/or
imaging follow-up were reference standard. Studies were excluded if
(1) nasopharyngeal tumors were the main subject, due to its unique
histopathology [2]; (2) the article was a conference abstract or study
with focus on an experimental treatment; (3) the study population
overlapped with another study.

Data extraction

Data on study and patient characteristics, imaging protocol and
prognostic parameters for LRC and OS, were extracted by 2 reviewers,
independently. Discrepancies were resolved in consensus. Short-term

outcome was defined as treatment response assessment with a max-
imum follow-up of 6 months. Locoregional control (LRC) and locor-
egional failure (LRF) were measures which determine LRF survival. LRF
survival was defined as the interval from end of treatment with absence
of pathological proven recurrence of HNSCC at the location of primary
tumor or lymph node metastasis during the mean follow-up time of
2 years. Prognostic outcomes of CT-perfusion, functional MRI and PET
parameters (i.e. odds ratio (OR) and hazard ratio (HR) with 95% con-
fidence intervals (CI) and true positive [TP], false positive [FP], true
negative [TN] and false negative [FN]) were extracted. In case of in-
complete 2 × 2 tables, authors were contacted.

Quality assessment

We assessed the quality of and the risk for bias in the eligible studies
using the QUIPS (Quality in Prognostic Studies) checklist [34].

Data synthesis

Parameters derived from imaging during treatment and delta-values
(i.e. the difference between values acquired from imaging before and
during treatment) were included in data synthesis [35]. The Odds-ratio
(OR) and Hazard-ratio (HR) were calculated based on per patient data.
Variability between individual studies was evaluated by plotting the
diagnostic accuracy estimates, and the proportional hazard model was
pooled and presented on forest plots with 95% confidence intervals
(95%CI), using RevMan 5.3 software (Cochrane collaboration, Co-
penhagen, Denmark). Heterogeneity was quantified using the I2 index,
which describes the percentage of variation across studies that is due to
heterogeneity rather than chance. Statistical analyses were performed
using SPSS (version 22, Chicago, IL, USA).

Results

The search yielded 13,465 unique studies. The full texts of 254
studies were reviewed (Figure 1). Finally we included 52 articles in
which CT-perfusion (n = 4) [17,36-38], functional MRI (n = 22)
[11,39-58], and PET (n = 29) [8,16,31,32,41,53,58-80] were used
(Table 1). Functional MRI techniques were studied using DCE (n = 7)
and DWI (n = 17), of which 3 studies used IVIM and one study used
both DWI and DCE. The used PET tracers were 18F-FDG (n = 15), 18F-
FMISO (n = 7), 18F-FLT (n = 5) and 18F-Hx4 (n = 1). Thirty-two au-
thors were contacted for additional data, 69% (22 out of 32) responded.
For two studies [68,80] we suspected overlap in study populations.
However, we could not verify this and because they contained com-
plementary information we included both studies.

Baseline characteristics

Total study population consisted of 1.623 patients, of which
61–100% was male (See Supplement B and C for extended baseline and
technical details, respectively). The studies mainly consisted of T2 or T3
tumors (Supplement D) and N2 nodal stage and included all sites
(Supplement E1-3). AJCC stage (7th edition) of III or IV. All studies
were prospective, except for 3 MRI [42,50,81] and 5 PET studies
[10,67–69,73]. In one study [74] it was not specified. In 37 out of 52
studies (70%), patients received cisplatin-based chemotherapeutic re-
gimens. Reference standard during follow-up was (histo)pathological
confirmation in case of suspicion of malignancy on functional imaging
(CTp, MRI or PET) and clinical examination in all studies, except for 2
PET-studies [41,70] in which the reference standard was not men-
tioned.

Treatment outcome was described in 45 studies (CTp (n = 4), fMRI
(n = 20) and PET (n = 25) (Supplement F). Short-term outcome
(treatment response evaluation with a maximum follow-up of
6 months) was described in 12 studies (CT (n = 2) [17,38], MRI (n = 7)
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[44,48,51,54,56,57], PET (n = 3) [8,63,82]). The LRC at 2 years was
87–93% of patients in CT-studies, 29–89% of patients in MRI-studies
and 42–90% in PET-studies. The 2 year OS was 87–93% of patients in
CT-studies, 29–91% of patients in MRI-studies and 32–97% in PET-
studies.

Study quality

The QUIPS (Supplement G) resulted in overall low risks for bias on
study participation, prognostic factor, outcome measurement and sta-
tistical analysis and reporting. However, 6 studies [8,16,42,44,53,54]
scored high risk for bias on study attrition, 15 on prognostic factor
measurement [8,32,39,44,46,49,50,55,61,63,65,68,72,80,83], and 7
on confounders, [8,16,39,42,48,69,84], respectively. HPV status was
reported in 4 MRI-studies (18.2% of included MRI studies)
[44,56,57,83] and 5 PET-studies (18.5%) [10,16,70,78,79] as possible
effect-modifier. The follow-up time varied in the included studies; 2 CT-
studies [17,38] and 7 DCE-MRI-studies [44,45,48,51,54,56,57] re-
ported a limited follow-up time of 6 months, while all other included
studies reported a mean follow-up time ranging from 9.7 to
64.9 months.

Locoregional control and overall survival

Prognostic effect of clinical parameters on functional parameters
The effect of tumor stage on functional biomarkers was assessed in

one study [61], which reported a significant higher FDG-PET SUVmax
in advanced tumor stage.

The prognostic effect of HPV-status on the functional biomarkers
during treatment was assessed in 5 studies [10,44,56,57,83]. The in-
tratreatment resolved hypoxic subvolumes in HPV-positive patients
appeared to be a predictor for LRC [10]. Tumor sub-entities using a
clustering method [57] and intratreatment IVIM-derived change of ADC
and D [56], were identified in HPV-positive tumors with good response.
Another study reported a high prevalence of resolvable hypoxic area in
HPV-positive tumors using 18F-FMISO-PET [10].

Perfusion (CT-perfusion and DCE-MRI)
First-pass perfusion, measured with CT-perfusion, was assessed in 4

studies [17,36-38]. High baseline blood flow (BF > 106 ml/100 g/
min) and low permeability surface ( ≤ 47 ml/100 g/min) (PS, i.e. the
product between permeability and the total surface area of the capillary
endothelium in a unit mass of tissue) were predictive for LRC [17]. A
persistent high or increasing BF, BV and PS at 3–4 weeks intratreatment

Fig. 1. PRISMA flow diagram of included studies.
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were predictive for LRC [36,38]. An increase at two weeks intratreat-
ment of BF of 27.5% [36] and capillary permeability transfer coefficient
(Ktrans) was predictive for LRC [37].

LRC was assessed in 5 studies using dynamic contrast-enhanced MRI
[39,40,42–44] Two studies [40,43] showed a significantly higher
tumor-blood-volume (ΔTBV) at DCE after 2 weeks after start of (chemo)
radiotherapy in LRC compared to LRF (p = 0.03 and p = 0.01). A high
persistent or fractional increase of Ktrans (p = 0.012) after 2 weeks of
treatment (volume transfer constant between blood plasma and extra-
cellular extravascular space) was associated with LRC [58].

Diffusion (DWI and IVIM)
Twenty-two studies [39-58,83,85] assessed the prognostic accuracy

of DWI, of which 3 used IVIM [56,57,83]. An optimal cut-off of per-
centage increase of ADCmean was determined per study, above which
patients were prognostic for LRC (Figure 2, see Supplement H for pa-
tient data). Firstly, the percentage ADCmean change was assessed, which
showed that an percentage ADCmean increase at 2 weeks intratreatment
higher than the optimal cut-off of 10.8–15.5% was predictive for LRC
during 2 years of follow-up (pooled OR of 19.34 (95%CI 6.28–59.51,
I2 = 0%)). A higher percentage ADCmean increase than the optimal
cut-off of 15.5%[83] or 24%[85] (Figure 2) at 3 weeks predicted LRC
(n = 34, n = 35, respectively) resulting in a pooled odds ratio of 19.79
(95%CI 1.06–369.52, I2: 68%).

An ADCmean increase after 1 week of treatment was reported
higher in LRC than in LRF patients [47]. At 2–3 weeks two studies did
not find significant differences in ΔADCmean between LRC and LRF
patients [52,53], whereas three other studies showed an overall trend
towards a higher ADCmean increase at 3 weeks intratreatment in LRC
(22%[45], > 25%[54], 100% increase [56]) compared with LRF
(7%[45], not specified [54], 38% increase [56]). An ADCmean increase
of 25% at 4 weeks was reported in LRC [55]. A high ( > 1.12) value or
an increase (52%) of IVIM parameter D at 3 weeks intratreatment, was
found predictive for LRC [56,57,83] No study used ADCmean to predict
OS.

Positron-emission tomography
18F-FDG-PET SUVmax was measured in 17 studies

[8,41,53,58,60,61,63-69,71-73,80,82]. A lower metabolic rate than 16
(in µmol/min/100 g of tissue) at 3 weeks intratreatment (p = 0.007)
was associated with LRC in three studies within a short follow-up time
of 6 months [8,63,82].

An absolute SUVmax higher than the optimal cut-off defined in each
study, ranging from 4.25 to 5.05, at 3–4 weeks intratreatment, was
found to be predictive for LRF in 4 studies [68,71,72,80], with a pooled
HR of 2.32 (95%CI 1.39–3.87; I2: 0%) (Figure 3a). Although the patient
population, the image system and acquisition protocols differed in the
pooled studies, the patient population and outcome were homogeneous
(I2 = 0; Figure 3). Lower absolute SUVmax after 3 weeks of (chemo)
radiotherapy (i.e. absolute SUVmax < 4.25 g/mL) was predictive for
LRC (p = 0.002) [68,80].

The accuracy of predicting OS with (Δ)SUVmax intratreatment is
shown in Figure 3b. An absolute SUVmax higher than the optimal cut-off
value defined in each study was predictive for a better OS (pooled HR of
2.59; 95%CI, 1.62–4.12, I2:0%)).

Three studies [68,72,80] reported that a lower total lesion glyco-
lysis (TLG) at 3 weeks intratreatment was moderately predictive for
LRC and OS (Figure 4a and 4b, respectively). The pooled HR for TLG
higher than the optimal cut-off of 9.4–14.0 was found 5.68 (95%CI
2.86–11.31; I2:0%) for LRC and 3.04 (95%CI 1.70–5.42; I2:0%) for OS.
The prognostic value of TLG was directly compared to the SUVmax
reduction in one study [68], shown that TLG was the best prognostic
indicator of oncological outcomes. One study [73] showed that a TLG
reduction of > 5% per week was associated with improved LRC
(p = 0.04; HR = 0.37; 95%CI = 0.15–0.95). Three studies [68,72,80]
reported that an absolute TLG value lower than the ≤ 9.4 or < 14.0Ta
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Fig. 2. The accuracy of DWI studies to predict locoregional control sorted by imaging time point; at 2 and 3 weeks after treatment initiation. Sensitivity and
specificity are reported with 95% confidence interval as horizontal lines. On the right, a pooled odds ratio of %ADC increase to predict locoregional failure
(recurrence). A higher %ADC increase than the optimal cut-off value (OC) resulted in a higher odds for locoregional control (LRC). Abbreviations: ADC = apparent
diffusion coefficient, PT = primary tumor, LN = lymph node, LRC = locoregional control, LRF = locoregional failure, I2 = I-square, df = degrees of freedom,
IV = instrumental variable, CI = confidence interval.

a

b

Fig. 3. (A) The accuracy and hazard ratio of SUVmax for the prediction of DFS. Low to moderate accuracy is shown for the week 3–4 assessment of SUVmax. (B) The
accuracy and hazard ratio of SUVmax for prediction OS. Higher SUVmax than the optimal cut-off resulted in a higher hazard for death. Abbreviations: df = degrees of
freedom, IV = instrumental variable, LN = lymph node, LRC = locoregional control, LRF = locoregional failure, OS = overall survival, SE = standard error,
SUV = standard uptake value, PT = primary tumor.

a

b

Fig. 4. (A) The accuracy and hazard ratio of FDG-PET TLG was low to moderate for prediction of DFS. (B) The accuracy and hazard ratio of TLG for predicting OS is
shown, which resulted in a moderate accuracy. Abbreviations: df = degrees of freedom, IV = instrumental variable, LN = lymph node, LRC = locoregional control,
LRF = locoregional failure, PT = primary tumor, SE = standard error, TLG = total lesion glycolysis.
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cut-off values at week 1–3 intratreatment resulted in a LRC of 72% and
78% compared to 35% and 41%, respectively (p = 0.012, p = 0.005,
HR 4.36–7.76; 95%CI = 1.40–32.6). One study found that a total of all
lymph node metastases intratreatment TLG (SUVmean × metabolic
tumor volume (MTV)) and MTV reduction of > 50%, was a biomarker,
which significantly correlated with LRC and OS [72].

FMISO-PET uptake with tumor-to-background-ratio (TBR) (grada-
tion of hypoxia) during treatment < 1.26 or < 1.93 at 2 weeks
or < 1.17 at 3 weeks intratreatment, was associated with a better 2-
year LRC (p = 0.001, p = 0.016, p = 0.02, respectively) [31,75,41].
TBRpeak (SUVpeak divided by the SUVmean of the background) at 1 or
2 weeks intratreatment was predictive for LRC (p = 0.019, p = 0.012,
respectively) [79]. Delta TBR was significantly predictive for LRC
(p < 0.01) [78].

An FLT-PET SUVmax decrease of ≥ 45% at 2 weeks (chemo)radio-
therapy was associated with a better 3-year LRC (88% vs. 63%,
p = 0.035) [32].

Recommendations for clinical practice

Included studies described associations between functional imaging
parameters and patient outcome, based on which limited data was re-
ported on recommendations for clinical practice (Supplement I).

Suggestions for treatment de-escalation was reported in one CTp
[37], 3 DCE studies [39,43,44], one DWI study [57], one FDG-PET,
[72], one FMISO [78] and one FLT-PET study [32].

The identification of candidates for escalation of treatment was
described in 2 DCE [41,44], FDG-PET [61,69,71,75,80] FMISO-PET
[31,76], FLT-PET-study [32,62]. A change to surgery was reported in
one CTp [38] and one PET-study [63].

Discussion

This systematic review provides an extensive overview of the
prognostic value of performing early intratreatment functional imaging
regarding the effect of tumoral perfusion and permeability, diffusion
and metabolic rate on locoregional control (LRC) and overall survival
(OS).

Summary of findings

The included studies showed that functional MRI parameters (i.e.
increase of ADCmean and Ktrans) acquired during treatment, were able to
predict LRC [17,36-38,40,43,45,49,50,54,55,57,85]. Similarly, 18F-
FDG-PET studies showed that SUVmax reduction was also prognostic for
LRC [68,71,72,80].

The most accurate prognosticators for OS with 18F-FDG-PET ima-
ging were SUVmax and total lesion glycolysis (TLG) reduction, whereas
prognostic functional MRI parameters were not reported. Overall, re-
producible prognosticators were found early during treatment, which
can be used to stratify patients for early personalized treatment mod-
ifications (e.g. early treatment (de)escalation or switch to another
treatment) to increase effectivity and reduce unnecessary toxicity in
patients with good prognosis.

Biological characteristics captured by functional imaging during treatment

Knowledge about the biological tumor characteristics such as vas-
cularization, cellularity, and metabolic activity can determine (chemo)
radio-sensitivity of a lesion and can change during treatment.

Perfusion and permeability describe the vascularization properties
of tumors, which are different compared to normal tissue [36]. Tumors
easily become hypoxic and necrotic, because of altered vascular ar-
chitecture, rapid proliferation and insufficient blood supply as the
tumor rapidly grows. Another contributor to this disturbed vascular-
ization and decreased perfusion is a reduction of venous/lymphatic

drainage due to vascular collapse due to raised interstitial pressure
[17,37]. Intratumoral inflammation, mainly due to radiotherapy, leads
to an increase of blood flow and permeability surface by the upregu-
lation of vascular endothelial growth factor (VEGF) in tumor and
stromal cells and to the expression of endothelial nitric oxide, that may
result in opening up previously non-perfused vessels and in neoangio-
genesis [86]. In this study, patients with LRC showed a high persistent
or intratreatment increased blood flow (BF), volume (BV), permeability
surface (PS) and capillary permeability (Ktrans). These parameters might
reflect in patients with LRC the net imbalance of pro-angiogenic factors
(e.g. VEGF) by chemo-/radiotherapy over anti-angiogenic factors; in-
creasing the blood supply and permeability of tumor microvessels as a
local supply of oxygen. Early cell degradation results in expansion of
interstitial space (i.e. increase of Ve) and increased vascular perme-
ability (i.e. increase of Ktrans), which is also associated with LRC [58].
Reoxygenation of hypoxic tumor areas might help restore radio-
sensitivity [2,39–43,87]. In contrast, an imbalance of anti-angiogenic
factors over angiogenic factors may have caused a low baseline perfu-
sion characteristics, representing a more aggressive phenotype [36].
During treatment, the (chemo)radiotherapeutic cytotoxic effect may
have manifested on endothelial cells of vessels, which have led to
thrombosis and secondary small vessel occlusion [37]. Low persistent
perfusion could also lead to a compensational induction of VEGF and its
receptors in residual tumor cells, resulting in an anti-apoptotic factor
for endothelial cells. [37] In this study, this was reflected by an in-
tratreatment persistent low perfusion and the absence of intratreatment
increase of perfusion BF, BV and Ktrans in LRF [36,37,44,58].

Diffusion characteristics of the tumor reflect micro-structural cel-
lular tissue organization, including cellular density [52] and hetero-
geneity [45]. Tumors with high cellularity are reflected by a high dif-
fusion restriction (i.e. low ADC) and are associated with LRC. Early
intratreatment increase of ADC is attributed to an increase in molecular
diffusion in the extracellular space that occurs with cell shrinkage and
death, and movement of water from the intracellular to extracellular
space as a result of cell membrane destruction [51,54]. In contrast,
heterogeneous tumors are associated with small hypoxic areas of ne-
crosis (i.e. high ADC) with insufficient blood supply resulting in LRF
[52,57]. The LRF might be explained by an intratreatment persistent
impairment of delivery of sufficient chemotherapeutic agents and/or
oxygen (hypoxia), which decreases radiosensitivity [17,83]. The ab-
sence of an ADC increase after treatment initiation was correlated with
the dens microstructure of persistent HNC [55]. Perfusion-free diffusion
coefficient D (from IVIM-analysis) or DWI histogram analysis seemed
more sensitive to variation in the cellular microstructure caused by
early radiation effects, than ΔADCmean [56,57,83].

Tumoral metabolic activity was mainly assessed by FDG-PET studies
[61,64,65,68,69]. Intrinsically aggressive tumors are likely to have high
baseline proliferation rates, which will remain high during (chemo)
radiotherapy [80]. However, infiltration of inflammatory macrophages
with overexpression of GLUT-1 transporters will contribute to the FDG-
PET signal. Accumulation of FDG in peritumoral tissue could be caused
by radiation-induced inflammation after 2–3 weeks [61]. A strong de-
crease of total lesion glycolysis (TLG) was a better reflector of the
metabolic burden compared to SUVmax, which is based on the highest
single-voxel intensity [68]. Smaller hypoxic areas (i.e. reduction of
TBRmax on FMISO-PET) early during (chemo)radiotherapy were asso-
ciated with LRC due to an improved perfusion by radiotherapeutic ef-
fects, whereas in larger hypoxic areas hypoxia will remain as these are
too far away from the blood supply [75].

Prognostic effect of clinical parameters

Patients with a positive tumor HPV-status have favorable LRC and
OS [88]. This was attributed to the inactivation of the tumor suppressor
gene TP53 in HPV-positive tumors, which is reactivated during radio-
therapy and results in restoration of normal cell cycle control and
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apoptosis. In this study, limited studies reported on differences of tumor
stage or HPV-status on functional imaging parameters, but it was sug-
gested that HPV-status contributes to personalized dose de-escalation
[10,56]. Large future studies, stratified for these parameters, should
evaluate the effect on functional biomarkers.

Optimal imaging timing for LRC and OS prediction

The optimal intratreatment imaging time to identify predictive
biomarkers was 2–3 weeks, varying slightly among the biological
characteristics. The timeframe of 2–3 weeks intratreatment allows for
capturing early perfusion change (after week 2), without the drawback
of destroyed tissue diffusion restriction and inflammatory components
(after 3 weeks). At 2 or 3 weeks, an ADCmean increase (higher than the
optimal cut-off value of 10.8–25%) predicted LRC. At 3 or 4 weeks in-
tratreatment a reduction of absolute SUVmax (lower than the optimal
cut-off value of 4.25–5.05) as the most powerful predictors for LRC.

The predictive value of early vascular characteristics captured by
DCE-MRI was reported minimally. A high blood supply (BF and BV) and
low permeability surface at baseline, followed by increasing perme-
ability in the first 1–2 weeks result in better LRC. Limited data sug-
gested that MRI-derived parameters are able to discriminate between
LRC and LRF after 2 weeks of treatment and it was suggested that after
3 weeks a reduction of Ktrans or BV under (chemo)radiotherapy was
predictive for LRC. This was explained by the damage to the in-
tratumoral microvasculature and cell environment [17,37,38,44,58]. It
was shown that radiation-induced inflammation occurs after 3 weeks,
which might influence the accurate assessment of predictive 18F-FDG-
PET parameters [61].

The most optimal timing for predicting OS was described in three
FDG-PET studies and showed that particularly FDG-PET parameters
SUVmax reduction and TLG were most prognostic at week 3 [69,73,80].
Delta (Δ) absolute values or (percentage) change from baseline to in-
tratreatment values are less effected by confounders of variability of
single time imaging [35]. which enables more accurate comparison of
patients who underwent imaging with similar acquisition systems for
serial scanning, but different from other patients at different scanners
and centers.

Applicability to clinical practice

The early identification of response during treatment by functional
imaging, could assist patient-tailored treatment adaptation, aiming for
similar efficacy, less toxicity and improved quality of life [7]. However,
included studies were mainly of hypothesis-generating setup asso-
ciating functional imaging with tumor characteristics and response,
whereas limited recommendations for clinical practice were provided.

Treatment de-escalation was proposed in low-risk patients (e.g. low
TNM-stage or HPV-positive [88]) with favorable prognosis is; I) radia-
tion combined with cetuximab instead of cisplatin, II) decreased ra-
diation doses and/or volume, III) radiotherapy instead of chemor-
adiotherapy [7,10]. Early identification of responders and non-
responders was shown to be feasible. Identified low-risk patients may
be candidates for treatment de-escalation, this has to be evaluated in
future randomized controlled trials including low-risk patients. Based
on the included studies, intratreatment DWI could provide a time-effi-
cient and cost-effective early evaluation with low-patient-burden.

Treatment escalation, reported in recent de-escalation studies for
patients with unfavorable prognosis based on intratreatment functional
imaging would likely benefit from scaling up treatment to normal dose
[7]. Included studies recognized predictive imaging parameters, but
avoided concrete statements about possible candidates. Changing to
surgery or to stop treatment in patients with unfavorable prognosis may
result in better quality of life. However, the included hypothesis-gen-
erated studies only reported on associations with prognosis. Future
studies are necessary to unravel the most accurate functional imaging

technique, measuring (percentage) change, without using a data-driven
threshold.

Limitations

Even though this review provides an extensive overview of the
prognostic value of intratreatment functional imaging, there are some
limitations. Firstly, a limited sample size and heterogeneity of studies
(i.e. difference in (chemo)radiotherapy dose at time of intratreatment
imaging, scanning protocols, acquisition systems and statistical
methods) limited the possibility for comparison and the assessment of
publication bias [89].

Secondly, included studies dichotomized continuous covariates by
selection of a data-driven optimal threshold for categorization of pa-
tients. Although selection bias could have occurred, (i.e. type 1 inflation
error, overestimating effect measures and difficulty to replicate the
optimal threshold), most studies were initial studies to new potentially
prognostic imaging techniques, which has to be validated in future
studies. Hereby, a limitation of DWI [90] and DCE [91] is that func-
tional imaging values vary, which underlines the importance of re-
porting internal/external validation in future studies.

Thirdly, the follow-up time was limited (only 6 months) in 15 pre-
dictive studies of LRF survival, which can underestimate the incidence
of LRF in studies. Furthermore, the differences in biology and clinical
behavior between the various cancer sub-sites and clinical behavior
among different TNM stages [92] were ignored in most of the included
studies. Finally, primary tumors and lymph node metastases were often
combined, however in daily practice, both lesion entities are often
taken into account. This results in a limited prognostic possibility for
differentiating between patients subgroups. Future studies should focus
on homogenization of techniques, acquisition methods and reporting of
more uniform parameters with differentiation between tumor sites,
HPV-status and TNM-stage.

Conclusions

Early tumoral changes from (chemo)radiotherapy can be captured
by functional imaging with MRI and 18F-FDG-PET and were predictive
of locoregional control and overall survival. A decrease of diffusion
restriction (i.e., an increase of ADCmean) and a decrease or persistently
low uptake of 18F-FDG (SUVmax) in a lesion were most predictive of
locoregional control. A persistent high or increased perfusion (blood
flow, volume, permeability) on DCE was also predictive for locor-
egional control. Low intratreatment 18F-FDG uptake (SUVmax and TLG)
was predictive of overall survival. Optimal timing of functional imaging
was between 2 and 3 weeks after start of treatment.
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