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Abstract. Divisorial gonality and stable divisorial gonality are graph
parameters, which have an origin in algebraic geometry. Divisorial gonal-
ity of a connected graph G can be defined with help of a chip firing game
on G. The stable divisorial gonality of G is the minimum divisorial gonal-
ity over all subdivisions of edges of G.

In this paper we prove that deciding whether a given connected graph
has stable divisorial gonality at most a given integer k belongs to the class
NP. Combined with the result that (stable) divisorial gonality is NP-hard
by Gijswijt, we obtain that stable divisorial gonality is NP-complete. The
proof consists of a partial certificate that can be verified by solving an
Integer Linear Programming instance. As a corollary, we have that the
number of subdivisions needed for minimum stable divisorial gonality of
a graph with n vertices is bounded by 2p(n) for a polynomial p.

1 Introduction

The notions of the divisorial gonality and stable divisorial gonality of a graph
find their origin in algebraic geometry and are related to the abelian sandpile
model (cf. [8]). The notion of divisorial gonality was introduced by Baker and
Norine [1,2], under the name gonality. As there are several different notions of
gonality in use (cf. [1,6,7]), we add the term divisorial, following [6]. See [7,
Appendix A] for an overview of the different notions.

Divisorial gonality and stable divisorial gonality have definitions in terms of
a chip firing game. In this chip firing game, played on a connected multigraph
G = (V,E), each vertex has a non-negative number of chips. When we fire a
set of vertices S ⊆ V , we move from each vertex v ∈ S one chip over each edge
with v as endpoint. Each vertex v in S has its number of chips decreased by the
number of edges from v to a neighbour not in S, and each vertex v not in S has
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its number of chips increased by the number of edges from v to a neighbour in
S. Such a firing move is only allowed when after the move, each vertex still has
a nonnegative number of chips. The divisorial gonality of a connected graph G
can be defined as the minimum number of chips in an initial assignment of chips
(called divisor) such that for each vertex v ∈ V , there is a sequence of allowed
firing moves resulting in at least one chip on v. Interestingly, this number equals
the number for a monotone variant, where we require that each set that is fired
has the previously fired set as a subset. See Sect. 2 for precise definitions.

A variant of divisorial gonality is stable divisorial gonality. The stable divi-
sorial gonality of a graph is the minimum of the divisorial gonality over all
subdivisions of a graph; we can subdivide the edges of the graph any nonneg-
ative number of times. (In the application in algebraic geometry, the notion of
refinement is used. Here, we can subdivide edges but also add new degree-one
vertices to the graph in a refinement, but as this never decreases the number
of chips needed, we can ignore the possibility of adding leaves. Thus, we use
subdivisions instead of refinements).

It is known that treewidth is a lower bound for stable divisorial gonality [10].
The stable divisorial gonality of a graph is at most the divisorial gonality, but
this inequality can be strict, see for example [4, Fig. 1].

In this paper, we study the complexity of computing the stable divisorial
gonality of graphs: i.e., we look at the complexity of the Stable Divisorial
Gonality problem: given an undirected graph G = (V,E) and an integer k,
decide whether the stable divisorial gonality of G is at most k. It was shown
by Gijswijt [11] that divisorial gonality is NP-complete. The same reduction
gives that stable divisorial gonality is NP-hard. However, membership of stable
divisorial gonality in NP is not trivial: it is unknown how many subdivisions are
needed to obtain a subdivision with minimum divisorial gonality. In particular,
it is open whether a polynomial number of edge subdivisions are sufficient.

In this paper, we show that stable divisorial gonality belongs to the class
NP. We use the following proof technique, which we think is interesting in its
own right: we give partial certificates that describe only some aspects of a firing
sequence. Checking if a partial certificate indeed corresponds to a solution is
non-trivial, but can be done by solving an integer linear program. Membership
in NP follows by adding to the partial certificate, that describes aspects of the
firing sequence, a certificate for the derived ILP instance. As a corollary, we have
that the number of subdivisions needed for minimum stable divisorial gonality
of a graph with n vertices is at most 2p(n) for a polynomial p.

We finish this introduction by giving an overview of the few previously known
results on the algorithmic complexity of (stable) divisorial gonality. Bodewes
et al. [4] showed that deciding whether a graph has stable divisorial gonality
at most 2, and whether it has divisorial gonality at most 2 can be done in
O(n log n + m) time. From [9] and [3], it follows that divisorial gonality belongs
to the class XP, i.e. there is an algorithm that decides in time O(nf(k)) whether
dgon(G) ≤ k. It is open whether stable divisorial gonality is in XP. NP-hardness
of the notions was shown by Gijswijt [11].
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2 Preliminaries

In this paper, we assume that each graph is a connected undirected multigraph,
i.e., we allow parallel edges. In the algebraic number theoretic application of
(stable) divisorial gonality, graphs can also have selfloops (edges with both end-
points at the same vertex), but as the (stable) divisorial gonality of graph does
not change when we remove selfloops, we assume that there are no selfloops.

A divisor D is a function D : V (G) → Z. We can think of a divisor as an
assignment of chips, each vertex v has D(v) chips. The degree of a divisor is the
total number of chips on the graph: deg(D) =

∑
v∈V D(v). We call a divisor

effective if D(v) ≥ 0 for all vertices v. Let D be an effective divisor and A a
set of vertices. We call A valid, if for all vertices v ∈ A it holds that D(v) is at
least the number of edges from v to a vertex outside A. When we fire a set A,
we obtain a new divisor: for every vertex v ∈ A, the value of D(v) is decreased
by the number of edges from v to vertices outside A and for every vertex v /∈ A,
the value D(v) is increased by the number of edges from v to A. We are only
allowed to fire valid sets, so that the divisor obtained is again effective.

Two divisors D and D′ are called equivalent, if there is an increasing sequence
of sets A1 ⊆ A2 ⊆ . . . ⊆ Ak ⊆ V such that for every i the set Ai is valid after
we fired A1, A2, . . . , Ai−1 starting from D, and firing A1, A2, . . . , Ak yields D′.
We write D ∼ D′ to denote that two divisors are equivalent. For two equivalent
divisors D and D′, the difference D′−D is called transformation and the sequence
A1, A2, . . . , Ak is called a level set decomposition of this transformation. A divisor
D reaches a vertex v if it is equivalent to a divisor D′ with D′(v) ≥ 1.

A subdivision of a graph G is a graph H obtained from G by applying a
nonnegative number of times the following operation: take an edge between two
vertices v and w and replace this edge by two edges to a new vertex x.

The stable divisorial gonality sdgon(G) of a graph G is the minimum number
k such that there exists a subdivision H of G and a divisor on H with degree k
that reaches all vertices of H.

There are several equivalent definitions, which we omit here. If we do not
require that the sequence of firing sets is increasing, i.e., we omit the requirements
Ai ⊆ Ai+1, then we still have the same graph parameter (see [9]). The notion
of a firing set can be replaced by an algebraic operation (see [2]); instead of
subdivisions, we can use refinements where we allow that we add subdivisions
and trees, i.e., we can repeatedly add new vertices of degree one. The definition
we use here is most intuitive and useful for our proofs.

3 A (Partial) Certificate

Assume that we are given a yes-instance (G, k) of the problem. Without loss of
generality, we assume that k ≤ n. There exists a subdivision H and a divisor D
on H with k chips that reaches all vertices. We do not know whether the number
of subdivisions in H is polynomial in the size of the graph, i.e. in the number
of vertices and edges of the graph, so we cannot include H in a polynomial
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certificate for this instance. But the chips in D can be placed on added vertices
of H, so we cannot include D in our certificate either. We will prove that when
we subdivide every edge once, we can assume that there is a divisor D′ that
reaches all vertices and has all chips on vertices of this new graph, and hence we
can include D′ in a polynomial certificate.

Definition 1. Let G be a graph. Let G1 denote the graph obtained by subdividing
every edge of G once.

Lemma 2. Let G be a graph. The stable divisorial gonality of G is at most k if
and only if there is a subdivision H of G1 and a divisor D on H such that

– D has at most k chips, i.e. has degree at most k,
– D reaches all vertices of H,
– D has only chips on vertices of G1.

Proof. Suppose that there exists a subdivision H of G1 and a divisor with the
desired properties. Then it is clear that the stable divisorial gonality of G is at
most k, since H is a subdivision of G as well.

Suppose that G has stable divisorial gonality at most k. Then there is a
subdivision H of G and a divisor D on H with degree at most k that reaches all
vertices. If not every edge of G is subdivided in H, then subdivide every edge of
H to obtain H1. Consider the divisor D on H1. By [12, Corollary 3.4] D reaches
all vertices of H1.

Let e = uv be an edge of G, and let a1, a2, . . . , ar be the vertices that are
added to e in H1. Suppose that D assigns more than one chip to those added
vertices, say it assigns one chip to ai and one to aj with i ≤ j. Then we can
fire sets {ah | i ≤ h ≤ j}, {ah | i − 1 ≤ h ≤ j + 1}, . . . until at least one of the
chips lies on u or v. Hence, D is equivalent to a divisor which has one chip less
on added vertices. Repeat this procedure until there is for every edge of G at
most one chip assigned to the vertices added to that edge. The divisor obtained
in this way is equivalent to D, so it reaches all vertices of H1 and has at most k
chips. Thus we have obtained a divisor with the desired properties. �	

Now a certificate can contain the graph G1 and the divisor D as in Lemma 2.
From now on we assume D to have chips on vertices of G1 only. A divisor D as
in Lemma 2 reaches all vertices, so for every vertex w ∈ V (G1) there is a divisor
Dw ∼ D with a chip on w and a level set decomposition A1, A2, . . . , Ar of the
transformation Dw − D. Again we do not know whether r is polynomial in the
size of G, so we cannot include this level set decomposition in the certificate.
However, we can define some of the sets to be ‘relevant’, and include all relevant
sets in the certificate.

Definition 3. Let G be a graph and H a subdivision of G. Let D be a divisor
on H and A1, A2, . . . , Ar a level set decomposition of a transformation D′ − D.
Let D0,D1, . . . , Dr be the associated sequence of divisors. We call Ai relevant if
any of the following holds:
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– Ai moves a chip from a vertex of G, i.e. there is a vertex v of G such that
Di(v) − Di−1(v) < 0, or

– Ai moves a chip to a vertex of G, i.e. there is a vertex v of G such that
Di(v) − Di−1(v) > 0, or

– there is a vertex of G such that Ai is the first level set that contains this
element, i.e. (Ai\Ai−1) ∩ V (G) is not empty.

Lemma 4. Let G be a graph and H a subdivision of G. Let D be a divisor on
H with k chips and A1, A2, . . . , Ar a level set decomposition of a transformation
D′ − D. Let D0,D1, . . . , Dr be the associated sequence of divisors. Then there
are at most 2kn + n relevant level sets.

Proof. Each chip can reach each vertex at most once and can depart at most once
from each vertex. So, there are at most kn sets Ai that fulfil the first condition
of Definition 3 and at most kn sets that fulfil the second condition. Clearly, the
number of sets Ai that fulfil the third condition is upper bounded by the number
of vertices of G. �	

This lemma shows that the number of relevant sets in a level set decompo-
sition is polynomial, since k ≤ n. However, the number of elements of each of
these sets can still be exponential, so we cannot include those sets in a polyno-
mial certificate. Instead, for a relevant set Ai, we will include Ai ∩ V (G1) in our
certificate. Moreover, for each relevant set, we will describe which chips move
from/to a vertex of G1 by firing Ai. When chip j is moved from a vertex v along
edge e, we include a tuple (v, j,−1, e), and when a chip j is moved towards a
vertex v along edge e, we include a tuple (v, j,+1, e).

Now, a partial certificate C consists of

– a divisor D on G1 with k chips, where the chips are labelled 1, 2, . . . , k,
– for every vertex w ∈ V (G1), a series of pairs (Aw,1,Mw,1), (Aw,2,Mw,2), . . .,

(Aw,aw
,Mw,aw

) for some integer aw, such that
• Aw,1 ⊆ Aw,2 ⊆ . . . ⊆ Aw,aw

⊆ V (G1),
• Mw,i = {(v, j, σ, e) | v ∈ V (G1), 1 ≤ j ≤ k, σ ∈ {−1,+1}, e ∈ E(G1)}.

This partial certificate should satisfy a lot of conditions, which are implicit in
the intuitive explanation of this partial certificate. We list the intuition behind
these conditions below and give the formal definition between brackets.

Incidence requirement. The edge along which a chip is fired is incident to the
vertex from/to which it is fired. (For every Mw,i and every tuple (v, j, σ, e) ∈
Mw,i, it holds that e is incident to v.)

Departure requirement. If a chip leaves a vertex, then this vertex is fired and
its neighbour is not. (For every Mw,i and (v, j,−1, uv) ∈ Mw,i, it holds that
v ∈ Aw,i and u /∈ Aw,i.)

Arrival requirement. If a chip arrives at a vertex, then this vertex is not fired
and its neighbour is. (For every Mw,i and (v, j,+1, uv) ∈ Mw,i, it holds that
v /∈ Aw,i and u ∈ Aw,i.)



86 H. L. Bodlaender et al.

Unique departure per edge requirement. For every vertex at most one chip
leaves along each edge. (For every Mw,i and (v, j1,−1, e), (v, j2,−1, e) ∈ Mw,i,
it holds that j1 = j2.)

Unique arrival per edge requirement. For every vertex at most one chip
arrives along each edge. (For every Mw,i and (v, j1,+1, e), (v, j2,+1, e) ∈
Mw,i, it holds that j1 = j2.)

Unique departure per chip requirement. A chip can leave a vertex along
at most one edge. (For every Mw,i and (v1, j,−1, e1), (v2, j,−1, e2) ∈ Mw,i, it
holds that v1 = v2 and e1 = e2.)

Unique arrival per chip requirement. A chip can arrive at a vertex along
at most one edge. (For every Mw,i and (v1, j,+1, e1), (v2, j,+1, e2) ∈ Mw,i, it
holds that v1 = v2 and e1 = e2.)

Immediate arrival requirement. If a chip leaves a vertex v and arrives at
another vertex u at the same time, then the chip is fired along the edge
uv. (For every Mw,i and (v1, j,−1, e1), (v2, j,+1, e2) ∈ Mw,i, it holds that
e1 = e2 = v1v2.)

Departure location requirement. If a chip leaves a vertex, then this chip
was on this vertex, that is, either the last movement of this chip was to this
vertex, or it was assigned to this vertex by D and did not move. (For every
Mw,i and (v, j,−1, e) ∈ Mw,i, the following holds. Let i′ < i be the greatest
index such that there is a tuple (u, j, σ, e′) ∈ Mw,i′ , if it exists. Then there
is a tuple (v, j,+1, e′) ∈ Mw,i′ for some e′. If no such index i′ exists, then D
assigns j to v.)

Arrival location requirement. If a chip arrives at a vertex, then this chip
was moving along an edge to this vertex, that is, either this chip just left
the other end of the edge, or it left before and did not yet arrive. (For every
Mw,i and (v, j,+1, e) ∈ Mw,i, either (u, j,−1, e) ∈ Mw,i where u �= v, or the
following holds. Let i′ < i be the greatest index such that there is a tuple
(u, j, σ, e′) ∈ Mw,i′ . There is a tuple (u, j,−1, e) ∈ Mw,i′ with u �= v and
(v, j,+1, e) /∈ Mw,i′ .)

Outgoing edges requirement. A chip is fired along each outgoing edge, that
is, for each outgoing edge uv either a new chip leaves u or there is a chip that
left u already and did not yet arrive at v. (For every Aw,i and for every edge uv
such that u ∈ Aw,i, v /∈ Aw,i, the following holds. Either (u, j,−1, uv) ∈ Mw,i

for some j, or there is a 1 ≤ j ≤ k and an i′ < i such that (u, j,−1, uv) ∈ Mw,i′

and (v, j,+1, uv) /∈ Mw,i′′ for all i′ ≤ i′′ < i.)
Previous departure requirement. If a chip leaves a vertex v along some edge

e, and v was in the previous firing set as well, then a chip left v along e when
the previous set was fired. (For every Aw,i and Mw,i, the following holds.
If v ∈ Aw,i, v ∈ Aw,i+1 and (v, j,−1, e) ∈ Mw,i+1 for some j and e, then
(v, j′,−1, e) ∈ Mw,i for some j′ �= j.)

Next arrival requirement. If a chip arrives at a vertex v along some edge
e, and v is not in the next firing set as well, then a chip will arrive at v
along e when the next set is fired. (For every Aw,i and Mw,i, the following
holds. If v /∈ Aw,i, v /∈ Aw,i+1 and (v, j,+1, e) ∈ Mw,i for some j and e, then
(v, j′,+1, e) ∈ Mw,i+1 for some j′ �= j.)
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Reach all vertices requirement. For all vertices w, at the end of the sequence
Aw,1, . . . , Aw,aw

, there is a chip on w. (For every vertex w, either there
is a 1 ≤ j ≤ k and an i such that (w, j,+1, e) ∈ Mw,i for some e and
(w, j,−1, e′) /∈ Mw,i′ for all i′ ≥ i, or there is a 1 ≤ j ≤ k that D assigns to
w and (w, j,−1, e) /∈ Mw,i for all i.)

Now for a given graph G, and such a partial certificate C, we want to decide
whether there is a subdivision of G1 such that for every vertex w ∈ V (G1) there
is a divisor Dw ∼ D with a chip on w such that the sets Aw,1, . . . , Aw,aw

are
the relevant sets of the level set decomposition of the transformation Dw − D.
To decide this, we will construct an integer linear program IC , such that this
program has a solution if and only if there is such a subdivision of G1. Since
integer linear programming is in NP, we know that if there is a solution to
IC , then there is a polynomial certificate D for the ILP instance. In order to
obtain a certificate for the Stable Divisorial Gonality problem, we add
the certificate for the ILP instance to the partial certificate, as defined above.
Thus, a certificate for the Stable Divisorial Gonality problem is then of the
form (C,D).

For the integer linear program IC , we introduce some variables. For every
vertex w ∈ V (G1) and every 1 ≤ i < aw, we define a variable tw,i. This variable
represents the number of sets that is fired between Aw,i and Aw,i+1, including
Aw,i and excluding Aw,i+1. For every edge e of G1, we define a variable le, which
represents the length of e, i.e. the number of edges that e is subdivided into.
Now we construct IC :

– For every edge e ∈ E(G1), include the inequality le ≥ 1. (Every edge has
length at least one.)

– For every vertex w ∈ V (G1) and 1 ≤ i < aw, include the inequality tw,i ≥ 1.
(The set Aw,i is fired, so tw,i ≥ 1.)

– For every edge e = uv of G1 such that there is a set Mw,i with (v, j,−1, e),
(u, j,+1, e) ∈ Mw,i for some j, include le = 1 in IC . (If a chip arrives imme-
diately after it is fired, then the edge has length one.)

– For every vertex w ∈ V (G1) and 1 ≤ i < aw such that there are v, j1, j2, e
such that (v, j1,−1, e) ∈ Mw,i and (v, j2,−1, e) ∈ Mw,i+1, include tw,i = 1 in
IC . (If there is a set A that is fired between Aw,i and Aw,i+1, then Aw,i ⊆
A ⊆ Aw,i+1. It follows that A fires a chip from v along e as well. But then A
is a relevant set. We conclude that tw,i = 1.)

– For every vertex w ∈ V (G1) and 1 ≤ i ≤ aw such that there are v, j, e such
that (v, j,+1, e) ∈ Mw,i, include tw,i = 1 in IC . (Notice that the set fired after
Aw,i either contains v or causes a chip to arrive at v, so this set is relevant.)

– For every vertex w and edge e = uv of G1, let i0 be the smallest index
such that (v, j,−1, e) ∈ Mw,i0 for some j, i1 the greatest index such that
(v, j,−1, e) ∈ Mw,i1 for some j, i2 the smallest index such that (u, j,+1, e) ∈
Mw,i2 for some j, and i3 the greatest index such that (u, j,+1, e) ∈ Mw,i3 for
some j. Include the following inequalities in IC :
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(i1 − i0 + 1)le − (i1 − i0) + (i3 − i2) ≥
i3∑

i=i0

tw,i (1)

(i3 − i2 + 1)le + (i1 − i0) − (i3 − i2) ≤
i3∑

i=i0

tw,i. (2)

(There are i1 − i0 +1 chips that left v along edge e, and i3 − i2 +1 chips that
arrived at u along e. There are

∑i3
i=i0

tw,i sets fired since the first chip left
until the last chip arrives, and every of these sets causes one chip to move one
step. The chips that arrived at u took le steps, the chips that did not arrive
took at least one and at most le − 1 steps. This yields the inequalities.)

Now a certificate for the stable divisorial gonality problem is a pair (C,D).
Here, the partial certificate C contains a divisor D on G1 with labelled chips
and for every vertex w ∈ V (G1) a series of pairs (Aw,1,Mw,1), (Aw,2,Mw,2), . . . ,
(Aw,aw

,Mw,aw
), and satisfies all requirements above. And D is a certificate of

the integer linear program IC .

4 Correctness

It remains to prove that there exists a certificate (C,D) if and only if
sdgon(G) ≤ k.

Lemma 5. Let G be a graph with sdgon(G) ≤ k. There exists a certificate
(C,D).

Proof. By Lemma 2 we know that there is a subdivision H of G1 and a divisor
D with k chips, all on vertices of G1, that reaches all vertices. Choose a labeling
of the chips and let D be the divisor in C.

For every vertex w ∈ V (G1), there is a divisor Dw ∼ D with a chip
on w and a level set decomposition Aw,1, . . . , Aw,aw

. Let Aw,i1 , . . . , Aw,ibw
be

the subsequence consisting of all relevant sets. Let Bw,1 = Aw,i1 ∩ V (G1), . . . ,
Bw,bw = Aw,ibw

∩ V (G1).
Fire the sets Aw,1, . . . , Aw,aw

in order. For every ij , set Mw,j = ∅. When
firing the set Aw,ij , check for every chip h whether it arrives at a vertex v of G1

or leaves a vertex v of G1. If so, add the tuple (v, h, σ, e) to Mw,j , where σ = +1
if h arrives at v and σ = −1 if h leaves v, and e is the edge of G1 along which h
moves.

The divisor D together with the sequences (Bw,i,Mw,i), for every vertex
w ∈ V (G1), is the partial certificate C. Notice that by definition C satisfies all
conditions: Incidence requirement, Departure requirement, Arrival requirement,
Unique departure per edge, Unique arrival per edge, Unique departure per chip,
Unique arrival per chip, Immediate arrival, Departure location, Arrival location,
Outgoing edges requirement, Previous departure, Next arrival and Reach all
vertices.
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For every edge e of G1, define le as the number of edges that e is subdivided
into in H. For every vertex w of G1 and 1 ≤ j ≤ bw−1, define tw,i as the number
of sets between Aw,i+1 and Aw,i, including Aw,i and excluding Aw,i+1. Notice
that this is a solution to the integer linear program IC . So this is a certificate for
this program, write D for this certificate. Now (C,D) is a certificate for (G, k).

�	
We illustrate our proof with an example.

u v

e1

e2

(a)

u

7

v

x2x1

y2 y3y1

(b)

Fig. 1. (a) A graph G (b) A subdivision of G and divisor

Example 6. Consider the graph in Fig. 1a. Consider the subdivision in Fig. 1b
and the divisor D with 7 chips on u. This divisor reaches v, for example by firing
the following sets:

{u}, {u}, {u}, {u, y1}, {u, x1, y1}, {u, x1, y1},

{u, x1, y1, y2}, {u, x1, y1, y2}, {u, x1, x2, y1, y2},

{u, x1, x2, y1, y2, y3}, {u, x1, x2, y1, y2, y3}, {u, x1, x2, y1, y2, y3}.

We describe the corresponding partial certificate (C,D). The divisor D will be
included in C. Notice that there are 8 relevant sets. We obtain the following
series of pairs, after labelling the chips 1, 2, . . . , 7:

Av,1 = {u}, Mv,1 = {(u, 1,−1, e1), (u, 2,−1, e2)}
Av,2 = {u}, Mv,2 = {(u, 3,−1, e1), (u, 4,−1, e2)}
Av,3 = {u}, Mv,3 = {(u, 5,−1, e1), (u, 6,−1, e2)}
Av,4 = {u}, Mv,4 = {(u, 7,−1, e1)}
Av,5 = {u}, Mv,5 = {(v, 1, 1, e1)}
Av,6 = {u}, Mv,6 = {(v, 3, 1, e1), (v, 2, 1, e2)}
Av,7 = {u}, Mv,7 = {(v, 5, 1, e1), (v, 4, 1, e2)}
Av,8 = {u}, Mv,8 = {(v, 7, 1, e1), (v, 6, 1, e2)}
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This gives the partial certificate C. The partial certificate D consists of a solution
to the integer linear program IC . Here, the corresponding program is:

le1 ≥ 1
le2 ≥ 1
tv,i ≥ 1 for i ∈ {1, 2, . . . , 8}
tv,i = 1 for i ∈ {1, 2, 3}
tv,i = 1 for i ∈ {5, 6, 7, 8}

4le1 ≥
8∑

i=0

tv,i

4le1 ≤
8∑

i=0

tv,i

3le2 − 1 ≥
8∑

i=0

tv,i

3le2 + 1 ≤
8∑

i=0

tv,i

We can simplify this to:

le1 ≥ 1
le2 ≥ 1
tv,i = 1 for i ∈ {1, 2, 3, 5, 6, 7, 8}
tv,4 ≥ 1

4le1 ≥ tv,4 + 7
4le1 ≤ tv,4 + 7
3le2 ≥ tv,4 + 7
3le2 ≤ tv,4 + 7

We see that le1 = 3, le2 = 4, tv,4 = 5 and tv,i = 1 for i �= 4 is a solution to this
program, let this solution be the certificate D.

Lemma 7. Let G be a graph and k a natural number. If there exists a certificate
(C,D), then sdgon(G) ≤ k.

The idea of the proof of this lemma is as follows. Suppose we are given a
certificate. Subdivide every edge of G1 in le edges. Make tw,i copies of set Aw,i.
For every edge e = uv we distribute the added vertices over the copies of Aw,i

such that as many chips depart from u along e as described by the tuples and as
many chips arrive at v along e as described by the tuples. Using the conditions
that our certificate satisfies, we can prove that all chips are moved as described
by the tuples in the sets Mw,i. We illustrate this idea in the following example.
For all details see [5, Lemma 4.3].

Example 8. Again consider the graph in Fig. 1a and the certificate in Example 6.
Since le1 = 3, we subdivide e1 with two vertices x1 and x2 and since le2 = 4, we
subdivide e2 with three vertices y1, y2 and y3.

We make 5 copies of set Aw,4, since tw,4 = 5. The first set that fires a chip
along e1 is Av,1 and the last such set is Av,8, in total there are 12 sets that fire a
chip along e1. When we fire the first four sets, a chip departs from u along e1, so
we will not add x1 and x2 to the first four sets. When we fire the last four sets,
a chip arrives at v along e1, so we add x1 and x2 to the last four sets. We add
x1 to the middle four sets, so that the chips move from x1 to x2. This yields:

Av,1 = {u}, Av,2 = {u}, Av,3 = {u}, Av,4,1 = {u}, Av,4,2 = {u, x1},

Av,4,3 = {u, x1}, Av,4,4 = {u, x1}, Av,4,5 = {u, x1}, Av,5 = {u, x1, x2},

Av,6 = {u, x1, x2}, Av,7 = {u, x1, x2}, Av,8 = {u, x1, x2}.
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Analogously for e2, we add the vertices y1, y2 and y3:

{u}, {u}, {u}, {u, y1}, {u, x1, y1}, {u, x1, y1},

{u, x1, y1, y2}, {u, x1, y1, y2}, {u, x1, x2, y1, y2},

{u, x1, x2, y1, y2, y3}, {u, x1, x2, y1, y2, y3}, {u, x1, x2, y1, y2, y3}.

We see that we obtained the same subdivision and firing sets as we started with
in Example 6.

As ILP’s have certificates with polynomially many bits (see e.g., [13]), and the
partial certificate is of polynomial size (see also Lemma 4), we have that, using
Lemmas 5 and 7, the problem whether a given graph has divisorial gonality at
most a given integer k has a polynomial certificate, which gives our main result.

Theorem 9. Stable Divisorial Gonality belongs to the class NP.

Combined with the NP-hardness of Stable Divisorial Gonality by
Gijswijt [11], this yields the following result.

Theorem 10. Stable Divisorial Gonality is NP-complete.

5 A Bound on Subdivisions

In this section, we give as corollary of our main result a bound on the number
of subdivisions needed. We use the following result by Papadimitriou [13].

Theorem 11 (Papadimitriou [13]). Let A be an m × n matrix, and b be a
vector of length m, such that each value in A and b is an integer in the inter-
val [−a,+a]. If Ax = b has a solution with all values being positive integers,
then Ax = b has a solution with all values positive integers that are at most
n(ma)2m+1.

Corollary 12. Let G be a graph with stable divisorial gonality k. There is a
graph H, that is a subdivision of G, with the divisorial gonality of H equal to
the stable divisorial gonality of G, and each edge in H is obtained by subdividing
an edge from G at most mO(km2) times.

Proof. By Lemma 5, we know that there is a certificate whose corresponding ILP
has a solution. The values le in this solution give the number of subdivisions of
edges in G1. If we have an upper bound on the number of subdivisions per edge
needed to obtain H from G1, say α, then 2α+1 is an upper bound on the number
of subdivisions per edge to obtain H from G. Applying Theorem11 to the ILP
gives such a bound, as described below.

The ILP has at most n′ · (2kn′ + n′) variables of the form tw,i, by Lemma 4,
and m′ variables of the form le, with n′ the number of vertices in G1 and m′ the
number of edges in G1. We have n′ = n + m, and m′ = 2m, with n′ the number
of vertices of G and m the number of edges of G.
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The number of equations and inequalities in the ILP is linear in the number of
variables. An inequality can be replaced by an equation by adding one variable.
This gives a total of O(kn′2 + m′) variables and O(kn′2 + m′) equations. Note
that O(kn′2 + m′) = O(km2); as G is connected, n ≤ m − 1. Also, note that
all values in matrix A and vector b are −1, 0, or 1, i.e., we can set a = 1 in
the application of Theorem11. So, by Theorem 11, we obtain that if there is a
solution to the ILP, then there is one where all variables are set to values at
most

O(kn′2 + m′) · O(kn′2 + m′)O(kn′2+m′) = O(km2) · O(km2)O(km2) = mO(km2).

Denoting by k the stable divisorial gonality of G, we know there is at least one
certificate with a solution, so we can bound the number of subdivisions in G1

by mO(km2), which gives our result. �	

6 Conclusion

In this paper, we showed that the problem to decide whether the stable divisorial
gonality of a given graph is at most a given number k belongs to the class
NP. Together with the NP-hardness result of Gijswijt [11], this shows that the
problem is NP-complete. We think our proof technique is interesting: we give a
certificate that describes some of the essential aspects of the firing sequences;
whether there is a subdivision of the graph for which this certificate describes
the firing sequences and thus gives the subdivision that reaches the optimal
divisorial gonality can be expressed in an integer linear program. Membership
in NP then follows by adding the certificate of the ILP to the certificate for the
essential aspects.

As a byproduct of our work, we obtained an upper bound on the number of
subdivisions needed to reach a subdivision of G whose divisorial gonality gives
the stable divisorial gonality of G. Our upper bound still is very high, namely
exponential in a polynomial of the size of the graph. An interesting open problem
is whether this bound on the number of needed subdivisions can be replaced by
a polynomial in the size of the graph. Such a result would give an alternative
(and probably easier) proof of membership in NP: first guess a subdivision, and
then guess the firing sequences.

There are several open problems related to the complexity of computing
the (stable) divisorial gonality of graphs. Are these problems fixed parameter
tractable, i.e., can they be solved in O(f(k)nc) time for constant c and some
function f that depends only on k? Or can they be proven to be W [1]-hard, or
even, is there a constant c, such that deciding if (stable) divisorial gonality of
a given graph G is at most c is already NP-complete? Also, how well can we
approximate the divisorial gonality or stable divisorial gonality of a graph?

Acknowledgements. We thank Gunther Cornelissen and Nils Donselaar for helpful
discussions.
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12. Hladký, J., Král’, D., Norine, S.: Rank of divisors on tropical curves. J. Comb.
Theory Ser. A 120(7), 1521–1538 (2013). https://doi.org/10.1016/j.jcta.2013.05.
002

13. Papadimitriou, C.H.: On the complexity of integer programming. J. ACM 28(4),
765–768 (1981). https://doi.org/10.1145/322276.322287

https://doi.org/10.2140/ant.2008.2.613
https://doi.org/10.1016/j.aim.2007.04.012
https://doi.org/10.1016/j.jcta.2012.07.011
https://doi.org/10.1016/j.jcta.2012.07.011
http://arxiv.org/abs/1706.05670
http://arxiv.org/abs/1808.06921
https://doi.org/10.1007/978-3-319-05404-9_4
https://doi.org/10.1007/s00208-014-1067-x
https://doi.org/10.1007/s00208-014-1067-x
https://www.universiteitleiden.nl/binaries/content/assets/science/mi/scripties/bachvandobbendebruyn.pdf
https://www.universiteitleiden.nl/binaries/content/assets/science/mi/scripties/bachvandobbendebruyn.pdf
http://arxiv.org/abs/1407.7055v2
http://arxiv.org/abs/1504.06713
http://arxiv.org/abs/1504.06713
https://doi.org/10.1016/j.jcta.2013.05.002
https://doi.org/10.1016/j.jcta.2013.05.002
https://doi.org/10.1145/322276.322287

	Stable Divisorial Gonality is in NP
	1 Introduction
	2 Preliminaries
	3 A (Partial) Certificate
	4 Correctness
	5 A Bound on Subdivisions
	6 Conclusion
	References




