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A B S T R A C T

Predictive modeling is the development of a model that is best able to predict an outcome based on given input
variables. Model algorithms are different processes that are used to define functions that transform the data
within models. Common algorithms include logistic regression (LR), linear discriminant analysis (LDA), classi-
fication and regression trees (CART), naïve Bayes (NB), and k-nearest neighbor (KNN). Data preprocessing
option, such as feature extraction and reduction, and model algorithms are commonly selected empirically in
epidemiological studies even though these decisions can significantly affect model performance. Accordingly,
full model selection (FMS) methods were developed to provide a systematic approach to select predictive
modeling methods; however, current limitations of FMS, such as its dependency on user-selected hyperpara-
meters, have prevented their routine incorporation into analyses for model performance optimization.

Here we present the use of regression trees as an innovative method to apply FMS. Regression tree FMS
(rtFMS) requires the development of a model for every combination of predictive modeling method options
under consideration. The iterated, cross-validation performances of these models are then passed through a
regression tree for selection of a final model. We demonstrate the benefits of rtFMS using a milk Fourier
transform infrared spectroscopy dataset, wherein we build prediction models for two blood metabolic health
parameters in dairy cows, nonesterified fatty acids (NEFA) and β-hydroxybutyrate acid (BHBA). The goal for
building NEFA and BHBA prediction models is to provide a milk-based screening tool for metabolic health in
dairy cattle that can be incorporated automatically in milk analysis routines. These models could be used in
conjunction with physical exams, cow side tests, and other indications to initiate medical intervention.

In contrast to previously reported FMS methods, rtFMS is not a black box, is simple to implement and in-
terpret, it does not have hyperparameters, and it illustrates the relative importance of modeling options.
Additionally, rtFMS allows for indirect comparisons among models developed using different datasets. Finally,
rtFMS eliminates user bias due to personal preference for certain methods and rtFMS removes the dependency on
published comparisons of methods. Thus, rtFMS provides clear benefits over the empirical selection of data
preprocessing options and model algorithms.

1. Introduction

Predictive modeling is the development of a model that is best able
to predict an outcome based on given input variables (Geisser, 1993;
Kuhn and Johnson, 2013). Model algorithms are different processes
that are used to define functions that transform the data within models

(Burger, 2018). Common algorithms include logistic regression (LR),
linear discriminant analysis (LDA), classification and regression trees
(CART), naïve Bayes (NB), and k-nearest neighbor (KNN). Currently,
empirical selection is the standard method to select among predictive
modeling method options including different preprocessing techniques,
and model algorithms (Harrell et al., 1996; Kuhn and Johnson, 2013);
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however, these options and the order of decisions about predictive
modeling methods can significantly influence model performance
(Weissenbacher et al., 2009; Han et al., 2011; Horn et al., 2018; Rinnan,
2014; Shi and Yu, 2017). Consequently, full model selection (FMS) was
developed to provide a systematic approach to eliminate bias in se-
lecting predictive modeling method options for machine learning
(Escalante et al., 2009). In short, FMS requires the development of a
model for every combination of modeling methods under consideration
(i.e., options). Then, the FMS method compares the models’ iterated
cross-validated performances to select a final optimized model. This
system has been implemented in machine learning, but has largely been
overlooked in predictive modeling in applied epidemiology.

All datasets, no matter if large or small, could benefit from opti-
mizing the selection of predictive modeling method options for in-
creased performance and reliability, especially given the recent in-
crease availability of machine learning algorithms. One could fit a
model for every different combination of options and select the best
performing model without FMS, however, one would miss out on im-
portant information. Knowing if a decision, such as using all variables
or only a small subset, was significant for increasing the performance of
a model is crucial when planning future study designs and modeling
efforts. In addition, it might not be correct to always select the highest
performing model without considering its reliability. Selecting methods
that perform well consistently is important when a model will be ad-
justed and expanded over time.

Current FMS methods in machine learning use multi-agent based
and stochastic algorithms (Sun, 2014; Bansal and Sahoo, 2015). The
most notable method, particle swarm optimization (PSO), is a FMS
search method based on the behavior of individuals in swarms such as
fish and birds (Eberhart and Kennedy, 1995; Escalante et al., 2009).
PSO is a black box method, thus, the options’ influence on making this
selection is not visible to the user. In addition, PSO has hyperpara-
meters, those are parameters of a prior distribution (e.g. inertia weight,
acceleration coefficients, velocity clamping), that can change the
output and be difficult to select. These facts have slowed the in-
corporation of FMS into applied epidemiology.

In this paper, we describe the use of conditional inference recursive
partitioning regression trees as an innovative FMS method (rtFMS) in
applied epidemiology predictive modeling during supervised learning.
Regression trees were first described by Breiman et al. in, 1984 and are
now a common employed technique. Regression trees use recursive
partitioning to discover which independent variables are most asso-
ciated with statistically significant differences in the continuous out-
come variable. It then uses that variable to separate the data into two
subsets (i.e., nodes) that maximizes their difference. The process is re-
peated for each node until no more significant associations between
independent and outcome variables are found (Hothorn et al., 2006).
We propose the use of regression trees for the separation of options

associated with significantly different model performance measures to
optimize a final combination of options that results in the best final
model. We propose the use of regression trees for the separation of
options associated with significantly different model performance
measures to optimize a final combination of options that results in the
best final model. Since only one model was fit per combination of op-
tions linear algorithms such as, generalized linear model, would face
rank deficiencies and singularities. Therefore we selected a non-linear
method for FMS. Finally, unlike PSO and other non-linear methods such
as neural network, rtFMS is not a black box method, it does not have
hyperparameters, and it is straightforward to interpret.

Our objective was to illustrate that rtFMS is easy to implement and
it results in an optimized prediction model and in addition provides the
following information and benefits: (i) rtFMS illustrates the relative
importance of modeling options. (ii) It allows indirect comparisons
among models that were fit to different datasets by examining their
terminal node location in the regression tree. (iii) rtFMS allows for the
comparison of a much larger number of preprocessing and model al-
gorithm options simultaneously than would be feasible without FMS.
(iv) Finally, it also removes user bias due to familiarity or personal
preference for certain methods on prediction performance.

Our aim was to demonstrate the benefits of rtFMS using a milk
Fourier transform infrared spectroscopy dataset, wherein we build and
optimize prediction models for two blood metabolic health parameters
in dairy cows, nonesterified fatty acids (NEFA) and β-hydroxybutyrate
acid (BHBA). A FTIR dataset was selected because spectrometry re-
search has many preprocessing options that are commonly chosen
empirically (Etzion et al., 2004; Dehareng et al., 2012; Botelho et al.,
2015; Belay et al., 2017). The goal for building NEFA and BHBA pre-
diction models is to provide a milk-based screening tool for metabolic
health in dairy cattle that can be incorporated automatically in milk
analysis routines. These models could be used in conjunction with
physical exams, cow side tests, and other indications to initiate medical
intervention.

2. Materials and methods

A methods overview is available in Table 1. All data analyses were
done in R 3.4.2 (R Core Team, 2018). The following packages were
used: DMwR, MLmetric, party, partykit, glmnet, randomForest, gbm,
earth, klaR, epiR, caret (Liaw and Wiener, 2002; Weihs et al., 2005;
Hothorn et al., 2006; Friedman et al., 2010; Torgo, 2010; Hothorn and
Zeileis, 2015; Yachen, 2016; Ridgeway, 2017; Kuhn et al., 2018;
Milborrow, 2018; Stevenson et al., 2018).We used the following func-
tions available within the caret package: preprocess, groupKFold,
findCorrelation, trainControl, and train. The functions ctree and
SMOTE were available within the party and DMwR packages, respec-
tively.

Table 1
Overview of regression tree full model selection (rtFMS) methods.

Step Method

1 Data preparation: A dataset is prepared by formatting variables, and removing outliers, repeats, and errors.
2 Outcome selection: An outcome variable is selected according to the project’s goal.
3 Standard methods: A set of “standard methods”, which are methods that will be applied to all models and will not benefit from comparisons of different options, are

selected reflective of the data. For example, if a dataset had missing data, applying imputation would be selected as a standard method, although different imputation
functions could be compared in step 4.

4 Comparison categories: Categories relating to prediction model methods and multiple options within each category are selected for comparison. Examples of categories
include input data subsets, feature extraction and model algorithms (see Table 2).

5 Modeling: A model is run for every combination of options per category described in step 4 using standard methods described in step 3.
6 Performance measure: A performance measure is selected depending on a dataset’s characteristics and how the final prediction model will be used. For example, if a

dataset is imbalanced, balanced accuracy or kappa value would be the preferred performance of the final model.
7 Regression tree: Then the models’ performance measures are run through a regression tree to visualize the best combination of options, which selections made significant

differences and in which order these selections were prioritized.
8 Final model: A final model is selected based on the regression tree selections. If there were no significant difference among options, then personal preference can be used

and justified in making a selection.
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Step 1 Data preparation:
The FMS approach is described using the example of a data set

previously reported by Tremblay et al. (2018). The data set includes
cow information, milk FTIR data, fatty acid predictions, FOSS predic-
tions for milk BHBA and milk acetone, blood measurements, and milk
components. Please see the supplemental material for more informa-
tion. The final dataset for the BHBA model contained 1035 observations
and 1034 observations in the final dataset for the NEFA outcome. The
final datasets included data from 26 farms, 346 cows and 115 sampling
days.

Step 2
Outcome selection NEFA: Blood NEFA≥0.7mmol/L served as the

case definition for the prediction models (Andrews et al., 2008;
Tremblay et al., 2018). This would allow the detection of poor meta-
bolic adaptation syndrome (PMAS) and also conditions such as dis-
placed abomasum (NEFA≥1.0mmol/L) and ketosis (> 1.5mmol/L)
where cows are off-feed or have decreased feed intake, and increased
fat mobilization (LeBlanc et al., 2005; Andrews et al., 2008; Tremblay
et al., 2018). In the final dataset, 210 observations had blood
NEFA≥0.7mmol/L, and 824 observations had blood NEFA < 0.7
mmol/L.

Outcome selection BHBA: Blood BHBA≥1.2mmol/L was used as
the case definition for the prediction models (McArt et al., 2012; Suthar
et al., 2013; Overton et al., 2017). In the final dataset, 105 observations
had blood BHBA≥1.2mmol/L, and 930 observations had blood
BHBA < 1.2mmol/L.

Step 3 Standard methods: Standard methods are methods that will
be applied to all models and will not benefit from comparisons of dif-
ferent options as done in step 4. For the data presented here, standard
methods included removing wavenumbers representing water: the OeH
bending region 1615-1692 cm−1, the OeH stretching region 3057-
3689 cm−1 (Afseth et al., 2010). Also, observations were flagged for
potential FTIR equipment errors if they did not have a max absorbance
within the instrument’s working range of 0.1–1.0 absorbance units
(Beleites and Sergo, 2012). No error observations were identified in this
dataset. Variables with zero or near zero variances needed to be re-
moved from the analysis, but none were present in this dataset (Kuhn
and Johnson, 2013).

We performed 10 repeated iterations of 10-fold cross-validation by
specifying method = "repeatedcv", number= 10, and repeats= 10 in
the trainControl command within the caret package (Bali and Sarkar,
2016; Kuhn et al., 2018). Cross-validation is used to get an estimate of
the model performance using data the model has not yet been exposed
to (i.e., hold-out set). In k-fold cross-validation the dataset is partitioned
into k subsets (i.e., folds). In our case, using 10-fold cross-validation,
our data were separated into 10 subsets. The models are then trained
using 9 of the 10 subsets of data as the training set and the last subset is
used as the hold-out test set. The procedure is repeated 10 times, each
time using a different fold as the test set for validation. In the end all of
the observations will have been used in the test set once. We repeated
this 10-fold cross-validation 10 times, with different splits into the 10
subsets each time to make sure the performance was not influenced by
how the data were randomly split into subsets. Therefore, the 10 re-
peated 10-fold cross-validation resulted in performance data from 100
models, giving a better overall estimate of model performance than a
one-time hold-out cross-validation (Chollet, 2017). All 11 model algo-
rithms are run using the same separation of observations into training
and test sets per k-fold and repeated iterations. We also wanted to make
sure that a model was not biased toward better performance in the test
set due to both the training and test sets including observations origi-
nating from the same farm. Therefore, the groupKFold function within
the caret package in R was used to make sure observations were se-
parated into training and test sets by farm for each cross-validation fold
(Kuhn et al., 2018).

Out of 1034 total observations, cross-validation folds for the NEFA
model averaged 930.6 (SD 23.6) observations in the training sets. Out

of 1035 total observations, cross-validation folds for the BHBA model
averaged 931.5 (SD 24.3) observations in the training sets. Since the
variables were on different scales, auto-scaling was used to obtain zero
mean values and standard deviations equal to one (Gelman and Hill,
2006).

Our datasets were faced with class imbalance due to the low pre-
valence within the outcome classes, only 20.3% and 10.1% of ob-
servations being in the NEFA and BHBA minority class, respectively (He
and Ma, 2013). To address the class imbalance, Synthetic Minority
Over-sampling Technique (SMOTE) was used at each fold of cross-va-
lidation to balance the number of observations in each training set
previously established (Chawla et al., 2002). The minority classes were
over-sampled by 200% as suggested by Chawla et al. (2002), and the
majority classes were under-sampled by 150% to obtain a one-to-one
ratio between the majority and minority classes’ observations. The final
balanced BHBA training sets had an average of 567 (SD 41.1) ob-
servations and the final balanced NEFA training sets had an average of
1134 (SD 35.6) observations.

Step 4
All of the options per categories of predictive modeling methods are

listed in Table 2. Categories of predictive modeling methods were se-
parated into 3 areas: (4.1) input subsets, (4.2) preprocessing methods,
and (4.3) algorithms (Table 2).

2.1. Input subset

The milk data subset category (4.1.A) includes 4 options: the com-
ponent (COMP), FTIR, fatty acid predictions (FA), and FOSS’s ketosis
screening tool predictions (FOSS) subset. The selection of these 4 op-
tions was guided by how milk data are generated and their availability
for future model application; Milk testing agencies and automatic
milking systems generate the COMP subset, the milk analyzers produce
the FTIR data, and Qlip N.V. (Leusden, the Netherlands) and FOSS
Analytical A/S (Hillerød, Denmark) calibration models using FTIR data
produce the FA and FOSS subsets, respectively. The list of variables
included in each of these input subsets are available in the supple-
mental materials.

Finally, including (+CowInfo) or not including cow information
(-CowInfo) were compared within the cow information category
(4.1.B). Cow information includes the following: days in milk (DIM),
milk production (kg/day), and lactation number.

2.2. Preprocessing

A standardization method is necessary to adjust for instrumental
differences since the data in this dataset come from 12 different ma-
chines, and the goal is to apply the model to external data that will also
be from different machines calibrated at different times. The standar-
dization category (4.2.A) compared the raw absorbance FTIR values
(raw-IR) with two baseline corrections: first derivative (FD) and second
derivative transformations (SD) (Duckworth, 2004; Beleites and Sergo,
2012; Baker et al., 2014; Smith et al., 2018). The FD is very effective for
removing baseline offset and SD is very effective for both the baseline
offset and linear trends in spectra (Duckworth, 2004; Rinnan, 2014).

Three categories of dimension reduction methods, also a pre-pro-
cessing method, were included for comparision using FMS as part of
pre-processing: feature extraction (4.2.A), wavenumber subset (4.2.B),
and high correlation (4.2.C).

A feature extraction category (4.2.B) compared performing prin-
cipal component analysis (PCA) (+PCA) or not performing PCA (-PCA).
When PCA was applied, the number of components representing 95% of
the features’ variance were selected (Kuhn and Johnson, 2013). As a
feature selection step, a wavenumber subset category (4.2.C) was used
to compare performance with (AllWN) or without wavenumber vari-
ables (excl.no-infoWN) that are thought to not represent any informa-
tion (“no information regions”). These are regions from 1800.285 cm−1
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to 2798.73 cm−1 and 3693.09 cm-1 to 5007.645 cm−1 (Andersen et al.,
2002; Iñón et al., 2004; Dagnachew et al., 2013). A high correlation
category (4.2.D) was also included that compared including (in-
cl.HighCorr) or excluding highly correlated variables (excl.HighCorr). A
high correlation filter was applied using the findCorrelation function
within caret (Kuhn et al., 2018) with a tolerance set to 0.1 (limit at 0.9),
which corresponds to a VIF of 10 (Hair, 2007).

2.3. Algorithms

The algorithm category included 11 algorithms to compare: logistic
generalized linear models (GLM), lasso and elastic-net regularized
generalized linear models (GLMNET), linear discriminant analysis
(LDA), linear support vector machines (SVM), nearest neighbor
methods (KNN), naive Bayes (NB), classification trees (RPART), neural
networks (NNET), gradient boosting machine (GBM), random forests
(RF), and multivariate adaptive regression splines (MARS). These al-
gorithms were run using the caret model methods “glm”, “glmnet”,
“lda”, “svmLinear”, “knn”, “nb”, “rpart”, “nnet”, “gbm”, “rf”, and
“earth”, respectively (Kuhn et al., 2018). Although the random tree
method used for model selection does not have hyperparameters, the
following 7 of the 11 prediction model algorithms used to model NEFA
and BHBA have hyperparameters: GLMNET, SVM, GBM, NB, RF, NNET,
KNN. For these 7 model algorithms, the models’ hyperparameters, such
as alpha and lambda for glmnet, were automatically selected (i.e., fine-
tuned) using a grid search. The grid search compares 10 values for each
hyperparameter spanning meaningful values (Bergstra and Bengio,
2012; Kuhn et al., 2018). The default convergence criteria for each
model algorithm were used (Kuhn et al., 2018).

Step 5 & 6. A total of 660 and 704 models for the NEFA and BHBA
outcome, respectively, were run for every combination of options per
category described in step 4 (Table 2). Running all of the models took
approximately 1 week of computational time for each outcome, BHBA
and NEFA. Balanced accuracy was the selected performance parameter
because it performs well when the data sets are imbalanced (Japkowicz

and Stephen, 2002). See Table 3 for a list of possible performance
measures that were available. The average of the 100 cross-validation
folds’ balanced accuracies were used as the models’ point estimate to be
used in the regression tree.

Step 7. The models’ performance measures were run through a
nonparametric regression tree (Eq. (1)), available through the party R
package, using Eq. (1) (Hothorn et al., 2006). The factor levels of the
variables used in Eq. (1) are described in Table 2. A nonparametric
regression tree was selected to be the most inclusive in cases where the
outcome variable does not follow a normal distribution (Hothorn et al.,
2006).

Balanced Accuracy ∼ Milk Data Subset+ Cow Information+
Standardization+ Feature Extraction+Wavenumber Subset + High
Correlation+Algorithm (1)

For each node, the regression tree finds the variable most associated
with the outcome (with a p-value less than 0.05), splits the data into
two branches, and then repeats these steps for each node until no more
significant differences are found between independent variable and the
outcome variable. A bonferonni correction for multiple comparisons of
means was applied. Since this tree is grown using a so called hypothesis
test-based stopping rule, pruning of the tree is not needed (Hothorn
et al., 2006).

Step 8. The regression tree was inspected to locate the terminal
node with the best performance, i.e. highest balance accuracy. The
decision nodes leading to the best performing terminal node were de-
scribed. The number of models per terminal node is the number of
different combinations of options that have been left unspecified by the
regression tree on the path to the terminal node. If a category did not
have an option selected by the regression tree then personal preference
was justified in making those decisions since they would not make a
statistically significant difference in model performance. The selected
final model was applied to the entire original dataset for final perfor-
mance measures and measures of uncertainty. The 20 most influential

Table 2
Options per corresponding category and area (step 4) selected for comparison using regression tree full model selection when applied to a milk Fourier
transform infrared spectroscopy dataset to build prediction models for two blood metabolic health parameters in dairy cows: nonesterified fatty acids (NEFA)
and β-hydroxybutyrate acid (BHBA).

Area Category Options

1. Input Subset A Milk Data Subset Component (COMP)
Fatty acid predictions (FA)
Fourier transform infrared spectroscopy (FTIR)
FOSS’s ketosis screening tool predictions (FOSS)a

• Cow Information Include cow information (+CowInfo)
Exclusion of cow information (-CowInfo)

2. Pre-processing A Standardization Raw absorbance values (Raw-FTIR)
1 st derivative (FD)
2nd derivative (SD)

• Feature Extraction Performed a PCA (+PCA)
Did not perform a PCA (-PCA)

• Wavenumber Subset Removed “no-information” wavenumbers (excl.WN)
Included all wavenumbers (AllWN)

• High Correlation Removed highly correlated predictors (excl.HighCorr)
Did not remove highly correlated predictors (incl.HighCorr)

3. Algorithm Algorithm Logistic generalized linear models (GLM)
lasso and elastic-net regularized generalized linear models (GLMNET)
linear discriminant analysis (LDA)
linear support vector machines (SVM)
nearest neighbor methods (KNN)
naive Bayes (NB)
classification trees (RPART)
neural networks (NNET)
gradient boosting machine (GBM)
random forests (RF)
multivariate adaptive regression splines (MARS)

a BHBA models only.
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predictors were extracted and ranked for each final model using the
varImp function in caret (Kuhn et al., 2018). Their importances were
scaled to 100 so that the most influential predictor had a value of 100
and the least influential had a value near zero.

3. Results

NEFA

Step 5 & 6. Nine NEFA models did not converge according to each
model’s convergence criteria (Kuhn et al., 2018). The remaining 651
NEFA models had a mean balanced accuracy of 66.48 (SD 4.84).

Step 7. The NEFA FMS regression tree had 25 decision nodes and 26
terminal nodes (Fig. 1). The average number of models per terminal
node was 25.0 (SD 16.4). The 25th terminal node had the highest
performance. It contained 8 models with an average balanced accuracy
of 74.5 (SD 0.56). The final model was selected after 3 decision nodes.
(i) The first decision node selected the FA subset over the FTIR and
component milk data subset (p-value< 0.001). Therefore, only the
models that only used the 79 variables in the fatty acid subset as pre-
dictors, with or without cow information, were used further. (ii) The
second decision node selected the following model algorithms (p-
value<0.001): GLMNET, SVM and NNET. (iii) The final decision node
selected the GLMNET model algorithm (p-value=0.017) (Fig. 1).

If the FA subset had not been available, as is often the case in
practice, then the models represented in the fifth terminal node would
have resulted in the best performance. It contained 16 models with an
average balanced accuracy of 73.20 (SD 0.79). This model would have
been selected after 4 decision nodes: (i) the following model algorithms
were selected (p-value<0.001): MARS, GBM, GLMNET, LDA, NNET,
SVM. (ii) The derivative-transformed (FD, SD) FTIR input subsets were
selected (p-value< 0.001). (iii) The next decision node selected the
GLMNET model algorithm (p-value< 0.001). (iv) Finally, not per-
forming a PCA (-PCA) was selected (p-value<0.001) (Fig. 1).

Step 8. Options within the cow information, feature extraction and
high correlation categories were not selected by the NEFA FMS re-
gression tree. This leaves room to make these decisions empirically. It
was decided to include cow information, to not remove highly corre-
lated variables, and to not perform a PCA. When the selected NEFA
model (options: FA, +CowInfo, -PCA, incl.HighCorr, GLMNET) was
applied to the entire original dataset it had a final balanced accuracy of
77.3 (95% CI: 72.6–81.4), sensitivity of 77.1 (95% CI: 70.9–82.6),
specificity of 77.4 (95% CI: 74.4–80.2) and diagnostic accuracy of 77.4
(95% CI: 74.7–79.9) (Table 3). The final hyperparameter values used in
the model were alpha= 0.4 and lambda=0.0117. The most influential
predictors in the final NEFA model were ranked and listed in Table 4.

BHBA

Step 5 & 6. The 704 BHBA models had a mean balanced accuracy of
66.31 (SD 4.58).

Step 7. The BHBA FMS regression tree had 27 decision nodes and 28
terminal nodes (Fig. 2). The average number of models per terminal
node was 25.1 (SD 29.7). The eighteenth node had the highest per-
formance. It contained 8 models with an average balanced accuracy of
74.2 (SD 1.03). The final model was selected after 5 decision nodes. (i)
The first decision node selected the following model algorithms (p-
value< 0.001): MARS, GBM, GLMNET, LDA, NNET, SVM. (ii) The
second decision node selected the derivative-transformed (FD, SD)
FTIR, COMP and FA subset (p-value<0.001). (iii) The third decision
node selected the GLMNET model algorithm (p-value<0.001). (iv)
Next, the derivative-transformed (FD, SD) FTIR subsets were selected
over the COMP and FA subsets (p-value<0.001). (v) Finally, not
performing a PCA (-PCA) was selected (p-value<0.024).

Step 8. Options within the cow information, wavenumber subset
and high correlation criteria were not selected by the BHBA FMS re-
gression tree. Therefore, it was appropriate to make these decisions
empirically. It was decided to include cow information, to not subset
the no-information wavenumbers, and to not remove highly correlated
variables. The BHBA FMS regression tree did not discern between the
FD and SD FTIR standardizations. Therefore, we empirically decided to
select the FD standardization.

The final BHBA model (options: FTIR, +CowInfo, FD, -PCA,
incl.HighCorr, AllWN, GLMNET) had a final balanced accuracy of 80.9
(95% CI: 75.3–85.4), sensitivity of 84.8 (95% CI: 76.4–91.0), specificity
of 77.1 (95% CI: 74.3–79.8) and diagnostic accuracy of 77.9 (95% CI:
75.2–80.4) (Table 3). The final hyperparameter values used in the
model were alpha= 0.3 and lambda= 0.0735. The most influential
predictors in the final BHBA model were ranked and listed in Table 5.

4. Discussion

FMS

Our proposed rtFMS method provides a systematic and unbiased
approach to optimizing prediction model performance given many
possible options for algorithms and preprocessing methods. Our method
demonstrated how different combinations of decisions led to statisti-
cally significant differences in model performance. The rtFMS selected
different preprocessing options for different model outcomes (NEFA,
BHBA) within the same dataset, which illustrates the importance of
incorporating this technique into all prediction modeling efforts.

Unlike PSO-FMS, rtFMS does not contain hyperparameters and user-
friendliness is further improved by the visual representation of the

Table 3
Final models’ performance measures with 95% confidence intervals.

Blood nonesterified fatty acids final model Blood β-hydroxybutyrate acid final model

Performance measure estimate 95% CI estimate 95% CI
Apparent prevalence, % 33.7 (30.8-36.6) 29.2 (26.4-32.1)
True prevalence, % 20.3 (17.9-22.9) 10.1 (8.4-12.1)
Sensitivity, % 77.1 (70.9-82.6) 84.8 (76.4-91)
Specificity, % 77.4 (74.4-80.2) 77.1 (74.3-79.8)
Diagnostic accuracy, % 77.4 (74.7-79.9) 77.9 (75.2-80.4)
Balanced accuracy, % 77.3 (72.6-81.4) 80.9 (75.3-85.4)
Positive predictive value, % 46.6 (41.2-51.9) 29.5 (24.4-35)
Negative predictive value, % 93.0 (90.8-94.8) 97.8 (96.5-98.7)
Likelihood ratio of a positive test 3.42 (2.95-3.96) 3.70 (3.21-4.27)
Likelihood ratio of a negative test 0.295 (0.230-0.380) 0.198 (0.126-0.311)
Kappa 0.438 (0.381-0.496) 0.338 (0.288-0.388)

CI= confidence interval.
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results. In addition, the rtFMS method provides information about the
relative importance of options when selecting the final model selection.
The relative location of nodes in the tree reflects the importance of the
decision on the performance of the prediction model. Our method also
allows indirect comparisons among models developed using different
datasets, by examining the terminal node location of different option
combinations in a regression tree. The ability to eliminate bias by
performing these indirect comparisons is important when teams with
different personal preferences and experiences are collaborating. This
information is key when developing future study designs, and when
determining future exploration of additional modeling methods. FMS
removes user bias due to familiarity and personal preference with re-
gards to certain prediction models methods. In contrast to PSO-FMS,
rtFMS allows for empirical decisions when appropriate; however, it
removes this source of bias on performance when a significantly su-
perior performing model would be possible. We expect that the benefits
and flexibility of rtFMS will accelerate its incorporation into the field of

applied epidemiology.
rtFMS only depends on being supplied an outcome variable such as

a goodness of fit or performance measure; therefore, any type of model
can be optimized using rtFMS. rtFMS can be applied to parameter es-
timation models, longitudinal models, multinomial models, and even
unsupervised learning. When applied to prediction models, the per-
formance measure used as the outcome variable in the regression tree
can be selected according to the user’s needs regarding performance
(e.g. high sensitivity, specificity, accuracy, positive predictive value, or
negative predictive value). Categorical performance outcomes could
also be accommodated by using classification trees (Therneau et al.,
2015). The current rtFMS method optimized a single performance
measure but multiple performance measures could be optimized si-
multaneously using multi-target regression tree (Aho et al., 2012;
Osojnik et al., 2015). The resulting performance landscapes of multi-
target regression tree would reflect the many facets of model pre-
ferences, selection and application.

Fig. 1. Blood nonesterified fatty acids (NEFA) rtFMS regression tree results.
The balanced accuracies of the 651 NEFA predictions models were inputted into the regression tree; n= number of models in each terminal node; boxplots visually
represent the balanced accuracy of models per terminal model. The bottom and top of the box represent the 25th and 75th percentiles, respectively, and the
horizontal line inside the box is the median; Subset=Milk Data Subset category; COMP= component; FA= fatty acid predictions; FTIR= Fourier transform
infrared spectroscopy; FOSS=FOSS’s ketosis screening tool predictions; Cow Info=Cow information category; +CowInfo= Include cow information;
-CowInfo=Exclusion of cow information; Stand. = Standardization category; Raw-FTIR=Raw absorbance values; FD=1 st derivative; SD=2nd derivative;
F.Ext.= Feature Extraction category; +PCA=Performed a PCA; -PCA=Did not perform a PCA;WaveNum. = Wavenumber Subset category; excl.WN=Removed
“no-information” wavenumbers; AllWN= Included all wavenumbers; HighCorr = High Correlation category; excl.HC=Removed highly correlated predictors;
incl.HighCorr=Did not remove highly correlated predictors; Algorithm=Algorithm category; GLM= logistic generalized linear models algorithm;
GLMNET= lasso and elastic-net regularized generalized linear models algorithm; LDA= linear discriminant analysis algorithm; LDA= linear discriminant analysis
algorithm; SVM= linear support vector machines algorithm; KNN=nearest neighbor methods algorithm; NB=naive Bayes algorithm; RPART= classification trees
algorithm; NNET=neural networks algorithm; GBM=gradient boosting machine algorithm; RF= random forests algorithm; MARS=multivariate adaptive re-
gression splines algorithm.
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Final models

A general overview of rtFMS findings
Glmnet was consistently one of the best-performing model algo-

rithms. This is most likely because both the FTIR and FA input subsets
have many highly correlated variables, which glmnet addresses with
the elastic-net penalty (Zou and Hastie, 2005; James et al., 2013). The
final selection of a glmnet algorithm is in contrast to Fernández-
Delgado et al., 2014 who found the random forest algorithm performed
the best when applied to over 100 datasets. However, this study as-
sumed that preprocessing would affect all algorithms similarly and that
algorithms would be ranked similarly for all dataset. The differences
between this study and ours suggests that findings from published non-
FMS comparisons of model algorithms or preprocessing options cannot
be applied to other datasets without FMS comparisons.

NEFA model
The NEFA regression tree selected the fatty acid input subset for the

final model. This indicated that the additional calibrations for more
than 60 different fatty acids by Qlip NV (Leusden, the Netherlands)
improved the information gathered by FTIR. We hypothesize that these
calibrations are acting as a targeted feature extraction step. Fatty acids
that are synthesized de novo from ketones in mammary epithelial cells
and are distinguished by the presence of fewer than 16 carbon atoms
(Bauman and Davis, 2013). Pre-formed fatty acids on the other hand,
have more than 16 carbons and originate from NEFA or lipoproteins in
the circulation (Barber et al., 1997; Neville and Picciano, 1997).
Thirdly, mixed fatty acids have 16 carbons and can be pre-formed or
synthesized de novo. Blood NEFA has been found to be highly correlated
with milk C18:1 cis-9, and also inversely correlated with the proportion
of de novo fatty acids in milk (Bell, 1995; Jorjong et al., 2014; Friedrichs
et al., 2015). The use of ratios between the different fatty acids in milk
has been shown to perform better than measurements of single fatty
acid in predicting blood NEFA (Mann et al., 2016; Dórea et al., 2017).
These findings support our results that the most important predictors in

our NEFA model represent all types of fatty acids including de novo,
preformed, and mixed fatty acids.

BHBA model
Some of the most important predictors in the final BHBA model are

located in the acetone region of the FTIR spectra between 1450 and
1200 cm−1 (Hansen, 1999; Heuer et al., 2001). This is in line with the
previous finding of a high correlation between milk acetone and blood
BHBA (Steger et al., 1972). Acetone information was not available in
the fatty acid or component datasets, which could explain why the
rtFMS selected the FTIR input subset to predict blood BHBA. In addition
to acetone, the other highly important predictor of blood BHBA was
wavenumber 1542 cm−1 that represents milk protein. Other important
predictors in the final model were wavenumbers in the “no information
regions” of the spectra. Fatty acids have been shown to increase the
baseline of the spectra in the “no information” spectral regions, (e.g.
wavenumbers greater than 4000 cm−1) (Grabska et al., 2017). We
conclude that it is necessary to further investigate FTIR patterns in the
so-called ‘non-information” regions. In contrast, the FTIR wavenumbers
associated with milk fat (i.e., 2927, 2862, 1743, 1454 and 1390 cm−1)
were not among the important predictors in our model (Socrates,
1980). This finding suggests that fatty acid information is more im-
portant than overall fat composition when predicting blood BHBA.
These findings will improve the recommendations for cow health and
well-being that can be made based on milk testing data in the near
future.

Previous BHBA prediction models based on FTIR data used datasets
with different breeds of cattle, geographic regions, sampling structure
(DIM), and cross-validation methods, wherein direct comparisons were
not possible. However, our rtFMS method allows for indirect compar-
isons of models using different datasets. Our final BHBA model per-
formance measures overlapped or were significantly better than those
of previously published prediction models of blood BHBA that used
FTIR data including van Knegsel et al. (2010) and Chandler et al.
(2017) that used FOSS milk acetone and milk BHBA predictions in their
model. The FOSS input subset did not perform as well in our analysis
compared to the FA, COMP, and derivative-transformed IR input sub-
sets. We suspect that this is the case because FOSS calibrations were
developed for milk BHBA as the outcome variable rather than blood
BHBA used for the current analysis, wherein the correlation between
milk and blood BHBA varies widely from 0 to 0.88 (Geishauser et al.,
1998). Belay et al., (2017), reported a regression prediction model for
blood BHBA that applied feature extraction via partial least squares
regression (PLS) regression, akin to PCA. Similarly, our rtFMS results
showed that eliminating feature extraction using PCA yielded a better
performing BHBA model. Most recently, Pralle et al. (2018) compared 3
model algorithms and 2 data inputs subsets to predict blood hyperke-
tonemia (BHBA≥1.2mmol/L). Based on our results, improved pre-
dictive performance could be achieved for this dataset by the addition
of a derivative transformation of the spectral data and the use of the
glmnet algorithm without variable reduction.

Discussion of findings for the FTIR data sets and their application in practice
We searched for a standardization method that was rapid, simple,

outcome dependent, require no additional samples, applicable to data
already collected, and applicable to new observations individually
without depending on the remaining dataset. This search resulted in
standardization by preprocessing methods, such as a derivative trans-
formation (Feudale et al., 2002). First or 2nd derivative transformations
were consistently favored over the raw FTIR data in both models. This
suggests that standardization is needed to adjust for changes in cali-
bration over time and differences among instruments. The next step for
the prediction modeling of FTIR data sets is to perform a crtFMS om-
parison among more standardization methods including the piece-wise
direct standardization method that maps the response of a ‘slave’ FTIR
instrument onto a ‘master’ instrument (Wise, 1996; Wise et al., 2007;

Table 4
The 20 most important predictors in the blood nonesterified
fatty acids (NEFA) final prediction model (options: FA,
+CowInfo, -PCA, incl.HighCorr, GLMNET) and their relative
importance.

Predictor Importancea

C14:0, μmol/L 100
C30:1, μmol/L 83.35
Milk production, kg 71.94
Lactation number 66.08
C20:4, μmol/L 61.14
BHBA, mmol/L 54.83
C16:0, μmol/L 47.72
C22:5, μmol/L 40.42
Days in milk (DIM) 35.73
C25:1 result 1, μmol/L 24.89
C25:0, μmol/L 22.30
C17:0, μmol/L 18.54
C29:4 result 1, μmol/L 14.81
C24:5, μmol/L 14.71
C25:1 total, umol/L 11.54
C22:6, μmol/L 11.19
C19:1 total, umol/L 10.56
C15:0 result 1, μmol/L 9.94
C25:3, μmol/L 9.30
C23:0, μmol/L 9.25

FA= fatty acid predictions; +CowInfo= Include cow in-
formation; -PCA=Did not perform a PCA;
incl.HighCorr=Did not remove highly correlated predictors;
GLMNET= lasso and elastic-net regularized generalized
linear models algorithm.
a Importance scaled to 100.
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Grelet et al., 2017). In addition, rtFMS could be used to compare
SMOTE to other methods of balancing the minority and majority classes
of observations.

The component dataset did not perform as well as the FTIR and fatty
acid subsets in both the NEFA and BHBA models. This is most likely
because fatty acid and FTIR data provide more detailed information,
such as wavenumbers representing the fatty acid composition of milk
fat, compared to component data that only reports total milk fat. This
finding supports that it is necessary to invest in incorporating FTIR data
and fatty acid calibrations for routine milk analysis. Selection of a
model utilizing the FTIR subset would require farms to produce in-line
FTIR measurements. In contrast, the fatty acid prediction subset (FA)
would require the additional step of sending FTIR data to Qlip N.V.
(Leusden, the Netherlands) to produce the fatty acid panel prior to its
use in a prediction model.

Although, our final BHBA model performance measures overlapped
or were significantly better than those of previously mentioned, both
the NEFA and BHBA model’s performance need to be further improved

to be used as a stand-alone test. We suggest the NEFA model be com-
bined with other alerts such as decreased feed intake to reduce false
positive results when detecting conditions causing an increase in fat
mobilization such as PMAS. In addition, results of such models should
always be confirmed by physical exam or cow side tests before an in-
tervention or treatment is initiated.

Outlook
The benefit and robustness of rtFMS should be evaluated with ad-

ditional types of data including those with various dimensionalities and
different dataset sizes. We foresee additional applications of rtFMS to
deep learning networks, which are popular for modeling outcome
predictions from large data sets. We recognize that access to the com-
putational capacity necessary to apply FMS can be limited; however, we
suspect that this issue will be resolved with the advance in cloud
computing. Automation of these methods would also be beneficial for
incorporating rtFMS in standard prediction modeling efforts in applied
epidemiology.

Fig. 2. Blood β-hydroxybutyrate acid (BHBA) rtFMS regression tree results.
The balanced accuracies of the 704 BHBA predictions models were inputted into the regression tree; n=number of models in each terminal node; boxplots visually
represent the balanced accuracy of models per terminal model. The bottom and top of the box represent the 25th and 75th percentiles, respectively, and the
horizontal line inside the box is the median; Subset=Milk Data Subset category; COMP= component; FA= fatty acid predictions; FTIR= Fourier transform
infrared spectroscopy; FOSS=FOSS’s ketosis screening tool predictions; Cow Info=Cow information category; +CowInfo= Include cow information;
-CowInfo=Exclusion of cow information; Stand. = Standardization category; Raw-FTIR=Raw absorbance values; FD=1 st derivative; SD=2nd derivative;
F.Ext.= Feature Extraction category; +PCA=Performed a PCA; -PCA=Did not perform a PCA;WaveNum. = Wavenumber Subset category; excl.WN=Removed
“no-information” wavenumbers; AllWN= Included all wavenumbers; HighCorr = High Correlation category; excl.HC=Removed highly correlated predictors;
incl.HighCorr=Did not remove highly correlated predictors; Algorithm=Algorithm category; GLM= logistic generalized linear models algorithm;
GLMNET= lasso and elastic-net regularized generalized linear models algorithm; LDA= linear discriminant analysis algorithm; LDA= linear discriminant analysis
algorithm; SVM= linear support vector machines algorithm; KNN=nearest neighbor methods algorithm; NB=naive Bayes algorithm; RPART= classification trees
algorithm; NNET=neural networks algorithm; GBM=gradient boosting machine algorithm; RF= random forests algorithm; MARS=multivariate adaptive re-
gression splines algorithm.
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5. Conclusion

In conclusion, rtFMS will allow for the consistent application of FMS
to applied epidemiology to improve and optimize prediction model
performance and rtFMS will eliminate the bias associated with em-
pirical selection of method options. Other research areas depending on
prediction models such as diagnostic imaging, spatial analyses, sur-
veillance, single-nucleotide polymorphism, and microbiome analyses
will greatly benefit from applying rtFMS. In the future, rtFMS will
continue to provide simplicity and structure to FMS during prediction
modeling.
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not remove highly correlated predictors;
AllWN= Included all wavenumbers; GLMNET= lasso and
elastic-net regularized generalized linear models algo-
rithm.
a Importance scaled to 100.
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