
Update on Flooding Stress Signaling

Signal Dynamics and Interactions during Flooding
Stress1[OPEN]

Rashmi Sasidharan,a,2 Sjon Hartman,a Zeguang Liu,a Shanice Martopawiro,a Nikita Sajeev,a,b

Hans van Veen,a Elaine Yeung,a and Laurentius A. C. J. Voesenek a

aPlant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht,
The Netherlands
bMolecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht,
The Netherlands

ORCID IDs: 0000-0002-6940-0657 (R.S.); 0000-0002-6709-6436 (S.H.).

Flooding is detrimental for nearly all higher plants, including crops. The compound stress elicited by slow gas exchange and low
light levels under water is responsible for both a carbon and an energy crisis ultimately leading to plant death. The endogenous
concentrations of four gaseous compounds, oxygen, carbon dioxide, ethylene, and nitric oxide, change during the submergence
of plant organs in water. These gases play a pivotal role in signal transduction cascades, leading to adaptive processes such as
metabolic adjustments and anatomical features. Of these gases, ethylene is seen as the most consistent, pervasive, and reliable
signal of early flooding stress, most likely in tight interaction with the other gases. The production of reactive oxygen species
(ROS) in plant cells during flooding and directly after subsidence, during which the plant is confronted with high light and
oxygen levels, is characteristic for this abiotic stress. Low, well-controlled levels of ROS are essential for adaptive signaling
pathways, in interaction with the other gaseous flooding signals. On the other hand, excessive uncontrolled bursts of ROS can be
highly damaging for plants. Therefore, a fine-tuned balance is important, with a major role for ROS production and scavenging.
Our understanding of the temporal dynamics of the four gases and ROS is basal, whereas it is likely that they form a signature
readout of prevailing flooding conditions and subsequent adaptive responses.

Global flood risk under climate change has in-
creased dramatically in recent decades (Hirabayashi
et al., 2013). In the last 50 years, increasingly frequent
and severe flooding events have negatively impacted
terrestrial plant life. When flooded, gas exchange is
severely restricted between the plant and its envi-
ronment, causing several internal changes in plants.
Flooded plant organs can experience a shortage of
oxygen and/or CO2 and accumulate high levels of
the volatile hormone ethylene. In addition, there are
changes in the concentrations of oxygen-derived free
radicals, nitric oxide (NO), and reactive oxygen species
(ROS; Bailey-Serres and Voesenek, 2008). The genera-
tion, dynamics, concentration, and exact balance
of these substances in flooded cells depend on the
plant organ and type of flooding. We propose that
these substances and their interaction during flooding
provide plants with a signature readout of prevail-
ing flooded conditions, which elicits an appropriate
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adaptive response. Here, we outline current knowledge
regarding the generation, dynamics, and interactions of
these signals in flooded plants and their influence on
downstream responses affecting plant survival.

SIGNAL GENERATION

Tissue-Level Variation in Oxygen and CO2

Light energy drives the fixation of CO2 into carbohy-
drates via photosynthesis. These carbohydrates are vital
structural building blocks for plants and also are re-
spired to generate energy, a process that requires suffi-
cient oxygen supply. Flooding-induced reduction in
oxygen and CO2 hinders respiration and photosynthesis
and imposes a severe energy and carbohydrate deficit in
submerged plants. Oxygen and CO2 dynamics are the
direct result of consumption, production, and diffu-
sive resistance, and these factors can vary considerably
depending on organ and flooding type (Voesenek and
Sasidharan, 2013).
Light availability is determined by floodwater clarity

and depth. Murky water can almost completely block
light reaching the plant surface (Vervuren et al., 2003),
thus hampering underwater photosynthesis. Further-
more, limited CO2 access would severely reduce the
rate of carbon capture and limit oxygen release from the
plant (Mommer and Visser, 2005). Studies have shown
that, in clear water, submerged shoots do not have an
oxygen deficit (Mommer et al., 2007; Lee et al., 2011;
Vashisht et al., 2011; van Veen et al., 2013) and, in some
cases, can even be hyperoxic (Pedersen et al., 2016).
Such high oxygen levels combined with CO2 limitation
most likely lead to increased photorespiration and
prevent any net carbon gain for the plant (Mommer
et al., 2005; Mommer and Visser, 2005).When plants are
submerged in dark conditions, internal oxygen levels
decline rapidly as a result of respiratory consumption
and limited diffusion from the environment. However,
shoot internal oxygen levels rarely decline to zero
(Vashisht et al., 2011; Winkel et al., 2013). Although gas
diffusion is impaired, the leaf tissue is surrounded by
water that usually has close to ambient oxygen levels.
The flat leaf, sometimes in combination with gas films,
then does allow some gas exchange (Pedersen et al.,
2009; Verboven et al., 2014).
Roots experience a completely different environment

when submerged. Flooded soils are rapidly depleted of
oxygen, as water fills existing airspaces and respiring
microorganisms and roots consume the available oxy-
gen, leading to an anoxic environment. Heterotrophic
roots invariably will rapidly consume internal oxygen
and, by virtue of their cylindrical anatomy, have less
favorable environmental gas exchange (Greenway
et al., 2006). Arabidopsis (Arabidopsis thaliana) roots
were hypoxic even under well-drained conditions, but
when submerged, they became anoxic within 15 min
(Vashisht et al., 2011). This was alleviated by sub-
merging in light conditions, indicating that, even in

Arabidopsis, internal shoot-to-root oxygen diffusion is
important. This highlights the importance of tissue
porosity, tissue tortuosity, and diffusion distance for
root oxygen supply (Colmer, 2003). CO2 from respiring
roots and rhizosphere microorganisms can lead to a
high-CO2 environment. This could possibly influence
roots via an effect on intracellular pH and some key
metabolic enzymes (Greenway et al., 2006).

Oxygen sensing was recently shown to occur via the
proteolysis of group VII ethylene response factors
(ERFVIIs). ERFVIIs are important transcriptional reg-
ulators of hypoxia responses via the control of hypoxia-
adaptive gene expression (Hinz et al., 2010; Gibbs et al.,
2011; Licausi et al., 2011; Gasch et al., 2016). Studies in
Arabidopsis have revealed that the presence of a char-
acteristic N-terminal motif makes ERFVIIs direct tar-
gets of the N-end rule pathway of proteolysis, where, in
the presence of both ambient NO and oxygen, these
proteins are ubiquitinated and degraded (Gibbs et al.,
2011, 2014; Licausi et al., 2011). When either the NO or
oxygen concentration declines, ERFVIIs are no longer
flagged for ubiquitination, accumulate, and activate
downstream target genes, including those required for
fermentation.

Starvation Strongly Influences Flooding Responses

During complete submergence, plants experience a
strong decline in energy and carbon availability. This is
due to reduced photosynthesis, either through a lack of
light or a reduced rate of CO2 diffusion, and due to im-
paired respiration through reduced oxygen availability.
Plants can sense and integrate a variety of signals re-
laying cellular energy and carbon status. This includes
Suc sensing via trehalose metabolism (Schluepmann
et al., 2003), Glc viaHexokinase1 (Moore et al., 2003), and
Fru via NAC089 (Li et al., 2011). These responses are
tightly balanced by the opposing actions of the con-
served kinases Suc-nonfermenting1-related protein ki-
nase1 (SnRK1) during starvation and by target of
rapamycin kinase during energy abundance (Lastdrager
et al., 2014; Baena-González and Hanson, 2017). These
central regulators maintain energy homeostasis and
stress acclimation through major transcriptomic, trans-
latomic, and metabolic reprogramming (Lastdrager
et al., 2014). Low-energy signaling is intricately con-
nected with plant hormone signaling pathways, espe-
cially abscisic acid and ethylene (Yanagisawa et al., 2003;
Finkelstein and Gibson, 2002; Cho et al., 2010; Ljung
et al., 2015).

Starvation leads to the down-regulation of energeti-
cally expensive secondary metabolic processes and
protein translation, a crucial adaptation to prioritize
energy expenditure during flooding (Branco-Price
et al., 2008; Edwards et al., 2012; Sorenson and Bailey
Serres, 2014). Arabidopsis plants experiencing starva-
tion in darkness had a highly similar transcriptomic
response to those under submerged conditions (Lee
et al., 2011; van Veen et al., 2016). This indicates that
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low-energy signaling occurs via a generic signaling
mechanism regardless of the origin of the starvation
stress.

However, the regulatory action of the low-energy-
sensing machinery might not always be beneficial
during flooding. For instance, some rice (Oryza sativa)
accessions can germinate under anoxic conditions but
require a large amount of readily available sugars to do
so (Magneschi and Perata, 2009; Loreti et al., 2016). One
way these sugars are perceived is by trehalose-6-
phosphate (T6P) levels, which directly reflect Suc
availability (Yadav et al., 2014). However, in rice, high
T6P levels prevent starch degradation via the inhibition
of SnRK1 activity, an undesirable process during ger-
mination. This is avoided by T6P degradation via the
induction of a T6P phosphatase in varieties that harbor
a specific T6P phosphatase gene (OsTPP7). Active T6P
removal reduces the sensitivity of rice to its available
sugar levels and facilitates starch mobilization to create
a strong flux of sugars that fuels anaerobic germination
(Kretzschmar et al., 2015). Energy levels during the
anoxic establishment of plants thus can be surprisingly
high (Ishizawa et al., 1999). The regulation of energy
signaling (e.g. trehalose metabolism) occurs during
flooding in several species and tissues (Jung et al., 2010;
van Veen et al., 2013; Kretzschmar et al., 2015; Akman
et al., 2017), suggesting that adjusting sensitivity to
sugar and energy signaling could be an essential part of
regulating flooding responses.

Ethylene Invariably Accumulates to High Concentrations

All plant cells, except those of a few aquatic plant
species with a permanently submerged life style
(Voesenek et al., 2015), are capable of synthesizing
ethylene, and endogenous levels are determined by
production rates and loss via diffusion to the atmos-
phere. Ethylene biosynthesis starts with the conversion
of the amino acid Met to S-adenosyl-L-Met (SAM) by
SAM synthetase. The enzyme 1-aminocyclopropane-1-
carboxylic acid (ACC) synthase (ACS) then catalyzes
the production of ACC from SAM followed by its oxi-
dation to ethylene by ACC oxidase (ACO) in a reaction
requiring oxygen. Both ACS and ACO belong to large
multigene families and are regulated by various exter-
nal and internal cues to control ethylene production. In
cells of flooded organs, endogenous ethylene levels
increase rapidly, mainly due to hampered diffusion to
the surrounding water. Ethylene accumulates to high
physiologically saturating levels in several plant spe-
cies in flooded shoots and roots (Voesenek and Sasid-
haran, 2013). Ethylene can reach levels that are 20-fold
(1 mL L21) higher than nonsubmerged tissue within 1 h
(Fig. 1). Upon soil flooding, root ethylene levels were
variable across species, as determined by production
rates and diffusion capacity. Wetland species possess-
ing aerenchymatous tissue could vent entrapped eth-
ylene and had lower accumulated ethylene in flooded
roots (Visser and Pierik, 2007). An overview of ethylene

concentrations in various plant species and organs
upon flooding can be found in the study of Voesenek
and Sasidharan (2013). Ethylene accumulation is not
known to be affected directly by changes in light levels
during flooding. Thus, unlike oxygen and CO2 levels,
which can be highly variable and influenced by several

Figure 1. Signal dynamics during a typical light-limited flooding event.
During early submergence (light gray shading), ethylene accumulates
rapidly while oxygen levels decline gradually. Upon hypoxia, NO and
ROS bursts occur. Upon recovery from prolonged submergence (dark
gray shading), there is transient ethylene (ET) production while oxygen
levels return to normal. NO dynamics upon desubmergence are un-
known, but a strong ROS burst likely occurs. The schematic conveys
general trends based on current knowledge and is intended to show that
flooding signals can display strong variability during different phases of
the flooding event. Furthermore, these signal dynamics are strongly
dependent on flood conditions, plant species, and the organ and tissues
affected.
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factors, high ethylene concentrations are the most con-
sistent, pervasive, and reliable signal conveying early
flooding (Voesenek and Sasidharan, 2013; Sasidharan
and Voesenek, 2015). Since ACC conversion to ethylene
requires oxygen, ethylene production cannot occur
under true anoxic conditions; therefore, it is not a signal
in these extreme situations.

NO Metabolism

NO is a short-lived, highly reactive molecule regu-
lating several plant developmental and stress responses
(Astier et al., 2011; Manjunatha et al., 2012; Farnese
et al., 2016). Plants regulate endogenous NO levels via
the control of biosynthesis and scavenging. The regu-
lation of NO biosynthesis in plants is poorly under-
stood. Several studies suggest that the main source of
NO production is via enzymatic and nonenzymatic
reduction of nitrite (Planchet et al., 2005; Mur et al.,
2013; for review, see Chamizo-Ampudia et al., 2017).
Nitrite production is highly dependent on nitrate re-
ductase (NR) activity. The dependency of NO produc-
tion on nitrite availability makes NR themajor player in
NO production (Magalhaes et al., 2000; Gupta and
Kaiser, 2010; Gupta et al., 2011; Chamizo-Ampudia
et al., 2017) The removal of synthesized NO can occur
via multiple reactions. NO can react chemically with
oxygen to produce nitrite and NO3

2 or with ROS to
form additional reactive nitrogen species (Delledonne
et al., 2001; Chamizo-Ampudia et al., 2017). NO can be
scavenged by glutathione to produce S-nitrosylated
glutathione (Wilson et al., 2008; Frungillo et al., 2014).
Finally, phytoglobins (previously called class I non-
symbiotic hemoglobins; Voesenek et al., 2016) use
oxygen to dioxygenate NO in the plant cell to form
nitrate (Hebelstrup et al., 2006, 2012; Hill, 2012).
There are limited and contrasting data regarding

temporal and spatial NOdynamics in flooded plants. In
Arabidopsis and cotton (Gossypium hirsutum), NO
emissions declined in the aerial plant tissues, while
emissions increased in three waterlogged deciduous
tree species (Magalhaes et al., 2000; Copolovici and
Niinemets, 2010; Zhang et al., 2017). However, NO
dynamics under hypoxia have been studied more ex-
tensively. Both cellular and exogenous NO levels in-
creased in various plant species during hypoxia
(Planchet et al., 2005; Mugnai et al., 2012; Gupta and
Igamberdiev, 2016). This NO burst during hypoxia is
thought to result from enhanced NR activity and nitrite
accumulation, providing a substrate for NO production
(Planchet et al., 2005; Mugnai et al., 2012; Gupta and
Igamberdiev, 2016). In roots, NO bursts could be
specific to the transition and division zone and depen-
dent on hypoxia sensing in the root apex (Mugnai et al.,
2012; Fig. 1). Posttranslational modification of NR
via phosphorylation effectively inactivated NO syn-
thesis in tobacco (Nicotiana tabacum; Lea et al., 2004),
and this phosphorylation may be impaired under
hypoxic conditions, leading to higher NR activity. NR

activity also is lowered under reduced light conditions
(Nemie-Feyissa et al., 2013), with potential implications
for NR activity during submergence in turbidwaters. In
conclusion, the temporal and spatial dynamics of NO,
and therefore its effects, are likely dependent on the
conditions of flooding.

ROS Metabolism

ROS are highly reactive, chemical species formed by
the stepwise reduction of molecular oxygen. ROS in-
clude superoxide (O2

.2), singlet oxygen, hydrogen
peroxide (H2O2), and the hydroxyl radical (Demidchik,
2015; Mittler, 2017). ROS are by-products of various
metabolic pathways and are produced enzymatically or
nonenzymatically. Nonenzymatic ROS production can
occur in chloroplasts and mitochondria via electron
transport chains (ETCs). In both organelles, the occa-
sional leakage of electrons to oxygen during electron
transport can result in the partial reduction of oxygen,
generating O

2

.2, which subsequently gives rise to other
more reactive ROS (Møller, 2001; Asada, 2006). Enzy-
matic ROS production can occur at several sites within
the cell, including peroxisomes, cell walls, plasma
membrane, and apoplast (Mignolet-Spruyt et al., 2016).
Peroxisomes are the site of several oxidative metabolic
processes that can generate ROS, such as b-oxidation of
fatty acids and photorespiration (Del Río and López-
Huertas, 2016). In the peroxisome, O2

.2 is formed by
xanthine oxidase (Bolwell and Wojtaszek, 1997), while
glycolate oxidase catalyzes H2O2 generation (Del Río
and López-Huertas, 2016). Another enzymatic ROS
source is plasma membrane-bound NADPH oxidases,
or respiratory burst oxidase homologs (RBOHs).
RBOHs reduce extracellular oxygen to O2

.2 using cy-
tosolic NADPH (Møller, 2001). Plants counter excessive
ROS production with an efficient scavenging machin-
ery. This consists of ROS-scavenging enzymes like su-
peroxide dismutase, ascorbate peroxidase (APX),
catalase (CAT), and glutathione peroxidase and anti-
oxidant molecules like glutathione, ascorbic acid, and
a-tocopherol (Mittler et al., 2004; Steffens et al., 2013).

Considering that ROS originate from oxygen, it is
expected that, under flooding-induced hypoxic condi-
tions, ROS production also is restricted. However,
several studies report increased ROS accumulation
under hypoxia/anoxia (Fig. 1; Chang et al., 2012;
Pucciariello et al., 2012; Paradiso et al., 2016). Under
oxygen deprivation, ROS production likely still occurs
in the mitochondria, chloroplasts, and peroxisomes.
Anoxia inhibits the mitochondrial ETC, resulting in the
formation of mitochondrial ROS (Chang et al., 2012),
and chloroplastic ROS generation might occur via a
similar process. ROS also could be formed by peroxi-
somes during flooding in light. When terrestrial plants
photosynthesize underwater, photorespiration rates
can increase (Mommer and Visser, 2005). Photorespira-
tion is one route viawhich peroxisomalH2O2 production
can be boosted (Del Río and López-Huertas, 2016).
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Furthermore, the antioxidant system can be negatively
affected by hypoxia (Lasanthi-Kudahettige et al.,
2007), disrupting the tightly regulated balance be-
tween scavenging and production. During flood-
ing and hypoxia, ROS also is produced in a regulated
manner via RBOHs. In Arabidopsis, RBOHD is
up-regulated specifically during flooding and hypoxia
and is one of the core hypoxia genes (Mustroph et al.,
2009; Pucciariello et al., 2012; Yao et al., 2017). ROS
signaling via regulated ROS production is considered
an important component of hypoxia signaling and
adaptive responses to flooding (Pucciariello et al., 2012;
Steffens et al., 2012; Yamauchi et al., 2014; Gonzali et al.,
2015; Yamauchi et al., 2017).

SIGNAL INTERACTIONS

Ethylene and Hypoxia Signaling Interact with NO

The interplay between ethylene and NO has of-
ten been described but has rarely been investigated
mechanistically. However, chemical or genetic impair-
ment of one of these pathways often affects the other
and impacts plant responses (Magalhaes et al., 2000;
Manjunatha et al., 2012; Asgher et al., 2017). Like eth-
ylene, NO also could accumulate to higher concentra-
tions in flooded tissues due to restricted gas diffusion.
However, since NO is highly reactive and short-lived,
accumulation is likely limited without the additional
hypoxic NO burst described earlier. Accordingly, wa-
terlogged Arabidopsis and cotton plants showed ele-
vated ethylene emission and signaling, respectively, but
declining NO emission from aerial tissues (Magalhaes
et al., 2000; Zhang et al., 2017). In addition, exogenous
NO application increased ethylene production in vari-
ous plant species, possibly via enhanced ACO activity
(Magalhaes et al., 2000; Manac’h-Little et al., 2005). On
the other hand, NO levels declined in ethylene-deficient
or constitutive mutants (Magalhaes et al., 2000; Liu
et al., 2017). Thus, both gases may affect each other
under the conditions that vary over the course of a
flooding event.

The NO-scavenging phytoglobins could potentially
facilitate cross talk between NO and ethylene. How-
ever, conclusive mechanistic evidence is lacking. Phy-
toglobin mRNA levels increased under waterlogging
and hypoxic conditions in multiple plant species
(Hebelstrup et al., 2012; vanVeen et al., 2013;Mira et al.,
2016). Phytoglobin silencing in Arabidopsis and maize
(Zea mays) increased ethylene and NO emissions and
up-regulated ethylene biosynthesis and signaling genes
(Hebelstrup et al., 2012; Mira et al., 2016). Interestingly,
NO also enhanced phytoglobin mRNA abundance in
rice, cotton, and spinach (Spinacia oleracea; Ohwaki
et al., 2005; Qu et al., 2006; Bai et al., 2016), hinting at a
feedback mechanism. In the wetland species Rumex
palustris, phytoglobin transcript levels increased fol-
lowing a short ethylene treatment and could potentially
reduceNO in these tissues (van Veen et al., 2013). Taken
together, phytoglobins modulate NO and ethylene

levels, while these gases in turn also affect phytoglobin
abundance.

Cross talk and feedback loops between NO and
ethylene also may occur at the level of ERFVIIs. ERFVII
stability and action depend strongly onNO and oxygen
levels (Gibbs et al., 2011, 2014; Licausi et al., 2011).
When either the NO or oxygen concentration declines,
ERFVIIs accumulate and facilitate downstream tar-
get gene transcription. Interestingly, ERFVII-regulated
genes that contain the hypoxia-responsive promoter
element include multiple ethylene signaling genes
and the NO-scavenging phytoglobin, HEMOGLOBIN1
(Gasch et al., 2016). In addition, the expression of sev-
eral ERFVIIs also is regulated by ethylene (Chang et al.,
2013). In conclusion, ERFVII abundance is regulated by
NO, oxygen, and possibly ethylene, while ERFVII ac-
tion, in turn, can induce positive feedback loops for
ethylene biosynthesis and NO scavenging (Gasch et al.,
2016).

The Functional Role of NO

While exact NO dynamics in flooded plants remain
vague, it is clear that an NO upsurge during hypoxia
has functional implications for survival (Mugnai et al.,
2012; Gupta and Igamberdiev, 2016; Mira et al., 2016).
For instance, chemically blocking the hypoxia-induced
NO burst at the onset of hypoxia strongly impaired
hypoxia survival inmaize root tips (Mugnai et al., 2012).
In addition to its role in regulating ERFVII abundance,
NO also may exert a regulatory role during flooding or
hypoxia, by posttranslational modification of proteins
via S- or metal-nitrosylation and Tyr nitration (for re-
view, seeAstier et al., 2011; León et al., 2016). Exogenous
NO application inArabidopsis effectively S-nitrosylated
proteins involved in respiration, metabolism, signaling,
and stress responses (Lindermayr et al., 2005; Astier
et al., 2011; León et al., 2016). S-Nitrosylated proteins
potentially involved in flooding signaling and adapta-
tion include ERFVIIs, cytochrome c oxidase (COX),
aconitase, phytoglobins, and the H2O2 scavenger APX1
(Millar andDay, 1996; Perazzolli et al., 2004;Gupta et al.,
2012; Gibbs et al., 2014; Begara-Morales et al., 2016).
Indeed, some reports indicate that an NO burst may
inhibit COX activity (Millar and Day, 1996; Brown,
2001). On the other hand, S-nitrosylation and, therefore,
inhibition of aconitase leads to enhanced alternative
oxidase (AOX) activity under hypoxia in Arabidopsis
(Gupta et al., 2012). This altered bioactivity of COX and
AOX by NO suggests a role in the tight regulation of
respiration and oxygen consumption in plant mito-
chondria during hypoxia.

Phytoglobins mediate NAD(P)+ regeneration un-
der hypoxia via the so-called phytoglobin/NO cycle
(Perazzolli et al., 2004; Igamberdiev et al., 2005; Gupta
and Igamberdiev, 2016). In the absence of oxygen, plant
mitochondria can keep the electron transport functional
using nitrite as the electron acceptor (Gupta et al., 2005;
Gupta and Igamberdiev, 2011). This nitrite reduction to
NO in the ETC recycles NAD(P)H to NAD(P)+ and
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leads to some ATP production. This process, in addi-
tion to the ATP generated by fermentation, retains the
energy status of cells as long as sugar availability
is sufficient. The NO produced can be scavenged by
phytoglobins via S-nitrosylation, and this is thought to
contribute to the regeneration of NAD(P)+ and nitrate,
in turn fueling glycolysis and ATP production. The
observed induction of phytoglobin transcripts by eth-
ylene might enhance this process in some plant species
when submerged (van Veen et al., 2013). Finally, the
importance of phytoglobins for hypoxia acclimation is
highlighted in various studies. Phytoglobin-impaired
mutants showed reduced hypoxia tolerance, while
overexpression enhanced tolerance in multiple plant
species (Dordas et al., 2003; Mira et al., 2016). In con-
clusion, the phytoglobin/NO cycle shows a crucial
strategy of adaptation leading to a retained energy
status under hypoxia.

ROS-Mediated Hypoxia Acclimation

ROS production and signaling during hypoxia are
considered essential for stress acclimation. In hypoxic
Arabidopsis seedlings, RBOHDmRNA levels are strongly
up-regulated (Pucciariello et al., 2012; Yang and Hong,
2015). Elevated H2O2 levels in Arabidopsis seedlings
shortly after the imposition of anoxia (Baxter-Burrell
et al., 2002; Pucciariello et al., 2012) are linked to
RBOH-mediated electron flow from NADPH to oxy-
gen, resulting ultimately in H2O2 generation. Accord-
ingly, this hypoxic H2O2 increase is absent and survival
is compromised in rbohD seedlings or upon chemical
inhibition of RBOH activity. RBOH activity and, there-
fore, H2O2 production during oxygen deprivation is
regulated by the activity of at least two other hypoxia-
inducible proteins: HYPOXIA RESPONSIVE UNI-
VERSAL STRESS PROTEIN1 (HRU1) and RHO (Ras
homologous)-RELATED PROTEIN FROM PLANTS2
(ROP2; Baxter-Burrell et al., 2002; Gonzali et al., 2015).
Hypoxic conditions convert ROP2 to its active form

GTP-ROP2 and activate RBOH-mediated H2O2 pro-
duction. The subsequent ROS burst triggers the ex-
pression of downstream beneficial targets, including
fermentation genes (e.g. ALCOHOL DEHYDROGEN-
ASE [ADH]) required for hypoxia acclimation. How-
ever, ROP2-triggered H2O2 signaling also up-regulates
ROP GUANOSINE TRIPHOSPHATASE-ACTIVATING
PROTEIN4 (ROPGAP4), a negative regulator of ROP2.
ROPGAP4-mediated inactivation of ROP2 conse-
quently dampens RBOHD-mediated ROS production.
In ropgap4mutants or in lines expressing a constitutively
active form of ROP2, ADH expression and activity
were increased but tolerance was reduced (Baxter-
Burrell et al., 2002). Thus, negative feedback inhibition
of ROP2 and the tight regulation of ROS production
play a role in preventing oxidative stress and improv-
ing hypoxia tolerance.
Another hypoxia-inducible gene and ERFVII target

regulating RBOH-mediated ROS production is HRU1.

HRU1 interacts with ROP2-GTP and RBOHD both
in vitro and in vivo, and hru1mutants lack the hypoxic
H2O2 burst observed in wild-type Arabidopsis seed-
lings. HRU1 can exist as cytosolic HRU1-HRU1 dimers
or monomers that can take another interacting protein
partner. The balance between these dimers and mono-
mers is essential for the control of ROS production. A
shift in balance toward HRU1 monomers might be fa-
vored during hypoxia, because, under these conditions,
HRU1 translocation to the plasma membrane was ob-
served. Here, it may form an HRU1-ROP2-RBOHD
complex and influence ROS production (Gonzali et al.,
2015). Together, these findings indicate that apoplastic
ROS production is a tightly regulated process involving
multiple protein interactions and is essential for hypoxia
acclimation and survival.

Functional ROS-Ethylene Interactions

Plants growing in flooded environments use mor-
phological adaptations to improve internal aeration
and avoid flooding-induced hypoxia. These traits in-
clude the formation of gas-filled voids or aerenchyma in
existing roots/shoots or shoot-borne, aerenchyma-rich
adventitious roots. Aerenchyma, either constitutive or
induced, improve gas diffusion between flooded and
nonflooded plant parts and permit aerobic respiration
to continue in affected organs (Voesenek and Bailey-
Serres, 2015). Several studies have revealed that in-
teractions between ROS and ethylene signaling
regulate lysigenous (formed by regulated cortical
cell death) aerenchyma development and adventitious
roots (Steffens et al., 2012; Yamauchi et al., 2014, 2017).

Ethylene-induced formation of lysigenous aeren-
chyma under oxygen-deprived conditions, via the
control of ROS production, has been demonstrated in
species such as rice, wheat (Triticum aestivum), and
maize (Yamauchi et al., 2014, 2017; Takahashi et al.,
2015). Stem aerenchyma in deepwater rice internodes
required ethylene-mediated ROS accumulation to in-
duce parenchymal cell death (Steffens et al., 2012). In
rice adventitious roots, stagnant flooding increased
ethylene levels due to a combination of restricted dif-
fusion and enhanced biosynthesis. This increased
transcript abundance and, subsequently, the activity of
RBOHH. Interestingly, the strongest RBOHH expres-
sion was in the root cortical cells and corresponded
with ROS accumulation and programmed cell death
(PCD) only in these cells. Accordingly, in adventitious
roots of CRISPR/Cas9 RBOHH knockouts, H2O2 and
aerenchyma were reduced significantly under stagnant
conditions (Yamauchi et al., 2017). Considering that
ethylene accumulates in all cells, the question arises of
how cellular specificity is achieved for ROS generation
and subsequent cell death. The answer might lie in the
distinct characteristics (thinner cell walls, higher ROS,
and low starch) and higher ethylene sensitivity of pre-
aerenchymatous cells (Justin and Armstrong, 1991;
Visser and Bögemann, 2006; Steffens et al., 2012). In situ
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staining of stagnant rice roots showed O2
.2 accumula-

tion and a radial expansion of collapsed cells starting
from the midcortical cells and spreading to the neigh-
boring cells within the cortex. RBOHH-mediated O

2

.2

could be the signal propagating cellular collapse to
adjacent cells (Yamauchi et al., 2017). Such a systemic
signaling role has been demonstrated in Arabidopsis,
where RBOHD-generated H2O2 stimulated RBOHD
activity in adjacent cells, resulting in an autopropagat-
ing wave of ROS production (Miller et al., 2009; Mittler
et al., 2011). Whether such a systemic signal transmis-
sion occurs during aerenchyma formation has yet to be
confirmed.

Interactions between ethylene and ROS signaling
also regulate adventitious root growth and emergence
in rice. Preceding adventitious root emergence, the
epidermal cells overlying adventitious root primordia
have to die (Steffens et al., 2012). Ethylene stimulates
this epidermal cell death by promoting RBOH-
mediated H2O2 accumulation. In epidermal cells that
undergo PCD, ethylene also reduced the expression of
Metallothionein2b (MT2b), a ROS scavenger (Steffens
et al., 2012). Accordingly, enhanced constitutive epi-
dermal cell death was observed in MT2b knockdown
mutants, which also had highH2O2 levels. Ethylene and
ROS signaling also mediate adventitious root growth
regulation. Ethylene-induced adventitious root growth
clearly requires ROS, since chemical manipulation of
ROS levels clearly affected adventitious root formation.
However, this was highly specific to the nature of ROS
perturbation. For example, chemical inhibition of CAT
and RBOH activity clearly restricted ethylene-induced
adventitious root growth. In contrast, adventitious root
growth was unaffected in MT2b knockdown lines with
enhanced H2O2 (Steffens et al., 2012). Adventitious root
growth and emergence needs to be coordinated pre-
cisely with epidermal cell death to protect the emerging
root primordium. This requires accurate signaling of
the location where cell death should occur. Ethylene
and ROS alone could elicit local epidermal cell death
onlywhen amechanical stimulus (the physical pressure
of the emerging root) was also present. According to the
current hypothesis, adventitious root formation re-
quires ethylene-mediated ROS production in both the
adventitious root primordium and the overlying epi-
dermal cells. ROS accumulation in the adventitious root
primordium promotes growth. The growing root exerts
a mechanical force on specific epidermal cells above it,
whereby mechanical signaling and ethylene-induced
ROS signaling together trigger PCD (Steffens et al.,
2012).

SIGNAL GENERATION AND INTERACTION
UPON REAERATION

When floodwaters subside, submergence-mediated
damage is compounded further. Plants are reexposed
to higher oxygen concentrations and increased light
intensity, resulting in further oxidative stress through a

burst of ROS production (Fukao et al., 2011; Luo et al.,
2012; Alpuerto et al., 2016; Fig. 1). Postsubmergence
ROS damage is parallel to oxidative damage during
hypoxic conditions, in which ROS disrupts the photo-
synthetic apparatus (Luo et al., 2011; Panda and Sarkar,
2012; Alpuerto et al., 2016) and, consequently, hinders
photosynthetic recovery and the replenishment of car-
bohydrate reserves (Bhowmick et al., 2014; Gautam
et al., 2016). During reoxygenation and reillumination,
ROS and photoinhibition can further trigger desiccation
stress (Setter et al., 2010), leaf senescence (Gautam et al.,
2016; Liu and Jiang, 2016), and cell death (Tamang et al.,
2014). Upon reoxygenation, ROS accumulation likely
occurs due to a combination of reduced scavenging
capacity and increased ROS production (Rhoads et al.,
2006; Blokhina and Fagerstedt, 2010; Shapiguzov et al.,
2012). Excessive ROS accumulation is associated with
the high-energy demands of reactivated mitochondrial
and photosynthetic metabolism due to reoxygenation
and reillumination, causing electron leakage in ETCs and
proton leakage in mitochondrial matrixes (Elstner and
Osswald, 1994; Smirnoff, 1995; Roach et al., 2015). Excess
oxygen reactingwith ROS-related by-products produced
during hypoxic conditions also can trigger additional
ROS formation.

While ethylene is well established as a signal trig-
gering adaptive responses during flooding, less is
known of its role during flooding recovery. Several
studies have reported increased ethylene biosynthesis
and enhanced ACS and ACO expression in plants upon
reoxygenation (Khan et al., 1987; Voesenek et al., 2003;
García et al., 2014; Tsai et al., 2014; Ravanbakhsh et al.,
2017). Anoxia limits ethylene biosynthesis, since ACO
requires oxygen for ACC conversion to ethylene (Yang
and Hoffman, 1984). However, reoxygenation may
trigger increased ethylene biosynthesis, promoted by
elevated levels of the rate-limiting ACC enzymes. The
role of ethylene during reoxygenation could be distinct
from its regulatory roles during flooding and hypoxia
(Fukao et al., 2011; Tsai et al., 2014, 2016). In R. palustris,
ethylene accumulation upon desubmergence correlated
with increased ACC levels and its conversion to ethyl-
ene by increased ACO activity (Voesenek et al., 2003).
This rapid induction of ethylene synthesis upon desub-
mergence promoted shoot elongation as a strategy to
avoid complete submergence later (Voesenek et al.,
2003). In addition, shoot elongation rates in R. palustris
upon desubmergence was dependent on submergence
duration, suggesting that time taken for ACC accumu-
lation could be the rate-limiting determinant (Voesenek
et al., 2003). Thus, the basal level of ACC biosyn-
thesis could be critical for postsubmergence ethylene
responses.

In Arabidopsis seedlings, ethylene signaling was
important for limiting postanoxic injury (Tsai et al.,
2014). Ethylene response transcription factor1 (ERF1), a
marker of the ethylene transduction pathway, together
with ERF2 were induced during reoxygenation. More-
over, two ethylene-insensitive mutants, ein2-5 and
ein3eil1, displayed increased chlorosis and cell damage
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upon reoxygenation compared with the wild type.
Genes encoding heat shock factors, heat shock proteins,
and antioxidants were enriched significantly, implying
the potential challenges caused by reoxygenation. The
activation of ROS amelioration genes suggests that
ethylene could be important in eliminating ROS pro-
duced upon reaeration. However, ethylene accumula-
tion under submergence negatively affected antioxidant
levels upon desubmergence in intolerant rice cultivars
(Kawano et al., 2002). This again suggests that regula-
tory roles of ethylene during hypoxia and reoxygena-
tion could be different. In addition, comparison of the
transcriptome of wild type and ethylene-insensitive
Arabidopsis mutants also suggested that ethylene
might be involved in regulating distinct pathways
upon reoxygenation, such as jasmonate signaling,
feedback inhibiting its own production, and sup-
pressing dehydration via the inhibition of abscisic
acid signaling (Tsai et al., 2014).

CONCLUSION

The energy and carbon crisis in flooded plants poses
the largest threat to survival. Sometimes starvation is
ameliorated through increasing gas exchange via aer-
enchyma and adventitious root development. How-
ever, a large majority of flooding responses, such as
reduced protein synthesis and down-regulation of
secondary metabolism, most likely are coordinated via
elaborate sugar-sensing mechanisms. Although energy
signaling is essential to plant survival, by itself it is not
specific enough to reliably perceive flooding. However,
a plant can utilize a variety of other cues to precisely
gauge a flooding event.
Changes in the gases ethylene, oxygen, and CO2 do

not necessarily mean that plants use them to initiate
adaptive responses. Ethylene is well established as an
important signal triggering several flood-adaptive traits
(e.g. adventitious root and escape growth; Sasidharan
and Voesenek, 2015). Rapid ethylene accumulation re-
gardless of the flooded conditions makes it a reliable
signal, in contrast with oxygen levels that are highly
variable. For a long time, it was unclear if oxygen
sensing occurred through direct mechanisms or
through an indirect effect of oxygen onmetabolism. It is
now evident that plants sense oxygen through the
oxygen-dependent degradation of ERFVIIs (Gibbs et al.,
2011; Licausi et al., 2011). Changes in CO2 could poten-
tially also act as a flooding signal. However, although
several possible roles have been suggested (Greenway
et al., 2006), currently, there is no evidence for a signifi-
cant function in plant flooding responses (Voesenek
et al., 1997; Colmer et al., 2006).
Plants have relatively little control over these signals,

which, for a large part, result directly from the restric-
tion of gas diffusion underwater. However, an adaptive
down-regulation of oxygen consumption rate has been
suggested (Zabalza et al., 2009). In this sense, ROS
production during flooding is similar, since it also

occurs in an unregulated process, mainly at the ETCs
and peroxisomes. However, regulated ROS production
via the RBOHs also occurs and is essential for hypoxia
acclimation and survival (Loreti et al., 2016). In aeren-
chyma and adventitious root formation, a certain
background level of unregulated ROS, together with
ethylene-regulated scavenging, is required to induce
cell death in specific cells (Steffens and Rasmussen,
2016). Taken together, rather than a cue to gauge
flooding, ROS is a signaling intermediate in hypoxia
sensing and ethylene-regulated root development.

NO dynamics during flooding remain unclear.
However, an NO burst does occur upon hypoxia,
linked to hypoxia-induced NR activity. This could
make NO, unlike ROS, a possible signal to assess the
flood event. However, NO is strongly regulated by
phytoglobin, which is under both ERFVII and ethylene
control (Fig. 2). Thus, NO also assumes the role of a
signaling intermediate.

Although ethylene invariably accumulates upon
flooding, a plant needs hypoxia sensing to activate
fermentation pathways. That this metabolic adaptation
is linked to oxygen-sensing ERFVIIs makes sense, as it
prevents fermentation in shoots submerged under light
conditions where not aerobic respiration but photo-
synthesis is impaired. Interestingly, oxygen availability
seems of little importance in aerenchyma formation or
adventitious root development (Fig. 2). Given that,
even under drained soil conditions, roots experience
hypoxia, this could mean that oxygen is not such a ro-
bust flooding signal for roots. Instead, ethylene is the
key player mediating this plasticity in root develop-
ment. These separate roles of ethylene and oxygen
permit a response tailored to specific flooding condi-
tions.

Little is known regarding oxygen and ethylene in-
teractions. However, ethylene mutants have reduced
hypoxic ADH up-regulation (Peng et al., 2001; Yang
et al., 2011), ethylene-induced escape growth was en-
hanced under hypoxic conditions (Voesenek et al.,
1997), and ethylene pretreatment can enhance anoxia
tolerance (van Veen et al., 2013). Here, there is a po-
tential role for ROS and NO. Both are affected by and
have an impact on hypoxia and ethylene signaling.
While NO destabilizes ERFVIIs, it is also scavenged by
the ethylene-inducible and ERFVII target phytoglobin
and provides a mechanistic link between ethylene and
NO (Fig. 2). Similarly, ROS is part of both ethylene and
ERFVII signaling pathways. However, it remains un-
clear whether ROS derived from either signal are in-
terchangeable.

It is clear that plants use a multitude of signals to
assess a flooding event and trigger appropriate re-
sponses that prolong survival (Fig. 2). Interestingly, the
role of these signals changes through time, as is ap-
parent from the distinct signal interactions during and
after submergence (Fig. 1). Relatively little is known
about signaling dynamics during recovery and how
this links to responses initiated during flooding. Ad-
ditionally, electrophysiological changes occur within
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minutes of hypoxia/anoxia, but their physiological role
remains unestablished (Wang et al., 2017). Likewise,
NO and ROS bursts occur within the first hours of hy-
poxia. It is unclear whether these bursts only push the
plant into an altered physiological state that it can
homeostatically maintain or whether they are recurring
events during flooding. Too little is known of the tem-
poral dynamics of flooding signals, and the future
challenge lies in determining this to assess the relevant
positive and negative regulatory feedback loops under
actual flooded conditions and how they influence plant
response and survival.

Received August 31, 2017; accepted October 27, 2017; published November 2,
2017.
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