Modular forms of varying weight. III

By Roelof W. Bruggeman at Utrecht

1. Introduction

1.1 In [2] and [3] we studied, for the full modular group, families of real
analytic modular forms parametrized by the weight. In this note we conclude this
sequence of papers.

1.2 The spectral theory of automorphic forms has great number theoretic
interest; see e.g. [10] or [8]. Usually one studies automorphic forms for a fixed weight
and a fixed appropriate multiplier system. This sequence of papers started from the
question how automorphic forms would vary if one changes the weight and the
multiplier system.

This is not a new question. As I might have remarked already in the introduction
of [2], the continuity of the spectral decomposition under changes of the weight, and
the group, has been studied in [9]. There only continuity in the weight is considered,
but the question of analyticity is raised in § 10, (iii) of [9].

Analytic perturbations of automorphic forms under changes of the underlying
Riemann metric are considered in [4], § 5 and [15].

1.3 In these notes we consider only the full modular group. There is only one
family v, of multiplier systems in this case, obtained from the 2r-th power of the
Dedekind eta function. The parameter r runs through C/12Z; for the spectral theory we
are interested in real values of r. The multiplier system v, is suitable for weights
g=rmod2,

In [2] and [3] we considered the weight g=r only.
In [2] we showed that for r € (0, 12) all square integrable eigenfunctions of the
Casimir operator of s/, depend analytically on r, and that the eigenvalues are analytic
1 1
functions (0, 12) — R. One of these eigenvalues, 4,:r+— - r|1—5 r), corresponds to the

2 2
powers of the Dedekind eta function. All other ones are unknown.
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The main theme in [3] is the meromorphic continuation of Eisenstein and
Poincaré series in the complex variables r and s, where s parametrizes the eigenvalue
1
—s2

4

1.4 One of the results of this paper concerns the extendability of eigenvalues
across 0 or 12.

By multiplication by powers of the Dedekind eta function we see that all
holomorphic cusp forms occur in families parametrized by the weight running through a
halfline. The same holds for antiholomorphic cusp forms, and for all cusp forms derived
from (anti)holomorphic ones by differential operators.

Our interest is in the other, real analytic, square integrable modular forms; we
shall call them of continuous series type.

We prove that, except possibly for weight zero, all square integrable modular
forms of continuous series type occur in families for which the weight varies in a real

interval with endpoints in 12Z. The limit of the eigenvalue at the endpoints equals e

Modular cusp forms of weight zero may occur as member of such families or they
may arise from singularities of the Eisenstein series continued in two variables. I could
not resolve the question whether both possibilities really occur.

In weight zero it is known that all modular cusp forms have an eigenvalue larger
2

3n . . .
than - For 0<r<12 we show that all eigenvalues of continuous series type are

1 . . . .
3 This means that all exceptional eigenvalues are the known ones, coming

from holomorphic or antiholomorphic cusp forms.

larger than

1.5 In these notes we have only considered the full modular group. Generaliz-
ation of the results in [2] and [3] to more general groups might be possible under
suitable circumstances. In this note we use much more information on the modular
group:

1) Hecke operators and multiplicity one in weight zero.
2) The absence of exceptional eigenvalues in weight zero.

3) The explicit form of the Eisenstein series in weight zero.

It seems unlikely that the results in this paper give a good indication what to
expect for other groups.

1.6 In section 2 we introduce some notations and formulate the results. In
section 3 the reader will find some indications on the way the results are proved in sec-
tions 4—10.
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2. Statement of results

We introduce some notations and formulate the main results of this note.

2.1 Notation. 1 is the upper half plane; on it acts the group I'=SL,(Z). The
standard fundamental domain of I' is F={z eh:|z|=1, |Rez| = ;} We write z=x+1iy
with x, y real.

All multiplier systems for I" are obtained as v,, the (2r)-th power of the multiplier
system of the Dedekind eta function; here r € C mod 12Z.

For g € C we shall use the following differential operators on |:

R I A V)
q Y axz ayz ‘I.Vay,
0 i)

* _ {1} e —cs
E, —iZtyax+2yayiq.

They satisfy

1 1 1
Lq=—ZE‘;t:;zE;F —Zqzi‘iq

2. 2 Definition. Let ¢, r, A€ C with g=rmod2. A(g,r, 2) is the linear space of
[ e C®(b) satisfying

@ori SO =0,()e 597 forall y= (‘C’ 3) er.

(€)g.2: Lgf=4f.

The elements of A(q, r, ) we call modular forms of weight g, eigenvalue 4 and with
multiplier system v,.

Remark that we do not impose a growth condition at the cusp, contrary to usual
practice (compare e.g. [18]).
2.3 Examples. i) For each re C with Rer>0 we may define
?](2)2’= 6 l‘[ (l_eZM‘n:)Zr
n=1

as holomorphic modular form. One easily checks that

ii) The Poincaré series P(., o, s, n), with n=0, in [14], (3. 32), are elements of
A(0, 0, s —s?) which grow exponentially in the cusp.

)Zr

n.(2):=y* -nlz
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2.4 The differential operators E; and E; (see 2. 1) give linear maps

Ef:A(gr,))—> Alq+2,1,3),
the Maass operators.

Modular forms have a Fourier expansion with respect to x. The individual terms
of the expansion are elements of the following spaces:

2. 5 Definition. Let g, m, 1e C.

W(g, m, 4) is the linear space of fe C*(h) satisfying:

Wh: S{x+iy)=e>""f(iy),

(€);,2 asin 2.2

‘W(g, m, 4) is the subspace of fe W(q, m, 1) satisfying
f@)<y ™ for y—> oo forall deR.

2. 6 Definition. For veZ, q,r,Ae C, g=rmod?2:

F,=F,r): Alg,r, ) — W(q, v+ 1L2 A)

”

is “taking the Fourier term of order v+é

Fv(r)f(z)=ie“”""'*ﬁ)"ﬂx'J,z)dx'.

2.7 Definition. Let g, r,Ae C, g=r mod 2.
S(g, r, ) is the subspace of fe A(q, r, 4) such that

r

F,fe W(q, v+ 12’

A) for all ve Z

Such functions we call cusp forms.
2.8 The differential operators EF satisfy
EXX(gqr or m,)cX(q+2,r or m, )
for X=A, S, W or °W and commute with F,.

From 2. 1 follows that EX, EF is multiplication by —41— 42 + 24. So for general
values of 2 and q the Maass operators are bijections. For many purposes this enables us
to study the case g=r and deduce the other cases from it.

If g, r e R, then |f| is I'-invariant on | for each fe A(g, r, 1). So we may consider
square integrability of f.

2.9 Definition. Let q,re R, g=r mod 2.

L*(g,r) is the Hilbert space of classes of functions J on b satisfying (a),, and
1@y 2dxdy <.
F
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The scalar product is given by

Sl =‘,[f1 (2) f2(2)y2dxdy.

One may show that S(g, r, )<= L*(g, r) for all e C.

2.10 L, determines in L*(g,r) a self adjoint operator A4,, with lower bound
1 1
3 gl (1 =5 |q|); see e.g. [10], (1) on p. 370, or [2], § 5. Except for the case g=r=21=0

the A-eigenspace of A, coincides with S{g, r, 2).
The self-adjointness of A, , implies that
S(g,r,)=01for qrelR, A¢R.

2. 11 Notation. For r € @ define t(r) and A4(r) by z(r) € [0, 1],

{(r)= +rmod 2
Ag(r)= % t(r) (l —% r(r)) :

2.12 For fixed r, A € R we may consider

X= @ Signi.
g=rmod2
The endomorphisms induced by the Maass operators generate an action of the Lie
algebra of SL,(®) in X, which is the infinitesimal representation corresponding to a
unitary representation of the universal covering group of SL, (/). See e.g. [17], or [1],
3. 4. This implies that S(g, r, 2)# 0 is only possible if

A>A4(r), “continuous series”
or
1

l=5

b (1 - % b), b>0, b=+rmod2, +q=b, “discrete series”.

2.13 The discrete series type cusp forms are fully determined by the classical
holomorphic ones.

As in 1], propositions 4.5.7 and 4.5.8, we may reduce the study of

S (q, r, %b (1 — % b)) to that of S (i b, r, % bl1- % b)) by use of the Maass operators,

and show that each f eS(i b, r, ;b(l—%b ) satisfies E,f=0. This implies that

f(2)= y% bh(z), with h a holomorphic or antiholomorphic modular cusp form of weight
b and multiplier system v,,. We may assume that we had chosen 0< +r<12. So h or
Fey*¥.M,z,, with M, the space of entire modular forms of weight k and trivial
multiplier system.

So all discrete series type cusp forms occur in families parametrized by the weight
varying over a half line.
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Our purpose is to study the continuous series type cusp forms. Our results are:
2. 14 Proposition. Let I 2Z.

There are a countable set A, of analytic functions (0, 12) — I and for each Ae A, a
Jinite number of analytic functions

fx‘.zi 0, 12)xh—-C 1ZisN;,
such that for each r e (0, 12):
i) Sl YeStr+1,r i),
i) {fiir.):2ed,, 1Si<N,,} is a complete orthonormal system in H(r+1, r).
For the case I=0 this follows from proposition 2. 5 in [2]. The other cases follow
easily from 2. 12,

2.15 Theorem. i) For l€2Z put
Al ={Ae A: () SAo(r) for all re(0, 12)}.
Then A°= AN\A{ does not depend on I.

ii) l(r)>% Jor all e A° and re(0, 12).

iii) Ny,=1 for all Ae A° and 1€ 22Z.

Most of part i} follows directly from use of the Maass operators. We have to
exclude the possibility that A(r)=pu(r) for some r € (0, 12) with 1€ A° and p e A7

Part ii) implies that the only possible exceptional eigenvalues are those coming
from discrete series type cusp forms. This simplifies estimates of sums of Kloosterman
sums as discussed in [16], § 7, or [7], theorem 2. For a bit stronger estimate of A(r) for
0<r<12 see section 10.

Part iii) is a kind of analytic multiplicity one result. To each eigenvalue of
continuous series type corresponds a one-dimensional family of cuspidal eigenspaces. At
points where the graphs of eigenvalues intersect, the dimension of the space of cusp
forms exceeds 1, but within this space the various eigenfamilies keep their individuality.

2.16 Notation. If 1e A° we write [, , instead of f},.

Remark that the f;; are determined up to multiplication by analytic functions
with absolute value 1. At this point we do not correlate the choice of f; , for various
le2Z

For 1€ A* we have seen in 2. 13 that 1 and the corresponding eigenfamilies have
analytic extensions to half lines. For continuous series type eigenvalues we have the
following result.

2. 17 Proposition. Let A e A°.

i) If Folr) f1,0(r)=0 for all r € (0, 12), then A and all f, , have analytic extensions
to (—12, 12). For each re(—12,0]:

SaNeSr+Lr2(r), IfiMI=1.

7s Journal fir Mathemaiik. Band 371



150 Bruggeman, Modular forms of varying weighe. 111

i) If Fo(r) [1.0(r)0 for some re (0, 12), then

a) A has no analytic extension to a neighbourhood of 0.
|
imiA(@r)=-.
b) Ellng ) 4

It will become clear that there are countably many 4 € A€ satisfying ii). We could
not prove the presence or absence of 1€ A for which i) holds.

Extendable eigenvalues would for I=0 at r=0 give real analytic cusp forms of
weight zero. Another possibility for weight zero cusp forms to arise is from singularities
of the Eisenstein series considered as function of weight and eigenvalue jointly.

2.18 In [3], proposition 2. 19 we showed that there is a unique meromorphic
family E =E® of modular forms on some neighbourhood of (—12,12)x C in C? such
that

a) E(r,s)eA (r, r, %—sl) wherever it is holomorphic.

b) F.(r)E(, s)e“W(r,v+l 1—s2) forall veZ, v40.

12° 4
c) Fo(r) E(r, s)= u°(r, )+ C(r, s) u°(r, —s), with C a meromorphic function and

u°(r, 5) an explicitly given element of W|r, Iri’ %—sz).
For r=0, Res>%, s¢%Z we showed that E is holomorphic at (0, 5) and that

EQ, 9=~ ¥ (2 "
U2 Sz \lez+dlP )

(c,d)=1

so we may call E the analytic continuation in two variables of the Eisenstein series.

If 5o € if® then C may be indeterminate at (0, so), although s C(0, s) is known
to be holomorphic at s,.

2. 19 Proposition. Let s € i[R. Equivalent are:
. 1
) S (0, 0, 4--33) is not spanned by

{f 1.0(0): Ae A5, A has an analytic extension to (—12, 12), A(0)= ‘1‘ —sz}.

i) C is not holomorphic at (0, so).

2.20 In proposition 2.17 we only considered extension of eigenvalues and
eigenfamilies at 0. The full result we formulate in terms of holomorphic functions. It
clearly implies the real analytic results.
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2. 21 Theorem. Put
A"={2e A°: 1 has no analytic extension to a neighbourhood of 0}.

i) For each A€ A" there is an open neighbourhood Q, in C of (0, n,), with
nye 122, n; 212, such that

a) A has a holomorphic extension A: Q, — C.

b) Each f,, with l€2Z, has an analytic extension f,,:Q,xby— C, holo-
morphic in the first variable, such that f; ,(r)e S(r+1,r, A(r) for all re Q,.

¢) 4 has no holomorphic extension to a neighbourhood of n,.
. | S 1
d) llll‘l;)ll(r)—z, .",'3.1'1(')"4'
i) a) For each p e A° there are unique A€ A" and v, €127, 0 < v,<n; such that

pr)=A(r+v,) for 0<r<i2.
b) One may take f, ,(r)=f; ,(r+v,) for O<r<I12.

3. Indication of the proofs

First we prove a result, proposition 3. 1, which makes clearer the nature of A°.
After that we give some indications to help the reader find his way in the following
sections.

We have already remarked that for eigenvalues larger than A,(r) the Maass
operators give bijections between spaces of square integrable modular forms of weights
g =r mod 2; see 2. 8. So i) of theorem 2. 15 follows from proposition 2. 14 as soon as we
have the following result:

3.1 Proposition. Let e 2Z.
If € A, satisfies A(r)> Ao(r) for some r € (0, 12), then A(r)>Ao(r) for all r e (0, 12).
For 4, see 2. 11.

Proof.  From 2. 12 follows that if A(r)> 24(r) for some r € (0, 12), then A(r)= ,(r)
for all r & (0, 12). Suppose A(ro)=44(ro) for some rq € (0, 12). Then f; +1(ro) is of discrete
series type, hence it is a linear combination of some Sualro) with pe Af, see the
discussion in 2. 13. This contradicts the orthonormality in proposition 2. 14.

3.2 At this point we may remark that the analyticity of Ae A° on (0, 12) is
equivalent to holomorphy of 1 on some neighbourhood of (0,12) in €. This
neighbourhood may depend on i; we denote it U,.

3.3 To find ones way through the following sections one should keep in mind
the following main themes:

1) Extendability of eigenvalues is governed by the vanishing of Fourier coef-
ficients; proposition 2. 17 i) and ii) a).

2) Limit behaviour for r | 0 of non-extendable eigenvalues; proposition 2. 17
ii} b).
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3) Estimates of eigenvalues; theorem 2. 15 ii). In propositions 10.1 and 10.2
stronger results are given.

4) Do all cusp forms of weight 0 occur in families of square integrable forms?
Proposition 2. 19.

3.4 Theme 1. As soon as one has got proposition 2. 17 i) and ii) a), one may fit
things together to obtain theorem 2. 15 iii) and theorem 2. 21 except i) d). This is done
in section 8.

In [2], proposition 2. 8, we already proved proposition 2. 17 i} for the case 1=0;
the other cases easily follow. The proof of proposition 2. 17 ii) a) requires much more
work. It uses the meromorphic continuation in two variables of Eisenstein and Poincaré
series as studied in [3].

3.5 In section 5 we prove that for 0<r<12 all families of square integrable
modular forms of continuous series type with non-vanishing F, are described by
singularities of the Poincaré series of order v.

The Poincaré series cannot be continued meromorphically to r=0, but in the case
v=0, in which we are interested, there is a relation with the Eisenstein series E. For
v=0 the results of section 5 may be expressed with help of the coefficient C from the
Fourier expansion of E. We do this in section 6. The proof of proposition 2. 17 i) a) is
completed in proposition 6. 14.

3.6 Theme?2. In section 6 we use the results of section 5 and the known

expression for s— C(0, s) to prove lin;ionf /’»(r');i~ for non-extendable A. This line of
r

. . . 1 .
thought is persued in section 7, where we prove that 2 and oo are the only possible

limit values. The latter possibility is excluded in section 10 by an estimate of 2'(r) for
O<rsg2.

3.7 Themed. In section 6 we already get some information on the relation
between singularities of C and cusp forms of weight zero.

In section 9 we go deeply into the proofs in [2]. Analytic perturbation theory for
linear operators combined with ideas of Colin de Verdiére makes it possible to prove
proposition 2. 19. We also obtain a formula for the derivatives of eigenvalues.

3.8 Theme3. Theorem 2. 15 ii) follows from explicit estimates of eigenvalues in
propositions 10. 1 and 10. 2. In section 10 we obtain these results by integrating Fourier
coeflicients of modular forms to estimate eigenvalues and their derivatives.

3.9 Notation. There are two notational regimes in the following sections.
In section 2 we considered modular forms of weight g=r+1 with /€ 2Z. So we
needed g, r and 1 in the notation. This is also the point of view in sections 8 and 10.
. . . . |
In sections 5—7, 9 we stick to weight g=r and denote the eigenvalue by Z—s"'.

So here we only need the parameters r and s. This corresponds to the point of view in
[3). These notations are introduced in section 4.
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4. Sheaves of eigenfunctions of L,

In the sections 4—7 we assume that the weight g equals the parameter r of the

. ! 1
multiplier system. We parametrize the eigenvalue by A= 4 —s2

4.1 In this section we recall results from [3] and fix notations. These notations
are a bit less general than those used in [3].

4.2 Notation. Let r,5€¢ C, veZ.

Alr,s]1=A4 (r, r, -‘li—sz), (see 2.2)

v — s r 1_2
W [r,s]—W(r,\+12,4 s), (see 2.95)

37 7% 270 r _l__ 2
W*(r, s]= W(r,v-i-lz,4 s),
A[r,s1={feA[r,s]: F,(r) fe°"W*[r,s] forall peZ, p+v},

S[r,s]1=8 (r, r %—sz), (see 2.7)
§'[r,s1={feS[r, s): F,(r)f=0}.

In [3] the last three spaces are denoted by respectively A™[r, s], $*[r, s] and S™ [, s].

. r
0 if Re(v-!—lz)—o

4.3 As dim°W'[r, s]= we have

1 otherwise

S[0, s]=S°[0, s]=S(0, 0, ;—sz).

4. 4 Proposition (Maass-Selberg relation). Let r, s, v be as in 4.2. There exists a
nondegenerate bilinear form Wr* on W'[r, s] such that for all f, g e A°[r, s]:

Wr'(F, f, F,g)=0.
See [3], proposition 7. 8 and definition 5. 3.

4.5 Notation. On any complex analytic space V we denote by 0, resp. .#, the
sheaf of holomorphic, resp. meromorphic functions on V. We write "® and “# if we
want to emphasize the complex dimension n of V.

4.6 Notation. Y ={(r,s)e C*: —12<Rer<12},
Y*={(r,s)e Y: Rer+0},
Y*={(r,s)e C*:0<Rer<12}.



154 Bruggeman, Modular forms of varying weight. 111

4.7 Notation. In [3], 7.2 and 4. 6, we associated to A"[r, s], or A™[r, 5] in the
notation of [3], an 2@-module &/ on Y; here we shall denote it by «7*. Sections of &/*
are analytic functions in (r, s, 2), (r, s) € Y, z € ), holomorphic in (r, s), giving an element
of A*[r,s] for fixed (r, s). Similarly we defined #™* and °#7", replacing A* by W' or
W,

4.8 These sheaves of @-modules have an important property, discussed in [3],
4,13, 4. 15. In the case of &/*: if f is analytic on U x|}, U <Y, holomorphic in (r, s) and
f{r,s;.)e A’[r,s] for all (r,s) in a dense open subset of U, then feo/*(U).

#* and “#"" also have these properties.

In [3], lemma 4. 15 ii) is incorrect; part i) suffices in all our applications. In 4. 1 of
[3] allow D to be a, not necessarily complete, subspace of the antidual.

4.9 Let j: W— Y be a holomorphic map between complex analytic spaces. &/}
is the @-module on W for which fe&/[(U) means: f:Uxbh— C real analytic,
holomorphic on U, f(w,.)e A*[jw] for each we U.

#3" and °#}" are defined similarly.

These sheaves on W have the properties described in 4. 8.
Composition gives j*: &/*(U)— &/ (j~'U), etc.

If dim W=1, then we call j* a restriction map.

4. 10 Notation. Let % be a sheaf of @-modules without torsion; for instance one
of the sheaves in 4.7 or 4.9. We defined in [3], 4. 10, for fe.# ® #(U):

the zero set
N(f)={peU: il 90, ¢+0 and ¢fe %, then (of)(p)=0},
the singular set
Sing(f)={peU: il p€0,, p+0 and @fe%, then ¢(p)=0},
and the set where [ is indeterminate

Indet(f)= N(f) n Sing(f).

4.11 If j: W— Y is holomorphic, dim W=1 and & is one of the sheaves on Y
discussed in 4. 7, then we may define

j*fe\t @F(j 'U) for [fei# ®FU),

provided jW intersects Sing(f) in isolated points.
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4. 12 Definition ([3], 3. 6). Let p=(ro, so) € Y, let x € @(U) represent an irreducible
element of @,. By a local curve through p along N(x) we mean a holomorphic map
J: W—Y on an open set Wc C, 0e W, such that:

i) jo=p,
i) jWeN(),
i) j is minimal, e.g. if j=j, « h with j, satislying i) and ii) and h holomorphic,
then h(0)=0 and h’(0)+0.

Actually we are interested in the germ of j up to equivalence j+— joh as in iit).

Il j is not equivalent to wi>(ry, So4+w), then it is equivalent to
Wi (ro +w?, s(w)), with g2 1, ¢ integral, s holomorphic, s(0)=s,; see [5], III, § 1.5,
p. 131.

4.13 In (3], 7.5, we remarked that the sheaf &, built from S in the way
discussed in 4. 7, is zero on a neighbourhood of (— 12, 12) x C. On the other hand, there
are many local curves j such that &;0.

4.14 Lemma. Let p=(ry,50) €Y, roe(—12,12), j: W— Y a local curve through
p. Let F be &° if ro=0 and & if ry=0. Suppose that the stalk (#F))o is nonzero.

Then soe R ViR and we may take j of the form jw=/(ro+ w9 s(w)) with
s: W— C holomorphic and s(0)=s,
if so#%0, then g=1,
if so=0, then g=1 or 2,
if q=2, then s is not constant and s(—w)= —s(w).
Proof. j cannot be “vertical”, for if jw=(r, s(w)) then there would be nonzero

cusp forms with weight ry and nonreal eigenvalue, compare 2. 10. So we may arrange
that jw=(ro + w9 s(w)) as in 4. 12.

Put W, ={we W: w'e R}. The sheaf % has the properties mentioned in 4. 8, so
we may remove zeros from sections of %;. This means that S[jw]#+0 for all we W,_,

1 JUssImny
providled W is small enough. So Z—s(w)zeﬂi[’ for all weW,. This implies

5o=5(0)e R Ui, and al— — s(w)?* = H(w?) for some holomorphic function H. If So+0 we

1 1 g e
have holomorphy of |/ 2 —H(w?) at w=0, so g=1 by minimality, see 4. 12.

Consider 5,=0. As s(w)=H(w")% is holomorphic, we see that s(w) is a

holomorphic function of wh if q is even, and of w? if ¢ is odd. By minimality we have
q=1 as the only odd possibility. If g is even, then =2 and s(w)=h,(w?)+ wh_(w?),
with h, and h_ holomorphic. As s(w?) is holomorphic in w2, we conclude that
hy(w) h_(w)=0. If h_(w)=0, then j would not be minimal, so s(w)=wh_(w?) 0.
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4.15 1In [3], 2.7 and 2. 13 we explicitly gave sections of the #:
The exponentially decreasing Whittaker function led to

. fowr(y) b v0,
w e .
“wr(Y*) if v=0

such that “¥#"'=0-w" on Y, or Y*,

The section p* € .# @ #(Y) is in general exponentially increasing. For (r,s) in a
dense open subset of Y the functions y*(r, s) and p*(r, —s) form a basis of W*[r, s].

wv(r’ S) = vv(rs S) #v(r, S) + vv(r’ —S) "v(r, - S),

. 1 -i‘-i‘s l 1 -1
v(r,s)—(4ns(\'+5r)) F(—-2s)1'(§—s—§sr) s
e=signRe v+l

= sig 27

4,16 Near (0, %) we shall also use the basis u° ¢, with

with

L, )= p°(r, —5)+ wir, s) u°(r, 5),

1 1
. I"(-—2s)1"(2-+s—§ )
w(r, s)=—

3 I"(2s)l“(-;-—s——;— ) .

See [3], 5. 7 iii).

5. Cusp forms and singularities of Poincaré series

The main result of [3] is the analytic continuation in two variables of Eisenstein
and Poincaré series. In this section we relate singularities of the meromorphically
continued Poincaré series to local curves j for which &;0.

Here we take curves in Y*. The case that j passes through points (0, s) we shall
consider in section 6.

We shall apply the propositions 5.6 and 5.7 with v=0 only.

5. 1 Proposition ([3], 2. 20). Let ve Z.

i) There exist a neighbourhood Y*(v) of ((—12, 12\{0})x C in Y* and a unique
P'e A ® o*(Y*(v)
such that
F,P*(r, s)=p*(r, s) + D}(r, 5) w'(r, )

for some D} e M (Y*(v)).
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il) (Functional equations)
a) v'(r, —s) P*(r, =)= —0v"(r, s) P*(r, s),
b) P, s;—5)=P (—r,52)=P'(}, 5, 7).

The identities in ii) are identities of meromorphic functions. For 1€ Z, 14 v we
have F, P*=D]w* with some D} e.#(Y*(v)). For v* see 4. 15,

5.2 Notation. For re C, |Rer|<12, put j,: C—Y, j.s=(r, s).
. 1 = a b
In the following lemma we use I',, =< + 0 1 <l and y= A

5.3Lemma. Let ve C, re(—12,12).

i) The Poincaré series, or Eisenstein series if r=v=0,

Ps2)= 3 o) e mestd i s y2)
yel\T

1
converges absolutely for Res> X uniformly for (r, s, z) in compact sets.

i) Let r+0.

a) jYPe'M®(C)

|
b) If Res>§, then P' e &/ ,, and P*(r, s)= P'(s).
it) Let r+0, Resy> —%. Suppose sq € Sing(j* P'). Then

a) speiR v [% 7(r) — ;, %-— : T("):I,

N

b) st (s—s50)%* P*(s) is holomorphic at so with q=1 if so+0 and qg=1 or 2
if So = 0.

For t(r) see 2. 11,

Assertion ii) a) is not trivial, see 4. 11. Part ii) b) shows that P’ is indeed the
analytic continuation in two variables of a Poincaré series.

Proof. Parts i) and ii) follow from [3], proposition 2. 23. The proof of part iii) we
borrow from [4], théoréme 3.
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Take yp e C2(0, o0) with 0<p <1, p(y)=0if y<2, p(y)=1 if y=3. Define for

Res>—; and ze F

h(s, 2)=w(y) u*(r, 5; 2).

We may extend h(s,.) to b by imposing (a),,, see 2.2. The function s h(s) is
holomorphic in distribution sense. Moreover, )

H(s)=(L,—‘I1 +s’) h(s)
defines H: {s eC:Res>— %} — L2(r, r), holomorphic in L?-sense.

As the operator A4,,, discussed in 2.10, has compact resolvent, we get a

. 1.
meromorphic map g on Res> — in L?-sense by

gls)=— (A,',,-— ‘1‘ + sz)-1 H(s).

Now

Q(s)=h(s)+g(s)

is meromorphic on Res> — 5 in distribution sense and satisfies

1
(L'-"ZJ”Z) 0(5)=0.

As L,, is elliptic, this implies that Q(s) satisfies (a),, and (e) Jiye where it is

holomorphic. By considering the Fourier expansions we see that it differs from J¥P'(s)
by an L2-meromorphic function. The discreteness of the spectrum of 4, , shows that this
function vanishes.

So all poles in Res>—% of j'P'(s)=0Q(s) come from the resolvent

=1
(A,',—-:{ +s?] , and have at most first order in :—sz. This gives iii) b). The poles can
I

only occur if 2.=-Z —s% e [ satisfies the conditions in 2. 12. Using ii) b) we obtain iii) a}.

5.4 Lemma. Let re(—12,12), r+0, Resy> —%, ve Z. Put
f=lim (s—s0)j* P*(s),

with q minimal such that the limit exists.
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i) fed'[r, 5], f+0.
i) If f¢S[r, sol, then S[r, 50]=S"[r, s0]-

iii) If feS[r, so], then S[r,s0]=C - f ® S*[r, 50] (orthogonal decomposition). If
in addition |Resol<%(l —1(r)), then 1=5q<2, and q=1 if 57%40.

Proof. Part i) is clear from 4. 8. Suppose f is a cusp form. In lemma 8.4 in (3]
we see that f is orthogonal to S*[r, so]; as S*[r, s,] has codimension at most | in
S[r,s,], we get the orthogonal decomposition in iii). We have supposed that
F,fe“W*[r, 5o]. On the other hand

Fof=lim (s—s0)* (u'(r, 5) + D}(r, 5) @*(r, 5)).

1
From 5.7 ii) in [3] we know that under the condition |Re s0|<§ (1—1(r), both u* and

" are holomorphic at (r, s;) and form a basis of ¥ near (r, 50). So g=1, and iii)
follows from iii) of lemma 5. 3.

Let he S[r, s]. The Maass-Selberg relation, 4. 4, implies that F,f and F,h are
proportional. So if F,h=+0 then F,fe “W"[r, s,], which shows S € S[r, so]. This proves
ii).

5.5 Sing(P) is an analytic subset of Y*(v) of dimension one. Let p € Sing(P*).

t
The germ of Sing(P*) at p may be described as U NG =N(xy - ), with x,, %2,..., %,

A4
different irreducible elements of *0,, all relativeiy prime to each other. We may assume
that all y; live on the same neighbourhood U of p. The irreducible components N(y;)
intersect each other discretely, i.e. only in p if U has been chosen small enough.

5. 6 Proposition. Let ve Z, p=(ry, so), roe(—12,12), ry+0, Re S¢> —%. Sup-

pose peSing(P"). Let ye?0(U) represent an irreducible element of 20, such that
N(x)=Sing(P*). Take a local curve j: W — Y*(v) through p along N(x) such that jW
intersects other irreducible components of the germ of Sing(P*) only in p-

Take ne N minimal such that y"P* is holomorphic at all points of J(w\{0}).
i) n=1o0r2 If yis not equivalent to (r, s)+> s then n=1.
i) j*(x"P") e (%) (W\{0}) is nonzero.

iii) x"P*'(jw) LS [jw] for all we WA\{0} such that jwe(—12, 12)x C.
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Proof. By ii) of lemma 5.3 the germ of y cannot be equivalent to (r, s) > r —ro.
So we may assume that jw=(ry+ w9 s(w)), as in 4. 12. By minimality of n we have
j¥(x"P")#0, as nz1 it is cuspidal. This gives ii).

The orthogonality in iii) follows from lemma 3. 4 iii).

Now we take w e W\ {0} such that r=ro+w? e (=12, 12\ {0}, and (x"P"} (jw)+0.
Put s, =s(w). On C we have

P =3 0" GFPY).

Put m=n (order of j* y at 5,). Lemma 5. 4 implies that m=1if s, +0 and m=1 or 2 if
s, =0. This implies n=1 or 2 and n=1 if s(.) is not the constant 0.

5.7 Proposition. Let ve Z, p={(ro, So): 7o € (—12,12), 1o *0,
1
|Re 54| < 5 (1=1(ro))-

Suppose that j: W— Y* is a local curve through p such that

(#)p ¥ (57,
Then

i) jW <Sing(P).

ii) Choose y € 0, irreducible such that jW < N(y) and n21 as in proposition 5. 6.
Then

J*("DY) e LM (W)
is nonzero, and

QR F)o="Mo j* (X"P")® (M ®F)s.
Proof. j has the form given in lemma 4. 14:
Jw=(ro+ w4, s(w)).

There are infinitely many we W such that w?e ® and S[jw]+S"[jw]. Lemma 5.4
shows that jw e Sing(P") for those w. This implies i).

Let fe(M®F)(W,), 0eW,cW. Proposition 5.6 iii) implies that
j* (x"DY) € “#(W) is nonzero; so f—m-j*(x"P") € M ® &'(W,) for some m e A (Wy).
Furthermore

m-j*(y"P") e M ® &' (W)

clearly implies m=20.
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6. Singularities of the Eisenstein series

The P*(r, 5) of proposition 5. 1 are not defined for Rer=0. In proposition 2. 19 of
[3] functions E* are considered which are meromorphic at (0, 5) as well. We shall need
the case v=0 only. As the formulas for E* are different for v=0 and v+ 0, we discuss
the former case only, and simplify the notation.

The main results in this section are proposition 6. 5, which considers singularities
o1 ... . .
of E at (0, sy) with -4-—sf,g0, Resy 20, and propositions 6. 11 and 6. 14, which give

part of proposition 2. 17 ii).

6. 1 Proposition ([3], 2. 19 and 2.21). i) There exist a neighbourhood Y(0) of
(—=12,12)x C in Y and a unique section

Ee st @ £°(Y(0)
such that
FoE(r, s)=p°(r, )+ C(r, 5) p°(r, —3)
with C e #(Y(0)).

i) a) E(r,—s)=C(r, —s) E(r, s),
Cr,s)Cr,—s)=1.

b) E(ra S, _§)=E(—r! S; 2)= E(F) §; 2),
C(r,5)=C(~r,5)=CG, 3).

iii) On Y(0)n Y*(0):

a) P°r, 5)=v"(r, —s) (v°(r, —5) — 0°(r, 5) C(r, s) YE(r, s),
DY(r, 5)=("(r, —5) C(r, —s)— v°(r, s,

b) E(r, s)=(140°(r, 5) DJ(r, 5)) "L P°(r, s),
Clr, s)=0°(r, —3) DJ(r, s) (1 + v°(r, 5) DY(r, )

Remark. In [3] we wrote E® and C3 instead of E and C.

6. 2 Proposition ([3], 2.23). a) jlEe'w ® H(C); for Res>% it is given by
P3(s) in i) of lemma 5. 3.

b) If Rcs>—;, s ¢%Z, then E is holomorphic at (0, s).
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Note that j§ E may be holomorphic at s and nevertheless E indeterminate at (0, s).
(Remember j§ E: s+ E(0, 5).)

1

For s=§I, 122, see {3], 7. 19.

6.3 Remark. j§ E is the usual Eisenstein series for the modular group; see e.g.
[10], proposition 8. 6, p. 65 and p. 76. It is known that

Jjs Cls)=A(25)/A2s+1),
with

A(a)= n_%a r (—;— a) {(a),
{ the Riemann zeta function.

6.4 Facts. i) j&C is holomorphic at each se € with Res20, s#%.

11
as IE 3 o i
ii) j§ C(s)<0 for se( 5 2).

iii) j¥C(s)%0 for seiﬂ&”u(o, %)
iv) a) jo C(O)=-1,

b) lin; sjd C(s) (1 +j§ C(s))™! exists and is nonzero.
S—O

See [20]; 11, theorem 2. 1 and II1, 3. 8 for i); II, 2. 6 and II, (2. 7. 1) for ii); IIL, 3. 8
for iii). To obtain iv) write j& C(s)=A(+2s) A(—2s)"" and use [20], I, end of 2. 12.

6. 5 Proposition. i) Let s C, 0SResp < % So #%. Suppose (0, so) € Sing(C).
Then
a) (0, so) € Indet (C),
b) S°[0, 5] +0,
c) sp€ilR, so+0.

C(r, —s)—w(r, 5)

L
2772

i) Define c,(r,5)=

2

| n
Ct (0, ‘2')= —g.

Then c, is holomorphic at (0, l—),
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Proof of i) a) and i) c). If (0, s,) ¢ Indet (C), then s, € Sing (j§ C), so 6. 4 i} implies

i) a). To get i) c) from i) b) remark that %—sﬁgszﬁ, see e.g. [10], proposition 2. I,
p- 511.

The proof of i) b) and ii) will be given in a sequence of lemmas.

1 1 -
We let so€C, 0§R6s0§2; the case So=7 corresponds to ii). We use the

notations:

Efr, s) if so=|=0,;,
G(r,s)=3{1+C(r, )} L E(r, 5) if 5,=0,

C(r, —s) E(r, s) if sy=

Clr, s) if so+0

c(r,s)={sC(r,s) {I+C(rs)} ' if s,=0,

C(r, —s)—w(r,s) if sp= 5
o . l
1o(r, —s) if 5430, 3
A, ) =1 s {u°(r, —s)— p°(r, )} if s=0,
1o, s) il s =-; :
0 . l
wr, s) if so# 5
v(r, s)=
. 1
{(r, s} if So=7-

Remark that 2 and v are meromorphic sections of %" %, and that G is one of &/°. (For {
and w see 4. 16))

6.6 Lemma. i) v(r,s) and A(r,s) form a basis of W°[r,s] for all (r, s) in some
neighbourhood U of (0, s,).

ii) G is the unique section of M ® s/°(U) satisfying FoGev+ 4 (U)- A
iii)) FyG=v+ci.

Proof. For part i) consult [3], 5.7. The uniqueness in ii) follows from i) in
proposition 6. 1. In the case s,=0 one may dispel any worry about 1+ C being
identically zero by consulting 6. 3.
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6.7 Lemma. Let p=(0, s¢). Take w € @,, p+0. Equivalent are:
i) G is holomorphic at p.
i) wc is holomorphic at p.

Proof. The implication i) = ii) follows from the holomorphy of v and 2 at p, see
[3],4.24 and 5.7.

Assume ii) and suppose that p e Sing(yG). Choose a local curve j: W—Y
through p along an irreducible component of the germ of Sing(pG) at p such that jW
does not intersect other components of the germ of Sing(pG) outside p. Let y € 0, be
irreducible such that jW < N(x). Choose n21 minimal such that "yG is holomorphic
at all points of j{(W\{0}).

As j*(x"wc)=0, we have j*(x"pG)e (%) (W\{0}). Further j*(x"pG)+0 by
minimality of n. Lemma 4. 14 shows that there exists g=(ry, 51), i #0, ry (=12, 12),
g=jw,, w, € W\{0}, with s, iR U (0, %) and (x"wG) (g)+0. On a neighbourhood of
q we have x"pG=pP® with ¢ meromorphic, x+0; see iii) b) in proposition 6. L.
Lemma 5. 4 iii) implies that (x"yG) (q) is orthogonal to itself.

6.8Lemma. i) If s, #% and (0, s,) € Sing(c), then S°[0, 5] +0.
i) ¢ is holomorphic at (0, %)

Proof. Suppose p=(0, s) € Sing(c). Take y € &,, y+0, minimal with respect to
divisibility in @,, such that G and yc are holomorphic at p. Take an irreducible factor
x of w in @, and take a local curve j: W—Y through p along N «tj

Take m € Z maximal such that
f=lim w™™ - j* (G) ()

exists; then fe A°[0, s,] is nonzero, and Fyf is a multiple of A(0, s). On the other
hand the Maass-Selberg relation, 4.4, implies that F, f is a multiple of

. . X 1
Fy jd G(so)=v(0, 50) + (jo ) (s0) - 4(0, 50) il so+ 59
. 1
Fo1=v(0, s0) if So=7-
So we conclude that fe S°[0, so]. This gives i), and also ii), for §° [0, %:I=O.

6.9 Proof of i) b) in proposition 6. 5. In the case s, +0 the assertion is given by
lemma 6. 8.
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Let so—O By [10], proposition 2.1, p. 511, we know that S°[0, s]+0 only if

%—s’>32 So lemma 6.8 gives holomorphy of ¢ at (0,0). By iv) b) in 6.4 we get
c(0,0)+0. As

C(r, sy=—cl(r, s) {c(r, 5)—s} !

the holomorphy of C at (0, 0) follows.
6.10 Proof of ii) in proposition 6. 5.

Remark that for O<r<1:
1 1 ar\dr
0 — — - — . -
w (r,z(l r)) C(r,z(l r)) (3) .

So for n, as in 2. 3:

Fon,e€-2(n31-n),

Fon,+0.

From the discussion in 2. 13 follows that S° [r,%(l—r):l=0, so by iii) in lemma 5.4

and iii) a) and ii) a) in proposition 6. 1:

n(r)=a() lim (s—-;—(l—r))q
s=tu-n
v°(r, —5)

. vo(r, —s) C(r, —S)— DO(r’ S) . G(r, S)

with a(r)e C and ge Z. So, as Fyn, is a multiple of { (r,%(l—r)), we obtain

1 q
(s -5 (1- r))
lim

a(r) : 0 *0,
sodi-r AU
1a-nC@r, -3 G =5
1 q
(s-—i(l—r)) c(r,s)
a(r)- lim T =

s5~+3(1—r) e Q) —
Y-n C(r, —-5) P =9

81 Journal fir Mathematik. Band 371
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So s+ c¢(r, s) has a zero at %(l—r) for each re (0, 1). So

c(r, 5)= (% —5— % r)mcl(r, s)

with ¢, holomorphic near (0, ;) and mz1.

-1
From 6.3 follows: lim (l - ) c(0, 5)= —E, so m=1 and ¢, (O, l)= s
g \2 3 2)7 73

6. 11 Proposition. Define A° as the set of A€ A° satisfying Fo(r) f; 1 o(r) 0 for some
re(0, 12), for some i€[1, N, o). If A€ A° then lin:ionf).(r)g‘li.

We need a lemma.

I"(l+23)1'(%——s—%r)

F(I--23)F(£+s—%r)

sire ‘li—}.(r) is holomorphic at ro € (0, 1), then

6.12 Lemma. Put B(r,s)= -C(r,—s). If 2eA® and

re— (—1;—")1‘") + B(r, s(r)

is identically zero on a neighbourhood of r,.

Proof. By proposition 5.7 the local curve j:r—rgi—(r,s(r)} runs along a
component of Sing(DJ), so

j# ((I’, S) L Uo(r’ —S) C(l’, -—-S)— UO('.’ S))

is zero. The explicit expression for v® in 4. 15 gives the lemma.

6.13 Proof of proposition 6. 11. Consider ry € (0, 1} and so € (0, ; (1 —ro)) such

that ).(ro)=%—s§. Now we apply lemma 6. 12 with s(ry) = s,.

From 6.4 follows that B(r, s) is negative for r=0 and 0§s<%. Now suppose
limionf J.(r)_-.%—az2 with a € (0. %) Choose fi € (0, @). There are ¢, <1 and 6>0 such
ri

2f
that B<—5 on [0,¢]x[B, a]. Take &, €(0,&,) such that ("3—'“2) <§. Then for

(r, s) e [0, &,] x [«, B]:
(n_,.)25< 1)
3 .

So the relation in lemma 6. 12 cannot be satisfied in this region.
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. 1 ol =
Suppose lin:ionf A(r)=0. So we may choose (r,, s,} tending to (0, 5) satisfying

O<r,<1 and 0<s,,<%(l—r,.), for which

(%'—)2 +B(r, 5,)=0.

Now use ii} of proposition 6. 5 to obtain

r2- 2s)r(1+s—1r) B(r,s)+1'3—’

¢, (r, s)= e e
1 3 1\ 1-2s
I‘(I+2s)1"(2-—s—§r)

So we would obtain

. nr, \°* nr,
- LU T et <g <
—-"llm (3 ) ln( 3 ) 2s,£0,21)

in contradiction to ¢, (0, ;)= —g.

6. 14 Proposition. If i€ A% then A has no holomorphic extension to a neigh-
bourhood of 0.

For A° see proposition 6. 11.
. . . 1 .

Proof. Suppose A has a holomorphic extension at 0. Write ).(0)=E—s‘2, with

Res, =0, see proposition 6. 11. Let j be a local curve through (0, s,) along the zero set
1

of (r, )~ Z—sz—).(r). By 4. 12 we may assume j(v)=(v% s + h(v)), with h(0)=0.

By the definition of B in 6. 12 we see that

v — B(vY, 5o+ h(v))

is meromorphic at 0, and by lemma 6. 12 given by

T[Uq 2sg+h(v)
Vi 3 for Reu?>0.
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This is only possible if h(.) is constant, so h=0 and g=1 (see 4. 12). But then 25, € Z,
50 So=0. This means that l(r):-‘li for all r € (0, 12), which is excluded by proposition
3L

7. Non-extendable eigenvalues

For 1eA° as defined in proposition 6.11, we have already seen that
lin}iglf ).(r);%, see proposition 6. 11. In this section we continue the use of lemma 6. 12
r

to prove:

1

7.1 Proposition. If A€ A° then either lilng l(r):z or l'm Ar)=o00.

We shall use:

7.2Lemma. Let w:D— C, D={zeC:|z|<d}, 6>0, be real analytic and
suppose that 0 is the only zero of y on D. Let «, fe R satisfy O0<f—a<2n; put
s={re'* e D: 0<r,a<¢ < B}. Then each continuous real valued function a on S such that
w=|p|e’® on S, is bounded.

Proof. Each argument a is continuous and bounded outside each neighbourhood
of 0 in S. So we may replace D by a smaller neighbourhood of 0 in the course of the
proof. After replacing w by u-y, with ue C, u+0, we may assume that g=Rey is

nonzero on i N D. We shall prove the lemma for the case a= ——%1:, ﬁ=;n. The

general case then follows immediately.

Identify D with a subset of R? by z+— (Rez, Imz). As g is real analytic we may
extend it holomorphically to a neighbourhood W of 0 in C2. Take

W={(x, y) e C*: |x|<d,, |y|<d,}.

If 8, is small enough, then the irreducible components in W of the germ of N(g) at 0
intersect each other only in 0. Furthermore, each irreducible component is the image of
a map j: u— (u% h()) on a suitable neighbourhood U of 0 in C, with 21, g integral,
h holomorphic, h(0)=0, i'(u)+0 for all u € U; see 4. 12. We can exclude {(1, 0): u € U}
as a component by an earlier assumption. By taking é, small enough we arrange that
N(g) n R* does not contain isolated points different from 0. So N{g) n R? is the union
of finitely many sets of the form

{(exr?, k(r)): 0<r<d,},

with g2 1, &, =1 or —1, k real analytic, k'(r)%0 for all r € (0, §,). If §, is small enough
these sets are disjoint. If &, =1 such a set is contained in S, if &, = —1 it does not meet
S. So on S N W the zero set of g = Rey has finitely many connected components, and a
can take only finitely many values in nZ on S, =S n W n N(g). As S n W is connected
this shows that a is bounded.
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7.3 Notations. We use B(.,.) as in lemma 6.12. We fix A1e A° and define

t:(0, 1) = R by
l/l 1 .
_ 2‘._;,(r)e(ﬁ(r—l),O) if An<
t(r)= 1
]/)_(r)—ze[o, o) it 1z

L=lim¢t(r) if it exists,
rl0

?

Bl =

.

Further

LS=limsupt(r), LI=Iliminft(r).
rlo rlo
7.4 We know already L7 2=0, and want to prove that L exists and equals 0 or
co. We shall do this by proving:
i} If LI<¢ with £>0, then LSZ¢  (lemma 7. 8).
i) If0<LS<co, then LI<LS (lemma 7.9).

7.5 Lemma. Put X = [0, {I x i[0, o0) = Y(0),

X.=X nSing(B), X,=X\X,.
1) |B(r,s)l=1 for all (r, s)€ X,.
i) X, is discrete in X.
For Y(0) see 6. 1.

1
Proof. Remark that Sing(B) n X =Sing (E) N X. For (r,s) e X:

IC(r, > =C(r, 5) Clr, —5)=1,

see proposition 6. 1 ii); the I'factors give a contribution of absolute value 1 as well. So
i) follows.

To prove ii) it is sufficient to show that X  Sing(B)cIndet(B). Let pe X,, v
holomorphic at p, nonzero, such that wB is holomorphic at p. If pB(p)+0, then
lpB(g)}|>0>0 for all ge X,, g near p; so |p(g)|>4 for those q. This implies y(p)=+0.
But if p were invertible as holomorphic function, then it could not be used to make yB
holomorphic. So wB(p)=0 for all such p.

7.6 If Z is a simply connected open subset of X,, then we may choose a
continuous function 4 on Z such that B=¢'4 on Z. If in addition the closure Z is
compact and contained in X, then Z may contain only a finite number of points of X,.
Lemma 7.2 ensures that 4 stays bounded near those boundary points in X,. So we
have:

7.7Lemma. Let Z=(0,{)xi(4 n) with 0<C<% and O<i<p. If ZnX,=0,

then there exists a bounded continuous function A: Z — R such that B= e on Z.

81 Joumnal fiir Mathematik. Band 371
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7.8 Lemma. Let £>0. If LI<¢, then LS<E.
Proof. Suppose LI<¢<LS. Choose in lemma 7.7: C=% and LI<i<u<LS,

such that Z = (0, % x i(4, p) satisfies Z N X,=0; see ii) of lemma 7. 5. By continuity the

graph of it crosses Z infinitely often. Considering downward crossings only we find a

sequence of disjoint intervals (4,, g,,)c(O, %) such that

'J'n 10, ¢, 1 0, t(4)=un, t(Q")=/{,
(r,it(r))e Z forall re(d,, e,).

By lemma 6. 12, with A chosen as in lemma 7. 7, there are /, € Z such that
2t(r) ln(lt;)+1t+21rl,,+A(r, it(r))=0 for re(d,, g.)
So there are C>0 and D, € R such that
nr
D, Z2t(r) ln(—g’—) £D,+C for re(d,, g,)-

By continuity of ¢:

D,<2uln (E;"'),

2) 1n(":f")gu,,+c.

A ..
n3"), in contradiction to 4, | 0.

So —CL2(A—p) ln(

7.9 Lemma. If 0<LS <o, then LI<LS.

1
Proof. Suppose 0<LI=LS<o0. Take 0<i<LS<pu<o and Ce(O, 5) such
that

A<t(l<yu forall re(0,()
and such that Z A X, =9 for Z=(0, {)x (4, #). By the lemmas 6. 12 and 7.7 we know

that 2¢(r) In (%r) is bounded for r € (0, {). On the other hand for r € (0, {):

nr

—oo=lim 24 In{ 25} 2 liminf 2¢() In [ - ).
r10 3 ri0 3
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8. Proofs of global results

We now may prove theorem 2. 15 iii), proposition 2. 17 i) and ii) a), and most of
theorem 2. 21. The key results are proposition 2. 8 in [2] and proposition 6. 14.

8.1 We return to the notations introduced in section 2. As in 3. 2 we extend the
A€ 4, as holomorphic functions on some open set U, in C containing (0, 12) such that
we also have analytic extensions

fli.l: leb_’ Cy

holomorphic in the first variable. This has been discussed in [2], 3.4 and proposition
3.6 for the case I=0. Holomorphy in L*-sense and pointwise holomorphy coincide in
this case.

8.2 In proposition 3. 1 we have seen that it makes sense to consider A= A\AS.
We already introduced

A" ={1e A°: 1 not extendable to a neighbourhood of 0},
A°={Ae A Fo(r) fio(r) %0 for some r e (0, 12) for some i}.

We put A¢= A\ A",

In proposition 6. 14 we proved A%< A"

8. 3 Proposition. Let Ae A°.

i) AN\A°cA°,

ii) If N;o=2, then de A

Proof. i) is part of proposition 2. 8 in [2], and from this proposition i) follows as
well, as soon as we construct a nontrivial holomorphic linear combination S of the f{,
with Fy(r) f(r)=0 on some interval J (0, 12).

‘Wlr, 1’;2, %—s”) is a one-dimensional space with basis element w(r,s), as
discussed in [3], 2. 7—2.9; consult [3], 2. 13 to see that WO[r, 5} in [3] coincides with
"W(r, {5 %—SZ) defined in 2. 5. So

Folr) f o) = (1) (r, l/i-— A(r)).

From proposition 3. | follows that A(r) is not identically equal to % So we may pick an

interval J<(0,12) on a neighbourhood of which f{, and «°(r, ‘/%—}.(r) are

holomorphic in r. Then [3], 5. 7, implies that the a, are also holomorphic near J. The
construction of an f as desired now is easy.

8. 4 Definition. By @ we denote in this section the sheaf of holomorphic functions
on C.



172 Bruggeman, Modular forms of varying weight. 111

For e 2Z, 1€ O(U) we denote by &, the @-module on U with as sections on
VU analytic functions f:V xl— C, holomorphic in the first variable such that
f(r,.)eS(r+1,r, A(r) for all re V. This notation differs from the one used in sections
4—7. Here it is convenient to take r as variable.

By &2, we denote the submodule of %, ; determined by Fo(r) f()=0forall reV.

8.5 Proposition. Let Ae A°. There exists a neighbourhood U, of (=12, 12) such
that ) has an extension ie@(0,). We may assume that the [}, have extensions
fioe F2(U), 1SiS N, which at re(—12,12) generate the stalks (%2)r as
O,-modules, such that for re(—12, 12} the f. i o(r) form an orthonormal system.

Proof. Proposition 6. 14 implies that the f} o € #2(U;). Again proposition 2.8
in [2] shows the existence of an extension A€ @(U,) as stated in the proposition, and
moreover, of sections ¥,, ..., ¥, of % on U,, generating the stalks at real points. The
proof of this proposition in 7. 13 of [2] shows that the y; may be taken orthonormal at
real r. So their number equals N, , and they may serve as f 10

8.6 In proposition 8.5 we use weight r only. It is convenient to relate this to
other weights:

8.7 Lemma. Let A€ A"

i) N;=N,, does not depend on le€2Z.

ii) If AeA° we may assume the f}, to be extended to f] e $2(U,), orthonormal
at re(—12,12).

Proof. i) follows from proposition 3. 1 and the discussion in 2. 8.

If the fi,e %2(0,) have been chosen we determine all f}, by

. 1 .
Efei S = -2Vﬂ.(r)+§(r+ D50 +D? ffiaal),

B Sl = +2)/ 100+ 4140412 Facal

if we have chosen U, or U, small enough, then the root expressions depend
holomorphically on r, use proposition 3. 1. The root expressions are positive for real r;
the orthonormality is preserved by the adjointness of EF and —EY.,.
8.8 Lemma. Let i€ A°
i) There is a unique p € A° such that p(ry=A(r—12) for all re U, n (0,412
i) N;=N,.
iii) For each ve Z the following conditions are equivalent:
a) Fo (0 fio=0 forall re(0,12) and all i€[l, N;],
b) F.()fio()=0 forall re(0,12) andall ie[1,N,].
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Proof. S{r,r, A(r—12))=S(r—12)+12,r—12, A(r— 12)) for all r e U;+12. So the
r fi,,(r—12) are sections in .9';"’0(01-{-12), with u(r)=4(r—12). On (0, 12) the
r fi ,(r—12) form analytic families of cusp forms. If u ¢ Ay, then the graph of p
would intersect the union of the graphs of all k € 4, in only countably many points.
This gives a contradiction to proposition 2. 14. From proposition 3.1 follows that
u € A, This gives i).

The orthonormality of the f},,(r—12) for 0<r<12 shows that N,=zN,. By
proposition 8.5 we may near r e (0, 12) express the f o(r) in the f ;(r—12); this gives
N,EN,.

As F,(r)=F,,(r—12), we may rewrite a) in iii) as

ay) F(r+12) f{o()=0 for all re (0, 12) and i e [1, N,].

As F,(r+12) commutes with the Maass operators, see 2. 4, we see that a,) is
equivalent to

a;) F(r+12) f] 2()=0 for all re(0, 12) and i e [1, N,].

In proposition 4.24 of [3] we have secen that the Fourier coefficients are

holomorphic in r; so we may replace (0, 12) in a,) by (—12, 0). As the f} ,,(r—12) and
the ffo(r) may be expressed in each other, equivalence to b) follows.

8.9 Definition. For A€ A° define £l e A by eA(r) =A(r—12).

Lemma 8. 8 i) shows that &: A°— A° is a function, it is clearly injective. Its inverse
may be described in the following way:

8. 10 Definition. Jf(z)=f(—2) for f: ) — C.

This is the operator X in [13], IV, (18), p.179. Remark that
JS(g, r,)=S(—q,~r,p) for q,r,peC.

So if A€ A, then the r+> Jfi _ ,(12—r) are sections of .0 for p()=1(12-r).
Hence u e A°,

8.11 The resulting map A°— A° we denote by i:
IA(r)=4(12-r).

8.12 Clearly 1&1: €4°— A is the inverse of &: A4° — gA°c A"

¢ and its inverse 1&1 together describe how far 1e A may be extended analytically.
Each A€ A° occurs in a sequence

canry Az, 11‘, }»=lo, l_l, 2._2,...

with e4;=4,,,. The sequence is finite il and only if 4;€ A" for some i 20 and 4; € 14" for
some i<0.

8 Journal fir Mathematik. Band 371
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We shall see that indeed for Ae A° the corresponding sequence is finite.
8. 13 Lemma. Let f€S(0,0,u), peRi.
If F(0)f=0 for all v=0, then f=0.

Proof. Consider the Hecke operators acting in S(0, 0, p):

p-1
T,h(z)=h(p2)+ Y, h(—z';b->, p prime.
b

=0

See e.g. [13], V, §3.

The T, act on the Fourier coefficients of positive and negative order separately; so
we may suppose that f is a simultaneous eigenfunction of the T,. Now consider f+J f
and f—Jf; these are simultaneous eigenfunctions for all T, and for J. The eigenvalues
for each T, are the same, but for J they differ. To each simultaneous eigenfunction is
associated a representation of GL,(A) in L*(Z4GL,(@)\GL,(A)), with Z the center of
GL, and A the adele ring of @; see §5 of [6]. The finite components of this

. . . . s 1
representation are determined by the eigenvalues of the T, the infinite one by Z—sz

and the eigenvalue of J. Proposition 6.22 in [6] states that the finite components
determine the infinite one. So our assumptions on f would violate multiplicity one.

8. 14 Lemma. Let i€ A"

i) There exists me Z, m=0, such that e"Ae A"
i) There exists k€ Z, k20, such that (1e1)*Ae1A".
iii) N,=1

Proof. Suppose e"Ae A¢ for all m20. In proposition 6. 14 we have seen that
A%c A", so

Fo(r) fiuo()=0 forall re(0,12) and ie[l, Nol.
This implies by iii) of lemma 8. 8:
Fo () fio(n=0 forall re(0,12) and ie[l, N;].
By analyticity of the Fourier coefficients we get
F,(0) f,(0)=0 forall mz0.
So f15(0)=0 by lemma 8. 13, in contradiction to ii) of lemma 8. 7. This gives i).
We get ii) by applying i) to 14.

By ii) of proposition 8.3 we know Nym;=1if m20is minimal such that e"Z¢e A"
Now iii) follows from ii) of lemma 8. 8.

8.15 Proof of theorem 2. 15 iii). See iii) in lemma 8. 14.
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8.16 Proof of proposition 2. 17 i) and ii) a). See proposition 8.3 i} and lemma
8.7 ii) to obtain i). Part ii) a) has already been shown in proposition 6. 14.

8.17 Proof of theorem 2. 21, except i) d).

In 8.12 and lemma 8. 14 we have seen that each element of A° occurs in a
maximal sequence 4,,..., 4,, 4,, with ed,=4,,, for 1 <i<n—1. This means that l,eA"
has a holomorphic extension to some neighbourhood @, depending on 4,, of (0, 12n),
which we may choose simply connected, and

() =2,r+12n—12i), 1Zi=n.

This shows i) a) and ii) a) of theorem 2.21. The maximality of the sequence gives
12, € A", 50 i) c) of the theorem follows.

8.18 Define t;; and V; for 1<i<n, l€2Z by

Vn=Ux.,a tn,t=f1,..l’
Vi=U,+12(n—i), L) =firi2m-0(r~12(0—1), 1Kisn—1

We may assume that all ¥; and V;nV,,, are simply connected, that

Vie{reC: 12(n—i—1)<Rer<12(n—i+1)}
and that Q, = 0 V.
i=1

From the lemmas 8. 7 and 8. 8 follows that
Li=Wialivg on VinVy,,, I1£ign-],
with y;, € O(V, NV, )* (See 8.4 for 0.

We have H'(Q,,0%2H*Q,,Z)=0, see e.g. [11], p.181. This implies the
existence of ¢, , € O(V;)* such that GiaWii=Pivr0 0n V,n Vi, . So we may define g, on
Q,, by

g=d; ity on V.

This g; is nonzero at each r & (0, 12n). Its norm in L(r, r) is positive and is real analytic
in r. So r—Jig,(r)l " has a holomorphic extension to some neighbourhood of (0, 12n).
So take Q; small enough and take Ji,.1 10 i) b) equal to |g,|l 'g,. Part ii) b) is clear
from the construction.

8.19 This glueing argument could have been avoided by taking a more global
viewpoint in [2], at the cost of some notational and conceptual complications.

9. Perturbation theory

We still have to prove theorem 2. 15 ii), theorem 2. 21 i} d) and proposition 2. 19.

In this section we prove proposition 2. 19. To do this we have to go back to the
proofs in [2]. We also prove a result on the derivatives of eigenvalues, which we need in
section 10.
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9.1 We work in the case g=r only, so we use the notations of section 4.

9.2 The main idea in [2] is to apply analytic perturbation theory to the
operator A,=4,, in L*(r, r). To do this we had to map these spaces unitarily onto a
fixed Hilbert space.

In [2], section 3, this was done by a map
L2(r,r)—> L2(0,0): > e™™'f

with ¢ a suitable real valued function on b. The differential operators L, and E}
correspond under this transformation to operators L(r) and E*(r) described in [2], 3. 4
and 3. 11.

9,3 If we are interested in r € (0, 12), we may study the sesquilinear form

S0 8,1 = — (b 9>+ T CEX 006, EX 0w

in I2(0, 0). But if re(—12, 12), then we need to work in a subspace °H of L*(0, 0)
defined by requiring the Fourier coefficient of order zero to vanish above the level y=a
for some a>5.

In °H the form s(r) is used to construct a selfadjoint holomorphic family of
operators “A(.) on a neighbourhood W of (—12, 12).

Eigenfunctions of “A(r) in °H with eigenvalue %—sz are of the form e™'". ¥f with
fe A°[r, 5] such that F, f(ia)=0. Here we use the truncation

h(z) = h(z) if zeF, y=<a,
T (@) —Foh(z) if zeF, y>a,

@h extended to b in such a way that it satisfies (a),, in 2. 2. This correspondence follows
from [2], 6.13, 6.14 and the proof of 7.8. In particular, S°[r, s] corresponds to a

subspace of ker ("A (") - % + s’) .

%4 has compact resolvent. This implies that we may use strong results from
holomorphic perturbation theory.

. . | 1
9.4 In the situation of proposition 2. 19 we are interested in sq € ifR, §—s§>‘—l,

s0 5o+ 0; cf. proposition 6. 5.

In [12], VII, §3.5 and §4.7, remark 4.22 we see that, if ‘W is small enough,
there are holomorphic functions 4,,..., 4, on °W and fi,..., f,, holomorphic on “W
with values in °H, such that

a) (AP -L0) fin=0 i=1...m, reW,

b 40)=;-5 i Iges
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©) fi(r)..., fu(r) form an orthonormal system for each r e “W n R,

d) there exists £>0 such that if re W R and Ae R satisfies l—%+s§ <g,

then {f;(r): ;,(r)=1} is a basis of ker (%4 (r)—4).

As s+ 0, we may assume that A,-(r):i——s,.(r)’ with s5;(0)=s, and s; holomorphic
on ‘W.

Application of [2], lemma 7. 14 shows that we may rearrange the J; with ;=2 for
some fixed function 1 in such a way that at most one of them has non-vanishing
Fourier coefficient Fj, f;.

Define ji: "W — Y by ji(r)=(r, s;(r)). We arrive at:

h e (0 (W), Fohy+0, Fyh(ia)=0 for I=1,...,u
Be@F) (W), I=utl,..m

£

such that

p e it oy i 1K1y,
" e’ W if yyigism.

9.5 Definition. For se iR define $/{s} and S¢{s} by
i) §/{s} is the subspace of $°[0, 5] spanned by

{/M,(O): Ae A% 2(0) =% —s"'}.

i) S°[0, s]=8'{s} ® S*{s} (orthogonal decomposition).
9.6 We want to prove that S®{so} 40 is equivalent to (0, sg) € Sing(C).

Remark that the 4; with u+1<I<min 9.4 are just the 1€ A° with ).(0)=%—sf,.

So we have i) of:
9.7 Lemma. i) g,,,(0),...,2.(0) is an orthonormal basis of §7{s,}.
i) S¢{so} is contained in the space spanned by hy(0),..., h,(0).

Proof of ii). $°[0,s] is an eigenspace of A, in L2(0,0) and is contained in the
corresponding eigenspace of %4 (0).

9. 8 Lemma, Equivalent are:

a) u2l for all choices of a>5.

b) (0, so) € Sing(C).

¢} (0, sp) € Sing (E).

Proof. b)<>c) by lemma 6. 7. We prove b) = a) and a) = c).
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Suppose b). Proposition 6.5 implies (0, so) € Indet(C). So we may take a local
curve j through (0, s,) along a component of the zero set of

(r, ) 1°(r, s; ia) + C(r, s) p°(r, —s; ia).
Remark that p°(0, w; iy)= yiw, see [3], 2. 13.

Now =Y j* E) corresponds to a family of eigenfunctions of 4, holomorphic on
a neighbourhood of 0. As in the proof of lemma 4. 14 we conclude that j may be taken
j:wis (w, s(w)) with s holomorphic and s5(0)=s,. So f may be expressed in the
functions discussed in 9. 4; as F, f is not identically zero, we need one k;. Hence a).

Suppose a). Take a>5 such that

a8 Clse) - af 040,
with jo: 5+ (0, s); cf. 6.4. If (0, s,) ¢ Sing(E), then we get
Fo(r) E(r, s;ia)+0 for (r,s) near (0, so).

For 1 <1< u we have Fy(r) hy(r)=c,(r) Fo(r) E(r, 5,(r)), provided r near 0; the ¢,(r) are in
C. As Fy(r) hy(r; ia)=0, we get ¢,;=0. So Fyh,=0, in contradiction to the arrangements
in 9. 4.

9.9 We now know (see 9.7 and 9. 8):
S{so} #0=u21 foralla>5 « (0,so) e Sing(C).
By the remark in 9. 6 we have proved proposition 2. 19 as soon as we show:

(0, 54) € Sing(C) = S°{so} +0.

9.10 We now assume (0, s,) € Sing(C) and take a> 35 as assumed in the proof of
lemma 9. 8; this leaves a lot of freedom for a. We fix y € 0y 4, ¥ +0, minimal such
that pC is holomorphic at (0, s).

Our aim is to prove that h,(0),..., h,(0) are elements of ${s,}. We do this by
expressing the h, in E.

9. 11 Lemma. Put y,(r,s)=s,)—s and ji:r>(r,s,(r)) for 1S1<u. There is a
neighbourhood U of (0, so) such that

N(z) 0 Sing(C) n U ={(0, so)}-

Proof. For U small enough either N(y)n UcSing(C) or the intersection
contains (0, s,) only.

Suppose N(x;) n U <Sing(C). For the local curve j, along N(y;) we know that
F, j¥ (pE) is proportional to Fyh,. This implies, for r near 0:

jt WO () - 12, —s,(r); ia) =0,

Hence j* (pC)=0. So y, divides pC in O ,; by supposition y, also divides y. This
contradicts the minimality of y.
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9.12 Lemma. There exist a neighbourhood V of 0 in C and holomorphic functions
Pis-ers Yu 00 VN\{O} such that

h=y,-j*E on V\{0}, 1ZIgu.

Proof. As j* E is holomorphic on ¥\ {0} the Maass-Selberg relation, 4. 4, implies
that Foh, and F, j*E are proportional. So

Folr) () =n(r)- Fo()j* E(r) for reV\{0},

with y,(r)e C. By holomorphy of the Fourier coefficients we know that y, is
meromorphic on V, cf. proposition 4.24 in [3]. So by making V smaller we get v,
holomorphic on ¥\ {0}.

On V\ {0} we may express ¢,=h,—v,-j* E as holomorphic linear combination of
some g;. So forreRnV, r+0:

0=(e ™ -9(r), e - W (r)) see 9.4
={(r), “iy(r)y in L3(r, 1)
=y(r)- {y(r), PE(r, 5;(n)> + {u(), D (r)).

By lemma 8.3 in [3]:
(hi(r), WE(r, 5,(r)))> =0.

So ¢,(r)=0 for infinitely many r, so ¢,=0.
9.13 Lemma. The y, and y,-j*C, 1 <I1<u, have a holomorphic extension to 0.
The y, have been defined in 9. 12.
Proof. For re V\{0}:

Fohy(y=y(r)- l‘o(", 5;(r) + 7.} it Clr) - F‘o(": ~5,(r)).

As p°(r, s) and p°(r, —s) form a basis of W°[r, s] near p, see [3], 5.4, 5. 7, we see that y,
and ;- j* C extend holomorphically to 0.

9.14 Lemma. y,(0)=0, j*C is holomorphic in 0, for 1<I<u.

1
Proof. For reVn R, r+0, we have Z—s,(r)2 e R, for

1
re— Z—s,(r)2

is an eigenvalue of a selfadjoint family of operators. As sy € ifR, 5,40, we see
IC(r, i =C(r, 5(r)) C(r, —s5,() =1,

see proposition 6. 1, ). So j* C cannot be singular at 0.
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Suppose 7,(0)#0. The Maass-Selberg relation, 4. 4, implies that for some a, € C:

Foh©@, iy) =yt 43 Clso)y* ™),
with jo: s (0, s). On the other hand

Fohi(0, i) =7(0) - (v ™+ CO)y? ™).

Now remember the choice of a in the proof of lemma 9.8. Taking y=a in the first
relation gives o;=0. So Fy,(0)=0 and the second relation gives y,(0)=0.

9,15 Proof of proposition 2. 19. As discussed in 9.6 and 9.9 we have to check
that

S¢{so} +0.

But lemma 9.14 implies F,h(0)=0, so the h,(0) all are elements of S°[0, s,],
orthogonal to the g;(0) which span $/{so,}. So (0),..., h,(0) form a non-empty
orthonormal basis of 5°{s,}.

9. 16 Proposition. Put

a

3 .
e(2)=— - +y—-24 ) o (n)ye 2mnyE2ninx

For Ale A° and r e (0, 12):
1 1 =T CE-
5 r+ (")—1—2 CE; [0l e- - [0
— 55 <E fuolt) €1 fuolr)-

Remarks. o,(n)=) d° e, is the value at s=1 of the continuation of the

2
din
Eisenstein series in weight +2:

+
1 Y eFrmmsia, y s.
2  dez ez +d)?

{c.d)=1

So e, € A[+2,0,0]. The f;(r) are quickly decreasing at the cusp, so the scalar
products in the proposition make sense.

9,17 Lemma. Let 1€ C®(I'\}) be real-valued and let <, 7, and t, be exponentially
decreasing for y — co. Then for A€ A° and re (0, 12):

Re[CE, f;,0(r), i(Eg T) - [1,00))— CE; f1,0() i{Eg ©) - [2,0(r))]1=0.
Remarks. The conditions on 7 ensure convergence of the scalar products.

We shall use this lemma to connect proposition 9. 16 to the perturbational results
in [2].
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Proof. As f,o(r) is quickly decreasing, we may use —E],, as adjoint of EZ.
Further we use:

EX(fe)=g - Eff+f-Efg.
We obtain, with f(r)=f, o(r):

; FLEES(), (E5D)- f() =§ FLEE @) EF (- f()} —1- EX S0

=§i {—42)—r2F2r} f(r), - £
+Y +<EEf(n), T+ EX (1)),
+

which is real as 7 is real. We used:

1 1,1
Lr=—ZE:.F:tzE'i_‘4Tr2+Er.

9.18 Some functions used in [2] are: t, occurring in the transformation
Sre ' f, and by =2iyt, T2yt + 1= +1+i(EEs).

We may check in lemma 3.2 of [2] that
t=2Imlogyn+r1,

with 5 the Dedekind eta function and t e C®(I'\b) satisfying the assumptions in lemma
9.17. From

ni

iz )
. o_ (n) ez::mz
12 ,,gl !

logn(z)=

3 i .
we see that ey = —;?;‘ E§(2Imlogn). So b, = $-73£ es +iEft, and a computation
shows that

6
Ef,e,=—.
ilin

9.19  Proof of proposition 9. 16. We use section 6 of [2] with B=0; so we need
no truncation, cf. 6.15 in [2]. Let ¢(r)=e [, o(r)=e"""f(r). So ¢ is an eigenfamily
for the eigenvalue A of the family of operators associated to the sesquilinear form

0T, 1=~ 1>+ 5 T CEX 0w, B2 00>,

As shown in [2], 6.9—6. 12, the derivative of s is given by

1 . ;
00 71= g T (CE (0. €72, 2+ Ce¥ by, E* ()0}~ 4 1o, 0,
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so if we apply [12], VI, § 4. 6, (4. 44) we obtain for those r € (0, 12) for which i(r) has
multiplicity one:

1
A= —5rd(), o0

1 S
+5 L{E* 0 60, 72 90)
+{e¥ b, (), E*(r) ¢()}
- _%r+1 Y {Ce ENEESL(r), e DD, £(r))
8%
F e My £(p), e CEMEE F(AN} (see [2], 3. 11)

= s T ReCEE[(), b (D) —57
+

| =

" (FReCEE0), es SED} —y 7
+

[\

1

+7 Reg (EXf(), EET)- f()

= — 3T ReTS (CB; S0), e S0 —CES L) e SOD}  (see lemma 9.17).

Remark that

CE, f()e- - fO))=Le - fr), E, ()
=—(E" (e - SO0 S =—Le- - ETf()+S()- EL e, S (1))

< (B @ e SOy~ see 918

So we may omit Re and obtain proposition 9. 16 for infinitely many r € (0, 12) forming
a dense subset.

9.20 We conclude the proof by continuity. By [2], lemma 6. 8, it is sufficient to
show that r— ¢(r)=e""""f(r) is continuous with respect to the norm

I2h: =Y 1E* (ro)xi?
)

for ry € (0, 12). We even prove holomorphy:

For { large the resolvent R(—{, r)=(A(r)+{)"" gives a bounded holomorphic
family of operators

{L2(0, 0) with ||.|} — {dom(s(ro)) with .|},
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as follows from the reasoning around (4. 6) in [12], VII, §4. 2. So
r=¢()=@AE)+) R(={, 1) ¢(r)
is holomorphic in the norm |. |;.

9.21 Remark. In the case O0<r<12 the proofs in section 6 of [2] could have
been given using t=2Imlogn. But the Fourier series expansion would be jumbled,
which would be disastrous if we take B+ in [2], section 6.

10. Estimates of eigenvalues
Now we prove the results in 2. 15 ii), 2. 17 ii) b) and 2. 21 i) d) by giving estimates

of A and A’ on (0, 12) for all A€ A°. We shall need weights g =r +/ for various / € 2.Z, so
we use the notations introduced in section 2.

Our main results are propositions 10. 1 and 10. 2.

10. 1 Proposition. Put yo=%]/§ and

2ny, (I—; r)+r—2n

1
Holr)= maxy [-g {2 Yo —

2_1 { =) }2
r ng“ .
For each re (0, 12) and A€ A°:

Ar) 2 po(r).

This improves the estimate A(r)> 4,(r), for r e (r,, 12—r,) with
1 2.2 1 1 -
r,=-6-{—41ty0+(321z Yo — 967y, +144)*} l—-3-1ty0 ~1.0998.

(For 24 see 2.11)
10. 2 Proposition. Let ¢, =24 y,e~2™°(1 —e~2"0)"3 2 0.0912,

2 3 d:
gy =|4deg+<260+2 — Y ~0.4039,

(4, r)= max [——;-r+n—% e {41+(r—2n)2}%—-{4A+(r—2n)2} (12"')_1]

15nsS
Jor A>0 and 0<r=2. Define yu, as the solution on [0, 2] of
' ry=6(u(), 1)
with initial value p(0)=z.
Then A(r)2 p,(r) for all 2€ A° and all re (0, 2].

Remarks. In these propositions we have 1<n<5. This is related to the absence
of discrete series type cusp forms in the weights g=r+! with 0<r<12 and
I=-10,-8,..., 2.
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clp=

Figure |

In figure 1 the graph of r — max (4(r), po(r)) is drawn. We consider only 0 <r <6,
in view of 8. 11.

In figure 2 one finds the graphs of u, and max (4o, pto) on [0, 2]. The graph of y,
has been obtained by numerical integration with steplength 0.002.

.78

.50

0.00

0.00 .50 1.00 1.50 2.00

Figure 2

10.3 Proof of proposition 2. 15 ii) from propositions 10. 1 and 10.2. By the
symmetry r — 12—r discussed in 8. 10, we need only consider r € (0, 6]. If we take n=2
in the expression defining o, we see that for r e [2, 6]:

1 1 2 1
llo(r)gs {4—7‘([—51:}70)} _Z(r_4)z

1
= the value at r-—6>z.
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- - . 1 .
By proposition 10. 2 it is sufficient to show that g, (r)> 4 for r € (0, 2]. To obtain

this we show that 6(%, r)>0 for 0r<2.

For0=sr=<2, 1Zn<5, g=r-2n:

A

As the polynomial in the right hand side is positive for —-;-gq , it suffices to take

n=1 and 2 to get 6(4,

r)>1 for 05r=<2.

10. 4 We shall deduce proposition 10. 2 from the following lemma.

10.5 Lemma. Let 8 be as in proposition 10. 2. For each 2 e A:
A2 o(A(r),r) for re(0,2].
10.6 Proof of proposition 2. 17 ii) b} and theorem 2. 21 i) d). By the discussion

in 8.9—8.11 it is clear how to derive 2.21 i) d) from 2. 17 ii) b). We prove the latter
result from lemma 10. 5.

By proposition 7.1, 8.2 and proposition 8.3 it is sufficient to exclude the
possibility that lim A(r)=o0 for some Ae A"

Suppose ,1(r)>,u2 for all re (0, r,] for some r, (0, 2) and some u,>0. If g, is
large enough, then &(y, r)= —ap for all p=pu, and re{0, 2] for some a>0. So by
lemma 10. 5

A)ZA(ry)e"™ forall re(0,r,].
10.7 Proof of proposition 10.2 from lemma 10.5. For ieA" we have

liln(}).(r)—-i (from proposition 2.17 i) b)) and for AeA® we know

2
lirrol }.(r)=l(0)zi;—>—‘1{, see [10], proposition 2. 1, p. 511.
rl

By lemma 10.5 we have for A€ A° on (0, 2]:
A2 py ()
with g, the solution of
#(r)=0o(u(r), r),
#(0)=lim A(r).
ri0
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Indeed, suppose A<y, on (a, b]<(0, 2], then we may take a such that either a=0 or
A(a@)= p,;(a). Then we would get

05 A(b)— 13 (6) 2 | {(20), 1) — (1), )} dr 20,

for d(u, r) is decreasing in u.

If 1€ A" then u;=p,, so the assertion of proposition 10.2 follows. For the case
Ae A° use }.(0)>‘l1 and the monotony of the solutions of the differential equation in the

initial value.
10.8 The only task left is to prove proposition 10. 1 and lemma 10. 5.

10.9 Lemma. Let re(0, 12), Ae A, then for all 1€ 2Z

1 y SO
5 r+D+4 )= 12 ;-i' CEX 14(r), e - 34000
Proof. By proposition 9. 16 it is sufficient to prove that

1 T
Dy=—< 1+ Y FLER ) ex - [ia())
2 1245
does not depend on € 2Z.

We use the notation f; ,(r) =f;. As in the proof of lemma 8. 7 we may assume that
the f, have been chosen in such a way that

Ehifi==2Vfis2n ESafi=+2vioafi-as
with v,=l/).(r)+%(r+l)+l(r+l)2. So

1, = e T
Dl="2’+g"’l-z“r~z+6

Vi a

with = {f14+2, €4 - f;); we used e_ =e,. So we want to prove:

6

NtV 2Oy = V-2 G2 — V=
Using the adjointness of E;S and —E_,, we see

=2vway=<El fi,es I
=—{fi,(E5es) fi+es E 1S

:_: —2v_,a4,.,, see9. 18

This completes the proof.
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10.10 To prove proposition 10. 1 and lemma 10. 5 we now give estimates in the

spirit of the proof of the well known fact that for r =0 all continuous series eigenvalues
2

are larger than 3;—; cf. [10], proposition 2.1, p.511. In fact, proposition 10.1 is

obtained by applying the same proof. For lemma 10. 5 more complicated estimates are
needed.

10. 11 We fix re (0, 12), Ae A5 [ € 2Z. We write g=r+1, S=f.r) and u=A(r).
The adjointness of EF and —EJ, , implies

20@4u+q*)=ES fI* + | E; f1I%

10. 12 Notation. For functions x on b put

1
No@= | laldu, ye=31/3,

Ix(s4.y2y0

Ni= | |xPdy,

Ixls4.y21

Ne(y) = 'I? [xPdp,

with F= {z eC:|z| 21, x| ;} the standard fundamental domain of I and
du(z)=y 2dx ady.
So Ni(x) = Ne(X) S No(x) and No(x) S2Ng(y) if |y) is I-invariant.
10.13 Put g=2yf,, h=qf+2iyf,; so EXf=g+h. Hence
4p+q* = Np(g) + Np(h) S No(g) + No(h) S 2(4 1 + ¢7).
10. 14 The Fourier expansion of f is:

;' f"(y)leu'nx

. " l
where ) denotes summation over nsﬁrmod L.
n

The f, are analytic in y and for each a>0:
[ APy 2dy < 0.
10. 15 Put

A0)= ] IOy~ dy, BO)= yf (a—4mny)? | £, )12y~ 2dy.

Then

1<) Alm)=No(f)=2,

5
5

B(n)=No(h) <2(4p +q?).
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10. 16 Lemma. Put o,(r)= inf lg—4nmny|.

y;yo.ns-fz-modl

i) o4(r)>0< —I-4ny0<(l—-;nyo)r<—l.

Znyo(l—ér)+q’.
I

Proof. a;(r)=max {0, min (q ~4n (12 - 1) Yo, —q+ % m'yo)}; from this i) and ii)

i) If o(r)>0 then

—10S1S -2, a()=2ny,—

i) «()?<2(dup+4q%).

follow easily. For iii) remark that B(n) 2 a,(r)* A(n) for all n= l% mod 1 and

q(r S0P Y AmSY B S2(4p+q%);
see 10. 15.
10. 17 Proof of proposition 10. 1. Lemma 10. 16 iii) implies

12 g g+ 1,

and by ii) only /e [—10, —2] may be interesting. So take the maximum over these
values.

10. 18 Lemma. Put p(2)=y—3n"'—e,(z); then e (2)=y—3n'—p(z) and for
all ze F and gy as in proposition 10. 2:

lp()| = &0

Proof. e;(2)=y— i —24y Y o, (m)ermimERT,

m=1
So the first statement is clear and the latter one follows from

@

Y amqt= Y ag™< ¥ ¢*(1-¢)"*2q(1-97°

m=1 a,bz1 b1
for all g € (0, 1).

10.19 Proof of lemma 10. 5. In view of proposition 9. 16 and lemma 10.9 it is
sufficient to prove for —1051< —-2:

x dutq)
=

l—l-zr

X=Y FCEL S, e [ 2 —e1(Ap+ad —
- -

With g and h as in 10. 13:
X=[[-glp—p+h(p+p)+2h3n ' =y} dp.
F
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By lemma 10. 18:
[ 7 (=)l <200 Nyl 1] 1T (p-+ D)l 200 N (O
Further
2{@r ' —phfdu=X,+X,
F

corresponding to F=F, U F, with F,={ze F: y<1} and F,={ze F: y>1}.

X, S20377" — o) Np(i)?

So |X-—X2|§280Np(g)%+2(so+31t"—yo)Nf(h)%. As Ng(g)+ Np(h)=4pu+q*> we
obtain

IX—X2|§8,(4.H+QZ)%, with g, as in proposition 10. 2,
Now we consider X, for 0<r<2 and —10I£-2:

X,=2Y [ (B '—y)(qg—4nny}|f,(»Py 2dy.
n o1
All terms with n>0 are non-negative, so

.2 (1] 3
X223 | {m (q—4nny)’+(;;—i) (q—4nny)} )y 2dy

n<0 1

1 . . A
27— Y B+2 ¥ G——) [ @—4mny) £, )1y 2dy,
21r(—1+12) o ]

n<0

with B(.) as in 10. 15. For n<0 and y>1:

q -41mygr—10-—41t(—1+ r)>4n—10+(1—%n)2>0,

12
%_4311 =¢I4—nl|jln gr—lg:lilz—r>0’
So
2o L, B(n)gn(riIZ) Y Bz =12 .“I“z‘i‘f

see 10. 15. Finally

-1
X2X, =1 X-Xylz—n""'(du+q% (1—é) oy + gt

91 Journal fiir Mathemank. Band 371
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