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1. Introduction

In [12], Kuznetsov gave a sum formula in which Fourier coefficients of real analytic
modular forms on the upper half plane are related to Kloosterman sums; see also [13].
This formula has been used in various ways. In [13], it is applied to the classical
Kloosterman sums S(n,m; k) = Y "e*™smSVk where n, i,k € Z, m,m = 0, k > 0; in the
X
sum, x runs over the integers 0 < x < & that are coprime to &, and satisfies x¥ = | mod k.

Kuznetsov shows that

(1) 5 SR _ o510 2)'P) (X — eo),
1sk=X

see Theorem 3 in [13]. The main theme of this paper is a generalization of this result to the
Hilbert modular group.

For any number field F, there are Kloosterman sums

|:2) S(i', l"; (,') — Z' elRiTrF ::((l‘d-{»r'n}jc),
dmod(r)

where ¢ #+ 0 is an element of the ring of integers @ of F, and where » and ' are non-zero
elements of ¢, the inverse different of F. These Kloosterman sums satisfy a bound of Weil-
Salié type, see [4], Theorem 10.

In this paper, we consider these Kloosterman sums for totally real number fields F of
degree d. We denole the different embeddings o(,...,0,: F — R. We show that for o =2

Sir.r's )

« XW=-We g v o
g-rr,0<|¢-"1|§_‘\'INF/O(C)I ‘

(3)
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under the assumption of absence of eigenvalues with exceptional coordinates. For o = I,
the method yields an O(X %) estimate. Theorem 4.7.1 gives a more complete statement. It
shows that the presence of eigenvalues of exceptional type may add terms that are larger
than the estimate given here and it also gives the influence of the parameters r and r'.
However, if we input the best known bounds for exceptional eigenvalues in Corollary 4.7.2,
our result implies cancellation of Kloosterman sums for any totally real number field F.
That is, the bound given in Corollary 4.7.2 is strictly smaller than the bound obtained by
using Weil's estimate (see Remark after Corollary 4.7.2).

Our proof is based on the bound of Weil-Salié type mentioned above, and uses a new
sum formula of Kuznetsov type. Actually, the sum formula turns out to be useful only on
the region j¢%| = 1 for all j. For the other regions, a better result is obtained by a more
direct estimate, that does not use cancellation between Kloosterman sums.

Joyner, [10], gives an estimate of sums of Kloosterman sums for real quadratic num-
ber fields of class number one. His estimate for this special case is similar, but seemingly
stronger than the one in Theorem 4.7.1 of this paper. However, there are gaps in proofs in
[10]. (See Comparison after Corollary 4.7.2.)

Kuznetsov’s sum formula is concerned with modular forms on the group SL»>(&). It
has been extended in various ways. Its extension in [17] treats automorphic forms on Lie
groups of real rank one. In [4], this extension is used to study sums of Kloosterman sums
for this class of groups, whereas [1] gives a formula which includes the contribution of all
K-types, in the case of SLa2(R).

In these cases, the sum formula has the following form:

(4) [ k(v da(v) = Alk) + 32 S(IK(E,).
o ¥

Here do is a measure with support & < i[0, ) L (0, c0); this measure can be described
in terms of Fourier coefficients of automorphic forms for a discrete subgroup T of the
Lie group G under consideration. The y run over a subset of I, the S(y} are generalized
Kloosterman sums, and £, € G is determined by y. The term A(k) is given by an integral
over the line Rev = 0. The function & depends on the test function & by an integral trans-
formation.

One difference of this paper with the method in (4] is that there one uses an approxi-
mate inversion of the transformation k ~ k. That approach, together with a Weil type
estimate, suffices to get an estimate on averages of Kloosterman sums, which for the mod-
ular group coincides with Kuznetsov’s estimate. In the case when I" is SL> over the ring of
integers of an imaginary quadratic number field, in the absence of exceptional eigenvalues,
it yields the result stated by Sarnak in [20], p. 308.

In the present paper, we generalize Kuznetsov’s sum formula to the case when I’ isa
subgroup of finite index in the Hilbert modular group. The main difference with the
approach in [4] is that here we shall invert the integral transforms exactly, more in the spirit
of [13] and [1). In order to do an exact inversion, it will now be necessary to use a version of
the sum formula that includes the contribution of non-trivial K-types. This formula will
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have the same structure as the ones in [12], [13], [17], [4], {5], but the various terms will be
somewhat more complicated since they will include the contribution of the discrete series,
as in [1]. This will allow to get an arbitrary smooth function of compact support as k in (4).
(This is not guaranteed for the Kuznetsov formula in, for instance, [5].)

We formulate the new version of the sum formula in Section 2, and prove it in Section
5. We apply the sum formula to the case of congruence subgroups Io(7) of Hecke type, for
which the Kloosterman sums are precisely those defined in (2). In Section 3, we use the
Weil-Sali¢ bound to give an estimate of the Kloosterman term ZS(}J)k(é,.) for suitably

¥
chosen test functions k. This yields an estimate of the measure #o. In Section 4, another
choice of test function allows us to use this information in the other direction, and leads to
estimates of sums of Kloosterman sums.

The authors wish to thank the referee for his useful comments on the original version
of the paper and Peter Sarnak, for his interest and for calling to our attention the cancel-
lation of Kloosterman sums implied by our main result.

2. Description of the extended sum formula

Let F be a totally real number field, and let @ be its ring of integers. We consider the
algebraic group G = Ry;o(SL2) over Q obtained by restriction of scalars applied to SL
over F.

Let 01,...,04 be the embeddings F — R. We have

(5) G = Gp = SLa(R)’, Gg = {(x™,...,x™): x € SL2(F}}.

G contains K = [] SO2(R) as a maximal compact subgroup.
J=i
The image of SL,(@} < SLa(F) corresponds to Gz. This is a discrete subgroup of Gg

with finite covolume. It is called the Hilbert modular group, see {6), §3. In this section,
I' = Gz is a subgroup of finite index.

For this situation, we shall prove a Kuznetsov type sum formula that is more general
than the one considered in [23] and [18]. It has the structure indicated in (4); a precise
formulation will have to wait till we have more notation available, see Subsection 2.7.
The main variable is the test function k. It 1s a holomorphic function on a region in C¥. The
function & depends on k via a Bessel transformalion, to be described in Definition 2.5.4.

The sum formula relates three terms. The measure do, to be defined in (19), gives
information on Fourier coefficients and on the eigenvalues of the Casimir operators at the
real places of automorphic forms for I'. The Kloosterman term Z S(y)k (g’ }, to be defined

more precisely in (22), is a sum containing (generalized) Kloosterman sums associated to
the group I. In (29), we define the term A(k) by an explicit expression.

The present version of the sum formula has two advantages in comparison with those
in [23] and [18]: It contains information concerning all automorphic forms, not only those
with trivial K-type, and the transformation k — k is more versatile.
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We restrict ourselves to automorphic forms of even weight. So we shall consider only
functions on G that sausfy f{gm) = f(g) for all m in the center

w={(6 (3 W)Y

Overview. The Subsections 2.1-2.6 form a preparation for the statement of the sum
formula in Subsection 2.7. After fixing some notations in Subsection 2.1, we discuss auto-
morphic forms for " in Subsection 2.2. We define generalized Kloosterman sums in Sub-
section 2.3, the delta term in Subsection 2.6, and discuss the class of test functions for the
sum formula in Subsection 2.5,

of G.

We prove the sum formula in Section 5.

2.1. Notations and conventions. We consider F as embedded in R by
g5 I(CERErERC):
and similarly Gg = G.
Definition 2.1.1.  For x, r e RY we define xy € RY by (xp), := x;»;, and |x| € R by

), = byl

o
For x ¢ R? we put S(x):= Y x;. This extends the trace Trr/g: F — Q. Similarly,
Jt

d
N(¥}:= [, extends the norm of F over @ to N: (R} — R*.
j=l

Functions of product type. The test functions on G that we use are often of product

o
type: f(g) = [Lfilg;) for g = (g1..... g.i) € G, with f; a function on the j-th factor SL2(R).
j=1

o
We use the notation f = ‘Xr)j. We use the same concept of product type, and the x-
b

notation, for functions on R* and other products.

Subgroups of G. We put, respectively, for y € RY,, v € RY, and 9 € (R/27Z)":

VAT (\/‘—d 0 )
| = ; G,
(6) afy) (( 0 1/ym 0 1/yT €
4 I x 1 Xy
ifx] = ((0 1),...,(0 l))EG,
k(9] = c‘os.}|sm9|)’m,( c.os(9,sm ,) cG.
sin ) cos —sinJycos 3y

In this way, we obtain three subgroups of G: the identity component of a maximal R-split
torus A := {alv}: v € RY,}, the unipotent subgroup N := {n[x]: v € R’} and the maximal
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compact subgroup K := {k[9]: 9 R} =S02([R)‘Ir We normalize the Haar measures

on these three groups by respectively da = (—jﬂ - (jj “ for a = alyl, dn:= d%---d;:" for
" '
3 9
n =[x, and dk := [i—n' : u for k = k[9].

M = {k[9): 8 € (nZ)"} is the center of G. We call P:= NAM the standard parabolic
subgroup of G.

Let C; be the Casimir operator of the j-th factor in G = H SL2{R). We normalize it

such that it corresponds to the differential operator C; = — '-é' - ¥ 6_\.] + vjdy dy, in the
coordinates g = n[x]a[yjk[9].

o l
Roots. Asin [23], §1, we use the roots o; defined by a{y]” := y; and let p = Zl;aj.
=2

The identity component Ay of the Q-split torus Ag in [23], §1 consists of the «[y] with
y1 = --- = vq. The group "4 is characterized as the kernel of 4 — a”.

We choose dy := o= dn da dk as the Haar measure on G = NAK.

Characters of K. The character by k[9] — ¥ of K is well defined for each
geZ". A function on G has weight ¢ if it lransforms on the right according to thlS char-
acter. As we restrict ourselves to even functions, we consider only weights ¢ € ("Z)

Cusps. From [6], Corollary 3.5, it follows that T has a finite number of cusp
classes. Let 2 be a set of representatives of those classes. For each x € 2 we fix ¢, € Gg
such that k = g, -

For each x&€# there is a parabolic group P¥ =g, Py-!, wi{h decomposition
Pr = N"'A"'M N*¥:= g Ng;', A* = g.Ag;'. We put A% := g Aog:!, 04" == g%y,
and af := (g_'ag.)". We use conjugation by g, to transport the Haar measures of N and 4
to N X and A",

Let k € 2. For each g € G, we have a unique decomposition ¢ = n,(¢)gxa.{g)k:(g),
with n.(g) € N*, a,{g) € A, and £,.{y) € K. The seemingly unnatural choice to take n,.(g) in
N*, instead of in N, is convenient later on.

Discrete subgroups. We define [py := ' P* and Ty« := "' n N*. We refer to the
discussion in [6] §2, §3 for the following facts: There is a lattice , in RY such that
l"N. = {gun[&)g;": € € 1, }. There is also a lattice A, in the hyperplane 4 ---+uy=0in
®R* such that all elements of I'px have the form ngyalylg,'m, with ne N", me M, and

(logy,...,logyy) € A,

Characters.  All characters of N* are y,: gui[v]g;' — 509 with re RY. The
characters of Iy«\N* are obtained by taking e ] := {r e RY: S(rx) € Z for all xet,).
Proposition Al.19 in [6] implies that if r € t, is non-zero, then all its components are non-
zero. We identify y, with the character n[x] — 250 of N,
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Let a = guajy)g,' € 4*. Then aN*a~" = N*, and y,(ana™") = y,,(n). So it is sensible
to define ¢ -r:= yre RY. If we write y € Tp« in the form nyam, with i, = n(yge) € N°,
a, = g (yg)g. ' € A¥, n, = ky(yg) e M, then yny ' =ana;' for all ne N, and

a, -t =t/ Ifret,, r+0,then g, r=rimplies a; = I.

2.2. Automorphic forms.

Definition 2.2.1. Let ¢ € (2Z)" and 1 € €. An automorphic form for T is a function
J € C*(G) satisfying

i) Transformation behavior. [(ygk) = f(g)o4(k) forall ye ", ge G, and k € K.,
ii) Eigenfunction of the Casimir operators. C;f = Xif forj=1,....,d.

iit) Polynomial growth. It F = Q, then f(ngualvig.') = O(y*) as y — oo for some
b e R, uniformly in n, € N*, for each » € 2.

g = .
We call ¢ the weight and 7 the eigenvalue of f. Often we write 4; = — v7, with

2
4
Rew, = 0,and call v = (vy,..., vy} € C¥ the spectral parameter.

Let $ be the upper half plane. If Fis a holomorphic automorphic form on $“ forT,
as in Definition 4.5 of [6], of weight ¢, then

o 4
S [¥an[vk) = l_[l(Ji;Ii/_)F(:)bc;(k)’
].

with = = (x4 1y,...,0 Yy + ivy), is an automorphic form as defined above, with weight ¢

: . b,
and eigenvalue A given by /; = ,l—)q, -39

Fourier expansion. For each x € 2 an automorphic form fis invariant under 'y~ on
the left. So there is an absolutely convergent Fourier expansion

(7) flngea) = X2 7, (M)F(r.fra) forne N¥,ae A.

L)
ret).

Proposition 2.2.2. Let d > 1. For cach awtomorphic form f and each k € 2, there
exists b e B such that f(ngealy]) = O(N( y)b) Jory;z 1, ne N,

Remark. This is the so-called Gotzky-Koecher principle, see Proposition 4.9 in [6]. It
shows that condition iii) in Definition 2.2.1 is automatically satisfied if the totally real
number field F is not the field of rational numbers.

The proof is the same as in the holomorphic case discussed in [6]. As this proof shows
us the structure of the Fourier terms F, (r, f), we repeat it in the present context.

Proof. Condition ii) imposes ¢ linear second order differential equations on the
functions F,(r, f) on A*, each differential equation involving only one component g%,
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For r % 0, explicit computations lead to the Whittaker differential equation at each
place (see, e.g., [3], 4.2.5, 4.2.8), and a decomposition

i
Elr 3600 = I1 5003,
J:
where /; is a linear combination
hj(y) = E}' "Vsign(:}-)q,-/‘.',w (47[!’}')’) + Cj IIV-—sign(r;,-)q,—/l, ,}(—4T[|!‘j|)’)

of Whittaker functions, with a convention concerning the branch to be used in the second
term. The /; are unique up to a multiplicative factor. In particular

G 5= Jim fy(y) P g 2sbi

exists. If ¢ = 1, then condition iii) forces ¢; = 0. The Fourier term of order zero has also
o .
the form Fi(0, /5a[y]} = [T #(»;). Here /; is a linear combination of y — y%*'/2 and
j=1

1 1
4 4
satisfies the condition of polynomial growth,

Py y 2R ) 4 = and of y s p'/? and y s ' logy if 4, = =. So this Fourier term

Condition i) applied 10 y & Tpe, with y = mgiayg97'my, nye N*, a, € A, m, € M,
gives

(8) Flay - r, fia) = g (m)}F(r, f; aya).

Let us fix r e t, r + 0. The absolute convergence of the Fourier series implies the conver-
gence of the subsum

Ixa,-r(")FK(ﬂ}' < f; “)I = z |FK(rw f; a:-a:ll'

ye(lpv N*MN\Tex ye(lpen N5 \Tpe
Suppose ¢, % 0 for a non-zero Fi(r, f), r + 0. There exists y € I'pe such that a, = aly]
aD
satisfies y, > 1, and y; < L forj % /. The sum 3" |F.(r, f;a{y]")| converges, so its terms go

n=|
to zero. For all j, there are a;,b; € R such that liﬂ} hi(y)y9(log y)”f exists and is non-zero.
-"

—_—

(For general values of 1, we have ¢; = — = F v;, b; = 0.) Thus we have obtained that

2

. '—-5sign(rf)qm 2 len e Ay
fim, ¥, el 1 (3" (nlog y)") = 0.

This is impossible. Hence each /1, is a multiple of a rapidly decreasing Whittaker function:

d
Filr, fialy])) = (constant) - T Wegairyg /2.y, (47l ¥;) foreachreid,.
j=I
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A reasoning as in [3], Lemma 4.3.7, together with the known form of F.(0, /), gives poly-
nomial growth of fat the cuspx. [

Notation. Define, for x & 2, re t’\{0}, ne N*, ye RYy, ke K, ve c':
o
(9} W_:_;:](ng,\.a[y]k) = i, ()0, (k) HI Weign(rg,/2.%, (4ﬂ|’}|J})'
J:

In this way, the Fourier expansion at x of the automorphic form f of weight ¢ has the
form

(10} S(@) = F(0, fra(g))dy (k) + 30 anlr, /)W (g).

reil o}

Maass operators. The Lie algebra of G acts on automorphic forms by differen-
tiation on the right. In [3], §2.2, §4.5, we see that there are differential operators Ef
in the complexification of the universal enveloping algebra of G sending automorphic
forms of weight ¢ to automorphic forms of weight g + 2, where & is the j-th unit
vector in RY. These operators preserve the eigenvalue. Table 4.1 on page 63 of [3] shows
thatforret,, r#0:

=2 if +r; =0,

1) iy ':.:K.'r.' 2 i
(1) an(r B f) = ailr, f) QG(%+1)3—|-;) if £, <0.

Eiscnstein series. Foreachwe 2, g ¢ (ZZ)", there is an Eisenstein series

(12) E (P*,viip,g) = 3 ay (}'g)"“"””"h,, (k,.(}'gj}.

Ip Al

Here ve C, and g is an element of a lattice %, in the hyperplane S(x) = 0 in 2. The

. 1 . . o .
series converges for Rev > > and has a meromorphic continuation in v. In this way

ve E,(P* v, in) is a meromorphic family of automorphic forms of weight ¢, with
. | . . . .
eigenvalue v — (‘—‘ —(r+ f,uj::). The Eisenstein series satisfy

f)

(13) B E,(P v, i) = (1 +2v + 2ig; + q)E, 2 2 (P, v, ).

Spectral decomposition. Let L*(IM\G, g) be the closed subspace of L*(T'\G) consist-
ing of the elements transforming on the right according to the character k[J] — ¢5" of K,
with ¢ running through (22)" . The space L*(I'\G, g) of weight g € (ZZ)" is the orthogonal
direct sum of subspaces L2(T\G,q) and L}(I'\G,q). The subspace L}(T\G.¢) has a

countable orthonormal basis .#, consisting of square integrable automorphic forms of
weight g. The orthogonal complement, L2(I'\G, ¢), is described by integrals of Eisenstein
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series. For bounded functions /', f; in L*(I'\G, ¢), the projections f* and J£ onto the space
L2(T'\G, g) satisfy

(14) S5ID=2 a X GF S Ef(PP vy i)y, Ey(PP iy, ip) ) dy,

ied HeL; —m

with suitable constants ¢;. So for f, f; as above, {/, /1> =/ /> + X L wd, v,
¢

€.,

Representations. Let L2(IM\G)™ be the closure of ¥ LY(I'\G,¢), and similarly for

qelz
LI(M\G)". This is an invariant subspace of LY(I'\G)* for the action of G by right trans-
lation. The orthogonal complement L3(T\G)" is the closure of @ V., where V_ runs

Y

through an orthogonal fumily of closed irreducible subspaces for the G-action. Each @ has
the form @ = @ w;, with w@; an even unitary irreducible representation of SL(R). Table 1

j
lists the possible isomorphism classes for each w;. For each @ we define the spectral
parameter v = (V= y,..., Vg 4), With v ; as in the last column of the table. The eigenvalue

. I
Az is given by A ; = i Ly

The constant functions give rise to @ =1:= @ 1. It occurs with multiplicity one.

)
Using Proposition AL 19 in [6], one can show that if V.. does not consist of the constant
functions, then w; # | for all j.

Tablel. Irreducible unitary even representations of the Lie group SL,(R),
All characters of SO, (R) occur at most once; the characters that occur are listed under
weights. The last column gives the spectral paramelter v, with Re v > 0, such that }l —vlis

the eigenvalue of the Casimir operator. See [14], Chap. VI, §6.

notation name weights v
1 trivial representation 0 ,l)
H(s), s €i[0,00) | unitary principal series geZ ,—;
H{s),s€(0,1) complementary series ge2Z %
D}, bz 2,be2Z | holomorphic discrete series qgzb ge2Z ﬁ;—l
Dy, bz 2,be2Z | antiholomorphic discrete series | ¢ £ —b, g€ 27 b%]

For each @ the subspace ¥, , of weight ¢ € (2Z)¢ has dimension at most 1. We could
choose bases .#, by taking a unit vector in Iz , for each @ with ¥, ¢ * {0}. But it is more
convenient o take an orthogonal system {y_ .} with Vo4 € Va,q that satisfies

Eji 'l’w,q = (1 + 2"15,1‘ + qf)'l’w,q;t!r:,!
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o p
just like the Eisenstein series. The norms are (¢ | = [] n(g;, v=, j)"'z, where
J=1
1 if Rev=20,
r(1/2-v-g/2) T(1/2-v+q/2)
(15) n(g,v) =4 T2+ v=¢/2)  T(1/2+ v+ ¢/2)

(lqlz-b)!/(f%lql_ ,)_. irv=""1 peon.

(See [14], Chap. VI, §6.)

. 1
1f0<l’<§

Proposition 2.2.3. Letje{l,..., d}. Suppose that w satisfies w; = D;— Jfor some |,
with be2Z, b2 2. Then au(r.y_,) =0 for all Y € Ve, for all re t\{0} such that
Fr; > 0.

Remark. This proposition generalizes the fact that the non-zero Fourier coefficients
of a holomorphic automorphic form on $* have an order r satisfying r; = 0 for all j.

Proof. Letf e V5, be non-zero. Equation (11} implies that
ac(r,(EF)"f) #0 forallm=0,

if and only il a.(r, f) 4+ 0. But for m large enough, the weight ¢; + 2m does not occur in
Df. O

Fourier coefficients. Formula {11) shows that the Fourier coefficients of a given
order r are essentially a property of @, not of the individual automorphic forms in V..

For the formulation of the sum formula it is convenient to introduce the following
functions:

I G €17

~ 11 '
VO] r Iy N" = l l i
(Tux\N®) ji 1"(5 + v +5le Slgn('}')>

(16) di(q,v) =

Note that d!(g,v) # 0 for all weights ¢ that occur in an irreducible unitary representation
with spectral parameter r. This ¢/ is related to the function 4, in (4) of [5], but not exactly
equal. A computation based on (11) shows that the equations

(in ay(rog o) = c{w)di(g, vz).
(18) ax(r, Eg(P* v ip)) = D" (v, ig)df (g, v + ip)

determine ¢/(w) and D¥'(v, igr), independently of 4.

Definition 2.2.4. We define

o
Y= (i[O.-:J:] v (o,i) U {b; ':b;z,bezz}) :
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Consider x,x" € 2, r € E\{0}, r' € 1,,\{0}. We define the measure da!"\ on ¥ by

(19) [ do'(v) 2= 3 n(va)eg(@)e ()

Y @1

o —_—— N
+Ya ¥ | n{iy + i) D37 (iy, i) DY (iv, ip) dy.
Ae¥ jpe¥;-m

We identify the complex number iy with (iy, iy, ..., iy) e CY.

The constant functions do not occur in the sum over tw, as its Fourier coefficients of
non-zero order vanish. The next result shows that there may be many e that do not con-

. - .
tribute to the measure do’" .

Propesition 2.2.5.  Let w,x’,r,r' be as in Definition 2.2.4. Put E, ;o= {j: rr! < 0}.
Al @ that satisfy w; = DF for some j € E, r do not contribute to the measure do,) . The

o o | _
support of da:','? is contained in {v € Y:Rey < 5 Jorall je E,!,,}.

Proof.  See Proposition 2.2.3. [
Notation. For x,x’,r,r' as above we define e e {1,—1}“ by e = sign(ryr;). We put

| ‘ "
Yo = {ve Y:Revy; < 3 forallje E,,,r}. In this way Supp(da:',, ) Y-

Remark. In arithmetical situations, there are restrictions on the complementary
series representations that can occur as a factor of an automorphic representation. For
instance, Gelbart and Jacquet, see (7], Theorem (9.3}, prove that no v, can be in the interval

11 . .
[r_t’f)' In [15] there is an even stronger restriction for the case ¢ = 1. These results
have been obtained by L-function methods. In [5), the sum formula is used to prove that

H A . . .
V€ (Z’i) Is impossible; in Subsection 3.3 we shall adapt that argument to the present

situation.

| ] , . . 1
We call Z—vz = Z—vj" _an exceptional eigenvalue, if v; e 0,5 for some

i 2
J=1,...,d. Such a v; we call an exceptional coordinate.

If =1, it can be shown that only finitely many exceptional eigenvalues can occur
for a given I'. In the present more general situation, we do not have this information. One
coordinate could stay small, whereas other coordinates tend to infinity in some sequence of
eigenvalues,

2.3. Kloosterman term. Kloosterman sums can be viewed as number theoretic
objects. They arise also in the theory of automorphic forms, when one writes down the
Fourier expansion of Poincaré series. Then one has to sum over the intersection of T” with
the big cell in the Bruhat decomposition.

- 0 -1 . -

Bruhat decomposition. Let 55 := [ o ) The group SL»(F) = Ggq is the disjoint
union of Gg m P and the big cell C:= (P n Gg)so(N 1 Gg).
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a b
¢ d
& = ' (E)m()agson”(£), with w'(&) = nla/cl, n"($) = nld/c], u: = aly] with y; = || :
and m(&) € M. Note that a; and m(¢) are not necessarily in Gg, but

Each cf=( €Gs with ¢+0 can be written uniquely in the form

m(&)a; = az:m(é) = ( léc ?) e Gg.

Definition 2.3.1. Let »,x’ € 2. We define * T := ' n g,.Cg_" and

Nt = {ce F* y}‘}’y.\- = ( ) for some y e "’I“"'}.
c

For each c € * 6" we put * I'*(¢) == {}J e T  golyg, = (( )}

Note that a: = alc 2] for & € g.'* T*(¢)ga-

Proposition 2.3.2. Let x, 1’ € 2. For each ¢ € ¥'€* there is a finite set *9*(¢) © Ga
Py g ¥) g § i .
such that *T*(¢)= | Tyoylve. The set "= |J *S™c) is a system of
rer I.'f‘(('] cerar

representatives for Tyo\* T* /Ty,
[ = Dpe UN T (disjoint wion) if k = &', and T = ¥ T* otherwise.
Proof. Well known. [J

Definition 2.3.3. For x,x" € 2, re {\{0}, +' e 1/.\{0}, we define the generalized
Kloosterman sum;
(20) S(korn' ey = T (0"l vor)) 2o (0 (g5 von))
et e

(21) - S omiS{rd/e)+2iS(Fufc)

a b A
LA
((, “,) €4, (c)on

This definition does not depend on the choice of the system of representatives K (0).

The definition amounts to S(k,ru’,1'ic) = 3 e2WSUld/cN=2mist /e - where

[
o

b - . . . o
g = (” j) runs through ¢!~ (c)g.. (The interpretation of S(r%) is Y ri{d/c)”.)

[ A j=1

Definition 2.3.4. Let w1’ € 2, r e t/\{0}, r' €1,,\{0}. For each function f on RY,
we define

N S(x,rix’.r' ¢} Al
(22) KV = & el )
o ceris |N((’)| ('2
' -
‘ ) e |'j’j|
The interpretation of the argument of f'is |5} = (e )-.4
- C ’ -
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The Kloosterman term in the sum formula is K" ,(f) for a certain test function /.

—r,-r

The set *'%* is discrete in RY. This gives the absolute convergence of K**'(f) for com-

rr
pactly supported f. In Proposition 5.1.2 we show the convergence for a larger class of
functions.

2.4, Congruence case. Our main interest in this paper is in the following subgroups
of finite index in the Hilbert modular group.

Definition 2.4.1. Let J be a non-zero ideal of @. We define

Fo(f) := {(‘: Z) e SLy(0): c e 1}.

This group has a cusp w corresponding to the standard parabolic subgroup

PE =P =NAM.

b 2
We have €™ = I'\{0}, A,\:={(:} 1):1)60}, Fp={(g r‘_’i):ee(ﬂ‘,be@}.We

have 1, = 0' = {x e F: Trgjq(xy) € Z for all y € 0}. The inverse of this fractional ideal in
F is the different of F.
For each ¢ e /\{0} and & e @ which is relatively prime to ¢, we can choose
(“ I) € [o(7). If d runs through representatives modulo ¢, then the corresponding
¢«
matrices form a set “%"(c). The corresponding Kloosterman sum is

ey oy
S(O’.’),I'; w, '.I; L') . Zu e e ol {red+r ﬂ)/n),
dmode

with ad = 1 modc. In [4], we denoted this Kloosterman sum by Sfr,#; c]; here we shall
write S{(r,r’; ¢).

Now, the norm N(c) in (22) is the usual norm Ng,g. Note that |N(c)| is equal to the
norm of the ideal (¢) = ¢ O,

2.5. Test functions. The sum formula will depend on parameters K,k e P,
ret\{0}, r'et,\{0}. The class of test functions will depend on the vector
(sign{r\r),....sign(rar})). That is the vector e in the definition below.

Definition 2.5.1. Letre (%, l), and e € BY with e; € {1,—1}. We define .#™ as the

Ll
set of functions k = _><I kj, where each k; is an even function on the set
1=

{reC:|Rev| St} u G+Z) if e, =1

{veC:|Rev| 1} il g =1,
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that is holomorphic on {veC: |Re v} =1}, and that satisfies the conditions

k{vy<< (1 + |Imv]) ™

;
A,()j l)‘(w if ¢ = 1,
_Z,_ &

h,( ) if = —1.

The dependence on the parameter t is not visible in the notation.

on |Rev| = 7 for some a > 2, and

b—1
T2

l-.l

tol —

The functlon k, is an element of the class | F§', in Definition 14.2.7in [1]if¢; = 1, and
an element of _| Fj' otherwise.

If ke#* satisfies Aj(v) « (14 |Imv])* for some a:sg on the strip and

kj

(?;—1) =0forallb=2, be2Z, then v— ciil;:nv is the j-th factor of a test function in

the sum formula in |5}, Definition 5.1.

Definition 2.5.2. Letee {1, —1}¥. We define a measure d® on Y* by

l+e h—1 h-1
v v tan vy dv; + ( —‘-’-) e (_ __.)
Re{--ﬂﬂ( 2K S 2 bg:zbezz g s £

o] e

o
| Siydnt(v) = H(
ye i=1
for f = >‘2 j: € C.(Y*).

Definition 2.5.3. Let ee {1,—1}". We define the Bessel kernel B, := X B, j on
(Rso x C)“ by

(23) B lyy) = = (I 1y, (/1) = I3t (47 /1)),

sin 7w

. B - ) u+2i _ J.() ife=1,
where J(y) —E m( ) ' {]"(y) ife=-1.

___ The function v ~— %.(1, v) is even and holomorphic on C4 foreach r e [Rffo. It satisfies
Bel(1,7) = Bel(1,v).

Definition 2.5.4. For each k € .#°, we define the Bessel fransform Bk on RY, by

Boh(r) := [ k(v)Belt, v) diff(v).
]C

The estimate J,"'(y) «,, [T(u+ 1) ') 'yRe# yniformly for 0 < y < yo (based on the
power series expansion), shows that the mlegral defining B.A(7} converges absolutely.
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d
Let us write B,k = _><] B k;. The estimate shows that we have the following absolutely
J:
convergent integral representations:

Barki() =4

I kj(l')(J_igtr(“TI\/;)_J?:_t"l(4n\/i)) velv

Rev=0

cosny
141 b1 i
(24) +( > )bggezzkj( 5 )(_1)”/ (b — 1)Jp_1(4nv7)
=-i | ki(v)J £ (4n /1) c;;’; for 0 < o < %
(25) +(17,‘LI) > kf(bil)(—l)””(b-l)Jb_l(cmﬁ)
= h22belZ =
i relv
- Re{=r 401Wz (/) c;s 1|n-
1+t (=N g
(26) +( 5 )534,21,532]"( - )( D*2(b = 1)Jy_  (4nV1).

. . 1. -
Note that the term with b = 2 has been canceled by the residue at 5 in the transition from

(25) to (26). The relation with the definitions in §14.2 of [1] is B ki) = (bE) ki(4m /).

o
Proposition 2.5.5. Letk = ><I ki€ A Then
.

(27) Bk(1) « ﬁ min(if, 1).
j=1

Proof. The estimate of JF () «, [T(u+ 1)]7'3¥R¢* for 0 < y < yo applied to (26)
gives f,k;(1) = O(t"}yas 1 | 0.

From (7) in [24], 6.2, we derive the estimate J,(y) « ¢®"™" /Reu for Reu > 0. This
implies that f,k;(f) « | for all £ > 0.

Use 25) with0 < 2 < %a — 1, and note that

I 2 —Ren
Eﬂl (l—u(}) - ]ar(J )) = J'IK"(J) X))

H

o)

for Reu >0, see (41) in Lemma 11.1 of [5]. Thus we obtain the boundedness of
Bakfn. O

Proposition 2.5.6. Leree {1,~1}". For each f € C=(R-0)* we define Bo f on C* by

(28) By f(v) =27 [ f()B(t,v)d"1,
R,
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: . dty dty . . . . .
with d*t == ol t_‘ The function B, [ is even and holomorphic on CY, and determines an
1 o

clement of A°¢. Moreover, B(B7f) = /.
Proof. See|l], Lemma 14.2.3 and Proposition 14.2.8. 3
2.6. Delta term.

Deﬁnition 2.6.1. Let ki’ € P, ret )\ {0}, r' et \{0}. We define a{x,r;x’,1'):=0
il &%, and a(x, r;r. ') Z T (n,\(yq,\)) , where the sum is over representatives y

of those classes in Ty:\[ps for which go(n) =z (puy ") for all ne N*. This condition
amounts to r = a, - ', with a. = g, a, (rgn)g!.

Note that if a{x, r;x’,r') % 0, then sign(r;) = sign(r{) forallj=1,...,d.

Notation. p:=(1.1,....1)e{l,-1}".

Definition 2.6.2. Take w,x’,r,r' as above. We define, for k € £, the delta term by

(29) AFN (k) = vol(Ty\N)a(x, r; &', 1) )ka(v) di?(v).

See Definition 2.5.2 for the measure yP. The convergence follows easily from the
conditions in Definition 2.5.1.

Proposition 2.6.3. Let ¢; = sign(r;r]). Then A} (B, f)=0forallf e Cj"(ﬂ%>n)",

Proof. See (1}, Lemma 14.2.16. O

2.7. Sum formula. Finally, we are ready to state the Kuznetsov sum fornula for the
present situation:

Theorem 2.7.1. Let w,x' e ®, ret\{0}, r'et.\{0}. Define ee{l, 1} by
¢; := sign(ryr;). Let ke A

The function k is integrable for the measure da¥" . The delta term A}, A (k) and the
Kloosterman term K" '(Bek) converge absolutely, (md rhe Jollowing relation halds

(30) jk () daN (v) = AFE (k) + K5 L(Bek).

Remark. x and ' denote cusps. The lattice t, corresponds to the subgroup
[yx = CAN® of translations for x. The element ret, determines a character 7, of
Tv«\N¥, and similarly for ' € t,,. See Section 2.1.

The set of test functions #™® and the Bessel transformation B, have been dlscussed in
Section 2.5. See (19), (29), and (22) respectively, for the definitions of de™%' A¥A' and

LS R
K.t

Proaf. We postpone the proof until Section 5.
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2.8. Dependence on choices. The three terms in the sum formula depend on
the choice of the elements g, transforming the cusp oo to x € 2. Let us consider the effect

of replacing g, by §.=g.p, with p= (g l;u) € PnGq, and similarly §,. = gup,
= "' U' 1] ! .
p= 0 1) Note that v,v’ € F and w4’ € F*.

The new set i, is isomorphic to , by t, — 1,: & — u~2¢; hence r ~ u?r gives an iso-
morphism t, — 1. So g, gun{x)g,' — 250 and 7. Ganlx]got — eSO are two
ways of describing the same character of N*.

The set_*'T'* does not change, but there is a bijection '€~ — ¥'G*: ¢ r+ mi'ec.
e b o 7 . .t g
Moreover *'T*(mu'c) = *T*(c), and we can take ¥ (u'c) = 5*(c). We use

(21), and note that (‘f ’f) running through §.'~%*(uu'c)j, can be written as
¢ d
aufu’ — cv'u * _ a b g .
, with running through ¢=!*'%*(¢)g.. This leads
( u'c cou’ + du’/u) ( ¢ d . B 9y ()9

to the following relations:

2

(31) S(r,ir ', (1)

Yoid Lo bt
l"; HM’L’) = pniIS(urn)—S{u'r's ))S(i\', r; h", ’.l; C),
i S{erv)—S{u'r'v'))

K" (.I) = |N(HH')| Kr':;r"‘ (f)

wr, (1) e

Under the transformation r — u?r, the signs of the coordinates do not change, so the vector
e and the Bessel transformation B, are not affected.

If the delta term is non-zero, then x = ', and hence u = ', v’ = v. We write y € [p«
as y = gyn[xlalylmgt = gon[fal§ing,", with m,iiie M. A comparison shows that y =y
and ¥ = w=?x — ou~' + vu~y. The condition on the y € Iy occurring in the definition of
afw, rix’,r') is the equality of the characters y, = 7,2, and n — . (yny™") = 7,20 (yny™") of
N*. Both formulations lead to yr' = r. For such y € [p., we have n,(yg,) = gun|x]g;}, and
i (yd,) = G,n[X)g;". Hence

Zu ,(ﬁ,\.(}rg )) — 2S(r Xt uer'y)
(3l s

= p2niS{utr) -—2:'u'.S'(m'.c-’);yrr ("K(}"IN)) )

The measure on N* is the measure on N, transported to N* by conjugation by g, respec-
tively g,. This leads to vol(Ty«\N*} = |N(u}|™" vol(Ty«\N*). Thus we find the transfor-
mation behavior of the delta term:

(32) BN,K' (k) = IN(”)l-3e-Zm’S(um)+2fo(ur'v)A:.rl;"(k)

Wi (u') e

o IN("":)l - Ie--2ni5(|rnv)+'_'ﬂiS(u’r‘u']A:.:’ (k).

Let us turn to the Fourier coefficients of an automorphic form f. From (9), (10}, and
(16), we derive the following relations:
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”/u r, \(g) —¢ - 2riS(ure) AL (J)

] Y

ﬁ(llzl‘.f) = el‘“-s("”)a,;(r,f),

d"" (g, v) = |N()id! (g, v).

The choice of g, does not aﬂ'ecl the Haar measure on G, so the y_  stay unchanged.
Equation (17) implies that é"(w) = |N ()| 1 p2miS(urv) or "(z). We have an analogous result
for D}"(v,in), see (18). Thus we obtain from (19) the transformation behavior of the
measure on the spectral side of the sum formula:

| _'l A J+2niS [’} !
(33) dé™ &' |N(UH )l 2reS(urv)+2niSiu's d"}_r-' ]

ulr, (u' ]'

One might object that the Eisenstein series E,(P*, v, i} depends on the choice of g;. But the
resulting factor is compensated by the change in the constant c;, see (14}.

We compare (33) and {32) with (31) (but here with opposite r and r'), to conclude that
all terms in the sum formula (30) depend on i and «’ in the same way.

3. Estimation of the measure

The main goal of this section is to estimate the measure of the set
YX)={veY:!|y|SEX,1Sj=d}, forXe R)m with respect to da!) . We cannot do
this unless we have additional information concerning the Kloosterman term. Hence we
shall restrict ourselves to the case I' = I'g(/), see Subsection 2.4,

3.1. General result. Definition 2.2.4 implies the following result. It enables us to
restrict ourselves to estimation of the measure da!;".

Lemma 3.1.1. If [ is integrable for the measures day and da,, ," , then it is also
integrable for da'”), ' and

LA

1/2
[ /)] ot 0 S(Ilf(v)lda v)) (Ilf(vnda,. e ) |

3.2. Estimation of the Kloosterman term. Now we restrict ourselves to the case
I' = To(/), & = k' = oo, discussed in Subsection 2.4.

In this section and in the next one, we omit & = ¢ and x’ = oo from the notation.

Lemma 3.2.1. Let /- (R*)! — € satisfy

SO S ) ﬁ. min{1, ||},
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Jor some constant C(f) and some v > 1/4 and let r € O'\{0} be fixed. Then
Kor () < CONING) V2,
Proof.  We use the Weil-Sali¢ estimate (see [4], Theorem 10):
IS(r, r; )| < £ Ny () PN ()] 2F

To define the factor N, ,(c), we use the following decompositions into prime ideals:

()= H PI?P(J‘), (¢) = H P:-p(c), 0 = HP_‘!P-
r P P
Then N, ,(c) =[] N(Py""criheeldl=dr) e obtain the following estimate for the
P

Kloosterman term;

Kerlf) < CU) T Nesle) PN (2 1T ming1, (/) (¥}
c#0 J=1

< CU) T N PINEI2 5 [T min{, [(r/uc) ).
1

(€] +0 ned’ j=

For each ¢ % 0, we apply Lemma 8.1 of [5], with a =0, b = 21, ¥ ={c/r)% and
we get

12
G4 K. «cy) T Nedo)

@70 [N (1 + [log|N(c/r)] | d~") min{1, |N(r/c)[*}.

We now write (r) = RyR_~' where R, = [] P"0and R_.= T[] Pt
Pep(ryz0 Pop(r) S0
The fact that r € @' implies N(R_) £ N(0')™" «f 1.

Any (c) in the sum can be written uniquely (c) = KJ where K = K. ;= ((c),Ry).

Therefore, for each ¢, L = % and J = I[{i}r

are prime 1o each other.

We replace in the sum N, ,(c) by the larger quantity N(K.,). For each ideal X

dividing R, we shall sum over the ideals () such that K., =K. Wewrite L = };,:, and use

N({) _NR)TINL) N

N S NE)
_N(K) N
KAN«CU) & & T (1 + ||og D

that

, lo obtain the following:

a1 pis
)min(l,-ﬂ).
N
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For each fixed ideal K dividing R,, the inner sum Sy in the expression above can be
majorized by the same sum taken over all ideals J. Now, the number of ideals in ' with
norm # is O(n") (see [19], Lemma 4.2, p. 152). Here and in the rest of the proof we may and
will take the same ¢ as above.

Thus we have

o d~1 ) N(L)zr
logml ) min (I ’",,T—)

« N(K)'N(L)* Z nVME L NKY S /2425 Er(
=1 n>N{L)

e M
Sy o« NI[I\) "Zlm—r(l +

N(L))_N (.

The first summand is estimated by N{K)°N(L)'/**, while the second summand is domi-
naled by

N(K)N(LY™" [ %2,
X2 N(L)

Since 7 > 1 /4, thls mte{;ral is convergent for & > 0 small enough, hence the second sum-
mand is O(N(K /2 **%). Therefore we get

Sk <« [N(F)|N(L)'*,

We now estimate the total number k(A{)} of ideals X dividing the ideal M in terms of
N(M). We have

log N(P)"r4)
k(M) = |48
o p..,,(r}ngn( log N(P)

Let > 0 be given. If N(P} =&, then x*(1 +logx/N(P)) £1 for x 2 1. Moreover,
there exists C; such that \"*( +Iog x/N(P)) £ C, for all x = | and all prime ideals P.
Thus we find that k(M) £ C'N(M)*, where n is the number of P with N(P) = ¢ . So the
number of ideals K dividing R. is O(N(R.)) = O(IN(r)|°), for any £ > 0. (We use again
that N(R_) «r 1.)

Thus we obtain

K. () < CLHINMIE T NK)H
KR,

<« C(f)lN(;-)I'-N(R_'_){‘%-Jr. e C(f)lN(,)rHSr O

3.3. Use of the sum formula. We now proceed to estimale the da, -measure of
the set

YiX)={ve Y|y 2 X;,| £j < d}.
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d
with X ¢ (tl_l’m) . We apply the sum formula to a convenient test function and we

estimate the right hand side of the sum formula. The same method led us in [5] to a Selberg

. . . | 1 .
type estimate for the coordinates of the eigenvalues. If an eigenvalue i v = (5 - vf) is
’

1 .
exceptional, then v; € (0,;) for some j. By a Selberg type estimate, we mean the statement

11 . . ..
that v; ¢ (Z,;] for such exceptional coordinates. Selberg, [21], showed this in the case
F=0.
In [5], we restricted ourselves to trivial K-types. In that situation, the weight is zero at
all infinite places, so the automorphic representations have no factors of discrele series type
. 1 .
(characterized by v; € 3+Zgoj. In the present case, a Selberg type estimate means the

following:

o 1 1

(35) Supp(da, ) = [] (i[O, ) v (O’Z] v (3+ Z>o)).
i n

Stronger results than (35) have been reached by other methods, see [7], Theorem (9.3), and

[15] (Kim and Shahidi have recently improved this bound to -é- — ;—I).

The computations we need to prove Proposition 3.3.1 give a proof of (35) without
much additional effort.

Plan.  We use a partition {1,...,d} = E.UE; U E, {disjoint union), and look for an
estimate of the measure of da,., on the set

|
S I[O! "YJ} U (017)] (J’ € Ec):

36 Y(X):=
(36) 2 ve]’:vjeg+2go,ty§z\j (j € Eq),

v € (a, ) (je E,),

. 11 - 5 L
with (a, ) = (Z,g) fixed. When we vary the partition, the sets Y(X) are not disjoint, but

the union is equal to Y(X). For E, % §, we shall show that ?_(X ) does not intersect the
support of da,.,, and for E, = §, we shall estimate the mass of ¥(X).

: . l 3
Choice of the test function. We take 7 <T<y For each factor, we choose &; as an

approximation of the characteristic function of the corresponding component of ¥(X). We
employ the following functions:
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P if |Rev] < 1,
hy(v) = o
0 if ve ;—Q—E,l\q“}r,
gr(v) =T~ 14 cos mv,
o3 :
1ifg <lvjgq vel /242,
(v} = 2
0 otherwise.

We make the following choices for the factors of the test function & = Xk;:
If jeE: k=h, withp=2X72
if je Eg0 k=@, withg= X}
il je E.: k; =gr with T large.

t is easy to verify that k is a function in the class 4 {see Definition 2.5. 1}.

Delta term. We have, by Equation (29), that

A, (k) = vol(Ty\N)a( 0, r; 00, r) T1 6(k;),
jeE

where a(00,r; 00,r) = 2 and

. B )
8(ky) =3 ky(v)v; tan oy, dvy + b = (b - 1)_

Rev= bz bel? -

t-2

We have,asp | 0,

=) I
o(hy) = g Iy (i)u tanh o du + 3 e’

L 1

= ¢~P/4 ge i u(l + O(e"z’"‘}) du + 5

=p e [ e udu+ O(1) = ;p-' + O(1),
0 —

and

b—1 (b-1 b1 )
o(p,) = —5— 9 (———)= ——=0(¢") asg— @,
)=, 2 7 "\ 2 X, 2

1s=yq

o i i
dygr) « e~ TH Ie'ﬂ‘ we™ dy <« T e T/ as T — oo.
0
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Thus, we get

Ay« I XTI T7'e ™A

jeE wky T jekE,

Bessel transform. We have, by Equation (26),

. redv
=—i [ WV (anh)
Bubp(d) =i | 2u(dnV) ——

Ifr =1, we use

~2r-1)2

2o )] €y 2RI 20 + 1] <y e™™ (1 + [Imv))
0 < y € pp for each yy > 0, and hence

Ee B ¥ »aflm v
/}+l!p(,) <« J‘ ep(Rc(\ _I—l.l'4)lf(l + |lm "i) 2012 I I':'
Rev=t |COS ﬂ!\'l

el vj

3 @ bl
< TP (] g u|) TN gy

-

@ bl
& 17t Je ™ (vp+ u')'/z'zr dit <« 17 p*=34,
0

On the other hand, we use |/3,(y)| « e™™* for Rev =0, see (7) in 6.2 of [24], and
Ji(3) <y V2 asy — oo, see 7.21 of [24]. If ¢ = 1, with (24), we obtain as p | 0:

0 hi
ho(y <e ™ JeP (0 +w)dut+ VP «<p v+ «p.
+'p | p

Putting both estimates together, we get

(37) B (1) < p~' min(1, 7).
Next, we use (25) and proceed in a similar way as with /1, and find for < |

Brgr(t) < [ eT& = (1 o |fm vy~ 227124 pmi g
-0

& (AT V2, TE-1/4).

On the other hand, for r = 1, we have

2 « bl
ﬂ+gT(’) w Tl =1H4) J‘e-u'T+mt(l +“) du
U

« T2 T{z*~1/4) .
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Therefore,
B.gr(t) « T-12eTE V9 min(1, 1%).
f
We have

Beo, )= X (—1)"P(b— )pa(drvl).
Isbtisy

From the power series expansion, we have |J,_;(y)| «,, y*'T(5)"", 0 < y < yy for each
yo > 0. If 1 < 1, we have f, ¢, (1) « 2. If £ 2 1, we see from [2], (3.3.3) or [5], (40), that
Ju(r) << u”! for u > 0 hence f,¢,(1) « O(q), thus f,¢,(1) < gmin(r¥2,1).
We put C(k) = (T~12eT-4)E T x2. We have obtained the estimate
jGErUE,;

(38) Bi(1) « C(k) ]‘-I[ min(s/, 1).
=l

Kloosterman term. By Lemma 3.2.1, we have K, {(Bk) « C(k}|N{r)]"*™".

Spectral term. Theorem 2.7.1 implies the inequality

[ k(v)da, (v) «< |N(r)] et ey,
:

Note that € 0"\{0}, so N(r) stays away from zero.

The test function & is non-negative on the set Y. Moreover, for ve Y(X), we have,
for T sufficiently large (depending on « and f3):

k(v) = (eT':“: V3 cos ) 1B I e~ HUBINT
jek.

From this we obtain the following estimate;
J‘ do'r.r{"] < 11. (e(.\}3+|/4)/.\;1)(e—T(;::—]J;&%'J[COS na)—l)if‘-‘.—l {k(") do'r.r(")
FiX) jek ’

« IN(r)l|/2+£(T—|/2(COSna)-|)|Ef| H (X;?. . ]) l'I (X,:)
je k. jeEs

<<alN(r)||/2+CT-iE,|/2 H ij.
JeE vEy

The integral | da, ,(v) does not depend on the large quantity 7. Hence it vanishes if

FiX)
E. #+ 9, for each choice of X, « and . This implies (35).
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The support of the measure do,,, is contained in the union of the sets f’(X J, where we

let £, run over the subsets of {I,...,d}, with E4 as its complement. We obtain the fol-
lowing result:

Proposition 3.3.1. Let T = Ig(I) with I a non-zero ideal of ©. Put

1 )
Y(X)={veY:|w| 2 X;}, with Xe (Z’OO) .
Then we have, for r € O'\{0}, the estimate

[ do, (v) «. ¢ IN()|'PEN(X?,
Y{Xx}

Jor each ¢ > 0.
Lemma 3.1.1 implies:
Corollary 3.3.2.  Under the conditions of Proposition 3.3.1, with r,r' € 0'\{0}:

[ ldo, ()| <o.r IN(rr)| N (Y)Y,
¥{X)

| of
Joreache>0and X € (Z’ 03) .

In the sequel, we want to use the measure of da, - on sets contained in

(39) 2(8) = I1 (0%] <11 (i[(), oI G+ zgn)),

with £ = {1,...,d}. This can be arranged by applying Corollary 3.3.2 with X replaced by
X such that XJ. = min(X;,1/4) if je E, and X; = X; otherwise. As Z(E) n Y(X) < Y(X),
we find

(40) [ o (V)] <o r [N ()14 T KR,
veZ(E) Iyl S Y; JtE

d
foreache >0, and X e (%, m) .

4. Estimates of sums of Kloosterman sums

We keep the assumption T' = [g(/), with 7 a non-zero ideal of @. We consider the
Kloosterman sums S{r,r'; ¢) = S(o0,r; o0,1';¢) with ¢ € \{0}, and r,r" & ¢"\{0}.

In this section, we do not show the dependence on r and ' in the notation, but keep
track of their influence on the estimates.
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4.1. Sums of Kloosterman sums. We define, for x € (0, oo)",
S(r,r';e)
cef\ {0}, x/2<(c%] S x, |N(‘)I

S(r,r';c)
cenpobiei =y NG

(a1) A(x) =

(42) A(x) =

We clearly have A(x) = A(x) = 0 if N(x) < I, since the sums are empty in this case.
First, we give an estimate by replacing all Kloosterman sums by their absolute value.
Our aim is to take cancellation between Kloosterman sums into account by approximating

A(x) by the Kloosterman term in the sum formula, for a suitable test function.

We wanted to estimate the sums in terms of [N (r)| and N(x) = [] x;, but it turned out
better to separate the small and large factors in the norms: J

d
Definition 4.1.1.  For x & (0, 0)?, we put N, (x) := [I max(x;, 1), and
J=l

N_(x) := N(x}/Ni(x) = 1‘1[l min(x;, 1}.
=

For ¢ € F, we denote |¢] := (|c"f|)j € (0, co}’{. So |N(c)| = Ny(lel) - N=(]e]}.

Lemma 4.1.2. i) Leta,b e (0,00}, with N(b) > 1, and a; < b; forj = 1,...,d. Then,
Sfor each e € (0, %),

S IN©IT S ) << r e NG PN (@) VNG (B - a).
e, SleV 5

| r—

i) A(x) «f, |N(rr’)|UIN(.\‘)_UZHN.‘_ (x) for N(x) = 1, foreach 0 < £ <

iii) A(x) <F Ny(x).
Proof. For part i), we use the Weil-Sali¢ estimate from [4], Theorem 10:
(43) IS(r, ' ¢)| <« [N {rr')] 2N (e)) /7,

for each £> 0. We use also that the number of c€ @ with a; £ {c%| < b; for all j is
O| [] max(b; — a;,1) | = O(N.(b— a)). This gives parts i) and ii). We use the trivial
J

estimate |S(r,r';¢)| < |N(c)l and count the number of ¢ with |¢%| £ x; to obtain part
i), O



Bruggeman, Miatelfo and Pacharoni, Kloosterman sums 129

Now we give a more careful estimate of A(x), which still does not use cancellation
between Kloosterman sums.

Lemma 4.1.3. For each x e {0, 0)¢, we have

|S(r,r'; o)

1
T [N () PN ()TN (3),
el e Sx; IN(C)l *

[A(X)| =

Jor each ¢ > 0.

Proof. Let xe (0, )" be given. We use auxiliary sums Ag(x), depending on a
subset E < {je {l,...,d}: x; > 1}. We define ¥ € (0, o0) by

. X; if je E,
M= {min(_\‘j, 1) ifj¢E.
We define
Dopi={ce \{0}:1 S| S x;, il je E,0 < |c%| < %if j ¢ E),
Ap(x) = 2 IN(©)I7IS(r, ;).

ceD, g

From |A(x)| £ 3 Ag(x), we see that it suffices to prove that
E

(44) Ag(x) <o r NG| NN, (x)°
for each ¢ = 0.

We fix E. For n € i with n £ N(x), we denote D, , := {c € Dy g: [N(c)| = n}. By the
Weil-Salié estimate, we have

Ap(x) <IN S IN@I e = ING)Y D,
ceD. g IsnsN(x)

Clearly, the cardinality |D,, (| of D, . is bounded by the product of the number of
ideals / with norm N(/) = n times the number of ¢ € D, g such that (¢) = (co), for a fixed
cp in Dy, .

Given ¢g € D,,y, we wish to estimate the number of units y such that ¢ = ucy € D, .
By definition, ucy € Dy, g if and only if 1 < |u%||c)] £ x; if j € E, and
0 < 1| }c!| < min(x;, 1)
ifj¢ E.If j ¢ E, then
| | n

< e ,
[1x = IT el leg'l = T ] leq'l
ieE ieE ieE

o
-H: |(#eco)”|
i=

,
= TGy = W7ot
iek
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Hence, if ucp € D, g, then N+(.\-)" < Ju™|ley’| S min(x;, 1) if j ¢ E and
I 1eg'| £ x5 & Nodx),
if j € E. We have
~loglcy'| < log|u®) < log N.(x) — logicy/l,  if je E,
~loglcy'| — log N (x) < loglu™| < —log|cy’]. if j ¢ E.
On the other hand, A = (Iolgl;c“'l,....logl,u"ﬂ):p € @'} is a lattice of dimension 4 — |

contained in the hyperplane Z v; = 0 in RY. The map y — (log[,u"f|)l is a homomorphism

i=l
with finite kernel, depending on F. The set {s e @': uco € D, g} is mapped to the set
{AeAta; £ £ b}, where

~logley’| if je E,
iy =
~logley| - log N..(x) if j ¢ E,

) log N, (x) — log|cy| il jeE,
—logjc,’| if j¢ E.

In both cases we have &, — a; = log N, (x).
of
Let C = [][a;, b] = RY. The cardinality of A ~ C is estimated by
j=

(1 +log N, (x)" = O(N.(x)°).
Estimating the number of ideals with norm »# by O(n®), we have obtained:
| D, | = O(n"N (X)),

Ae(¥) < NG S wHENL ()"

LEn S N{F)
« [N )| PN (N (v
This concludes the proof of (44). [J
4.2. Smooth bounds. To estimate sums of Kloosterman sums with the help of the
sum formula, we start from a test function that has suitable properties in the Kloosterman

term, and see what estimates that implies in the spectral term. For these estimates we use |2]
as far as possible. We arrange the notations with the comparison with [2] in mind.

The test function is built from a function ¢y € C*(0, o) with the same properties as
the function 7 in Lemma 4.1 of {2}

0 = lpb = 11 Tl\b’(_\’)‘d_l' = 2, Y = cj?wl”(lp)‘d‘r = 15,
Y 0
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The large parameter Y governs the steepness of . We put the additional conditions

oo
on t that Supp(y) = (2—1/Y,4) and that > ¢{2"p)=1forall ye R. Henceyy = 1 on

2,4-2/7] T
We define
(45) Aglx) = 3 SErio) Hw(Z\;/Ic ).

cel\ {0} |N(f-)|

1
This is an approximation of A(x). The sharp bounds = 7% < |c”| £ x; have been made

smooth. This enables us to use the sum formula to esumate Ay(x).

Lemma 4.2.1. Let x € (0, 0)" with N(x)} = 1. Then, Jor each & > 0 we have

N Al e, ] ING ') '-"EN( )P max(xpk, Y i N(x) = No(x),
|A(x) — Ay(x)| < ;,F{ N N PN, () NG + Vo)

where Xpip = min{x;).
1

Proof. We shall estimate this difference trivially. We use repeatedly part i) of
Lemma 4.1.2.

Put = so =14 O(1/Y) = O(1} is slightly larger than 1. The differ-

1
12y
ence |A(x)— ( ;)| is bounded by a sum Y Dg, where £ runs over the nonempty
E
subsets of {l,...,d} and Dg =5 |N(¢)]”"|S(r,#";¢)| is determined by the conditions
|e%| e (I X3 : mj) u{x;,nx;) if je E, and [¢%] € (%qxj, .\'j) if j¢ E. By Lemma 4.1.2 we
find

|Dg| « |N(av-r’)|'/2(z',r“"”':'Jf‘\i'(x))_1‘,2+c [T max(( — 1)x;,1) [T max(x;,1).
JekE JEE

Suppose first that yzY for all j. Then max{(y — l)\,, « Y~lx; for all j. Hence
Dg « [N(r")| PN (x)” l/"”N“L(\.) Y-IE < N ()| 2N (x) /22 ¥ =) for each non-empty E.

Now suppose that xyi, < Y. We have

|Del <« |NGrr')| 2N (x)™ 24 [T max(x; Y=, 1) TT max(x, 1)
ieE J¢E

R TarY
<IN NN (1) [ )
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The largest connjbution occurs when E = {i} consists of one element. If x; <1, then
1Dgiy| < |N(rr")|"2N(x) """ N (x). Otherwise,

1Dyl < IN(re)| PN (x) V2N () max( Y Y 7).
Therefore, if some coordinate x; is smaller than 1, the contribution of | Dg| is bounded

by [N "N (x) "N, (). Otherwise

“*min

Y |Del « [N@r))' PN () max(Y-, xph). O
3

4.3. Choice of a test function. For any f e C*(0, oo)", Proposition 2.5.6 provides
us with & =B_f e#*, which can be used as a test function in the sum formula,
Theorem 2.7.1. We choose /' in such a way that the Kloosterman term, see (22), satisfies

K.+ (f) = Ag(x). Hence we take / =j>i2] £ with fj() = l!’( 2|E::!/))_"J|

Then, & = B_f = Xk; € . Proposition 2.5.6 and equation (23) show that
J

1= € e Ay Q
sinm’g(‘].zr(") sz(J))w(?.n |(rr')"l|) ¥y

Let us take X € (0, o0)“, with

46) k()=

(47) X; = 2m\f (") 1/ x;,

forj = 1,...,d and fi(y) = ¥(y/X;). Then f;(4ry) = fi(»*). Note that f; corresponds to the

function denoted by fy, in Lemma 4.1 in (2], and &(v) = E{bf;’}l" _ﬁl{u-j in the notations of
[2], Proposition 2.9. n

4.4. Local estimates. Here we give some estimates concerning the individual factors
k; of the test function chosen in the previous subsection.

Lemma 4.4.1. Let | <j < d and let p be a measure supported in

il0, 0) v (% S5 Zgo)

that satisfies [ |du(v)| « AT? as T — oo, for some A 2 0. Then
=T

Jki(v)du(v) « AC(X;, ¥),
where

Y2 4 |log X| ifxX =1,
(48) CX,Y):=¢ X(logY)'+ Y2 iflsX<Y,
X(log X)? fx=v.
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Proof. The lemma is proved in the same way as Lemma 4.2 in [2], taking the max-
imum of the estimates fore; =l and¢; = —1. O

N . 1 . . .
In the situation of |2}, the interval (O,;) contained no exceptional eigenvalues,

except those coming from powers of the Dedekind eta function. Here, the contribution of
that interval is more complicated. We cannot restrict ourselves to measures consisting of a
finite linear combination of point masses. On the other hand, we can use the fact that no

coordinate of v € Supp(da, +) is an element of (&,%) , see (35).

|
Lemma 4.4.2. Let 1 £j=d. Suppose that u is a bounded measure on (O, 7),

with  support contained in (0, ] = (0,%), and [ |dy| £ A for some A=0. Then
[ki(v) du(v) « A D(X;, B), where S 0,0

X8+ logX|) if X1
D(X,p) := =7
X5 {X"(l+logX) ifXzL
1
Proof. We estimate &;(v) on (0, ], with # < >
Near v = 0, we do not consider the Bessel functions in (46) separately, but use:

| ie™ H (y) —ie ™ HP(y) if e = I,
(‘]ijl\-(y) T J;J‘(y))

(49)

sin @y .
— cos vk (y) if ¢j==1.

{See, e.g., [24], (1)—(2) of 3.6]1 and (6} of 3.7.)

Casee; = —1. For X; 2 |, we use Ks,(y) «

F(an -{-%) ’ y~2Rev=1 obtained by par-
tial integration of Basset’s formula (see [5], proof of Lemma 11.1). Hence &;(v) « X; el
and [k;(v) dp(v) <« AX7?! « 4, when X; 2 1.
an 1y -
Set Fy,(u} = [ fi(y)e (J_}” where f;(») = ¥(y/X;). The factor Fy () appears, when
0

we insert into (46) an integral representation of the factor with Bessel functions, and inter-

change the order of integration. The quantity Fy, («) is holomorphic in # and satisfies (see
[2], p. 303):

{(50) Fyfu) « min(l, )e“"i Rev  for Rew = 0.

Xl

Let X; = 1. We use the following integral representation:
4 2 O vcoshz4dvz
—cosvKa(y) = = cosmy [ eeoshaIE g
T n .
see (7) in 6.22 of [24]. To estimate k;(v), we note first that the contribution of z = 0 is the

larger one. We break up the integral over [0, o) at the point T = log(X;' + /X2 - 1)
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determined by XjcoshT = 1. So T = Oflog X} 'y as X; | 0. Below T, we use the estimate
Fy(cosh:) «e G0sh= o 1. On - > T, we have F. v,(cosh =) « e 41°%h=/ x; cosh =. Here we go
over to the variable y = X; cosh 5.

o o Ayeoshz 2z

j Fy,(coshz)e™ d- « fe' “d- + IW d-
WT ] SO | ff:t-' ™ ey
«Te? + X7 [ehy” < X7 log Xj| + X7
3 3
1 P - A’j—
« X; - (1 + |log Xj]).
For e; = —1, the statement of the lemma follows.
Casee; = 1. Weuse
s 2 Al
4 -,+nil.H_':‘l o) = = Osinh z— 2 d=,
+ie s (1) - f e K

where + = + (respectively —), corresponds to H'V (respectively H**!). The path L. con-
sists of the straight lines (—0,0}, +i[0,n], and + =i + [0, o0), see (2), (3) in 6.21 of [24].
Thus, it suffices to estimate

-Hm

_rF\( sinh 2)e™ 2 d-.

We estimalte the contribution of the vertical part with the help of (50):
Zlf \Fy(Fisinp)||e™™|dy « [ min(1, (Xjsiny) l) dy.
0

+

This is O(1) if X; < 1. For X; = 1, we find an estimate by

17Y; /2
[ dy+ [ (X)) dy = O(X; ' log X)).
0 1/X;

We combine the contribution of the horizontal parts of L into

Jrn o

z—-——m (sinhz)(e* + ¥ 2) d

2
=i°sﬂ [ Fy (sinh 2)(e™ + ¢72) dz

« { min(1,(X;sinhz) ")e Ysmhat= g
Q0

dz

u 0 .
. J‘e21': d= X} 1 J‘ e Xysinh o420z . !
0 U sinhz
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where U=Iog()&’j‘I +,/Xj‘3+ ). The integral from 0 to U is O(U) = O(X ") for

U < log(1 + v2), and O(Ue®Y) = O(X; "Ilog X;j|) for U 2 log(l + v2). (Note that U is

strlctly decreasing in X. At X;=1its value is log(l +V2). ).} In the other integral we use
= X;sinhz as a new vanable and obtain the following:

9 a3y — fy
(e (X7 y+ /14 X7y '—?
< ,..1 N d)'
{ (L 1+ Xp~2) Smax(1, )

<« max(X;, 1) - min(1, X;7') = max(X7, X;7').

— e,

IIA

Taking all estimates together, we obtain the lemma in thecase ¢; = 1. J

4.5. Global estimates. Theorem 2.7.1, when applied to the test function & chosen
above, and Proposition 2.6.3 give the equality

Ay(x) = [k(v)da_,, _p(v).

For Ec{l,...,d}, we put Sg(k):= [ k(v)do_,_(v), see (39). Hence we have
Ap(¥) = 3 Se(k). ziE)
E

If E % 0, the term Sg(k) is given by a sum over the set
2 - {E) = Supp(da_, _») N Z(E).

The term Sy(%) is more complicated, as it contains also the contribution of the continuous

spectrum. If E #+ §, and ve Z_, _..(E), then the coordinates v; with j e E are confined to
I I .

the finite interval (O,E]. This is no reason to suppose that the set £_, _(£) should be

finite. A strong generalization of the Selberg conjecture would be that all these sets, except

Z_, {0, are empty.

To keep track of the influence of eigenvalues with exceptional coordinates, we define

B(E) e [0,%]‘ by

(51) sup v, jeEandX_, _.(E)%0.

0, jEEorZ_, _.(E)=0,

B(E); :=
rel_, _(E)

So f#($) = (0,...,0). Result (35) implies that all §;(E) are at most %

Lemma 4.5.1. For Ec {l,...,d}, let Cg(X,Y) =[] D(,\j-,[}(E)J) -1 C(X;, Y).
Then, for any £ > 0 jek JRE

Se(k) <. r IN(r) ' e Ce(X, V).
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Remark. See (48) for C, and Lemma 4.4.2 for D.

Proof. We write 4 = |]\.’|{avr')|'/"+"1 .X"J, = X;ifj¢ E, and A-’} = % if j € E. We denote

Z(E); = (0,‘-11] if j € E, and Z(E), = i[0, o) U (7 + zgo) ifj ¢ E. So Z(E) = ﬁ Z(E);.
& J]

p—

On each Z(E), we define a measure dz, by

(52) | wlv))du(v):= J e(vedkrri(ven) - ka(va)do ;o (v),
Z{E), ve ZIE) Iy 5 X; for j<r

for continuous compactly supported functions ¢ on Z(E),. To see that this indeed defines a
measure, we have to show that the integral in the right hand side of (52) makes sense, and
that the result is bounded by [jg||,, times a constant depending on Supp(e). Lemma 3.1.1
shows that we can restrict ourselves to the case r = 1/, in which the measure is positive.
Theorem 2.7.1 gives the integrability of || = >j<|kj|. The factors of k& can be changed

independently of each other. In particular, at the places j £ 7, we can use the functions #,
and ¢, as employed in Subsection 3.3. The characteristic function of any compact set in one
factor can be majorized by a positive linear combination of such functions. So the integral
in (52) makes sense, as the integrand is continuous and bounded by an integrable function.
Moreover, the integral is bounded by |||, times the integral of a positive function de-

pending only on Supp(e).

Let Gj:= C(X;, Y) if j¢ E, and C;:= D(X;,B(E);) if je E. We shall prove by
induction that the measure dt, satisfies

P el IO o
(53) _f dr/(vs) «< A ,2 };}3 - 11 C.
v e Z(E), [v}S X, i=1 J=+]

The induction runs from / = d down to # = . For £ = d, the statement in (53) amounts to

J Mo -e(v)] < AN(X)?,
veZ(E).ivls X

see (40).

If £ < d, we have

f d‘r{(l'{) = I k/+1 (l'.f.. 1 :I dry, l{"(; |}.

v €Z(E}Iv| 2 Xr Vrrl €Z(E],y

We use Lemma 4.2.2if j € E, and Lemma 4.4.] otherwise, and we obtain (using the
inductive hypothesis)

- LT of .
J k) dua(en) <« ACn [T X7 T] G
ver1 €Z{E) ) j=1 Je=f o2
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This proves (53).
One more application of Lemma 4.4.1 or 4.4.2 gives

d
J Aim)dn(n) <A1 G,
Z(E), =l

which is the statement in the lemma. [J

4.6. Choice of Y. In the previous subsection, we have written the sum with smooth
bounds Ay(x) as 3" Sg(k), where E runs over the subsets of {1,...,d}. The terms with
E

E = § give the contribution of eigenvalues with exceptional coordinates. These terms might
vanish. It seems sensible to choose Y in such a way that Solk) + |A(x) — Ay(x)| is esti-
mated optimally. The estimate of A(x) that we shall obtain cannot be better than this.

If some ~; < 1, we have by Lemma 4.2.1
JA(x) = Ag(x)] < [N ()| PN (x) 72N ().
In the next subsection, we shall use Lemma 4.1.3 if X; < | for some j.

Assumption on x. In this subsection, we proceed with xe[l, 00)“; hence N (X)=N,(x).

In the next computations, we use an “absorbing £”, to avoid introducing many small
quantities,

The Lemmas 4.2.1 and 4.5.1 give the following estimates:

IAG) = Ag ()] < NG 2N () ot 4 IN ') P2 ) ey,

min
o
Sp(k) << [N (rr'y| 1144 [1cex, v),
j=
where X; = 2m\/|(rr')?|/x;, as defined in (47), and C is as in (48). For Xi=z1 we

use C(X;, V)« Y2 4 Xj(log )(})2, otherwise the choice of ¥ becomes too complicated.
We put

(54) LX)= TI (1+logX;}) ] (1+ Xj(log X;)?),
PV LYzl
(55) b; := 2x|(rr")% |2,

(56) A=A(x) = {j: x; £ b;}.
b

d
So [1 C(X;, ¥) « YiL(X), and X; = :
=1 )
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We estimate L(X) by

o« () e ()

« N_(B) NG T (’\’_’_)lﬂ.

Jed Y

In this way,

1+
Sa(k) << YN (BFEN_ () N (x)" ] (ﬁ) :

j!’:t' A

So, we have the estimate

(57) Salk)}+|A(x) o(¥)] < N(BN(x )I/"+r\_|

nun

+ NN Y 4 PIRN BN (b)) N () ] (b-i.)]h.
7

jEf‘ .

We shall try to give an optimal estimation of (57). The final estimate cannot be better
than N(H)N (\) s x,).. We wish to choose 1" such that the other two terms in (57) are

very close to each other.

. 42 i i b' - .
This suggests Y = N{b]l'zN{_\‘j"' I1 (‘i) . But we have to take into account the
Jed Y
condition Y > 15 in Subsection 4.2, and the above value for ¥ could be smaller than 1. To

grant this condition, we take

(58) Y = 15dp)g7 N (BTN (x)™,

where df/q is the discriminant of the field F. Since |N(r)| = d;], for any re O'\{0}, we
have dpjgN(h) 2 1. Thus, ¥ is al least 15,

With this choice of ¥, the second term in (57) is smaller than the last one. The final
estimate is

(59)  JA(Y) = Ap(¥)] + Solk) < N(ON () xmh,

1+&
+NGYWEN (B TT (”—f) - N{x)Tate

jed(xy \Y

The contribution of the exceptional spectrum to Ay (x) is given by the remaining sum

Y. Se(k). By Lemma 4.5.1 we have
E+0

(60) Se(k) < IN(rr" )" 1‘[ D(X;, B(£);) 1‘[ C(X;, ).
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We obtain the following estimate:

SE(k)«N(b)!Hy“'—Jﬂ . (I_J‘{)—zxits)j—s . (\J)I-c - ([i_fl)m . (ﬁ)_c

jeE\A\j jeEra\bi/  jene\Ni/ jeauE\YN

. ) NE) e s NI
«neEFNeES ()T T () (%) ke
i ]

jeE\dA jeEnd JeMAE\Y jeAUE
_ d—1E|
We define, og := ,,( R %) and
(61) Fi(b,x) := N(B) 1 N_(B)*N(x)***

UHE)+r NI l+&
A6 50
jel;'I\A (b je[l.:!'\zl b jel.»—l[\E Nj

In this way, we have S¢ « Fg(b,x), and
Alx) < NN (ol

14c
+ NB)EN_() ] ("J) N LS Fg(b, ).

jeA(x) \Y E+0
Proposition 4.6.1.  Let x e (1,00}, and let r, 1" & O'\{0}. Then

T
(\) &, FN(I”’D% ( ) +C,-,-'N(\)Wc 1—[ ( I(H-) |)

jeA(x) X

-, WE) +5
+ Z Cr.r’(E)N(-\')H oy a
E+0 JeE\A(r) |(”") ’

-~ ( )'"‘ (\/I(rr_)"’l)
jeEn A{x) \/I(”")ojl jEfl(\‘)\E

with §(E); defined as in (51), and

Xmin = n}in(.tj),

b = 2my/(rr')*|,
\) = {.] Xj = b}:

G = NI [N _ ('),

G (E) = N(lrr'nH%’*ifl FEN_(|rf)
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Remark. If no eigenvalue has exceptional coordinates at precisely the indices speci-
fied by E % 0, then the summand corresponding to that set £ can be omitted.

Case d = 1. The estimate in the proposition is not optimal for = 1. Let us look at
this case, in the absence of exceptional eigenvalues. Now F = @, so b = 2z. We have

IA(X) = Ap(X)] « e[+ max(x~', YY),
So(k) < 'l C(X, Y),

Y2 ¢ logX if XY=l

here X = 2z/]rr’'|/x, and C(X, ¥ 2 ®
wher m\/|rr'|/x, and C( )«{Y'/'-i-X(lOgX}‘ fxz=1

i) For x 2 b, we choose ¥ = 155!/3x173, Since ¥ » x we get

IA(Y) — Ag(x)] + Sa(k) <« bx/2Hep= 18713 4 pl22e(p OGO 4 )

< b2[3.\.1/6+c.

(62) A(x) « e} 251164,

ii} Forb!3 £ x < b, wechoose ¥ = 156" 13x, Then we have 15 £ Y « x. Using that
x < b 13, we get

(63) A(.\'] « b_\,I/2+£b|/3_\.-l + bl/2+2£(b—|.-'6_\.|."2 i hlrey l—r.)

2
« b?j6+s « |rr'|7/1'+”.

Note. In the case of general , we have not used this choice of Y, as it may be
smaller than 1. Here this is the optimal choice.

4.7. Estimation of sums of Kloosterman sums. In this subsection, we will prove the
main result in the paper. We estimate, for sufficiently large x € (0, w)¥, the average

< S(rr';c)
A(_\') = —_—
cEl\{ﬂ%ﬂ’flg.\) IN(C)l

of Kloosterman sums for totaily real fields, which generalizes Kuznetsov’s estimate in the
case d = 1. In Kuznetsov’s case, the absolute value |¢| stays away from 0. For d = 2, some
coordinates of ¢ may tend to zero. It turns out that the sum formula of Kuznetsov type in
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Theorem 2.7.1 gives good results if all coordinates of ¢ are not too small; see Proposition
4.6.1. For all other ¢, we shall use Lemma 4.1.3.

We want to consider A(x) for sufficiently large x e (1, 00)?, for fixed r,r' € @'\{0}.
Our concept of “sufficiently large” will depend on r and r". We will restrict ourselves to
X; 2 by =2n/|(rr")"| forallje {1,...,d}.

We start with the decomposition

_-—S(r’ r’; C) — z A(z"ﬂ'\-),

64) Alx) =
( cenfo)ieisy MY "

where n runs over N‘éo, and (27"x); = 2"x;. See (41) for the sum A(-). Note that all but
finitely many A(27"x) vanish, as ¢ runs through a subset of a lattice.

We split up the sum over n in (64), and shall choose for each term a suitable way to
estimate it. This decomposition is parametrized by subsets J = {I,. .., d}. Set N; := log,y;.
We put

(65) Al d) = 3 A@Q ™),
neN, 5
(66) Nys={neNisn £ N;if jeJ,n > N; otherwise}.

That is, # & Ny y if and only if 27"%x; 2 | for any j € J and 27Mx; < 1forjélJ.

Hence
(67) Mn=¥ﬁmn.

To estimate 7\(.\'; J), we shall use Lemma 4.1.3 for each J &+ {1,...,d}, whereas for
J = {1,...,d}, we shall use Proposition 4.6.1, which we have proved with the help of the
sum formula.

Let J # {l,...,d}. We apply Lemma 4.1.3 with x replaced by ¥, given by ¥; = x; if’
jeJ,and x; :=2"Wix; if j ¢ J. Note that in the latter case Yell2).

In this way, we obtain

Anis ¢ Shridl

< NN (RPN, ()"
ceno)evsy 1V ()

< |N(rr’)|% I1 .\%ﬂ.
jed
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Clearly, the largest contribution is given by the sets J of cardinality ¢ — 1. If
J={1,....d}\{¢}, then

where Xmin = min(x;). In this way, we have

bye
(68) S AWd) < NG )|*(N(‘))
Jo{l..d } Vmin
Now, we start with the region corresponding to J = J(d/) := {1,...,d}. We have
(69) Al d) = ¥ AQR™x).
05w 2N,

By Proposition 4.6.1, we may estimate the sum in (69) by Z; + Zy + X3, where

L= ¥ N@ENETT min(2 )
0sm N,
(70) Siim T NN (b) N2 )T
sy <N
' l_I (2"’?)1)]“
Jed(2mxp\ Y
(71) Tyi= Y ¥ Fe(b,27"x).

E+0 0=5mEN;
(See (61) for the definition of Fg(h,2"x).) We shall estimate these sums separately.

N,
When we work out the sums over n, we will get a factor of the type > 27"%,

n=0
with different ;. Each of these sums is 0(_]_]71_) o(l) if o >0 and
024Ny = 0(x; ), if &, < 0. 1 =274

We start by estimating X,. Foreach / = 1,...,d, let
A= {neZ40 £ £ N;ymin(27y) = 27" x,}.
I

We have

(72) Zl < N(b Z: N 4'“' —| z ‘)H/G £) H ')“";{%'H:)

neE A, FE 14
b)N(\)Hr z X Aolh-ch¥r o N(b)N(\)HC Z Xy x_"f

< N(BYN () oxs .
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To give an estimate of X, we have to consider different regions, determined by the

set A(27"x). Let M; = min (logzg;,l\@-). So {j:b; = 1} = {j: M; = N;}. By definition,
g

Je A(27"x) if and only if b; = 27%x;.
For each subset L < {j: b; = 1} we define
Np:={ne z4: M; = n; S N;, if je L;0 £ n; < M otherwise}.

We can split up I, = > %y, where
Leijly 21)

n . 2" l+e
(73) o= ¥ NBWRFN_(B)N@NEE (] ( ”’J) .
neN, JeARm N Y

. /
+e¢if j¢ L, and otherwise a; := —(1 ~y; ‘ l.‘). Note

We set o 1= (t.m.*.

d
2(d + 2}
that we have 4(27"x) = L for n e N;.

A , AL d
(74) Ty « N(]))JW:-HN_(]))_EN(.\‘):‘ Tt Il (—J) 3 27
jeL \Xj neNy j-1

« N(b)THeN_ ()N ()Tt I 5% 1 -\‘,-""”

jel jel
. H (_-. ! ) l'[ v
e\t —=27%/ jer ™

+ ; ~whT
& N(f’)ﬁﬁf\!_(b)”“N(-\‘)Wﬁ H bjl+:: l-[ \j .u+-|'
jel jel

. N . of
The factors x7 with j e L have been absorbed into N(x)7 ™,

A comparison with the estimate of X, in the x-aspect, shows that the term N {.\'}'J-‘}""'
fie Iy .
is already dominated by O((N(x) ,f.\'m-,n)"'+ ). (Note that Xmin < N(x)") This leaves us

with a small factor if > 2. We proceed under the assumption ¢ 2 2.

41 N[‘_] 1242 "'1:1‘_’5":.1_ mn (hgdz_\,‘ﬁ‘ﬁ‘p)-
Lo« N(b)‘:mHN— (h)~* (—"'— ) N(x) EEEl P \ERY

Xmin

We have assumed that x; = b; for all j. So we can use N (.\')‘MJ;JJ to reduce the exponent of
24 +d +2
N to ———F—
®) 2d(d + 2)
worst case, that all b; 2 1 have j € L. This leads to the following estimate:

. We have to take the sum over L = {j:h; 2 1}. So we look at the

w25 Ay /24 -
(75) %« N(b)jT‘"(f?J+‘N~(’J)""(M) N (b,

Xmin
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We have to compare (68), (72) and (75). In the x-aspect, these estimates are the same.
In the b-aspect, the estimate in (75) gives the main contribution

N (b) 5 e N_(b) Ss
To estimate X3, we split up the sum in a similar way:

=Y Y 2= T 3 Fs(b27"x).

E+0 02m 2N, E+0 Lo{jib;21) nely

By (61) we have

23\ HEY e
Fe(h,27"x) = Ce(B)NQ"X)** ] ( )

jeBazy\ b
_ 3l (2"‘: xj) b N ( ._bl_)] +c
JeEn A{2-"x) bj JEAP-"YNE 2 mxj
where Cr(5) = NN (6), ag = S V5L and a(2-1x) = {j: b, 2 27}
E !E_z(d+2): i S Jr'j: B E
When we shall sum this over n € Ny in the following computations, we shall use that
for je En A(27"x), we have n; = M; = log, ;" Otherwise we would not have 3 l:f = =1
i 7

Thus, we can use for these j that

" 1l oy 1=
> (i) « (ﬁ) 26D =
£ - .
Mg <N \2"b; b,

First we consider the most exceptional case E = {l,...,d}. In this case ag =0 and we
obtain the following estimate:

x BB o\
> rib2 <o) = e T (35 ()
7

neNy neNg JéL Jjel
x 2HE) e ¥ l-c
« Ce(P)N(x} [] (_f) I1 (_!)
JjeL by JeL b;
- Y [ 209 T 2B E) e
neN, jel jelL
\MEY+e
« CE(b)N(x)" T1 (") .
15754 \D
So, we have for E = {1,...,d},
i d /i \PE) e
(76) S Fe(b,27%) « NBMN ()N ] (,) .

EATE J=1 bf
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Now, we consider 0 < |Ej < d. Let aj = ap + 2ME) +eifje E\Liay =ag + | —gif
JEENL aj=ar—1—¢if je L\E, and o; = ag + ¢ otherwise, We have

v \2PE)+e
S Fe(b,27x) « Ce(b) 3 N2 [] (_,_)
neNg neNy JeE\L 2 }bf

H ( x; )l—l: H (Zﬂjbj)l—'-c
JeEnt\2"b/ e\

N2Ey+e
« Cg(b)N(x)*** II ((.;l) ) z—njmmzﬁ{ml.ezq)
7

JeENL O=m=M;

N
‘1 (E) T 2-nlast)
JEENL bj M=msEN,

b' 1+¢&
T (_f) S anli-a)
JeINEA \Y} M;Zm SN,

-1 b 3-mlae+e)
JEEUL 0sm<M,;

s ¥ 2H(E)+e i l—g—ag-1
<aomor g (" 1.8
7 7

jeE\L

bj) I+¢ g
5 — X
7 ell-,I\E ( ("}' !

-\ 2(E)+e
o X e —trp
< CEBIN()™* ] (b—i) I
JeEA\L\Y) JEE\L

So, we have

X; 2HE} e
> % Fe(b,27) < Ce(B)N ()= ] (_,) [T bl

Le{j bzl) neN, jeE\B; JtEb 21 /

Therefore

- Zﬂ(E)}'H:
Iy« T NBFN_(5) N (x) % ] ("i) Il 5%
E+9 jeE\bj jeEl 2 1

Summing up, we have proved the main result:



146 Bruggeman, Miatello and Pacharoni, Kloosterinan stns

Theorem 4.7.1.  Let the degree d of the totally real manber field F be at least 2. Let 1
be a non-zero :‘deul of the ring of integers O of F. Let r,r" € O'\{0}. For each ¢ > 0, and for
. . v 12 p .
all x € (1, 0)" satisfying x; 2 by = 2nl(rr') W2 forall je {1,....d}. we have

S(r,r':c)

N(.\-))%+"
ce {0} 0She YLy, IN(C)I

« e F Dr.r’ (

Xmin

+ Z ﬁrr'(E)N(\):—d—TI-H '\}'_-‘ﬁ(E)__"
Ec{l..d}E£0 JjeE

where Xgin = min{x;: 1 £ £ d}. The bounds B(E); of exceptional coordinates are defined in
(51), and

Dy = Nullrr VG2 (f S5,

i d- B i
Brw(E) = N D 5N _ () TLGJIer) ™D T1 (o),
jek JEE YL

N (Jrr']) 1)L N’ =TT 1)),

Hrr)¥ 21 1)<

Corollary 4.7.2. In the notations of Theorem 4.7.1, fet X 21 be such that
Xzb= 2n|frr")“"|'/2,ﬁ)r all j. Then

Lot B PR
S e D3 4 5 Dy p(E)X I,
centoyogemsy 1N E+0

with 2(E) =2 Z_I)’(E)j.

je E

Remarks. Cancellations of Kloosterman sums.  The term corresponding to E (]
gives the contribution of the eigenvalues / for which

E = {j: 2 is exceptional} = {j: 0<y s ‘lt}

If there are no eigenvalues of this type, the corresponding term in the theorem is absent.

We note that by inputting the best presently known bounds for exceptional
cigenvalues in Theorem 4.7.1 and Corollary 4.7.2, our results imply cancellation of Kloos-
terman sums for any totally real number field F. This means that the sum ol Kloosterman
sums considered in the theorem grows strictly less rapidly than the bound in Lemma 4.1.3,
oblained by using Weil's estimate.

. . 1 . .
To verify this, let us denote by y < = an upper bound for all exceptional coordinates of

cuspidal spectral parameters. If we compute the maximum contribution of the exceptional
spectrum, in the notation of Corollary 7.2, we find for each £ < {1,...,d}, the exponent



Bruggeman, Miatello and Pacharoni, Kloosterman sums 147

d(d - |E) d{(d — |E|) & IE|
G ) S SEry) B = sy Py (D) —d),

. . . . d 1 .
which has a maximum value that is strictly less than 5 for any y < 3 (letting |E| = o for

Y= ﬁ, and |E| = 1 otherwise). Now, the estimate obtained by using the Weil-Sali¢

estimates gives a growth of X“/2*¢ in (77) (see Lemma 4.1.3), hence the asserted cancella-
tion of Kloosterman sums holds.

. . . . . 1 .
The best bound for exceptional coordinates in the literature is 3 = 5 valid for any

number field F (see [15]). Recently, Kim and Shahidi have improved this estimate to
y=1/6 —1/51 {private communication). An extension of the previous calculations shows
that if we use this value of y then the contribution of the exceptional spectrum is strictly
smaller than the first term in Corollary 4.7.2, for any d 2 3. This implies that for anyd = 3
the main term in (77) is indeed given by X“~1)/2+c This should also be true for = 2 but
the known estimates for y are not yet good enough to imply this result.

x-aspect.  If we ignore the rr'-aspect, we get the bounds

(77) 0 (N(-\.)/-\'mm){“Hc + 3 N(\)Hﬂ‘” 1 '\fﬂ(E);
E+1 JuE
in the theorem, and
|:78} O(X"'_—;—"*'C + Z: Af"%!(E)-’-ﬂ)
E+(

in the corollary.

! ) . .
Lety =z _° be a bound for the exceplional eigenvalues as above. We can omit
(d+2) S
d— l_ -

4
anghow rom (75) the ems it 41 3 g 4121

d? +dz—
dy(d+2)—d

+ 2y|E]. This means that we leave

only the terms with |E| 2 A similar analysis of (77} does not seem useful

to us.
Cased =1. If F = Q, we can do better, using the estimates (62) and (63).

We assume that there are no exceptional eigenvalues, and take x > b = 2ry/Irr).
Note that b = 27 in this case,

Aw=2 ¥ Sorio oy

IScsx,cel c n=0
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This sum is split up at N := log, (%) and M := logz(

(63) and Lemma 4.1.3:

b'_\3) We use, successively, (62),

N LN i "
T AQ™x) « b1 T (27" « bl

n=0 n=0

- 2 7 Ky
T OAQTN) < T BT« b < b
N<ngs M Nangs M

S(r,r';¢)

A(27"x) =2 « b(B)H* <« b,

M<n S log; x I€csbB cel
Thus we obtain
(79) A(x) « fre e,

If there are exceptional eigenvalues, these give explicit contributions, to be added to the
error term in (79).

The restriction x = 2ry/|r+’| is not essential. For smaller , the trivial estimate in Part
iii) of Lemma 4.1.2 is better anyhow.

1 . . .
The exponent 5 + & is present in Kuznetsov's estimate, [13], Theorem 3. Actually, he

has x6(logx)'/>. See also the discussion in (4], 4.4. This concerns the case / = Z, for
which there are no exceptional eigenvalues.

Goldfeld and Sarnak, [8], estimate sums of Kloosterman sums with use of the Linnik-
Selberg series. They estimate this zeta function on vertical strips. They state that the de-
pendence on r, r' is O{|rr']). Hejhal, see [9], App. E, p. 666, follows the approach of
Goldfeld and Sarnak, and obtains similar results. Yoshidg, [25], uses a better estimate of

the Linnik-Selberg series, and obtains O(|rr'|'*x"/$(log x)*) for / = N7 with N £ 17.

Comparison. In [10], Joyner considers real quadratic number fields with class num-
ber one. He states in Lemma 4.26 a stronger result than given by our theorem, but his prool
contains gaps.

A crucial point in his proof is his estimate {4.28). Here one has not only to consider
the sum over D(T, T»), but also over sets of the form

D'(Th T)={cel: T < el <+ Ty, 1 < |¢] < T}

(in his notation), and subsums where one of |c| and ¢| is in (0,1). In our approach,
the estimation of similar terms turns out to be rather complicated and influences the final
estimate.
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The influence of the exceptional eigenvalues is included in his addendum [11]. The
formulation of the correction is based on the (unfounded) assumption that it is sufficient to
take into account only those eigenvalues for which both coordinates are exceptional

(E={1,2}).

We discussed the problem with Joyner and he agrees with these gaps, in particular,
that his handling of the region of summation in the justification of (4.28) (hence the proof
of Lemma 4.26) is incomplete. Also, the discussion in §6 of [5] indicates the problems we
have with Joyner’s proof of the sum formula.

5. Proof of the extended sum formula

We shall give the proof in two steps. In Subsection 5.3, we follow the method of [23]
and [5] to prove the sum formula (30) for a subset of the class of test functions .#* (sce
Definition 2.5.1). The auxiliary test functions we need, form the subject of Section 5.2. Here
we shall use many facts from (1], mainly Chapter 13, on Whittaker transforms, In Section
5.4, we shall extend the sum formula to the full class #™, by an approximation argument.

5.1. Sums over [y<\I'p«. Before turning to the two technical results of this sub-
section, we recall some notations.

In this section, we return to the general context of a general cusp «, corresponding
to parabolic subgroup P* = N¥A"M = g, Pg,', N* = g.Ng_', A" =g.Ag.', g. € Gq.
There is a unique decomposition g = m,.(g)g.a.(9)ky(g) with n.(g) € N*, a,(g) € 4, and
k.(g) € K. We have the intersections [p« = T P¥ o Ty« = ' n N*, and the lattice {,, such
that Ty~ = {g.n[é]g7": £ e 1}, The dual lattice t.. describes the characters of [y.\N* by
x(gunfxlgs!) = €2m3x)_ See Subsection 2.1 for further conventions.

Lemma 5.1.1. Letke P, and o, f € R with a + f > 0. There exists C = 0 such that
Jor all fumctions [ on Ty \G satisfying

14

d
/@) = TT min(jax(a)I", lax(g) "),
1=
we have for all g € G:

> Gl = C(1+ logaw(g)”|"™") min(ar(e)*™, aclg) ).
YE ]',vx\l"p.-

Proof.  Use a[y]* = y; and a[y]” = N(») to reduce the statement of this lemma
to Lemma 8.1 in [5]. There we summed over ¢ € @, which corresponds to a lattice in a
hyperplane when one takes logarithms of the coordinates. Here the a,(yg,) correspond to a
lattice A, of the same type. [0

Proposition 5.1.2. Let x,x'e 2@, ret;\{0}, ' et/ \{0}. The Kloosterman term
K(w,r; 5’ 1" t) converges absolutely for each function satisfying
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)
(80) h(y) <<Hmm|)l 135179

withs,teR, s+1t>0,and s >

[\”.—-

Remark. Proposition 2.5.5 shows that (80) holds for any /t = B¢k, with k € 4.

il
I (f-':,-)
=

: -3 12
<« X l'[(lc,l min(fe;| ™, ;™))

EA oE Jl—‘

Proof. We have

“ )
Kk rix' i« 5 |———-
cerlygx IN(‘-)I

where ¢, =c¢% for ye *'9%(¢). We define the positive function f on G by

S (ngpak) := H min(ja®|*TV2, ja%| 7YY for ne N¥', ae 4, ke K. We apply Lemma

5.1.1 and Deﬁnmon 2.3.1 to estimate the sum K(wr,r;x',+';l). The terms of this sum

depend on y € *'I"*. We write & = (: :) = g2y = 0 (E)azson” (EYm(E), so az = ajc™?.
I -1

In this way gya: = g,..rn'(:_f)_'g;’yym”(é_’)"'m( 5) sy € N"")'g,‘.n”(q')"'K. This gives the
following:

(817  K(w,r;n',r'; )
<« Z f'[.‘].\'“c:l

el T T

” ) FGan"(e)™")

VE r:\'x'\*rrv/l:\'"

= X Y SGrean"))

FELANTY [Tya deT

« 3 ‘ min{a, (3 Kn”(cf)"')'“Hs-ﬂ)",a,\--(}'y,,-n"(cf) ])‘""m"d")

« Z ax (¢ ,\-n"(Cf)_I)PH(J o
e LA T Tion

a{:-i-!(s"a:]p

— 1

yELAR T iy

for each sufficiently small z > 0. (Note that s + ¢ > 0.) We turn to Eisenstein series to esti-
mate this sum.

| . . . ; . 3
Takeu=s—¢> 5 The Eisenstein series Eo(P* , 11, 0) is given by a convergent series

with positive terms. Everything in the following integrals and sums is positive:
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[ E(PY,u,0mydn=% [ aw(y)™™dn
Tyx AN ye LAl T \N*

= > [ et ()"t
yeLAT/Tyw N¥

= 2 [ a(pgangz )2 dn.

PET\T*/Tux N
We keep the notation & = g7'yg,, and use the equalities
yanig, ' = gt (E)g! - guoagson (E)ng ' m(E),
aw(yaengy ') = ag - ap (son"(Eng),

to obtain

w > 3 ug’”"” [ ey (son"(E)ng")’ 2 .
e AN T Ty N

) p+2up

. . . ]
As [ ay (son” (E)ng! dn is finite for « > > and does not depend on n”({), we have
N —

shown that the sum in (81) converges. [J

5.2. Auxiliary test functions. In this section we consider cusps x and #' in 2,
and r e t/\{0}, ' €1.\{0}. We have e e {I,—1}", given by e; = sign{s;r}). Also, we fix

TE (%, 1)
Notation. & :=(&.),...,& ) = Q2alnl,...,2a)r]) € RY,.

Definition 5.2.1. We define H(7) as the set of even functions /1 on

{reC:|Rev| =t} u (%-i— Z)

that satisfy
i) &t is holomorphic on |[Rev| £ 7,

i} A(v) « ™1 4+ |Imv]) " on |Rev| £ 7 for each v e R,

b—
iii) h( 5 ]) = 0 for all but a finite number of b € 2Z.

In the next lemma, we introduce an integral transform with Whittaker functions.
(See, e.g., |22}, 1.7, for the definition of W, ,.)

Lemma 5.2.2. For re H(t), and y > 0, we put
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1 rsinzy 1
()= 2§ B S dvt () W00,
U Rev=0 Pz -

4

W h(y) = % I )y (») (‘,z - ‘l—l) vsinzavdy.

Reved
These integrals converge absolutely, and satisfy the estimate @ . h(y) < min(y!/2+7, pl/2-7),
We have

o dv
h(v) = { @1 (¥} W g1.6( ) }—1

T

Jor each v with |Rev| < 1, and

* —dy 1 —— vsinmy 1 N
{wlh() Yenln () VT Re_L(Jh(t)h.(v) ,,1_ —1— dv 4 h(z)ln (E)’
T ————dy 1 AT
Joth(Nw_in(y) =5 == [ ") v’ =5 ]vsinavdy
0 y° T Rev—p 4

Jor hIny e H(1).

Proof. We have w4/ =, in the notation of Proposition 13.3.10 in [1], with
i1 € F11.. We quote results from {1}: Corollary 13.3.12 gives the estimate. The inversion
formula is given in Proposition 13.3.13. For the scalar product formula see Propositions
13.3.5and 13.3.10. O

i
Definition 5.2.3. We define #“ as the set of functions # = _>(| fi; with all /i € H(z).
.II' T

Ifhe#? then also 1 e #, where It vi— I(7).

Comparison. This class of auxiliary test functions is smaller than in [5], Definition
9.1. In [5], we have derived the sum formula for as large a class of functions as the method
allows. In Section 5.3, we shall use the same method, but we take it easy in the first step,
and extend the class of test Munctions in Section 5.4. That extension step is at present not
within our reach in the presence of complex places,

As in [5), Definition 9.2, we want to associate a function on & to each auxiliary test
function i1 € #¢. A complication is that we cannot stick 1o one weight, as we want to take
all irreducible components = into account, see Section 2.2

Definition 5.2.4. For each /i e #°¢ we define the function ®*K[/f on G. For n e N*,
yeR?), and 9 e (R mod 227)" we put
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o .
‘Kelr(ngealy)k|9)) := x. (1) 1 (wejhj(41r|r1| yj)ez‘ sign(iy)e;
j=l

bh—-1
l+e by 2 o
(59 Fn o ”’wz.w—'m“*ﬂ"ﬂ):J‘f”"‘g""’w’) |
24 bel :

We have used e in the definition of K} to control which Whittaker transform is used
in each of the factors.

Lemma 5.2.5. Let h ' e #°, g e (22)". We have

o o
(82) *Kih(g) « [] min(t:x(g)(]ﬁ“)”',a,.-(g)“"“"')”),
J=
(83) ij a™ % K h(geak) KT (guak) da dk

=2N(&,) ﬁ (% I "j(l')m(\'z — :—')_ejvsin nvdy

j=1 Rev=0

’ (1 "2“’1) bg%:ezz (b —1 2)!’“(1); l)hj(ﬁ)

Suppose that v e C¥ satisfies |Re | < T or g;sign(r;) 2 2|v;| + | € 2Z. Then

(84) ‘jA a™ K h(guak)W[ ¥ (gak) da dk

(24N(Eh(v) if for all  either q; = 2e¢;sign(r;}, or

¢; =1, g;sign(ry) = 4, and

o
v = t5(qsign(r) - 1),

\ 0 otherwise,

Remark. The condition on ¢; in (84) amounts 10 e;q;sign(r;) =2, if ¢; = I, and
to ¢; = —2sign(r;), if ¢ = —1. The term for =2 in the sum in (83) corresponds to

Wy, -10200) = My, o1y 2(nr) = 5*2e7/2

for b = 4 in the factors cannot spoil the estimate.

The integral on the left in (83) converges absolutely, see (82). It can be computed
factor by factor. In the computations the sums over b are present only if ¢; = 1.
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h—1
[ r I;j )e-w, sien(r)d 4 z N2 )

- b sig A
b7 Waya,(b-1y2(28 p)e™ et}

90 p=nt bz

/ h—1
e —2je; sign{r, ¥ ,J 2 ihsignir |4
welllj('gr:f"l}c ! ! + Z . N U ')J‘t

”h"bl’jc 315
o (b —2)! /2. (b=1}/f rjJ )

h—1 bh—1
b (T)"}( 2 )w o dy
+ Z rz.r.j 1;2

iz ((b-1)7 o
—25r.j("l'. I J",r‘(l'ﬂ'lj(_l')(\'3 --D_e’vsinmrdv

T Rev=0

(@) + B ()

The integral in (84) can be computed as the product of local integrals as well.
These converge absolutely, due 1o the estimate (82), and the asymptotic properties of the

. . h—1
Whittaker function IV, .. (Note that W, ., = W, ., and, in particular, that if v= S

e 4]
= [2&: J,-wcjhj(_v)(uej
0

with 1 < b £2x, b= 2x mod2, then IV, , is a multiple of M, , which gives Wy (1) =
o\ ast | 0 instead of W, (1) = O(/Re"1+1/2-2) in the general case.)

We integrate first over K and see that the integral vanishes unless the condition on the
g; is satisfied. The integral over A follows from Lemma 5.2.2 if {¢;| = 2. Otherwise,
¢; = bsign(r;), with he 27, b = 4, and we find the integral

2, ,(b=2) il =+z(h-1),

2] —

e ) =
0 otherwise.

(Compare Propositions 13.3.5, 13.3.10 and 13.3.13in [1].) T

Intertwining operators. In the Kioosterman term in the sum formula we shali need
to evaluate the integral [ 7,() *K. Ji(guealt]song) dn for 1 RY,, ¢e G. Remember that

N
sp = (? Ol ) This integral is the product of integrals
'r- ) - J \/; 0 1 N (I.\
S 2ninxfe r'] o 5 =t
(85) .!n‘ (°K, f);(!f (0 Vi ol o 1 )9)

with # > 0 and ¢ € SL.{R). We have identified g, with its image ¢/ in SL2(R).

We shall use results from [i}. We first express (© K'h) (¢), with ke 2, Fet!\{0},
ée {1, -1}, in terms of a function ®¢ as defined in Proposmon 13.5.5 of [1].
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£l

The even function ("Ki.h)j on SL>(R) can be considered as a function on the universal
covering group Gy of SL3(R) that is invariant under translations by elements of the center
of Gy. But [1] works with functions on the universal covering group of PSL.(R), which has
two components. We pay now for that generality by having a harder job in digging out the
desired results.

Three number references in the sequel refer to [1]. There, the component of 1 in the
covering group is called Gy. It is the universal covering group of SLy(R), and of PSL,(R).

. . 1 0
The other component is Gyf, where j lies above ( 0 ) In Gy are elements #(x) above

I x vy 0 cosd  sin
r . - . b . . 2'2' .
(O l)’ a(y) above ( 0 l/ﬁ) and A(3) above ( ), see (2.2.1)

-sin} cosJ
Another conventionis j; = 1, j_| = .

In these notations, we have:
(*KLA) Agen(x)a(y)k(9))
2aiFx I = . 2 | ¥ 2ie, siga(r, )i
= — [ h(v) Wy, (drlF] plysinme[ v — =) dvePseal)
U Rev=0 4

1+ ¢ 1 b—1 r ,
t3 i F (b_'))r"'f ( 3 )Wblz.(b-n/z(“ffh|.")fv’"’°"s'g"("“)-

=  bhz2belZ =

We construct an element ¢ e H? as in Definition 13.5.1. Note that gypere = There, and
Tihere = 0 for even weights.

. I l - . ey
c(s) := 3 r (5 +8- cj) hy(s) (99'_16,- sign(i) (8) + 5'8“('})%5: sign(i,} ()}

b—1 (b—1 e
& % 7”} (T) V’bsign(ﬁ,)[b] if €= I
(== = -

0 if g =—1.
(Use (3.5.6) to check condition (13.5.2).)
Proposition 13.5.5 defines a function & on Gy u Gy in the following way:
O& (1 signiz,y @28 Jn(x)a(3)k(9))

= & (n( +4nF;x)a(4nlF| )i tsiga(i, )k (9))

1 —2ssin2ns | I o
== —_— Tzt s5—8; » X 2nitx
i oy pu 3 (2 +5 ej)hj(s)n 1z
| I
r(? - F ) W 4, (s ) 500607

h_(b—l)
+(l+é,) b—1 Y\ 2
bz2,
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We have used Definition 5.5.1, Definition 5.4.2, and Definition 5.4.4. We conclude that ®¢
vanishes on j_ggq(;.) Go, and satisfies

[86) (Dé (jmgn[i'l :|"(2éiJ)f}) - [e K::h)} (g,;-g)

for g € Gy.

Now we take r e t/\{0}, r' e1.\{0}, and put ¢ = sign(r;r7). We work with even
functions, so we can replace 53! in the argument by s, %" . We see that the integral (85) is

equal to

: —sign(r;)
EDE Jsigniry@(2r )a(t)sy "n(x)g) dx

q—
— K
=

I
H

5 42 l’ I I e “"(I)C(So J’c,“(4cr;cr J ) (‘)Jsu,n(r)“( er) )d\
J

1
mIp IIPV (48, ;E ,1PE (Jsign(ry@(2Er )0 g).

See Definition 6.2.2 in [i}, for the meaning of V%. In Corollary 14.3.3, and
(14.3.12), (14.3.5), (14.2.11), (14.3.13), and (23), we see that (85) is equal to
Doy (Jsignir)(2Er ;)g), where iy € HY is given by

/1 ., ,
0(s) =sT{z+s5—e | I()Be | CriGr =75 )/t /il
2 2 4r

(‘p"e, sign{r; j( ) + € Slgl‘l(! )‘ﬂ’e, sagn(r ))

([ b—1, (b1
3 IFJ(T)\/’P'}/'H

Mh = ., . § b=1
'9} (cl’jcfj4 7 )gohs:gnr]’b] ile; =1,

LO if8j=—].

We look for h, =Xy, such that ®y(jgg, (25 )g) = (PKi);(gxg), where
f .
p=(1,1,...,1). According to (86), we have

(p K;hl)j (gxy) == (Dﬁ (jsign(r,)“(zir.,r}g}a

with

I : s
( 5 S) h’-l(s) (’ﬂ?{ sign(r,-fl(s) + Slgn(rf)qplﬁlign(r.I } (S))’

0, = \/ 3 ha;( )‘Pbsu;_.n(r][b]

‘q'-——
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We take

1 I
hj(s)=T (5 - ej) r (— 5+ 5‘) 1 ’é Bey Il )hys),
bh—1

2

and obtain i = 5. (We use that 4_, ; (-, ) =0forbz2 and ), =0if e; = —1.) We

check that /i, ; has the right properties to conclude that i, € #°. This gives the following
result:

Proposition 5.2.6. Let ee {l,—l}" be given by ¢ = sign(rr{). For he 4 and

te Rgo, we define h, by

() = N(&) PNE) PN P BT, vh(r) TT ,("fz ‘ ‘lt)

i

with T e Ry, T, = |ryrfle, and &, = 2alry|,.. ., 2alry]). Then iy e #, and

7.0 K I goalt song ' g) dn = PK h(g).
W h LS N

5.3. Sum formula for a restricted class of test functions. We consider x,x' € 2,
ret/\{0}, ' et/\{0}, and e,pe {1,—1}" given by ¢ = sign(ryrf), p; = 1. We take
e xd.

Poincaré series. For k€ 2, Fe 1/\{0}, & {1,~1}", and i ¢ #, we define a Poin-
care series “Pili(g) := 3. °Kil(yg). The absolute convergence is proved in the same
yelLAl ol Lo
way as in [5], Section 10. The idea is to write ¢ Pihi(g) = 3 Y. *Ki(dyg), and to
. e\l de '\ [u
use (82) and Lemma 5.1.1 to estimate 3~ |°KL/i(dyg)| by means of a function
de Nui\Dw

(L4+2c—2)p )(I+2r+c)p) .

F(g) = min(a(g,;'g) N
The resulting sum over y € [ \I" is compared with an absolutely convergent Eisenstein
series. The function P~ js bounded and I-invariant on the lefi.

The convergence of these Poincaré series would be difficult if we had defined °K” in a
less complicated way in Definition 5.2.4. If we use weight zero in the term with w 4+ 1/i;, then
the term with b = 2 would cause convergence problems.

Throughout the rest of this section, we use two different methods to compute the
scalar product (PP}, *P[.lt' . The resulting equality is the sum formula.

Fourier coefficients. To find the spectral decomposition of ¢Pih, we need to
compute (°*PLh, %, where fis a square integrable automorphic form in the basis A4, Or an
Eisenstein series with purely imaginary values of the spectral parameler. The weights ¢
should be those that occur in ®PLA. That is, the weights that salisly ¢; = 2e;sign(#;), or
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sign(F — f)¢; = 4 and &, = 1. We denote the spectral parameter of /by v. Then [Re v| < ,]) or

13 gil = 1
v € {;f,,—,,....i-l’-’l_,—}. Note that ¥ = v,

The following integral converges absolutely:

CPLfy= [ *Kh(g)f(g)dy

r.\“".G

= vol(AAN a7 /) [ *KEh(gak)WE (geak)a™" da dk.
AK

We apply (84) to this relation. From Proposition 2.2.3 it follows that if [Rev;| Z -, then

| —

ag(F, f) % 0 implies that ¢;sign(s;) 2 2|v| + 1. So if the Fourier coefficient is non-zero, we
find that *PLA, [ is equal to

2/ vol( AN (7. [YN (&) (v)

if for all j, either ¢; = 2¢;sign{;), or & = | and g;sign(r;} = 2v; +1 2 4, and equal to 0
otherwise.

In particular, if f is an Eisenstein series with purely imaginary spectral parameter
iv + iu, then the scalar product is zero if |¢;| = 4 for some j.

Spectral decomposition. Define the weight ¢(r) by ¢(r); = 2sign(r;). For the spectral
decomposition of P2 we need the Eisenstein integral for weight ¢(r), and the orthonormal
elements W .. o) With ¢(r, @} determined in the following way:

(=) (](r, w);
H{(v;) with % - vf =20 2sign(ry)
Df withh22,beZ and £, >0 | bsign(r)

The other = do not contribute to the expansion of PP{/i. For *PLl, we need the Eisenstein
integral in weight ¢(r), and a subset of the @ given above. (In fact, if ¢; = —1, then we need
only w; = H(;).)

We obtain the following equality:

PP EPIRY = 49 vol(Ty\N*) vol(Tyu \N* YN (&N (&)

’ (znd’:,q(r.wj” - 2“'\'("? d’:.q(r.m) )"JN’('.’1 'l’w. q(r, w))h("w)h’("w)
w=

oD
+ Z Ci.z J‘ﬂ,‘-(r, Eq(r’j(P;',ig, iﬂ))

led p -m

a1, B (P, )i + )T ) ).
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A computation based on (15} and (16) shows that for all @ that occur in the sum

” l1”::.:,:,!(r,t=) "_Za!\'(r’ llbw.q'(r, xzr))ah" (l”, 'rllm,q(r,w))
-vol(T\N™) vol(Ty AN *)N(&,) N (&) 2

- ., o -1
= T @] (3= ve +3 400 sign())
=1 \Z :
-1
HF( +‘w+ q(r) sign(r! )) .

Checking the cases |Re v, ;| < rand vy ; =

we see that this quantity is

A d .
equal to cf(w)cl,(@)¢*(vy), where ¢ := XI ¢} is given by
j=

| 1 -

(E Cosm'(z— 1'2) if IRev| £1,¢5=1,
1 .

—— cosay if [Rev| = 1,¢j = —1,

-1

(87) g() = {

0 iflﬁe—;—-}-Z,cj:—l.

\

We treat the Fourier coefficients of the Eisenstein series in a similar way, and obtain the
following expression for (P PL/, eP" h':

4N N (z ()P T)p (vaJE(@)e (0)

Yoy f h(iy + ' (=iy — i)

led H -
-9 (iy + i) DY (iy, i;.r)Df""(iy, i) dy)
= 4UN(&) PN(ED) P [ (gt (v dal (),
]

see Definition 2.2.4. In particular, ili'e® is integrable for the measure dg™*".
P » @ £ nr

For other w than indicated above, at least one of the Fourier coefficients is zero. So
we may as well let @ run over a total orthogonal system of irreducible components of
LiT\G), except @ = 1 (constant functions).

Geometric computation of the scalar product. The absolute convergence and square
integrability of the Poincaré series gives the following absolutely convergent expression:
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CPPRCPLEY = [ PKIh(g) =Pl (g)dy
Cox\ G

= [f [ #(n)PK h(geak)ePL(nguak) dna™ da dk

KA Tys\N¥
— E I(}')1
FEl v[C
where
I{y) = ffa WK h(geak) [z, (n) e KDR (yngeak) dn da dk.
Tyw\N*
We split thisupas Iy + h», [) := b I(9),and b= ¥ I(y).
;'Er:,.,‘r'u(rﬁy.,-l’y;t) }'ErN,.-"'-_“er

Delta term. We ﬁrst consider /. As 2 consists of inequivalent cusps for I', this term
is non-empty only if x = x’. We write y = ma,, with n, = n.(yg..), a;, = gean(r9:)9; " - . Then
yngiak = ny - ana; -1 . a,g.ak. Hence

I(y) = () [ [ a2 PR h(guak) K i (agnak) [z (m)y(ana;t) dndadk.
KA l‘_,',x\Nr

The integral over Ty-\N* is non-zero if and only il x,.(a.,.na;') =y, (n) for all
ne N*. This is precisely the condition in Definition 2.6.1. Under this condition,
K. h'(a,gyak) = eK,':.'h’(gv,\.ar,,.(}JgJ.,.)mk) = ¢K I (goak), N(&)) = N(¢,), and e = p. We have
used that a.(ygy) = aly] with N(#) = 1 and s} = r;. For such y we obtain from (83) the
following equality:

1(y) = i (ne(yay)) voU(Tw:\N*) | [a=* PK{h(guak) PKLR' (guak) da dk

K
= 10 (1 (794) ) 2 VOl Ty \N*)N(&,)
" vsin v 1 bh-1 b-1
. " ’ ) ,’ I”
= T”Re‘.[n )y ) ‘,z__ P pzipeaz (b—2)! U( 2 ) ’J( 2 )

Thus we find that £, = 49N(&,) AN(E) P ANY (il ge).

r,r
Contribution of the big cell. We have L= 3. 3 I(3J), see Definition 2.3.1

.. P . jex'y* delys
and Proposition 2.3.2. Let ¢ € ¥'6*, y € ¥ ¥*(¢).

S I1(38) = [ [a *PKIh(g.ak) [ 2, (0) KN (yngycak) dn da dk.
KA N

g lyw

Write & = g_'yge = (L ) Then y = g0’ (Em(E)azson” (g, . For g € G we find
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[ 2,00 KA (yng,g) du = [7,(n) KA (goon' (E)agson” (& Yng) dn
N* N
= 1o (n'(E)) 2 (1" (£)) PKII 2 (948),

see Proposition 5.2.6. Let T; = |rer,f|(c"f)'2. We apply Equation (83) with e = p:

> 109) = o (V)2 (()) | [ 0= PKLh(gvak) TR (o) da dk
KA

de I‘N N

= 2 (W), (1"(€))29N(E) - N(EDNPNE) 2N ()™

af ] RTIY vsin v
x jl;Il (; Rc;l:=0 I!f(l')gcj,j(j}, ‘I.J)h-;(l') W d\r

ll- ——

I +¢ | b—1 -1\, [b-T
+( 2 )bgz.zbzezz(b—mhj( 2 )%""(7}’ 2 )h"( 2 ))

= 1, (" (E)) 2, (n"(E)) 4N (E) PN EN) P IN ()
gl (V) (v)o" (V) Be( T, v) dnf (v)

=2 (7)) (0" ()4 N(E) PN (&) P IN (€)' Be 'y )(T).
Thus, we have obtained the following expressions for /»:

rr'
c?

4+ JNEINGC) 3 |N(c)r'B.:(hh";o°)(

cer' gt

)S(x, —r; k', =15 c)
= 4IN(E) PN ) PREY L (Be(higY)).

Conclusion. Dividing the equality we have obtained by 4¢N(¢&,) ZN(érr)” 2 we
obtain the following restricted version of the sum formula:

Proposition 5.3.1. Let w,x’' €2, ret/\{0}, r' et/ \{0}. Define ee{1,-1}" by
i

e = sign(r;r!). For all hl' € # the function ko: v — (W@t (v) is integrable for the
2 i) L ¢
measures do,' and diP, the Kloosterman term K*"_(Beko) converges absolutely, and

rr'

| ko(v) day )l (v) = AR (ko) + K52 (Beko).
"’r

See (87) for the function ¢°.

5.4. Extension of the sum formula. We take x,x',r, ¥ e,k as in Theorem 2.7.1. To
prove the sum formula for the test function & € 4™, we approximate k by functions /if/g®
with i, /1" € ¥, and use Proposition 5.3.1.
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- i .
There exists a function & such that k(v) = k&(v)¢*(v). To determine k = 5(1 k;

J
completely, we impose the conditions that A; is holomorphic on |Rev| <7, and

= (h—1 .
k; (7—) =0 for all e 27 if e; = —1. Note that &; and ¢} both have a zero at i-_]l- if

e, =—1 If =1, :l) = (-1 kj([')'".)'l) for be2Z. On the strip

[Rev| € 1 we have k;(v) « (1 + |Im vf) “e~""™¥ for some a > 2.

o
Approximation. For 0 £ 1 < 12, we define =, = XI 2,0y
J:

(V) = e if Rev| € v,

. b —
.".’,J(b 3 l) =1 1fb622, 5

N (”%‘) =0 if b e 2z, |”%‘| S,

This defines =, € # if ¢ > 0. This function is bounded on its domain, uniformly in
te0,7°), and lir‘l_"l =(v) = zo(v) = 1. Moreover, z,{¥) = z,(v), and zke#* if ¢>0.
]

Application of Proposition 5.3.1 shows that for all r > 0

[ k() daly (v) = A (7R) + K5 (Be(=7K)),
Ye

with absolutely convergent sums and integrals. We shall prove the sum formula for the test
function & itself by taking the limit as ¢+ | 0.

Delta term. Suppose that x{x, r;x',r') & 0. The test function k itself is integrable for
the positive measure dyP. The uniform boundedness of =; implies that

lim ASY (2k) = ASY (k).

r
|0 nr

Kloosterman term. We proceed as in the proof of Proposition 2.5.5. Equation (26)
implies that f3, {,,A) <<, " for 0 < y £ yg, uniformly in . The estimate fi, (=2k)(¥) « 1 for
v > 0isalso valid umformly in 1, use (25) and (24). We apply Proposition 51218 e(z7k),
and note that the implicit constant can be chosen uniform in r. Hence K", * (Bck) con-
verges absolutely, and

lim KXY (Be(22k)) = KX (Bek).
TG

d
Spectral term. We first consider the case kx =»', r=7r", and k =m = _><| m, e x"
' _|I:
with



Bruggeman, Miatello and Pacharoni, Klposternan sums 163

m(v) = (p* = v3)™ if [Rev| £ 7,¢; = 1,

ny(v) = (PZ _ ‘,2)-—0—I (% _ ‘,2) if [Rev| £ 1, e =-1,

mi(v) >0 forb22be2Z, ife =1,
. 3 .
witht < p < 30 for a given a > 2.

On the support of the positive measure da**, the family of positive functions

rr?

t = z2mis increasing in —¢. The limit lillg [ :,(1')2:11(1') dal ¥ (v) exists, as it is the sum of the
f ' !
}t

limits of the corresponding delta term and Kloosterman term. Fatou’s lemma implies that
m is integrable for the measure dapr.

For any ke " there exists an m as above such that )=2k| £ G on YP for all
1€ {0,7?), for some C = 0. Lebesgue’s theorem on bounded convergence shows that & is
integrable for do**, and

rro

lim [ (W k(v) dat X (v) = [ k(v)da*X(v).
£ yp ¥P

In the general case, we use Lemma 3.1.1 to see that & is integrable for da*%'. Take
S =z} = 1}k to see that

lim | =/(v) k() dofs (v) = [ k(r)dalh (v).
ye T

End of proof.  We have shown that for each term in the sum formula for 22k, the
limit as ¢ | 0 is equal to the corresponding term for &. As for all 1 & (0, %) the sum formula
holds for =2k, it holds also for .

!
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