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Abstract. Static flow analyses compute a safe approximation of a pro-
gram’s dataflow without executing it. Dynamic flow analyses compute
a similar safe approximation by running the program on test data such
that it achieves sufficient coverage.

We design and implement a dynamic flow analysis for JavaScript.
Our formalization and implementation observe a program’s execution in
a training run and generate flow constraints from the observations. We
show that a solution of the constraints yields a safe approximation to
the program’s dataflow if each path in every function is executed at least
once in the training run. As a by-product, we can reconstruct types for
JavaScript functions from the results of the flow analysis.

Our implementation shows that dynamic flow analysis is feasible for
JavaScript. While our formalization concentrates on a core language, the
implementation covers full JavaScript. We evaluated the implementation
using the SunSpider benchmark.

Keywords: Type inference · JavaScript · Flow analysis ·
Dynamic languages

1 Introduction

Flow analysis is an important tool that supports program understanding and
maintenance. It tells us which values may appear during evaluation at a certain
point in a program. Most flow analyses are static analyses, which means they are
computed without executing the program. This approach has the advantage that
information can be extracted directly from the program text. But it has the dis-
advantage that significant effort is required to hone the precision of the analysis
and then to implement it, for example, in the form of an abstract interpreter.

Constructing the abstract interpreter is particularly troublesome if the lan-
guage’s semantics is complicated or when there are many nontrivial primitive
operations. First, the implementer has to come up with suitable abstract domains
to represent the analysis results. Then, a sound abstraction has to be constructed
for each possible transition and primitive operation of the language. Finally, all
these domains and abstract transition functions must be implemented. To obtain
good precision, an abstract domain often includes a singleton abstraction, in
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which case the abstract interpreter necessarily contains a concrete interpreter
for the language augmented with transitions for the more abstract points in the
domain. Clearly, constructing such an abstraction presents a significant effort.

We follow the ideas of An and others [1] who propose dynamic type inference
for Ruby, a class-based scripting language where classes have dedicated fields
and methods. The benefit of their approach is that existing instrumentation
tools can be used, which minimizes the implementation effort, and that high
precision (i.e., context-sensitive flow information) is obtained for free.

This paper adapts their approach to dynamic type inference to JavaScript. As
JavaScript is not class-based, the adaptation turns out to be nontrivial, although
the principal approach—generating typing constraints during execution—is the
same. Regarding the differences, in the Ruby work, class names are used as types.
In (pre-ES6) JavaScript, there are no named classes, so we have to identify
a different notion of type. Our solution is drawn from the literature on flow
analysis: we use creation points [13], the program points of new expressions, as
a substitute for class and function types. We argue that this notion is fairly
close to using a class name: The typical JavaScript pattern to define a group of
similarly behaving objects is to designate a constructor function, which may be
identified by the program point of its definition, and then use this constructor in
the new expression to create objects of that “class”. Hence, the prototype of the
constructor could substitute for a class, but it is hard to track. The program point
of the new is much easier to track and it also approximates the class at a finer
degree as the constructor. For simplicity, we use the latter. Choosing program
points to approximate run-time entities means that we switch our point of view
from type system to flow analysis.

Another difference between JavaScript and Ruby is the definition of what con-
stitutes a type error. The Ruby work considers message-not-understood errors,
the typical type error in a class-based object-oriented language. In JavaScript, no
such concept exists. In fact, there are only two places in the standard semantics
that trigger a run-time type error:

– trying to access a property of undefined or null and
– trying to invoke a non-function as a function.

We concentrate on the second error and set up our formal system to only
avoid failing function calls. The first error may be tracked with similar means
and is omitted in favor of a simpler system.

After looking at an example of our approach in Sect. 2, to build intuition,
we construct a formal system for a JavaScript core language in Sect. 3. This
core language simplifies some aspects of JavaScript to make proofs easier. We
describe the analysis in detail, which consists of a training semantics and a
monitoring semantics, and prove its soundness. Section 4 presents a practical
implementation, which is evaluated in Sect. 5. Section 6 compares our work with
previous work, and finally Sect. 7 concludes this paper.
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Fig. 1. Example program written in core JavaScript, with generated constraints

2 Example

Figure 1 shows an example program, written in the core JavaScript language
that will be defined in the next section. On the right are the constraints gener-
ated by the flow analysis. Objects and functions are identified in the constraints
by the line number they were created on. The symbols a, b, c... appearing in
the constraints are type variables. Functions are defined as function f(x){var
y∗,return e}, where f is the name of the function, x the name of the argument,
y∗ a list of local variables, and e the function body.

Function calls, like the one on line 18, result in three constraints. First, we
constrain the object we call to be a function (8 <= h -> i), second, we constrain
the argument (f <= h) and third, we constrain the type of the return value (Num
<= i). When a new object is created, as in line 15, we generate the constraint
15 <= 13, since we want the type of the new object to be a subtype of the type
of the old object.

Line 14 assigns a value to a property of an object. The assignment results in
two constraints, 13 <= [val : c] to constrain the type of the object to have
the property val and Num <= c to constrain the type of the object’s property
to a supertype of Num.

The function inc does not generate any constraints, because it only accesses
local variables. The function test only generates constraints for the else-branch,
because we do not visit the then-branch.

After execution, the type of every object can be inferred using these con-
straints.

3 Formal System

The formal system employs a JavaScript core language with the syntax defined
in Fig. 2. It features the usual JavaScript constructs like constants, variables,
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Expressions e ::= c | x | fundec� | e(e) | e; e | prim(e) | x = e

| if�
e then e else e | new�

e | e.n | e.n = e

Constants c ::= num | str | bool | null | udf

Function fundec
� ::= fun

�
f(x){var y

∗
, return e}

Variables x, f, n ∈ set of names

Primitives prim ∈ set of primative operation

Labels � ∈ set of Labels

Program prog ::= fundec
∗

� e

Fig. 2. Syntax of the JavaScript core language

heaps H ::= (l �→ obj)∗

activation record S ::= (x �→ v)∗

values v ::= l | c

object obj ::= (v, (n �→ v)∗)

wrapped values ω ::= v : τ̄

abstract types τ̄ ::= τ | α

paths Φ ::= φ
∗

path φ ::= p
∗

literal p ::= � | ¬�

constraints C ::= (τ ≤ τ
′)∗

Falsey ::= udf | null | 0 | ”” | false
l ∈ Heap addresses

α ∈ Type variables

n ∈ Property names

Fig. 3. Semantic objects

functions, function application, primitive operations, conditional, assignment to
local variables, new object creation (where the argument is the prototype), prop-
erty get and property set. Function definition, new, and conditional are marked
with program labels � to address them in the inference phase. The most notable
difference to full JavaScript is the omission of all reflective features: there is no
eval and no bracket notation to access properties. Thus, there is an a-priori
fixed set of properties and all property manipulation happens via the dot nota-
tion. This restriction simplifies our semantics considerably compared to existing
semantics for JavaScript.

Figure 3 declares the semantic objects for the core language. We keep state in
heaps H and activation records S. The heap contains a mapping from locations
to objects. An activation record, or stack entry, is a mapping from variables to
values. A value is either a heap address l or a constant c. Objects obj contain
their prototype and a mapping from property names to values. The property
names “$fun”, “$vars” and “$tyvar” are reserved and cannot be used by the
programmer. Their use will become clear in the next section.

There are type variables α and concrete types τ . Concrete types, as defined in
Fig. 4, are composed of one or more type summands. To record execution paths,
we define path sets Φ and single paths φ, which are lists of potentially negated
program labels of conditionals. A positive label � indicates a then-branch taken,
a negated label ¬� indicates an else-branch. Lastly, a constraint set C collects
constraints of the abstract form τ̄ ≤ τ̄ ′. Such a constraint indicates that τ̄ is a
subtype of τ̄ ′.
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types τ ::=
∑

i∈T,T ⊆{⊥,u,b,s,n,f,o}
ϕi

row 
 ::= str : τ̄ , 
 | α

undefined ϕ⊥ ::= Udf

null ϕu ::= Null

boolean ϕb ::= Bool

string ϕs ::= String

number ϕn ::= Number

function ϕf ::= Function(τ̄ → τ̄)

object ϕo ::= Obj(
)

Fig. 4. Types

fundec∗ � e1

Standard
Semantics

v

fundec∗ � e1

Training
Semantics

T + P + Φ

fundec∗ � e2 P + Φ

Monitoring
Semantics

if result, then not

Fig. 5. Overview of formal system

The formal system comprises three parts as shown in Fig. 5. The standard
semantics evaluates a top-level expression e1 in the context of a program fundec∗.
The training semantics augments the standard semantics by collecting type con-
straints and execution paths. Flow information in the form of a type equivalence
map P and types T is inferred from the resulting constraints.

The monitoring semantics is an artifact to prove the soundness of the inferred
types. It evaluates the same program for a different top-level expression. It also
takes the equivalence map and the set of paths collected by the training seman-
tics. The monitoring semantics is constructed such that no type errors occur
during execution if the equivalence information is respected and if all execution
paths in every function have been exercised by the training semantics.

3.1 Training Semantics

The training semantics collects type constraints and keeps track of execution
paths. The main challenge in the construction of this semantics was to identify
the correct abstraction of functions and objects by program locations. As any
function can serve as a constructor in JavaScript, it is not straightforward to
recognize a constructor application and give it a proper type. We omit the stan-
dard semantics, which can be obtained by erasing the collection of constraints
and paths from the training semantics.

Figure 6 defines a big-step evaluation judgment of the form H;S; e −→
H ′;S′;ω | C;φ;Φ. Given heap H and activation record S, the expression e
evaluates to an augmented value ω with updated heap and activation record
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TVarLookup
S(x) = ω

H;S; x −→ H;S;ω | {}; {}; {}

TPCall
H;S; e −→ H

′;S′; v : | C;φ;Φ prim v = ω

H;S; prim(e) −→ H
′;S′;ω | C;φ;Φ

TNew
H;S; e −→ H

′;S′; v : τ̄ | C;φ;Φ l = fresh location
α

′ = � if (τ̄ = α) then (C′ = α
′ ≤ α) else (C′ = {})

obj = (v : τ̄ , {}) H
′′ = H

′{l �→ obj : α
′}

H;S; new�
e −→ H

′′;S′; l : α
′ | C, C

′;φ;Φ

TVarAss
H;S; e −→ H

′;S′;ω | C;φ;Φ
S

′′ = S
′{x �→ ω}

H;S; x = e −→ H
′;S′′;ω | C;φ;Φ

TFun
l = fresh location α = � H

′ = H{l �→ (null, $fun �→ fundec, $vars �→ S ↓fv(fundec)) : α}
H;S; fundec −→ H

′;S; l : α | {}; {}; {}

TProp
H;S; e −→ H

′;S′; l : α | C;φ;Φ C
′ = α ≤ [n : α.n] H

′; l.n −→ ω

H;S; e.n −→ H
′;S′;ω | C, C

′;φ;Φ

TPropSet
H;S; e −→ H

′;S′; l : α | C;φ;Φ H
′;S′; e′ −→ H

′′;S′′; v : τ̄ | C
′;φ′;Φ′

C
′′ = α ≤ [n : α.n], τ̄ ≤ αn H

′′′ = H
′′{l �→ H

′′(l){n �→ v : α.n}}
H;S; e.n = e

′ −→ H
′′′;S′′; v : α.n | C, C

′
, C

′′;φ, φ
′;Φ, Φ

′

TSeq
H;S; e −→ H

′;S′; | C;φ;Φ H
′;S′; e′ −→ H

′′;S′′;ω | C
′;φ′;Φ′

H;S; (e; e′) −→ H
′′;S′′;ω | C, C

′;φ, φ
′;Φ, Φ

′

TConditional
H;S; e −→ H

′;S′; c : τ | C;φ;Φ
if (c /∈ Falsey) then (p = �, ep = e

′) else (p = ¬�, ep = e
′′) H

′;S′; ep −→ H”;S′′;ω | C
′;φ′;Φ

H;S; if�
e then e

′
else e

′′ −→ H
′′;S′′;ω | C, C

′;φ, p, φ
′;Φ, Φ

′

TCall
H;S; e −→ H

′;S′; l : α | C;φ;Φ H
′;S′; e′ −→ H

′′;S′′; v : τ̄ | C
′;φ′;Φ′

H
′′(l) = ( , $fun �→ fun f(xf ){(var y)∗

, return e
f }, $vars �→ S

f
, ...) : α

S
f′

= S
f {f �→ l : α, x

f �→ v : αarg, (y �→ udf : Udf)∗} C
call = α ≤ αarg −→ αret, τ̄ ≤ αarg

H
′′;Sf′

; ef −→ H
′′′; ; v′ : τ̄

′ | C
′′;φ′′;Φ′′

C
ret = τ̄

′ ≤ αret

H;S; e(e′) −→ H
′′′;S′′; v′ : αret | C, C

call
, C

′
, C

ret;φ, φ
′;Φ, Φ

′
, φ

′′
, Φ

′′

Prototype lookup

TPropLookup
H(l)[n] = ω

H; l.n −→ ω

TProtoLookup
n /∈ H(l) H;H(l)proto.n −→ ω

H; l.n −→ ω

Top-level initialization rule

TRun
(H, S) = initialize(fundec∗) H;S; e −→ ; ; | C; ;Φ

fundec∗ � e ↑ (T , P) = Solve(C);Φ

Fig. 6. Training semantics
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H ′ and S′. The C-component contains the constraints collected during evalua-
tion, φ contains the evaluation path inside the currently executed function, and
Φ contains paths collected during evaluation. An evaluation path records the
outcomes of the conditionals that were executed.

Most rules are standard, apart from the constraint collection, path recording,
and passing of observed paths and constraints. Variables are looked up directly
in the activation record. TPcall performs primitive operations and is assumed
to only return non-object values. Variable assignment is performed by updating
the activation record. Rule TSeq evaluates the first expression, then the second,
and returns the value of the second. TConditional checks if the condition eval-
uates to true or false and acts accordingly. Function literals are converted to
objects by the TFun rule. Function objects do not have a prototype, the actual
function is stored in the “$fun” property, and the free variables of e are stored
in “$vars”. This treatment of functions is analogous to the actual semantics of
JavaScript. Prototypes are set when a new object is created using the TNew

rule. We explicitly allow creating a new object from either an object or just a
regular value. If a regular value like null is used, then the object has no pro-
totype. Prototype lookup is performed by TPropLookup and TProtoLookup,
when a property of an object is requested in the TProp rule. Lookup relies on
a different judgment H; l.n −→ ω, with heap H, heap location l, and property
name n that returns a wrapped value ω.

The rule TCall also deserves some extra explanation. From the heap, we
retrieve the desired function, which must be an object as mentioned above. We
construct a new activation record by taking the bound variables in “$vars” and
adding references to the function (for recursive calls), to the argument, and to
local variables. We execute the actual function with this new activation record.

Four of the evaluation rules collect constraints.

TNew. When a new object is created, it should have at least the same type as
its prototype, but it may have additional properties. Therefore, we constrain
the type of the new object to be a subtype of the type of its prototype.

TProp. A property lookup requires the property to be present in the type of
the object.

TPropSet. Setting a property requires existence of the property and the type
of the new value is a subtype of the property’s type.

TCall. The type of the object that is called as a function is constrained to
be a function. The type of the argument must be a subtype of the function
argument. The return type of the function should be a subtype of the outcome
of the function call.

Two rules record the paths taken by the execution

TConditional. Either a positive or negative label is added to the current path,
depending on the value of the condition.

TCall. The path taken by the dispatch is added to the set of observed paths Φ.

The TCall rule furthermore wraps a new type variable around the argument
value passed to the function, it assigns types to the freshly initialized local
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variables, and wraps a new type variable around the value returned from the
function. The type variables are connected to the prior type wrappings through
the above-mentioned constraints.

At top level, we have a different judgment, fundec∗ � e ↑ T ;P;Φ, that is eval-
uated by the TRun rule. This rule initializes the heap and the top-level bindings
from the list of function declarations. It then evaluates the top-level expression
e. Afterwards, it solves the constraints and returns a mapping from type vari-
ables to inferred types T , an equivalence set mapping P, and the observed paths
Φ. Whenever the constraint solver determines that two type variables must be
equal, it records this fact in mapping P, which is implemented using a union-find
algorithm, as in Henglein’s binding-time analysis [9].

3.2 Monitoring Semantics

The rule set in Fig. 7 defines the monitoring semantics. This big-step semantics
is defined in terms of the outcome P, Φ of a preceding training run and it is
restricted to execute only paths that have been trained according to Φ. Hence,
the evaluation judgment has the form H;S; e | φ −→ H ′;S′; v | φ′, where φ is
the path that the evaluation has to follow, and φ′ contains the remainder of the
path after evaluation. To avoid clutter, we leave the parameter Φ implicit. It is
only used in the MCall rule.

Some rules deviate from the standard semantics to take paths into account:

MConditional. This rule only applies if the outcome of the condition coincides
with the head of the path the execution has to take.

MCall. To execute the method dispatch, the rule nondeterministically selects
a path for the function body from the set of trained paths Φ.

MNew. The type variable of the newly created object is also stored in the
reserved property “$tyvar”.

MFun. The type variable for the function is stored in the function object.
MRun. Besides the usual initialization, this rule executes the monitor rule on

the top-level expression.

There are three new rules compared to the standard semantics.

Monitor. This rule applies a meta-function mon to the top-level expression
which replaces all property assignments and function calls with their under-
lined version to enforce their evaluation with MTLPropSet and MTLCall.

Error. This rule defines what we consider a type error: when a non-function
object is used as a function. The rules for error propagation are standard and
omitted for space reasons.

MTLPropSet. This rule verifies if the property assignments from the top-level
expression e meet the precondition required in the soundness proof.

MTLCall. This rule verifies that the object in function position is indeed a
function. If so, it proceeds with the standard function call rule MCall.
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MVarLookup
S(x) = v

H;S; x | φ −→ H;S; v | φ

MPCall
H;S; e | φ −→ H

′;S′; v | φ
′

prim v = v
′

H;S; prim(e) | φ −→ H
′;S′; v′ | φ

′

MNew
H;S; e | φ −→ H

′;S′; l | φ
′

l
′ = fresh label

α = � obj = (v, $tyvar �→ α) H
′ = H{l

′ �→ obj}
H;S; new�

e | φ −→ H
′;S; l | φ

′

MVarAss
H;S; e | φ −→ H

′;S′; v | φ
′

S
′′ = S

′{x �→ v}
H;S; x = e | φ −→ H

′;S′′; v | φ
′

MFun
l = fresh location

α = � H
′ = H{l �→ (null, $fun �→ fundec,

$vars �→ S ↓fv(fundec), $tyvar �→ α)}
H;S; fundec� | φ −→ H;S; o | φ

MProp
H;S; e | φ −→ H

′;S′; l | φ
′

H
′; l.n −→ v

H;S; e.n | φ −→ H
′;S′; v | φ

′

MPropSet
H;S; e | φ −→ H

′;S′; l | φ
′

H
′;S′; e′ | φ

′ −→ H
′′;S′′; v | φ

′′

H
′′′ = H

′′{l �→ H
′′(l){n �→ v}}

H;S; e.n = e
′ | φ −→ H

′′′;S′′; v | φ
′′

MSeq
H;S; e | φ −→ H

′;S′; | φ
′

H
′;S′; e′ | φ

′ −→ H
′′;S′′; v | φ

′′

H;S; (e; e′) | φ −→ H
′′;S′′; v | φ

′′

MConditional
H;S; e | φ −→ H

′;S′; c | p, φ
′

if (c /∈ Falsey) then (p = �, ep = e
′) else (p = ¬�, ep = e

′′) H
′;S′; ep | φ

′ −→ H
′′;S′′; v | φ

′′

H;S; if�
e then e

′
else e

′′ | φ −→ H
′′;S′′; v | φ

′′

MCall
H;S; e | φ −→ H

′;S′; l | φ
′

H
′;S′; e′ | φ −→ H

′′;S′′; v | φ
′′

H
′′(l) = ( , $fun �→ fun f(xf ){(var y)∗

, return e
f }, $vars �→ S

f
, $tyvar �→ α, ...)

S
f′

= S
f {f �→ l, x

f �→ v, (y �→ udf)∗} φ̄ ∈ Φ H
′;Sf′

; ef | φ̄ −→ H
′′;; v

′ |
H;S; e(e′) | φ −→ H

′′;S′; v′ | φ
′

MTLPropSet
H;S; e | φ −→ H

′;S′; l | φ
′

H
′;S′; e′ | φ

′ −→ H
′′;S′′; v | φ

′′

runtypeH′′ (v) ∈ P(runtypeH′′ (l).n) H
′′′ = H

′′{l �→ H
′′(l){n �→ v}}

H;S; e.n = e
′ | φ −→ H

′′′;S′′; v | φ
′′

MTLCall
H;S; e | φ −→ H

′;S′; l | φ
′

H
′′(l) = obj

$fun ∈ obj H;S; e(e′) | φ −→ H
′′;S′; v′ | φ

′

H;S; e(e′) | φ −→ H
′′;S′; v′ | φ

′

Error
H;S; e | φ −→ H

′;S′; l | φ
′

H
′;S′; e′ | φ −→ H

′′;S′′; v | φ
′′

H
′′(l) = obj $fun /∈ obj

H;S; e(e′) | φ −→

Top-level initalization rules

MRun
(H, S) = initialize(fundec∗)

H;S;mon(e) | {} −→ ; ; v | {}
T ;P;Φ � fundec∗ � e ↑ v

Monitor
{}; {};mon(e) | {}
T ;P;Φ � fundec∗ � e

Rules for prototype lookup

MPropLookup
H(l)[n] = v

H; l.n −→ v

MProtoLookup
n /∈ H(l) H;H(l)proto.n −→ v

H; l.n −→ v

Fig. 7. Monitoring semantics rules
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The function runtypeH converts values to types. For location values l, a type
variable is retrieved from the heap. A constant value results in a concrete type.

runtypeH = {l �→ H(l)[$tyvar],num �→ Number, str �→ String,

bool �→ Bool, null �→ Null, udf �→ Udf}

3.3 Soundness

In this section, we show that the types and flows inferred by this system are
sound. Formally, we prove the following soundness theorem.

Theorem 1 (Soundness). Suppose there is a training run fundec∗ � e1 ↑
T ;P;Φ, with T the types and P the equivalence mapping resulting from con-
straint solving and Φ the set of traversed paths.

Then there cannot be an expression e2 that evaluates to � with the monitoring
semantics using the previously inferred types and traversed paths, notated as
T ;P;Φ � fundec∗ � e2 �.

That is, if the training run has inferred a set of types for a certain program,
then there can be no expression that triggers a not-a-function error inside of
the program fundec, given the types, equivalence information, and coverage of
the training run. Note that applications inside the top-level expression e2 are
checked at run time because of the application of mon in the MRun rule.

Before we begin with the proof sketch, we introduce a simulation to relate a
training run to a monitoring run and we define stability.

Definition 1 (Simulation). The simulation relation on Ht;St and Hm;Sm

under equivalence mapping P, denoted by Ht;St ∼P Hm;Sm, holds iff the fol-
lowing holds.

– ∀x ∈ dom(St), St(x) = lt : αt iff Sm(x) = lm and runtypeHm
(lm) ∈ P(αt).

– ∀lt ∈ dom(Ht), whenever Ht(lt) = objt : α such that objt.p = vt : α′, we have
P(α′) = P(α.p).

– ∀lm ∈ dom(Hm), whenever Hm(lm) = objm such that objm.p = vm, we have
runtypeHm

(vm) ∈ P(runtypeHm
(lm).p).

Definition 2 (Training heap stability). Ht is training-stable under equiv-
alence mapping P iff, for all lt ∈ dom(Ht), whenever Ht(lt) = obj : α such that
obj.p = vt : α′, we have P(α′) = P(α.p).

Definition 3 (Monitoring heap stability). Hm is monitoring-stable under
equivalence mapping P iff, for all lm ∈ dom(Hm), whenever Hm(lm) = obj such
that obj.p = vm, we have runtypeHm

(vm) ∈ P(runtypeHm
(obj).p).

Lemma 1 (Simulation Splitting). Suppose that Ht;St ∼P Hm;Sm. Then
Ht is training stable and Hm is monitoring stable. 
�

Lemma 2 (Every training heap is stable). For all heaps in the training
run it holds that the heap is training-stable. 
�
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Lemma 3 (Simulation from stability). Suppose that Ht is training stable,
Hm is monitoring stable, and St ∼P Sm under Hm (i.e., Item 1 in Definition 1
is the mean). Then Ht;St ∼P Hm;Sm. 
�

Lemma 4 (Preservation). Suppose there is a training derivation fundec∗ �
e0 ↑ T ,P, Φ with a subderivation for the judgment Ht;St; e1 −→ H ′

t;S
′
t; : τ̄t |

;φt. Let Hm, Sm, and φm be such that Ht;St ∼P Hm;Sm and φm = φt.
If Hm;Sm; e1|φm −→ R, then R = H ′

m;S′
m; vm|φ′

m, runtypeHm
(vm) ∈ P(τ̄t)

and H ′
t;S

′
t ∼P H ′

m;S′
m. 
�

With the definitions and lemmas listed above we can prove Theorem1.

Proof. (Sketch) The proof is by induction on the derivation of Hm;Sm; e1|
φm −→ R in the monitoring semantics. The only difficult case is dealing with
MCall.

On the callee and argument e and e′ we can just apply the induction hypoth-
esis. At this point, we also obtain that the simulation relation must hold.

To proceed, we need to find a subderivation in the training semantics that is
suitable for executing the function body, that is, its entry state must simulate
the current monitoring state. As we have simulation after executing e and e′, we
know that the (type variable of the) function efm from the monitoring run is in
the equivalence set of the (type variable of the) function eft . This situation can
only arise if the function was called at some point in the training run.

Now, our preconditions hold and we can apply the induction hypothesis once
more to efm. The only thing left to show is that we end up with simulation again.
From Lemma 1 we have that H ′′′

m is monitoring stable, from Lemma 2 we have
that H ′′′

t is training stable. With Lemma 3 we obtain H ′′′
t ;S′′′

t ∼T H ′′′
m ;S′′′

m . 
�

The full proof is available elsewhere [15]. Lemma 4 only holds within the exe-
cution. We need to do some extra work at top level, which is explicated in the
following lemma.

Lemma 5 (Top-Level Preservation). Let fundec∗�e0 ↑ T ,P, Φ be a training
execution. Let Hm be such that monitoring heap simulation holds.

If Hm;Sm;mon(e2)|φ −→ R, then R = H ′
m;S′

m; vm|φ′ and H ′
m is monitoring

stable.

Proof. We perform induction on the monitoring semantics. In all cases except
mon(e2) ≡ e.n = e′ and mon(e2) ≡ e(e′) can we directly apply the induction
hypothesis.

In the case where mon(e2) ≡ e.n = e′, we apply the induction hypothesis
to both e and e′. We now need to show that H ′′′

m is monitoring stable. This
heap has one updated field. For this field, it must hold that runtypeH′′

m
(vm) ∈

P(runtypeH′′
m

(lm).n). But this precondition is enforced by rule MTLPropSet.
If mon(e2) ≡ e(e′), then the derivation rule enforces that e must result in a

function. 
�
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Fig. 8. Analysis pipeline diagram

4 Implementation

Our implementation is based on the formal system. During execution, the anal-
ysis observes what types occur by instrumenting the program to collect con-
straints. Based on these observations, it infers the types of the program.

4.1 Overview

The instrumentation is performed with Jalangi2 [11], a dynamic analysis frame-
work for JavaScript. Figure 8 gives an overview of the instrumentation. The
framework takes the original JavaScript program and instruments it accord-
ing to the analysis definition. Running the instrumented program yields errors,
warnings, and inferred types.

The constraints that are collected have the form (base, property, type), where
base is the item which has the property, and type is the type of that property.
There are three kinds of base items: objects, functions, and frames. For an object,
a property represents a field, for a function, a property is either an argument or
return, and for a frame, a property is a variable.

Types are defined as (type, value, [location]), where type is a primitive
JavaScript type (number, boolean, string, undefined, null, object, function),
value a primitive value, and [location] a list of source locations where the type
has been observed. Values are included in the type if only one value is observed
for a particular property. Otherwise, top () is reported.

Programmers may annotate their programs with trusted type signatures for
both functions and frames. These signatures are extracted during evaluation and
verified against the observed types.

Programs are instrumented with constraint collection in the following places.

Function invocation. For each argument passed to the function, a constraint
of the form (fname, arg n, type) is generated, where fname is the name of
the function invoked, n the index of the argument, and type the type of the
argument. We also generate a constraint for the return value. Additionally,
we check if the function is used as a constructor. If so, we also constrain the
new object.
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Field read. On a field read, we traverse the prototype chain to find the object
providing the field. Then we constrain the provider to contain that property
with the type of the value that was read.

Field write. When a field is written, we constrain the object to have that field
with the type of the value we assign to it.

Variable read. When a local variable is read, we constrain the current frame
that the variable belongs to.

Variable write. Same as with variable read, we constrain the current frame.
Literal string. Type annotations are provided as literal strings in the source

code. From these annotations, we generate trusted constraints.

After the program has been executed, the constraints are processed. First,
the constraints are solved. Then, the analysis check for type errors. Type errors
are defined as conflicts between the annotated type and the inferred type. For
each annotation, we check if it matches the inferred types. If not, an error is
issued.

Besides errors, which are clashes between type annotations and inferred
types, the algorithm also reports warnings. Warnings are issued when type incon-
sistencies are found. Roughly, an inconsistency is defined as one property having
more than one type. In practice, it turns out that there are several cases where
it is fine to have more than one type for a property. Pradel et al. [16], who
have implemented a dynamic type inconsistency analysis for JavaScript, sug-
gest methods for pruning inconsistencies that are probably not problematic. We
implemented some of their methods.

Null-related warning. The value null, unlike undefined, does not occur in
JavaScipt, unless the programmer explicitly assigns it. Hence, the type Null
only occurs intentionally, so that null-related warnings can be pruned.

Degree of inconsistency. Polymorphic code generates many inconsistency
warnings, which are most likely false positives. We therefore define a maxi-
mum number of types (i.e., 2) that we consider to be inconsistent.

Max difference. Besides pruning on base types, we also measure the differ-
ence between object types. The programmer can set the maximum difference
between object types that should cause a warning.

These pruning metrics are only applied to warnings, and can be configured
or turned off by the programmer.

4.2 Complete Example

This subsection explores a complete example to demonstrate how a programmer
can use the implementation. Listing 1 shows the source code for the program
“access-nsieve” from the SunSpider benchmark [22]. The program calculates
three large prime numbers.

The program has been augmented with three type annotations, on lines 4,
13 and 29. These annotations are straightforward and result from inspecting the
source code.
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1 // The Great Computer Language Shootout
2 // http://shootout.alioth.debian.org/
3 //
4 // modified by Isaac Gouy
5 "function pad:{number->number->string}"
6 function pad(number,width){
7 var s = number.toString();
8 var prefixWidth = width - s.length;
9 if (prefixWidth >0){

10 for (var i=1; i<=prefixWidth; i++) s = " " + s;
11 }
12 return s;
13 }
14 "function nsieve:{number->Array->number}"
15 function nsieve(m, isPrime){
16 var i, k, count;
17
18 for (i=2; i<=m; i++) { isPrime[i] = true; }
19 count = 0;
20
21 for (i=2; i<=m; i++){
22 if (isPrime[i]) {
23 for (k=i+i; k<=m; k+=i) isPrime[k] = false;
24 count++;
25 }
26 }
27 console.log(count);
28 return count;
29 }
30 "function sieve:{undefined}"
31 function sieve() {
32 for (var i = 1; i <= 3; i++ ) {
33 var m = (1<<i)*10000;
34 var flags = Array(m+1);
35 nsieve(m, flags);
36 }
37 }
38
39 sieve();

Listing 1. access-nsieve.js from SunSpider benchmark

The type annotations are not required for the implementation to work. Alter-
natively, the programmer can inspect the inferred types by hand. The benefit
of supplying type annotations is that the algorithm will verify them for the
programmer and issue errors where a clash occurs.

The annotations will be extracted during the execution of the instrumented
version of the program. Figure 9 shows the type constraints collected during
execution of this program. The constraints are first condensed and then checked
against the trusted type annotations.

The output of this process is shown in Fig. 10. The program returns two
type errors for this program, namely “pad not observed in frame global” and
“function pad not observed”. These errors arise because the function “pad” is
never called and therefore the function was never observed and no constraints
were generated. We observed no warnings for this program.

5 Evaluation

To evaluate our implementation, we applied it to the SunSpider benchmark [22]
where we hand-annotated every program with types. The results of our
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Fig. 9. Constraints generated for Listing 1, omitting values and locations

Fig. 10. Output for access-nsieve.js

evaluation are listed in Fig. 11. All three aforementioned pruning methods were
turned on. Programs that did not result in an error or warning are not listed.

Most errors (114) are caused by unused code. This code is annotated, but not
executed so that no constraints are generated. No constraints means no types
can be inferred, so the annotations cannot coincide with the inferred types.

Fifteen errors are artifacts of our type annotation system, that turned out
to be too limited for two programs in the benchmark. The annotation language
does not allow recursive types.

In three cases, errors were caused by native functions. Here the problem is
that we are unable to generate constraints for native code.

Seven of the 139 errors were actual programming errors. The programs
“crypto-md5” and “crypto-sha1” both contained problematic code. These prob-
lems were also discovered by Pradel et al. [16].

When looking at the inconsistency warnings, we observe 17 true warnings. In
“3d-cube”, some function returns either undefined or an Array, depending on the
arguments. This could lead to problems when accessing the Array. Both “crypto-
md5” and “crypto-sha1” resulted in warnings, identifying the same problems.
“date-format-xparb” contains the function “leftPad”, which has an inconsistent
return type. This problem is also found by Pradel et al. [16].

As shown by the results and discussion above, our analysis yields useful errors
and warnings that can be used by programmers to increase the quality of their
programs.
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Errors Unused Code 114 3 2 0 2 2 8 18 18 47 0 2 11 1 0
Type Limits 15 0 9 6 0 0 0 0 0 0 0 0 0 0 0
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Fig. 11. Breakdown of errors and warnings

6 Related Work

Quite some work has been done on bringing type checking and type inference to
object oriented dynamic languages such as Ruby, Python and JavaScript.

Anderson and Giannini describe a formal static type inference system for a
core JavaScript language with limited syntax [2]. This work builds upon previous
work by the same authors together with Drossopoulou [3]. They show that this
type system is sound.

Thiemann lays the groundwork for a static type system for JavaScript [24].
In this work, he also presents a JavaScript core language. For this language,
typing is defined and type soundness is proved. This core language and the type
structure are used in later work with Jensen and Møller to construct a static
analyzer for JavaScript [12]. Their analyzer is based on the standard monotone
framework with significant extensions to improve precision. Flow graphs are con-
structed and analysis lattices and transfer functions are presented. The downside
of their method is that it is quite intricate and therefore hard to implement.

Facebook has also developed a static type inference system for JavaScript
called Flow [6]. There are no formal publications about this system, but accord-
ing to Facebook, it is based on control and data-flow analysis and aims at infer-
ring types and finding type errors.

Instead of trying to implement a static type system for JavaScript directly,
many alternative strategies have been explored to tackle this problem and to
overcome the shortcomings of static type inference for dynamic languages. Lerner
et al. present TeJaS, an extensible type systems for JavaScript [14]. Chugh
et al. have developed Dependent JavaScript (DJS), wich is a typed dialect of
JavaScript [5]. Ren and Foster have worked on doing just-in-time static type
checking [17].

Furr et al. introduce a static type inference algorithm for Ruby [7]. Their
implementation, called DRuby, is similar in complexity to the aforementioned
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systems for JavaScript. The authors reduced the burden for their implementation
by compiling Ruby to an intermediate language, which has an explicit flow.

For Python, Michael Salib developed Starkiller, a comprehensive static type
inference system [19]. Starkiller aims to remove the burden of constantly checking
types at run time before every operation.

All these approaches are static analyses. JavaScript is a dynamic language
and many properties of programs including types are only known at run time.
As noted by Jakob et al. [10], static analyses either yield many false positives or
restricts the expressiveness of the language. Cartwright and Fagan introduced
the concept of Soft Typing to overcome these limitations [4]. They argue that
both static and dynamic typing have their drawbacks and that soft typing could
potentially provide the best of both worlds. The idea is to do some static type
inference first and insert dynamic checks in cases where static inference falls
short. Cartwright and Wright implemented such a system for Scheme [25]. More
recent work on gradual typing further investigates these ideas [21].

Soft typing has been applied to JavaScript by Hackett and Guo in Spider-
Monkey [8]. Their hybrid inference algorithm first performs a static “may have
type” analysis on the program. This analysis generates constraints and identi-
fies at what points in the program the constraints may be incomplete. Using
this information, type barriers are inserted in the program. During execution,
a “must have type” analysis is performed, using the previously inserted infor-
mation. The type information is used to reduce the run time of the program
by omitting some run-time type checks. The only information reported back to
the programmer is how many times a dynamic check was needed. More recently,
Swamy et al. introduce TS*, a sound gradual type system for JavaScript [23].
An obvious downside to hybrid approaches like soft typing is that a complex
static type inference system has to be developed.

Pradel et al. [16] present a dynamic type inconsistency analysis for
JavaScript, called TypeDevil. Their system is implemented with the Dynamic
Analysis Framework Jalangi2 [20]. It checks JavaScript programs for inconsistent
properties, which have more than one type. However, they only develop a practi-
cal implementation and do not present a complete formal type inference system.
An et al. [1] present a complete dynamic inference algorithm for Ruby. They
note that doing a dynamic analysis has several benefits. Implementing such an
analysis is much easier and less error prone than a static or hybrid one, since one
does not have to capture the whole language and every possible flow. Further-
more, the results respect flow sensitivity. Similar results are achieved by Saftoiu,
who has developed JSTrace, a dynamic type discovery system for JavaScript,
based on program traces [18].

7 Conclusion

We show that dynamic flow analysis for JavaScript is feasible. To demonstrate
that the general idea is useful, we develop a formal system for a JavaScript core
language and prove its soundness.
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To demonstrate that the concept of dynamic flow analysis for JavaScript is
also useful in practice, we develop an implementation based on the same princi-
ples as the formal system. We implemented a prototype dynamic flow analysis
system for JavaScript. We evaluated our system on benchmark programs. From
this evaluation we obtained useful errors and warnings that allow developers to
improve the quality of their JavaScript code.
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