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1  | INTRODUC TION

Endophytic fungi are ubiquitous fungi that inhabit the aboveground 
tissues of healthy plants without causing obvious disease (Arnold, 
Maynard, Gilbert, Coley, & Kursar, 2000). The common symbi-
osis between cool season grasses and Epichloë endophytes has 

important ecological implications (Clay & Schardl, 2002). In this 
symbiosis, the host grasses provide shelter, photosynthates and 
nutrients to the endophytes (Cheplick & Faeth, 2009; Schardl, 
Leuchtmann, & Spiering, 2004). The endophytes benefit grasses 
in turn through increased growth (Clay, 1990; Saikkonen, Wali, 
Helander, & Faeth, 2004) and by providing tolerance to abiotic and 
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Abstract
1.	 In nature, grasses simultaneously establish multiple symbiotic associations with 

endophytic fungi and arbuscular mycorrhizal fungi (AMF). The effect of these mul-
tiple interactions on competitive interactions between plants remains poorly 
understood.

2.	 In this study, we tested whether endophytes and AMF (Glomus mosseae or Glomus 
etunicatum) alter plant competition between a subordinate plant species that as-
sociates with both symbionts (Achnatherum sibiricum) and a dominant plant spe-
cies, Stipa grandis, that only associates with one symbiont (AMF). And we 
hypothesized that endophytes can facilitate the coexistence of the subordinate 
plant species (A. sibiricum) and the dominant plant species (S. grandis).

3.	 The results demonstrated that endophyte infection significantly enhanced the 
competitive ability of the subordinate plant species compared to the dominant 
plant species. The effects of AMF on plant competition were variable and de-
pended on the identity of the AMF species. Glomus etunicatum gave A. sibiricum 
plants a higher competitive ability, while G. mosseae gave S. grandis a higher com-
petitive ability. Simultaneous infections of both endophytes and AMF in A. sibiri-
cum also altered the competitive relationships with S. grandis.

4.	 In conclusion, these results suggest that endophytic fungi can facilitate the coex-
istence of a subordinate plant species with a dominant plant species. Moreover, 
endophytes could not only affect the competitive ability of the host plant directly 
but also indirectly by interacting with different AMF to change the growth of 
competing plant species.
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biotic stresses including drought (Gibert & Hazard, 2011; Hesse 
et al., 2003; Worchel, Giauque, & Kivlin, 2013), nutrient deficiency 
(Cheplick & Faeth, 2009; Malinowski & Belesky, 2000), herbivory 
(Burns & Fisher, 2006) and plant pathogens (Clay & Schardl, 2002; 
Pérez, Gundel, Ghersa, & Omacini, 2013; Rúa, McCulley, & Mitchell, 
2013). Several studies have reported that endophyte infection can 
affect the competitive ability of host grasses (Brem & Leuchtmann, 
2002; Cripps, Edwards, & Mckenzie, 2013; Malinowski, Butler, 
& Belesky, 2011; Richmond, Grewal, & Cardina, 2003; Vázquez- 
de-Aldana, Zabalgogeazcoa, Garcia-Ciudad, & Garcia-Criado, 2013; 
Wu et al., 2016).

To date, most research has focused on economically important 
pasture grasses and turf grasses. These studies observed that the 
presence of endophytes had a generally positive effect on the intra- 
or interspecific competitive ability of their host. For instance, several 
studies found that endophyte infection increased the intraspecific 
competitive ability of infected genotypes of Lolium arundinaceum 
Darbyshire ex. Schreb. (Tall fescue) (Hill, Belesky, & Stringer, 1991, 
1998; Marks, Clay, & Cheplick, 1991) and Festuca pratensis Huds. 
(Meadow fescue) (Malinowski, Leuchtmann, Schmidt, & Noesberger, 
1997). Other studies found that the presence of endophytes in-
creased the ability of tall fescue and meadow fescue to compete with 
other plant species (Hoveland, Bouton, & Durham, 1999; Saikkonen 
et al., 2013). In contrast, some research has demonstrated conflict-
ing results, showing neutral or negative effects of endophytes on 
the competitive ability of their hosts (Cheplick, Harrichandra, & Liu, 
2014; Moraes, Witt, Phillips, Rossi, & Panozzo, 2014; Richmond 
et al., 2003).

Compared to agronomic grasses, relatively few studies have in-
vestigated the effects of endophyte infection on the competitive 
ability of native grasses, and the results are inconsistent. Faeth, 
Helander, and Saikkonen (2004) reported that endophyte-free 
(E−) Festuca arizonica Vasey (Arizona fescue) plants outperformed 
endophyte-infected (E+) plants when grown together in field and 
glasshouse experiments. Moreover, Brem and Leuchtmann (2002) 
found that endophyte infection had a significant negative effect 
on the intraspecific competitive ability of Brachypodium sylvaticum 
(Huds.) P.B., but a significant positive effect on that of Bromus benek-
enii (Lange) Trimen. In addition, a greater competitive ability of plants 
harbouring the endophytes has been documented for Poa alsodes 
Gray (Craig et al., 2011), Festuca rubra L. (Red fescue) (Vázquez- 
de-Aldana et al., 2013) and Leymus chinensis (Trin.) Tzvel. (Wu et al., 
2016).

The impact of endophytes on the competitive ability of host 
grasses may be related to direct impacts on characteristics produced 
by endophytes, such as modifications in shoot and root growth (Craig 
et al., 2011; Malinowski et al., 1997; Takai, Sanada, & Yamada, 2010), 
physiological responses to abiotic stresses (Saari & Faeth, 2012; Wu 
et al., 2016), resistance to herbivory (Clay, Holah, & Rudgers, 2005), 
or production of allelopathic substances (Aschehoug, Callaway, 
Newcombe, Tharayil, & Chen, 2014; Bao et al., 2015; Rudgers & Clay, 
2007; Vázquez-de-Aldana, Romo, Garcia-Ciudad, Petisco, & Garcia-
Criado, 2011). Endophyte-mediated effects may also be indirect. 

For instance, endophytes could influence other symbionts, such 
as arbuscular mycorrhizal fungi and rhizobial bacteria, which influ-
ence plant growth and fitness (García Parisi, Lattanzi, Grimoldi, & 
Omacini, 2015; Omacini, Eggers, Bonkowski, Gange, & Jones, 2006).

Arbuscular mycorrhizal fungi (AMF) form symbiotic associa-
tions with 80% of all terrestrial plant species and are widespread 
in almost all terrestrial ecosystems (Brundrett, 2009; Smith & Read, 
2008; van der Heijden, Martin, & Sanders, 2015). AMF receive 
photosynthate from the plant and deliver mineral nutrients to the 
plant in return. AMF form extensive hyphal networks in the soil 
and are well equipped to capture soil nutrients, phosphorus (P) in 
particular (Johnson, 2010; Smith & Read, 2008). Both endophytes 
and AMF can form mutualistic associations with grasses and receive 
shelter and carbon from their host plants (Binet et al., 2013; Mack 
& Rudgers, 2008). Numerous studies have reported interactions of 
host grasses with either one of these fungi. However, studies consid-
ering the simultaneous interaction between host grasses and both 
endophytes and AMF are rare. To date, these studies have primar-
ily investigated the interaction between endophytes and AMF and 
largely ignored the effects of this interaction on plant performance. 
For example, studies of tall fescue and Lolium perenne L. (Perennial 
ryegrass) have reported that endophyte infection reduces spor-
ulation and mycorrhizal colonization (Arrieta, Iannone, Scervino, 
Vignale, & Novas, 2015; Chu-Chou et al., 1992; Liu et al., 2011; Mack 
& Rudgers, 2008; Müller, 2003; Novas, Cabral, & Godeas, 2005; 
Novas, Iannone, Godeas, & Cabral, 2009; Vignale, Iannone, Pinget, 
Battista, & Novas, 2016).

Moreover, Larimer, Bever, and Clay (2012) found that the ef-
fects of endophyte infection on AMF also depended on AMF 
identity. Endophyte infection reduced the colonization of Glomus 
claroideum N.C. Schenck & G.S. Sm. (=Claroideoglomus claroideum), 
which was detrimental to the host plant, but increased the coloni-
zation of Glomus mosseae (T.H. Nicolson & Gerd.) Gerd. & Trappe 
(=Funneliformis mosseae), which had no effect on host plant growth. 
In a recent study, we detected that endophyte infection alleviated 
the detrimental effects of G. mosseae colonization on the host grass 
Achnatherum sibiricum (L.) Keng, but there was no significant inter-
action between endophytes and another AMF, Glomus etunicatum 
W.N. Becker & Gerd. (=Claroideoglomus etunicatum), on host growth 
(Zhou et al., 2016). The simultaneous infections of both endophytes 
and AMF on a common host plant may affect not only the plant itself 
but may also alter competitive relationships with other plant species. 
A study by Omacini et al. (2006) showed that interactions between 
endophytes and AMF altered competitive interactions between E+ 
and E− neighbouring Lolium multiflorum Lam. (Italian ryegrass) plants. 
However, whether interactions of AMF and endophytes also influ-
ence interspecific competition remains unclear.

Here, we investigate the effects of simultaneous infections by 
Epichloë endophytes and AMF on competitive interactions between 
two plant species (Stipa grandis and Achnatherum sibiricum), which 
are both characteristic of Inner Mongolia steppe vegetation. One 
of these plants species, S. grandis, associates only with AMF and 
naturally dominates the vegetation, while the other plant species, 
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A. sibiricum, is a subordinate species that associates both with AMF 
and Epichloë endophytes. Specifically, we aimed to test (1) whether 
the presence of both symbionts facilitates coexistence of the subor-
dinate species with the dominant plant species and (2) whether the 
effects of the endophyte on competitive interactions between both 
plant species depended on the presence of particular AMF species.

2  | MATERIAL S AND METHODS

2.1 | Plant and fungal material

Achnatherum sibiricum (L.) Keng is a caespitose perennial grass native 
to the Inner Mongolia steppe of China. This grass is normally a sub-
ordinate species in grassland but can sometimes become dominant 
(Ma, Fu, & Chen, 1985). Achnatherum sibiricum is usually colonized by 
Epichloë endophytes with high infection rates (86%-100%) in natural 
habitats (Wei et al., 2006). In addition, A. sibiricum can be colonized 
by several AMF taxa (Su & Guo, 2007); in the previous investiga-
tions, we have also observed mycorrhizal colonization (between 
55% and 59%) of A. sibiricum collected from two populations in the 
Inner Mongolia steppe of China. For this study, mature seeds of A. 
sibiricum were collected from natural populations in the National 
Hulunber Grassland Ecosystem Observation and Research Station 
(119.67°E, 49.10°N) in north-east China, where the annual mean 
temperature is roughly −2°C and the mean annual precipitation is 
approximately 367 mm. Within each population, 300 plant individ-
uals were chosen at random. The seeds were collected in August 
2013 and stored at 4°C. The aniline blue staining method (Latch, 
Christensen, & Samuels, 1984) was used to analyse the endophyte 
infection frequency of the seeds. One hundred seeds from different 
plant individuals were tested. All of them were colonized by endo-
phytes, resulting in an infection frequency of 100%. Previous studies 
by our laboratory reported that at least 10 fungal taxa were discov-
ered in A. sibiricum; Epichloë gansuensis C.J. Li & Nan and Epichloë 
sibirica X. Zhang & Y.B. Gao were identified as the two most domi-
nant endophytic species of A. sibiricum (Li et al., 2015; Zhang et al., 
2009). For this study, we did not check the identity of endophytes in 
the A. sibiricum seeds, so endophyte infection responses are based 
on the overall endophyte community within the plants. To eliminate 
the endophyte, we heated a subset of randomly chosen seeds for 
30 days at 60°C in a convection drying oven as per Ren et al. (2011) 
and Li et al. (2013). Earlier studies showed that this is an effective 
disinfection method for A. sibiricum (Li et al., 2013; Ren et al., 2011). 
Moreover, our earlier work showed that the heat treatment had no 
significant effect on germination rate, germination potential or ger-
mination index (Li, Han, Ren, & Gao, 2010).

The other plant species used for this experiment is Stipa gran-
dis. Stipa grandis P. Smirn. is a perennial bunch grass and is one of 
the dominant species in the Inner Mongolia steppe. This species is 
widely distributed in northern China and has important nutritional 
forage value for sheep and cattle (Ma et al., 1985). It can form sym-
biotic relationships with AMF (Su & Guo, 2007) but is usually not 
colonized by endophytes in its leaves (Su, Guo, & Hyde, 2010). In our 

previous investigation, the mean endophyte infection rate of S. gran-
dis was only 1.11% at eighteen sites in the Inner Mongolia steppe 
of China (Wei et al., 2006). The seeds used in the present study 
were collected from natural populations in the National Hulunber 
Grassland Ecosystem Observation and Research Station in August 
2012 and stored at 4°C.

Regular untreated (E+) and heat treated (E−) A. sibiricum seeds 
and S. grandis seeds were selected, surface-sterilized with 0.5% 
sodium hypochlorite solution for 10 min and washed with steril-
ized water. Seeds were planted in plastic pots (280 mm in diameter, 
220 mm in depth), filled with 5 kg of 2 mm sieved autoclaved sand. 
Each pot received either eight seedlings of one species (the plant 
monocultures) or four seedlings of A. sibiricum and four seedlings 
of S. grandis (the plant mixtures). We examined endophyte status of 
each A. sibiricum plant following staining the leaf peel with aniline 
blue (Latch et al., 1984) at the beginning of the experiment to ensure 
endophyte treatment effectiveness.

We used two AMF species: Glomus mosseae (GM, currently 
Funneliformis mosseae) and Glomus etunicatum (GE, currently 
Claroideoglomus etunicatum) isolated from the Inner Mongolia steppe 
and provided by the Institute of Plant Nutrition and Resources, 
Beijing Academy of Agriculture and Forestry Sciences. Both AMF 
species are widespread in China, have a worldwide distribution and 
have been found in a wide range of ecosystems (Öpik, Moora, Liira, & 
Zobel, 2006). The two fungi originated from single spores that were 
extracted from field soil using sucrose centrifugation. In our study, 
pure inocula of GM and GE were propagated separately in a mixture 
of autoclaved sand and zeolite (1:1) with Sorghum bicolor (L.) Moench 
(Broomcorn) for 12 weeks. The mycorrhizal inoculum was composed 
of fungal spores, hyphae and root fragments. In our previous study, 
we found that the effects of GM and GE colonization on the growth 
of A. sibiricum varied. Specifically, GE colonization had beneficial ef-
fects on plant growth. In contrast, GM colonization had detrimental 
effects on the plants (Zhou et al., 2016). The AMF treatment groups 
(either GM or GE) received 100 g mycorrhizal inoculum in each pot. 
The non-AMF treatment group (NM) was inoculated with the same 
amount of autoclaved inoculum; 50 ml of non-autoclaved inoculum 
filtrate (passed through a 10 μm sieve) was added to the non-AMF 
treatment to correct for possible differences in the microbial com-
munity and nutrients between AMF and non-AMF treatments.

2.2 | Experimental design

The experiment was set up as a randomized block design with 
three factors. The first factor was AMF inoculation treatment 
(GM, GE or a non-mycorrhizal (NM) control). The second factor 
was plant mixture type (monoculture and mixture). The third fac-
tor was endophyte infection status of A. sibiricum (E+ and E− A. si-
biricum). A DeWit-type replacement series (de Wit, 1960) with 
equal plant density (eight plant individuals per plant species for 
monocultures and four + four individuals of each plant species in 
mixtures) was used to assess competitive interactions between 
A. sibiricum and S. grandis. Both E+ and E− A. sibiricum were grown 
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alone as monoculture or in interspecific mixtures with S. grandis. 
This resulted in five groups: monoculture of E+ A. sibiricum, mono-
culture of E− A. sibiricum, monoculture of S. grandis, mixtures of E+ 
A. sibiricum and S. grandis (E+S), and mixtures of E− A. sibiricum and 
S. grandis (E−S). Together with the three AMF groups, this resulted 
in 15 combinations. Note that S. grandis is not colonized by endo-
phytes; as such, there are no E+ and E− treatments for S. grandis. 
Each combination was replicated five times, yielding a total of 75 
pots. The experiment began on 20 May 2014 and was conducted 
in the campus experimental field at Nankai University, Tianjin, 
China. During the experiment, each pot was watered two-three 
times a week. Nutrients were supplied by the addition of Hoagland 
nutrient solution once per week to ensure the normal growth of 
plants. The experiment lasted 4 months.

At the end of the experiment, shoots were harvested from each 
species by clipping 1 cm above the soil surface, and roots were col-
lected by gently washing and separating each species. Root subsa-
mples were set aside for assessing AMF colonization rate. The total 
shoot and root biomass was measured after drying in an oven at 
80°C for 24 hr. Additionally, subsamples of shoot and root material 
were ground into a powder and the P content was determined using 
the molybdenum antimony colorimetric method (Bao, 2000).

2.3 | AMF colonization rate

Fresh roots were washed free of soil and cut into small pieces, and 
root fragments were randomly collected to obtain approximately 1 g 
roots. The sampled roots were cleared with 10% KOH in a water bath 
of 90°C for 60 min and then stained with aniline blue for 30 min. 
AMF colonization rate was recorded using the cross-hair eyepiece 
method (McGonigle, Miller, Evans, Fairchild, & Swan, 1990), with a 
minimum of 100 intersections per sample.

2.4 | Mycorrhizal growth response

Mycorrhizal growth response (MGR) of GM and GE was calculated 
according to the following equations based on van der Heijden 
(2002): If M > NMmean, then MGR (%) = 100 × (1 – NMmean/M), but if 
M < NMmean, then MGR (%) = 100 × (−1 + M/NMmean), where M was 
the plant total dry weight in the given replicate of the mycorrhizal 
treatment, and NMmean was the mean total dry weight in the cor-
responding NM treatment. Positive values for MGR indicated that 
plant growth was promoted by AMF, and negative values indicate 
that plant growth was suppressed by AMF.

2.5 | Competitiveness

The competitive ability of A. sibiricum and S. grandis in a plant mix-
ture was assessed using the aggressivity index (AGR) and relative 
interaction intensity index (RII), both of which were calculated using 
the total biomass of plant species. The AGR of species i relative to 
species j was measured as McGilchrist and Trenbath (1971): 

where RY is the relative yield of species i or j, defined as the dry 
matter yield of a species grown in mixture (DMij or DMji) relative to 
the dry matter in the respective monoculture (DMii or DMjj). Species 
i and j have the same competitive ability if AGRij value is zero. An 
AGRij value greater than zero indicated higher competitive ability of 
species i than that of species j. An AGRij value less than zero indi-
cated the opposite.

The RII provides a simple comparison of interaction strength 
across species and treatments (Armas, Ordiales, & Pugnaire, 2004). 
The RII is expressed as

The RII is a measure of the strength of interaction between spe-
cies and is centred on zero with negative interactions (competition) 
indicated by values between 0 and −1, and positive interactions (facil-
itation) indicated by values between 0 and +1.

2.6 | Statistical analyses

All statistical analyses were performed with spss software (Version 
19.0, SPSS, Chicago, USA). A three-way analysis of variance (ANOVA) 
was used to analyse the effects of endophyte infection (E), mycor-
rhizal colonization (M) and plant mixture type (C) on the mycorrhizal 
colonization rate, mycorrhizal growth response, plant biomass and P 
content of A. sibiricum, while the effects on S. grandis were analysed 
by means of a two-way ANOVA considering the factors C and M. 
The effects of E and M on the AGR and RII were analysed using a 
two-way ANOVA. The differences between the means among dif-
ferent factors were compared using Duncan’s multiple-range tests 
at p < .05.

3  | RESULTS

3.1 | Plant growth performance

The total biomass of A. sibiricum was significantly affected by en-
dophyte infection, with endophyte infection significantly increas-
ing the total biomass of A. sibiricum (Table 1, E+ = 2.49 ± 0.09 g, 
E− = 2.09 ± 0.09 g). The interaction between mycorrhizal coloniza-
tion and plant mixture type significantly affected the plant total 
biomass (Table 1): In mixture with S. grandis, GM inoculation de-
creased the total biomass, while GE inoculation increased the total 
biomass compared to the NM treatment. GE inoculation in mix-
tures also improved the total biomass of A. sibiricum compared with 
the other treatments, indicating that GE infection had a positive 
effect on the growth of A. sibiricum when competing with S. grandis 
(Figure 1a). However, there was no significant interaction among 
endophyte infection, mycorrhizal colonization and plant mixture 
type (Table 1).

There was a significant interaction between mycorrhizal coloniza-
tion and plant mixture type for the total biomass of S. grandis (Table 1). 
In NM and GE treatments, the total biomass of S. grandis was lower in AGRij=RYi−RYj= (DMij∕DMii)− (DMji∕DMjj)

RII= (DMij−DMii)∕(DMij+DMii)
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mixtures than those in monocultures (Figure 1b). AMF did not affect 
the total biomass of S. grandis when the plants were grown in monocul-
tures. However, in mixtures, S. grandis produced more biomass when 
grown with E− than E+ A. sibiricum plants in GE treatments. The total 
biomass of S. grandis was increased by GM colonization regardless of 
the endophyte infection status of A. sibiricum compared to the NM 
and GE treatments (Figure 1b). These results showed that GM coloni-
zation alleviated the detrimental effect of A. sibiricum on the growth 

of S. grandis, but GE colonization did not contribute to the inhibitory 
effect of A. sibiricum on S. grandis, especially the inhibitory effect of E+ 
plants.

3.2 | Phosphorus content in plants

The shoot P content of A. sibiricum was significantly affected by 
endophyte infection, mycorrhizal colonization, plant mixture type 

TABLE  1 Analyses of variance (ANOVA) for plant biomass, phosphorus (P) content, mycorrhizal colonization rate and mycorrhizal growth 
response (MGR) of Achnatherum sibiricum and Stipa grandis

df

Total biomass Shoot P content Root P content

df

Mycorrhizal 
colonization rate MGR

F p F p F p F p F p

Achnatherum sibiricum

Endophyte(E) 1 24.240 <.001 39.451 <.001 12.522 .001 1 14.058 .001 6.518 .016

Mycorrhiza(M) 2 36.687 <.001 140.079 <.001 3.938 .026 1 13.778 .001 65.584 <.001

Competition(C) 1 5.617 .022 38.144 <.001 0.119 .731 1 0.680 .416 4.814 .036

E × M 2 2.127 .130 7.008 .002 0.868 .426 1 1.439 .239 4.158 .050

E × C 1 3.507 .067 11.255 .002 0.927 .340 1 0.492 .488 1.002 .324

M × C 2 7.595 .001 12.602 <.001 0.797 .457 1 1.285 .265 9.038 .005

E × M × C 2 0.388 .681 2.795 .071 0.101 .905 1 1.464 .235 0.062 .806

Stipa grandis

Mycorrhiza(M) 2 21.547 <.001 42.334 <.001 20.690 <.001 1 7.675 .011 37.186 <.001

Competition(C) 2 14.304 <.001 17.308 <.001 6.484 .004 2 5.731 .009 0.957 .398

M × C 4 10.889 <.001 9.889 <.001 1.352 .270 2 3.456 .048 18.977 <.001

Significant p-values (p < .05) are in bold.

F IGURE  1 Effects of mycorrhizal 
colonization and plant mixture type on the 
total biomass per plant in monocultures 
and mixtures of Achnatherum sibiricum 
(a) and Stipa grandis (b) when inoculated 
with Glomus mosseae (GM) or Glomus 
etunicatum (GE). Bars represent means 
± SE (n = 5). Different letters above 
bars denote means that are significantly 
different (p < .05). Monoculture, 
A. sibiricum and S. grandis grow separately 
in pots; mixture, A. sibiricum and S. grandis 
grow together in pots; S, the monoculture 
of S. grandis; E+S, S. grandis grown with E+ 
A. sibiricum; E−S, S. grandis grown with E− 
A. sibiricum; NM, non-AMF treatment. For 
statistical details, see Table 1
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and the interaction of any two factors (Table 1). Unlike the result in 
monoculture, endophyte infection significantly increased the shoot 
P content of A. sibiricum in mixture (Figure 2a). GM colonization sig-
nificantly increased the shoot P content of E+ A. sibiricum compared 
to the E+ plants in NM treatment (Figure 2b). When inoculated with 
GE, in either E+ or E− plants, monoculture or mixture, mycorrhizal 
colonization increased the shoot P content of A. sibiricum compared 
to NM and GM treatments (Figure 2b,c). Meanwhile, simultaneous 
infections of endophytes and GE had a significantly higher shoot P 
content than single infection of GE in plants without endophytes 
(Figure 2b), and shoot P content of A. sibiricum was also higher in 
mixture than that in monoculture when colonized by GE (Figure 2c).

The shoot P content of S. grandis was significantly affected by 
the interaction between mycorrhizal colonization and plant mix-
ture type (Table 1). GM and GE colonization significantly increased 
the shoot P content of S. grandis in monoculture compared to NM 
treatment (Figure 2d). In mixtures, the shoot P content of S. grandis 
was significantly increased by GM colonization, but there was no 
significant difference between NM and GE treatments. Endophyte 
infection did not significantly affect the shoot P content of S. grandis 
under mixture conditions (Figure 2d).

3.3 | AMF colonization

In the AMF treatment group, endophyte infection significantly re-
duced mycorrhizal colonization of A. sibiricum (Table 1, Figure 3a). 
The mean mycorrhizal colonization rate of E+ A. sibiricum was 30.8% 
compared to 38.9% for that of E− A. sibiricum plants. Mycorrhizal 
colonization rates of A. sibiricum were also significantly affected by 
the AMF species identity, with a significantly higher colonization 
rate in the roots of GE-inoculated plants than that of GM-inoculated 

plants (Figure 3b). Interestingly, root colonization levels of S. gran-
dis, which does not associate with endophytes, were lower when 
grown in mixture with E+ A. sibiricum compared to E− A. sibiricum 
(Figure 3c). Roots of A. sibiricum and S. grandis in the non-AMF treat-
ment were not colonized by AMF.

3.4 | Mycorrhizal growth responses

The MGRs of A. sibiricum were significantly affected by the inter-
action between mycorrhizal colonization and plant mixture type 
(Table 1). When inoculated with GM, the MGRs of A. sibiricum 
were negative in monocultures and mixtures, and the MGRs in 
mixtures were significantly less negative than those in monocul-
tures, indicating that the growth of host plants was suppressed by 
GM colonization, especially under mixture conditions (Figure 4a). 
When inoculated with GE, the MGRs of A. sibiricum were positive 
under both monoculture and mixture conditions, indicating that the 
growth of host plants was improved by GE colonization, but there 
was no significant difference between these treatments (Figure 4a).

There was also a significant interaction between mycorrhizal colo-
nization and plant mixture type for the MGRs of S. grandis (Table 1). The 
addition of GM had an approximately neutral effect on S. grandis when 
it was grown in monoculture, but the effects differed when the species 
were grown in mixture, as the MGRs were positive in the mixture. The 
magnitude of the positive effect of GM on S. grandis increased when 
grown in mixture with E+ A. sibiricum plants compared to E− plants, 
indicating that the responsiveness of S. grandis to GM was increased 
by endophyte infection (Figure 4b). When inoculated with GE, the 
MGRs of S. grandis were positive under monoculture conditions, but 
negative when grown in mixture with A. sibiricum. Compared to grown 
in monoculture, the MGRs were significantly lower when grown in 

F IGURE  2 Effects of the interaction 
between endophyte infection (E) × plant 
mixture type (C) (a), E × mycorrhizal 
colonization (M) (b), and M × C (c) 
on the shoot P content per plant of 
Achnatherum sibiricum, and effect of 
the interaction between M × C on 
the shoot P content per plant of Stipa 
grandis (d). Bars represent M ± SE (n = 5). 
Different letters above bars denote 
means that are significantly different 
(p < .05). Monoculture, A. sibiricum 
and S. grandis grow separately in pots; 
mixture, A. sibiricum and S. grandis grow 
together in pots; E+, endophyte-infected 
plants; E−, endophyte-free plants; S, the 
monoculture of S. grandis; E+S, S. grandis 
grown with E+ A. sibiricum; E−S, S. grandis 
grown with E− A. sibiricum; NM, non-AMF 
treatment; GM, Glomus mosseae; GE, 
Glomus etunicatum. For statistical details, 
see Table 1
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mixture with E+ A. sibiricum, while no significant difference occurred 
when grown in mixture with E− A. sibiricum (Figure 4b).

3.5 | Competitiveness

The AGR was used to measure the competitive ability of A. sibiricum 
relative to S. grandis. The results showed that the AGR was significantly 
affected by the main effects of endophyte infection and mycorrhizal 
colonization (Table 2). The AGR of E+ A. sibiricum plants was higher 

than E− plants regardless of AMF inoculation treatment, indicating a 
greater competitive ability of E+ plants (Figure 5a). When inoculated 
with GM, the AGR of A. sibiricum was significantly lower than that in 
NM treatments, indicating that GM colonization reduced the competi-
tive ability of A. sibiricum. In contrast, the competitive ability of A. si-
biricum was increased by GE colonization, with the significantly higher 
AGR when infected by GE compared to the NM treatments (Figure 5b).

As for the response of A. sibiricum to the competition with 
S. grandis, S. grandis facilitated the growth of E+ A. sibiricum plants 
(RII > 0), while E− A. sibiricum plants were not affected by S. grandis 
(Figure 5c), but no significant endophyte main effect was observed 

FIGURE 3 Effects of endophyte infection (a) and arbuscular 
mycorrhizal fungi (AMF) species identify (b) on the mycorrhizal 
colonization rates of Achnatherum sibiricum and effect of the 
interaction between mycorrhizal colonization and plant mixture type 
on the mycorrhizal colonization rates of Stipa grandis (c). Bars represent 
M ± SE (n = 5). The asterisk and different letters above bars denote 
means that are significantly different (p < .05). E+, endophyte-infected 
plants; E−, endophyte-free plants; GM, Glomus mosseae; GE, Glomus 
etunicatum; S, the monoculture of S. grandis; E+S, S. grandis grown with 
E+ A. sibiricum; E−S, S. grandis grown with E− A. sibiricum; Monoculture, 
A. sibiricum and S. grandis grow separately in pots; mixture, A. sibiricum 
and S. grandis grow together in pots. For statistical details, see Table 1

F IGURE  4 Effects of the interaction between mycorrhizal 
colonization and plant mixture type on the mycorrhizal growth 
responses of Achnatherum sibiricum (a) and Stipa grandis (b). Bars 
represent M ± SE (n = 5). Different letters above bars denote means 
that are significantly different (p < .05). Monoculture, A. sibiricum 
and S. grandis grow separately in pots; mixture, A. sibiricum and 
S. grandis grow together in pots; S, the monoculture of S. grandis; 
E+S, S. grandis grown with E+ A. sibiricum; E−S, S. grandis grown with 
E− A. sibiricum; GM, Glomus mosseae; GE, Glomus etunicatum. For 
statistical details, see Table 1

df

AGR A. sibiricum RII S. grandis RII

F p F p F p

Endophyte (E) 1 13.683 .001 3.704 .066 5.644 .026

Mycorrhiza (M) 2 66.352 <.001 8.465 .002 40.898 <.001

E × M 2 1.229 .310 0.376 .690 2.773 .082

Significant p-values (p < .05) are in bold.

TABLE  2 Effects of endophyte 
infection and mycorrhizal colonization on 
the aggressivity index (AGR) for 
Achnatherum sibiricum and the relative 
interaction intensity indices (RII) for 
A. sibiricum and Stipa grandis
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(Table 2). The growth of A. sibiricum plants was significantly sup-
pressed by S. grandis when inoculated with GM compared to the NM 
and GE treatments (Figure 5d). The RII of S. grandis was significantly 
affected by the main effect of endophyte infection (Table 2), with 
the values were significantly lower when grown in mixture with E+ 
A. sibiricum plants than E− plants (Figure 5e). Plant growth was sup-
pressed by A. sibiricum in NM and GE treatments (RII < 0), with the 
competitive suppression being highest in the presence of GE. Unlike 
the effects of GE, when S. grandis was inoculated by GM, the plant 
growth was facilitated by A. sibiricum plants (RII > 0) (Figure 5f). 
There was no significant interaction between endophytes and AMF 
on the RII of A. sibiricum and S. grandis (Table 2).

4  | DISCUSSION

The results of this study demonstrate that endophytes can directly 
alter competitive interaction between its host plant, A. sibiricum, and 
another plant species, S. grandis, which lacks endophytes. So far, few 

studies have tested the effects of endophyte infection on the com-
petitive ability of native grasses (Brem & Leuchtmann, 2002; Craig 
et al., 2011; Faeth et al., 2004; Vázquez-de-Aldana et al., 2013). Our 
results show that endophyte infection can increase the competitive 
ability of the host plant A. sibiricum, with higher biomass and aggres-
sivity index than the endophyte-free plants. The similar results were 
reported by Craig et al. (2011) and Vázquez-de-Aldana et al. (2013) 
who found positive effects of endophyte infection on the interspe-
cific competitive ability of host plants. Our results further suggest 
that endophytes facilitate coexistence between a subordinate plant 
species (A. sibiricum) and a dominant species (S. grandis) of the Inner 
Mongolian steppe vegetation. While earlier work showed that en-
dophytes contribute to grass dominance and reduce plant diversity 
in North American grasslands (Clay & Holah, 1999; Rudgers & Clay, 
2007), this work suggests that the opposite can also occur, where the 
presence of endophytes facilitates the competitive ability of a rela-
tively rare species against the dominant plant that lacks endophytes.

Existing studies indicate that endophyte infection affects the 
interspecific competitive ability of host plants not only directly 
(Aschehoug, Metlen, Callaway, & Newcombe, 2012; Malinowski, 
Belesky, & Fedders, 1999; Vázquez-de-Aldana et al., 2013) but also in-
directly by changing the community of soil micro-organisms associated 
with plant roots (Cripps et al., 2013; Rudgers & Orr, 2009). Similar to 
endophytes, AMF can influence plant growth and nutrition; AMF have 
been shown to alter plant diversity (van der Heijden et al., 1998) and 
competitive relationships between plants (Bever, 2003; Facelli, Smith, 
Facelli, Christophersen, & Andrew Smith, 2010; Mariotte et al., 2013). 
Several studies also indicate that the effects of AMF on plant compe-
tition and plant diversity depend on AMF species identity and AMF 
diversity (Scheublin, van Logtestijn, & van der Heijden, 2007; Wagg, 
Jansa, Stadler, Schmid, & van der Heijden, 2011). Our previous study 
with A. sibiricum showed that the effects of simultaneous infection by 
endophytes and AMF on host plant growth depended on AMF species 
identity: endophyte infection alleviated the detrimental effects of GM 
colonization on host growth under sufficient nutrient supply condi-
tions, while no significant interaction was observed between endo-
phytes and GE on host growth (Zhou et al., 2016). So far, no study has 
investigated whether dual infection of a host plant by endophytes and 
AMF altered the plant’s interspecific competitive ability. Interestingly, 
this study showed that the competitive ability of a plant not only de-
pends on the presence of AMF and endophytes, but also that it varies 
depending on which AMF colonizes the plant roots. When inocu-
lated with GM, the detrimental effect of A. sibiricum on the growth 
of S. grandis was alleviated by GM colonization, but no significant dif-
ference was occurred between the two endophyte infection statuses, 
suggesting that the positive effect of GM colonization on the com-
petitive ability of S. grandis was not influenced by endophytes. When 
inoculated with GE, the presence of endophytes increased the inhib-
itory effect of A. sibiricum on the growth of S. grandis, indicating that 
co-infection by both endophytes and GE had an additive effect on the 
competitive ability of A. sibiricum.

At present, the exact mechanisms for the effects of AMF coloni-
zation on the competitive ability of endophyte-infected plants have 

F IGURE  5 Effects of endophyte infection and mycorrhizal 
colonization on plant competition between Achnatherum sibiricum 
and Stipa grandis, evaluated using the aggressivity index (AGR) 
for A. sibiricum (a, b) or the relative interaction intensity (RII) for 
A. sibiricum (c, d) or S. grandis (e, f). Bars represent M ± SE (n = 5). 
The asterisk and different letters above bars denote means that 
are significantly different (p < .05). E+, endophyte-infected plants; 
E−, endophyte-free plants; NM, non-AMF treatment; GM, Glomus 
mosseae; GE, Glomus etunicatum. For statistical details, see Table 2
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not been identified. Possible explanations for our observations are 
(1) endophyte infection can change the mycorrhizal colonization of 
the host plant and companion plant. Several studies have reported 
that suppression of AMF colonization can affect the growth of host 
plants, resulting in altered plant interactions (Bray, Kitajima, & Sylvia, 
2003) and plant community structure (Callaway, Thelen, Barth, 
Ramsey, & Gannon, 2004; Hartnett & Wilson, 1999), especially for 
non-beneficial AMF (Grman, 2012). (2) Endophyte infection changes 
the mycorrhizal growth responses of the companion plant S. grandis. 
The mycorrhizal growth responses of individual plant species can 
determine the effects of AMF on the competitive outcome among 
plant species (Lin, Mccormack, & Guo, 2015). Several studies have 
reported that a greater competitive ability is related to the higher 
mycorrhizal growth responses of competitive plants (Scheublin et al., 
2007; Wagg et al., 2011). (3) The simultaneous infection by endo-
phytes and AMF can influence plant nutrient uptake. Earlier studies 
showed that endophytes and AMF enhanced the competitive ability 
of host plants by increasing the P content of host plants (Mariotte 
et al., 2013; Omacini et al., 2006; Vázquez-de-Aldana et al., 2013). 
Thus, the change of plant P uptake and storage in our study may be 
one reason why the simultaneous infection by endophytes and AMF 
increased the interspecific competitive ability of A. sibiricum.

In conclusion, this study demonstrates that endophyte infection 
has a positive effect on the interspecific competitive ability of its host 
plant A. sibiricum. This work further shows that competitive interac-
tions between plants depend on the presence of endophytes and 
are also affected by AMF species identity. Interestingly, while earlier 
work indicated that endophytes contribute to the dominance of its 
host plant in North American grassland, this work indicates that the 
presence of endophytes facilitates coexistence of a relatively rare spe-
cies with a dominant plant that lacks endophytes. Further studies are 
needed to investigate how communities of endophytes and AMF in-
teract and whether AMF and endophyte diversity influence host plant 
performance and plant community structure.
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