
The role of microbial communities in 
ecosystem functioning is unequivocal1,2, 
with microorganisms being key drivers 
of many ecosystem processes, including 
soil nutrient cycling, plant growth, marine 
biogeochemical processes and maintenance 
of human health3–6. In recent years, 
microbial network analysis has been used 
to visualize co-​occurrence among members 
in communities3,7–10. Microbial network 
analysis enables testing of ecological 
theories, the assessment of which was once 
postulated to be a major impediment in 
microbial ecology11,12. The concept of co-​
occurrence and network thinking in ecology 
was proposed in 2005 (ref.13), and since then, 
microbial ecologists have shown particular 
interest in network analysis7,14–19, resulting 
in a large body of studies demonstrating 
microbial co-​occurrence patterns in a 
diverse range of soil7, plant20 and marine21 
ecosystems, as well as in the human 
microbiome22,23 (Box 1). Reports are also 
available from the Antarctic ecosystem24 
and Arctic ecosystem25,26. In addition to 
co-occurrence patterns, microbial networks 
can be used to statistically identify  
keystone taxa27.

The tenet of keystone taxa was originally 
proposed by ecologist Robert T. Paine 
in 1966. In a classic experiment, he 

influence in the community33. On the basis 
of the available information, in addition to 
sea stars, other examples of keystone taxa 
include the Canadian beaver and African 
elephant in the animal kingdom and 
leguminous Trifolium in the plant kingdom. 
In microbial communities, examples of 
such taxa are now available from a diverse 
range of environments24–26,34–61, and their 
reports are continuously increasing (Box 1), 
including Porphyromonas gingivalis and 
Bacteroides thetaiotaomicron in the human 
microbiome56,62–64. B. thetaiotaomicron, an 
anaerobic symbiont found in the human 
intestine, is considered a keystone taxon 
based on empirical evidence56,58. Owing  
to the complexity of microbial communities, 
the importance of connectedness and the 
rapid turnover in both time and space,  
the definition of keystone taxa for 
microbiology needs to be adapted 
from the original concepts proposed in 
ecology30–32. In this Opinion article, we 
propose the following definition: microbial 
keystone taxa are highly connected taxa 
that individually or in a guild exert a 
considerable influence on microbiome 
structure and functioning irrespective of 
their abundance across space and time. 
These taxa have a unique and crucial role in 
microbial communities, and their removal 
can cause a dramatic shift in microbiome 
structure and functioning.

We briefly discuss how microbial 
network analysis can be used to identify 
keystone taxa and focus on recent evidence 
of keystone taxa based on computational 
inference and empirical evidence. We also 
discuss challenges in identifying keystone 
taxa, including the characterization and 
manipulation of such taxa, and explore their 
influence on microbiome functioning as 
well as the factors that may determine their 
distribution and efficacy.

Microbial networks and keystone taxa
With the advent of next-​generation 
sequencing, millions of sequences are 
now available from various environments. 
Network analysis can help disentangle 
microbial co-​abundance and provide 
comprehensive insight into the microbial 
community structure and assembly 
patterns3,65. Several algorithms are available 
to construct microbial networks, and 

demonstrated that the removal of sea stars 
(Pisaster ochraceus, which is a common 
predator of mussels) had a dramatic impact 
on the shoreline ecosystem community 
and local biodiversity at Makah Bay, 
Washington, USA28. Since the term was 
first coined, the definition of keystone taxa 
has followed different lines of thought29–31. 
The definition proposed by Paine in 
1969 mainly suggests that keystone taxa 
are important for community structure 
and integrity, and their influence is non-​
redundant32. In 1996, a study defined 
keystone taxa by introducing the concept 
of ‘community importance’, which was 
calculated from proportional biomass 
and traits31. Subsequently, in 2012, other 
authors30 presented the evolution of the 
term keystone taxa in ecology and how 
its overuse and misuse (for example, 
keystone mutualist, keystone modifier 
and reverse keystone) have resulted in 
considerable confusion about the actual 
meaning (readers are referred to their 
critical appraisal for further information 
on keystone taxa in ecology). Thus, there 
is no uniformly accepted operational 
definition of keystone taxa in ecology, 
especially in microbial ecology. Keystone 
taxa have also been frequently referred to as 
‘ecosystem engineers’ owing to their large 
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these algorithms have been reviewed 
previously19,65,66; thus, for brevity, we only 
present a brief overview (Box 1). Perhaps 
one of the most useful features of network 
analysis is that ‘hubs’ (also termed keystone 
operational taxonomic units (OTUs)), 
which are taxa that are highly associated 
in a microbiome (Fig. 1), can be identified. 
Unlike random networks with a Poisson 
distribution, scale-​free or small-​world 
networks with a power-​law distribution 
comprise such hubs (also referred to as 
highly connected nodes; reviewed in 
refs67,68). These hubs have been proposed 
as keystone taxa, as their removal has been 
computationally shown to cause a drastic 
shift in the composition and functioning of 
a microbiome69,70. Thus, network analysis 
can be a powerful tool for inferring keystone 
taxa from microbial communities. Although 
high betweenness centrality was previously 
used to identify keystone taxa statistically in 
several studies16,39,40, it was recently shown 
that high mean degree, high closeness 
centrality and low betweenness centrality 
can be collectively used to identify keystone 
taxa with 85% accuracy27. Subsequently, 

these scores have been used to find putative 
keystone taxa in microbial networks in 
recent studies12,41,42. The importance of 
a quantifiable threshold for consistent 
identification and validation of keystone 
taxa has been highlighted30, and we 
recommend that the combined score of high 
mean degree, high closeness centrality and 
low betweenness centrality27 should be used 
as a threshold for defining keystone taxa in 
microbial communities.

Recent evidence of keystone taxa
Computational inference. Numerous 
studies have used network-​based scores to 
identify putative keystone taxa in various 
environments (Table 1; see Supplementary 
Table 1). Hubs in microbial networks 
were identified in grassland soils, and the 
Pampa and Cerrado biomes in Brazil were 
shown to harbour different keystone taxa 
mostly belonging to the Actinobacteria 
and Proteobacteria phyla35. A network 
analysis at the continental scale showed 
that bacterial keystone taxa are members 
of the Alphaproteobacteria class and 
Actinobacteria phylum, and fungal 

keystone taxa belong to the Pezizomycotina 
subdivision38. Keystone taxa that were 
not numerically dominant in the 
communities have also been identified in 
the Arctic ecosystem25,26,44,46 and Antarctic 
ecosystem24. Similar reports of numerically 
inconspicuous keystone taxa are also 
available for microbial communities in 
contaminated soils47,48, roots71 and aquatic 
systems24,55,72. Interestingly, our literature 
review revealed that various members of 
the Rhizobiales and Burkholderiales orders 
were consistently identified as keystone 
taxa in different studies and across different 
ecosystems (Table 1; see Supplementary 
Table 1). Rhizobiales comprises not only 
nitrogen-​fixing bacteria, such as Rhizobium 
spp. and Bradyrhizobium spp., but also 
members of the genus Methylobacterium, 
which is known to be endosymbiotic 
and abundant in the phyllosphere73. 
By contrast, Burkholderiales includes 
important genera such as Bordetella, 
Ralstonia and Oxalobacter, which are well-​
known pathogens, as well as Burkholderia, 
which is one of the most versatile and 
diverse terrestrial microbial groups. The 
computational identification does not 
mean that all members of the Rhizobiales 
and Burholderiales can be considered 
keystone taxa (for example, many taxa 
in those orders are subordinate taxa in 
microbial communities and have no major 
influence on community composition or 
functioning). Computational inference 
of Rhizobiales and Burkholderiales as 
keystone taxa can also be due to their 
sheer abundance in various environments. 
Nonetheless, the likelihood of finding a 
keystone taxon within these two orders is 
high, and future studies are now needed to 
evaluate the role of putative keystone taxa in 
microbial functions.

Empirical evidence. Human microbiome 
studies have provided most of the empirical 
evidence of keystone taxa, linking keystone 
taxa to a range of processes, including 
inflammation, colon and gastric cancer, 
starch degradation and stabilization of the 
human-​associated microbiota22,23,56–60,64,74–76 
(Supplementary Table 1). Perhaps one 
of the most prominent keystone taxa 
in humans is Bacteroides fragilis, which 
spurred the alpha-bug or keystone pathogen 
hypothesis59,74. Other examples of keystone 
taxa in humans include P. gingivalis64, 
B. thetaiotaomicron56, Ruminococcus bromii60, 
Methanobrevibacter smithii74 and Helicobacter 
pylori57. Both observational and manipulative 
studies of the gut microbiome show that 
these taxa can exert considerable control 

Box 1 | Microbial co-occurrence and network analysis

The number of papers (based on the Web of Science database) reporting microbial network 
analyses and keystone taxa is increasing exponentially (see the figure; data are based on the Web of 
Science database, time span 2004–2016, keywords ‘microbial network analysis’ and ‘microbial 
keystone’). A wide range of methods and algorithms are available to construct microbial networks. 
Starting with basic Pearson or Spearman rank correlation-​based approaches7,14, microbial networks 
quickly evolved to incorporate more robust methods. For example, the maximal information 
coefficient (MIC) relies on equitability and generality of relationships15 and can yield a variety of 
linear and nonlinear associations among microorganisms that can be interpreted similarly to the 
coefficient of determination (denoted as r2). Local similarity analysis (LSA) that detects change in 
abundance of operational taxonomic units (OTUs) over time in an environment is particularly useful 

for analysing microbial temporal variability 
data16, whereas sparse correlation for 
compositional data (SparCC) is especially suited 
for compositionally diverse microbial data17. 
Moreover, the ensemble approach (CoNet) can 
use multiple measures (similarity, correlation 
and mutual information) with the generalized 
boosted linear model to generate 
comprehensive networks18. A recent study19 
reported that LSA, MIC and SparCC are well 
suited for both count and compositional data 
and are less sensitive to how data are 
distributed, whereas the CoNet ensemble 
approach performs better for data with high 
scatteredness or sparsity. However, it was also 
noted that different approaches may yield 
different results and significance levels for the 
same data set, and although the scores obtained 
from thousands of pairwise correlations are 
typically corrected for type I error using a 
Bonferroni correction or the false discovery rate, 
extremely rare OTUs or OTUs with a large 
number of zeros should be avoided for network 
construction.
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on the composition and functioning of the 
oral and gut microbiome. Examples are also 
available from plant and soil microbiomes, 
where keystone taxa have been identified 
through network-​based scores and linked 
to microbiome functioning and ecosystem 
processes. The effect of abiotic factors (for 
example, sampling time and temperature) 
and host genotypes on phyllosphere microbial 
communities in Arabidopsis thaliana were 

shown to be mediated via microbial keystone 
taxa20. This not only supports the relevance of  
keystone taxa but also provides evidence 
of their importance for plant microbiome 
functioning. Nitrogen-​fixing rhizobia 
have been proposed as keystone taxa, and 
their abundance has been shown to greatly 
improve plant productivity and community 
evenness77. Fungal and bacterial keystone 
taxa were recently identified that were 

linked to organic matter decomposition in 
an agricultural soil39. These taxa were also 
identified as keystones for soil organic matter 
transformation in another study41, indicating 
the importance of similar keystone taxa for 
specific habitats and processes. Moreover, we 
predict that important plant symbionts, such 
as mycorrhizal fungi, function as keystone 
taxa in view of their role as ecosystem 
engineers and their impact on microbial 

Fig. 1 | Keystone taxa in the microbiome. a | Modularity and keystone taxa 
in microbial networks. Nodes (small red dots) represent operational taxo-
nomic units (OTUs), and solid lines represent edges, that is, relationships 
among nodes. A network consisting of many taxa (nodes), without any 
highly interacting keystone taxa (left panel), is similar to a random network 
that has a Poisson distribution of edges per node, that is, most nodes have 
similar number of edges and no highly connected nodes. A microbial net-
work without any modules but with keystone taxa (large black dots) is shown 
in the middle panel. This is a scale-​free network that has a power-​law distri-
bution of edges, that is, only two nodes are highly connected and holding 
the network together. A module is a cluster of highly interconnected nodes. 
A network with two highly connected keystone taxa (large black nodes) that 
are positioned in two distinct modules is shown in the right panel. These 
keystone taxa are holding the modules together. Thus, removal of such 

keystones may cause a dramatic shift in the composition70. b | Empirical evi-
dence of keystone taxa in the human (left panel), plant (middle panel) and 
soil (right panel) microbiomes. Smaller dots and ovals represent general 
members, whereas larger dots represent keystone taxa in the community. In 
the oral microbiome, Porphyromonas gingivalis causes inflammatory tissue 
destruction and initiates imbalance or dysbiosis of the community that 
favours further growth of this keystone taxon74. Similarly , in the human gut 
microbiome, keystone taxa, such as Bacteroides thetaiotaomicron56, 
Bacteroides fragilis59, Helicobacter pylori57 and Ruminococcus bromii60, exert 
considerable control on microbiome structure and functioning. Nitrogen-​
fixing rhizobia have been proposed as keystone taxa as their abundance can 
improve plant productivity and community evenness77. In the soil micro
biome, bacterial and fungal keystone taxa identified using network scores 
have been found to be linked to organic matter decomposition39,41.
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communities, plant diversity and ecosystem 
functioning78,79. A recent study found that 
low abundance keystone taxa that are highly 
connected in the microbiome can explain 
microbiome compositional turnover better 
than all taxa combined80. Indeed, such 
encouraging reports highlight the relevance 
of keystone taxa for microbiome composition 
and functioning.

Challenges in identifying keystone taxa
Correlation does not imply causation. 
Keystone taxa identified using network-​
based scores have been linked to ecological 
processes in many studies (Supplementary 
Table 1), indicating that this is a suitable 
approach. However, network-​based scores 
need to be complemented with experimental 
evidence showing the impact of the keystone 
taxa on microbiome composition and 
function. The detection of keystone taxa 
using network-​based scores alone can be 
biased by habitat filtering, and networks 
can display positive associations between 
non-​interacting microbial members in 
environmental samples. Moreover, network 
scores and co-​occurrence patterns are 
ultimately based on correlations, and 
they must be interpreted with caution, 
as correlation does not mean causation. 
Statistical analyses such as structural 
equation modelling (SEM) can be used 
to move beyond correlation analysis and 
explore causal relationships among keystone 
taxa and microbiome composition or 
function. SEM is an advanced multivariate 
statistical approach that identifies such 
causal relationships and generates strong 
and distinct links between theoretical and 
experimental ideas81. The strength of SEM 
lies in the fact that it is theory oriented 
and not null hypothesis based, and thus, it 
provides a framework to interpret complex 
networks involving numerous response 
and predictor variables. Upon assessing the 
univariate and multivariate normality, an 
initial model is generated on the basis of 
existing knowledge, site information and 
background data82,83. Subsequently, a χ 2 test is 
conducted to assess whether the covariance 
structure indicated by the model adequately 
fits the actual covariance structure of the 
data, with a nonsignificant χ 2 test result 
suggesting sufficient model fit. Importantly, 
SEM requires a minimum sample size of 50 
(ref.81). Moreover, determining the relative 
influence of keystone taxa can also be a 
challenge84. A recent study used sparse linear 
regression with bootstrap aggregation in 
a discrete-​time Lotka-​Volterra model to 
identify B. fragilis and Bacteroides stercoris 
as keystone taxa with disproportionate 

Table 1 | Summary of studies reporting keystone taxa in different ecosystems

Ecosystem or habitat Keystone taxaa Refs
Computational inference

Grasslands • Burkholderiales
• Sphingobacteriales
• Clostridiales
• Actinomycetales
• Acidobacteria GP4

34–36

Forest or woodlands • Actinomycetales
• Acidobacteria GP4
• Rhizobiales
• Burkholderiales
• Clostridiales
• Sphingobacteriales
• Rhodobacterales
• Verrucomicrobia

8,35,37,38,61

Agricultural lands • Gemmatimonas
• Acidobacteria GP17
• Xanthomonadales
• Rhizobiales
• Burkholderiales
• Solirubrobacterales
• Verrucomicrobia

35,40,42,43

Arctic and Antarctic ecosystems • Rhizobiales
• Burkholderiales
• Actinobacteria
• Alphaproteobacteria

25,26,44,46

Contaminated soil • Rhizobiales
• Nitrospira
• Pseudomonadales
• Actinobacteria

47,48

Plant-​associated microbiota • Acidobacteria GP1, GP3 and GP6
• Rhizobiales
• Burkholderiales
• Pseudomonadales
• Bacteroidetes
• Frankiales

40,49,50

Aquatic ecosystems • Pelagibacter
• Oceanospirillales
• Flavobacteriaceae
• Nitrospira
• Rhodobacteradaceae
• Alteromonadaceae
• Chromatium
• Rhizobiales
• Burkholderiales
• Chlorobium
• Verrucomicrobia
• Chloracidobacterium
• Chloroflexi
• Candidatus OP3

24,51–55,72

Empirical evidence

Agricultural landsb • Gemmatimonas
• Acidobacteria

39,41

Phyllosphere • Albugo
• Dioszegia

20

Human oral microbiome Porphyromonas gingivalis 64,74

Human gut microbiome • Helicobacter pylori
• Methanobrevibacter smithii
• Actinobacteria
• Bacteroides fragilis
• Bacteroides stercoris
• Bacteroides thetaiotaomicron
• Ruminococcus bromii
• Klebsiella pneumoniae
• Proteus mirabilis

22,23,56–60,76

aMembers of Rhizobiales and Burkholderiales are consistently present across ecosystem types, except for the 
human microbiome. Keystone taxa across individual studies and links between keystone taxa and specific 
microbial ecosystem processes as reported in relevant studies are shown in Supplementary Table 1. bKeystone 
taxa were initially identified using network-​based scores and linked to organic matter decomposition.
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influence on the gut microbiome structure22. 
Using a novel approach called Learning 
Interactions from MIcrobial Time Series 
(LIMITS) on metagenomic data, it was 
statistically shown that the moderately 
abundant B. fragilis and B. stercosis can exert 
significant influence on the microbiome, 
and any perturbations applied to these taxa 
have a large impact on microbial community 
structure. This is encouraging because the 
algorithm identified B. fragilis as a keystone 
taxon, thus agreeing with existing  
empirical data74.

Characterization and manipulation. 
Although experimental manipulation  
(for example, removing a putative keystone  
taxon to assess the impact) is the popular 
choice among plant and animal ecologists, 
one of the fundamental challenges that 
microbiologists are confronted with is 
the characterization and manipulation 
of such taxa. Manipulating growth or 
co-culturing microorganisms on nutrient 
media or Petri dishes or in microcosms 
can be challenging owing to individual 
physiological requirements. In past years, 
novel approaches have been developed 
to overcome the uncultivability issue. 
For example, the isolation chip, which 
is composed of numerous diffusion 
chambers, enables in situ cultivation 
of previously uncultivated microbial 
species85. Similarly, a microbial trap has 
been developed to capture and culture 
filamentous Actinobacteria under in situ 
conditions86. Moreover, on-​chip microbial 
culture coupled with surface plasmon 
resonance enables the in situ detection 
of novel and rare microorganisms87. 
Droplet-based microfluidic technology 
also offers the opportunity to mimic 
natural conditions and co-​cultivate 
synergistic microbial communities88, 
and the microbiome-​on-a-​chip approach 
enables the study of microbial networks 
and their associations with host 
plants89. Future studies may include 
such promising approaches to isolate 
and characterize keystone taxa from 
various environments and explore their 
functioning. Removal of keystone taxa 
may lead to an alternative stable state 
(sensu90) of the microbial network, which 
results in dysfunction or even renewed 
functioning if the removed keystone had 
a negative impact. Future studies may also 
enable the experimental manipulation 
of microbial network structure in 
synthetic communities to assess whether 
the removal of keystone taxa disrupts 
microbiome functioning.

Influence on the microbiome
Influence, irrespective of abundance, 
distinguishes keystone taxa from dominant 
taxa. A dominant species often affects 
ecosystem functioning or a specific process 
exclusively by virtue of sheer abundance 
(Fig. 2a), whereas keystone taxa might 
exert their influence on microbiome 
functioning irrespective of abundance. 
The importance of keystone taxa may also 
be related to the broadness of a process, 
that is, a process involving many steps as 
well as functionally and taxonomically 
diverse microbial groups1,91. For example, 
dominant taxa with large biomass or major 
energy transformations might influence 
broad processes, such as denitrification or 
organic matter decomposition. By contrast, 
the influence of rare keystone taxa might 
be more pronounced if a process is narrow, 
consisting of a single step (for example, 
nitrogen fixation or ammonia oxidation) 
and being carried out by a small group 
of specialized microorganisms1,91. We 
postulate that the influence of rare keystone 
taxa on an ecosystem process is inversely 
proportional to the broadness of the process. 
However, it should be noted that some 
keystone taxa, such as B. thetaiotaomicron 
in the human intestine, can be numerically 
dominant, and thus, the distinction 
between dominant taxa and less abundant 
keystone taxa is not always clear. Whether 
numerically inconspicuous keystone taxa 
are more influential on narrow processes is a 
hypothesis that needs further investigation.

Keystone taxa might use a range 
of strategies to exert an influence on a 
microbiome. For example, they might 
function via intermediate or effector 
groups, whose abundance can be selectively 
modulated to regulate community 
structure and functioning23,74. Such 
selective modulation might include 
promotion (commensalism) or suppression 
(amensalism) of effector groups by secreting 
metabolites, antibiotics or toxins. In humans, 
P. gingivalis affects the community by causing 
dysbiosis, which results in inflammation 
and periodontitis64. Here, effector groups 
are accessories used by keystone taxa to alter 
microbiome composition and manipulate 
their hosts92, and dysbiosis is the imbalance 
in the composition of the microbiome93.  
In the case of chronic periodontitis,  
P. gingivalis functions as the keystone taxon, 
whereas Streptococcus gordonii functions 
as the accessory94. P. gingivalis impairs host 
defence and causes overgrowth of the oral 
commensal bacterium S. gordonii. The 
co-adhesion of this keystone–accessory 
pair causes inflammatory tissue destruction 

and the release of nutrient-​rich exudates, 
initiating dysbiosis of the oral microbiota 
and favouring further growth of  
P. gingivalis74,94. Similarly, in the case  
of inflammatory bowel disease or Crohn’s 
disease, dysbiosis results in reduced diversity 
of major phyla such as Bacteroidetes and 
Firmicutes and increased abundance of 
Enterobacteriaceae93,95.

In the plant microbiome, certain 
strains of Pseudomonas fluorescens 
produce a secondary metabolite 
(2,4-diacetylphloroglucinol) that suppresses 
Gaeumannomyces graminis var. tritici, 
which causes the take-​all disease in 
wheat96. Alternatively, keystone taxa might 
produce bacteriocins to selectively alter 
microbiota composition. For example, 
bacteriocin production by Enterococcus 
faecalis can induce niche competition in the 
gastrointestinal tract to change microbiota 
composition78. Keystone taxa might also 
engage in synergistic relationships and 
change the abundance of their partners, 
and this could have an effect on community 
structure and performance. Some 
members of the Burkholderia genus can 
function as an endosymbiont in arbuscular 
mycorrhizal fungi to change the abundance 
and community characteristics of this 
important fungi79, which subsequently 
may alter plant community richness and 
productivity97. Although not considered 
yet, we hypothesize that mycorrhizal fungi 
function as keystone taxa because these 
plant symbionts have a major impact on soil 
microbial communities, plant diversity and 
ecosystem functioning79. Thus, keystone 
taxa can use different strategies to shape the 
microbiota in their favour, but the selection 
of a particular strategy would depend on 
the microenvironment. We speculate that 
many such strategies are aimed to gain 
direct benefits, such as replacing indigenous 
microflora (in case of E. faecalis), gaining 
competitive advantage in the community  
(in case of P. gingivalis) or promoting further 
growth (in case of B. thetaiotaomicron). 
However, it is possible that metabolites 
or by-​products from keystone taxa may 
influence members of the microbiome with 
indirect or even no benefits to the keystones.

Putative drivers of keystone taxa
The presence of keystone taxa in a 
microbiome does not necessarily guarantee 
their influence because a number of factors 
may still determine their distribution and 
efficacy (Fig. 2b). For example, spatiotemporal 
heterogeneity can be a major driver of the 
abundance and distribution of keystone 
taxa29,31,84. This is particularly true for soil, 
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which is one of the most heterogeneous 
and multifaceted environments. Similarly, 
seasonal variability determines the 
structural and compositional properties 
of microbiomes in an environment, and as 
such, a keystone might be present only in a 
specific season or time period.

The occurrence and functioning of a 
keystone will also depend on its position 
in the microbiome. Recently, the tenet of 
core microbiomes and holobionts has been 
proposed for humans6,98 and plants92, and 
readers are referred to references6 and92 for 
the taxonomic and functional definitions 
of a core microbiome. Keystone taxa might 
be part of the core microbiome that is 
consistently present in an environment 
regardless of changes in environmental 
conditions92,98. A seminal paper presented 

the first evidence of a core gut microbiome 
in obese and lean twins99. A recent study 
reported an evolutionarily conserved core 
microbiome in plant roots, and, intriguingly, 
some of the well-​known keystone taxa, 
such as Rhizobium, Bradyrhizobium and 
Burkholderia, are also part of the core root 
microbiome100. The contribution of keystone 
taxa will be higher if they are part of the core 
microbiome and consistently present in an 
environment, highlighting the importance of 
such taxa for microbiome functioning23.

Microbiomes can also harbour keystone 
guilds (that is, groups of keystone taxa with 
similar functioning)31 (Fig. 2c). Examples of 
such guilds that can alter the structure and 
dynamics of ecosystems are common in the 
animal world101. Perhaps the most famous 
example is the three species of kangaroo 

rat, which can be considered a keystone 
guild in the Chihuahuan desert, USA, and 
has a strong impact on local biodiversity 
and biogeochemical processes101. In the 
microbial world, keystone guilds may arise 
on the basis of a number of factors, including, 
for example, complementary resource 
acquiring strategies, resource sharing, 
niche partitioning and spatiotemporal 
coherence62,84. Whereas numerically 
inconspicuous keystone taxa might have 
a greater influence on narrow processes, a 
keystone guild consisting of diverse keystone 
taxa within a community might also influence 
a broad process. For example, certain 
keystone guilds of co-occurring denitrifiers 
can have an important role in denitrification, 
a broad process that involves heterogeneous 
groups of microorganisms102. We expect that 

Fig. 2 | Keystone taxa in microbial communities and the factors influ-
encing their functioning in an environment. a | The dominant taxa (light 
orange) affect microbiome functioning exclusively by virtue of sheer abun-
dance, whereas keystone taxa (green) exert their influence irrespective of 
their abundance. As the impact of dominant species on a process is primarily 
due to greater abundance, the broadness of that process is less important. 
Here, broadness implies that a particular process consists of many steps and 
involves diverse microbial groups. By contrast, keystone taxa exert their 
influence by selectively modulating accessory microorganisms, and thus, 
they might have a greater influence on narrow processes (the processes that 
consist of a single step or a few steps and involve a select group of micro
organisms). The accessory microorganisms whose abundance is selectively 
promoted by keystone taxa are shown in blue, whereas other community 
members are shown in dark orange and purple. b | Environmental and eco-
logical factors that may determine the distribution and performance of 
keystone taxa in an environment. The influence of keystone taxa on a micro-
bial process is inversely proportional to the broadness of that process. 

Spatiotemporal heterogeneity can drive the abundance and distribution of 
keystone taxa in any environment, especially in soil. The impact of a key-
stone taxon may be higher if it belongs to the core microbiome that is con-
sistently present in an environment regardless of changes in environmental 
conditions. Keystone taxa may function alone, or a group of such taxa with 
similar functioning may form a keystone guild and alter the structure and 
dynamics of the ecosystem that they thrive in. In the microbial world, it is 
possible that keystone taxa may be functionally redundant or that they are 
only relevant in a particular context. Hysteresis suggests a time lag between 
the functioning of a keystone and its detectable outcome in the micro
biome. c | Hypothetical diagram showing various modes of functioning of 
keystone taxa in an environment. Individually , keystone taxa (teal dot) might 
have greater influence on a narrow process (for example, biological nitrogen 
fixation performed by highly specific microorganisms). A keystone guild 
comprising multiple keystone taxa (yellow , black and purple dots) within a 
community might also be able to influence a broad process, such as organic 
matter decomposition and denitrification.
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examples of such keystone guilds in microbial 
communities will continue to be identified 
in the future. Indeed, such guilds may be 
particularly powerful if they belong to the 
core microbiome.

Keystone taxa or members of keystone 
guilds might be functionally redundant, or 
their effect might be context dependent. 
Such context dependency or conditionality 
may be more common in environments 
with turbulence or high spatiotemporal 
variability31. Thus, keystone taxa may not 
always be present in an environment or may 
not have the same impact on the community 
under changing conditions. A taxon should 
only be considered a keystone in the context 
or condition under which it has a large 
influence. A plausible challenge for assessing 
keystone taxa is also the fact that there 
might be a hysteresis effect, that is, a time 
lag between the change in the abundance 

of keystone taxa and their influence on 
microbiome functioning. With rapid 
microbial turnover, identifying such lags can 
be a daunting task. The above discussion 
of potential drivers of keystone taxa is not 
exhaustive, and there may be other factors 
influencing these taxa in the microbial world.

The rare species concept
Keystone taxa underline the importance 
of numerically inconspicuous taxa for 
microbiome functioning, which is also 
congruent with the rare taxa concept. 
Indeed, the fundamental premise of 
keystone taxa and rare taxa is the same: 
the abundance of a species is not the best 
determinant of its contribution to the 
community103. The importance of rare 
microorganisms has been documented for 
many biogeochemical processes, including 
nitrification, denitrification, methanogenesis, 

methanotrophy and sulfate reduction 
(reviewed in refs103,104). For example, 
Desulfosporosinus spp., which only represent 
0.06% of the total community, have a pivotal 
role in sulfate reduction and carbon flow 
in peatland soils105. The rare biosphere was 
also shown to be important in the human 
microbiome and even in depauperate 
ecosystems104. Evidence of such low abundant 
taxa with an overproportional influence 
obviously raises the possibility that members 
of rare biosphere can also be keystone taxa.

Outlook
Beyond the dominant taxa with large biomass 
and major energy transformations, keystone 
taxa can orchestrate microbial communities 
to perform ecosystem processes. This 
Opinion article highlights the relevance 
of keystone taxa as drivers of microbiome 
structure and functioning. Owing to current 

Fig. 3 | Characterizing and harnessing keystone taxa. Hypothetical 
diagram illustrating the tools (hexagons) for linking keystone taxa to eco-
system functioning and the research areas (circles) where keystone taxa can 
be used. Although network analysis can be used to statistically identify 
keystone taxa in microbial networks, it is important to link such taxa to 
ecosystem processes. With the advent of newer tools, such as chip or 
culture-​based methods, keystone taxa can be isolated from environments 
and cultured or co-​cultured. Functional profiling of such taxa can be 
performed using RNA-​stable isotope probing (SIP) coupled with metatran-
scriptomics or metaproteomics. Upon functional profiling, the relative 
importance can be estimated through microbiome modelling. Such models 
involving causal relationships can be used to reveal the contribution of key-
stone taxa to ecosystem processes. There are several areas where keystone 
taxa or guilds have been identified and thus can be harnessed for improved 
ecosystem services. For example, emissions of nitrous oxide (N2O), a potent 

greenhouse gas, can be mitigated by manipulating denitrifier guilds. 
Denitrification is a major contributor to nitrous oxide emissions. Similarly , 
keystone taxa that are linked to soil organic matter (SOM) decomposition 
can be manipulated to enhance carbon sequestration in soil. Harnessing 
keystone taxa in plant microbiomes can be valuable to enhance plant pro-
ductivity in agricultural systems or to alter performance of invasive plants. 
Most of the empirical evidence on keystone taxa emerged from the human 
microbiome studies where keystone taxa such as Porphyromonas gingivalis, 
Bacteroides fragilis, Bacteroides thetaiotaomicron and Ruminococcus bromii 
have been identified. Targeted manipulation of these pathogens can facil-
itate medical interventions and improve human health. In aquatic systems, 
it has recently been shown that keystone taxa can explain microbiome 
compositional turnover better than all taxa combined80. Such keystone taxa 
can be harnessed to predict shifts in the community or to manipulate 
microbiome functioning.
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tautonyms and misconceptions surrounding 
keystone taxa, we proposed a definition 
of keystone taxa in microbiology. We also 
presented a summary of computational 
inference and empirical evidence of over 
200 keystone taxa reported for soil, plant 
and marine ecosystems and the human 
microbiome. We explored various strategies 
of how keystone taxa exert their influence in 
microbial communities. We also discussed 
how keystone taxa may function individually 
or as part of a guild to influence narrow and 
broad processes. We noted the usefulness 
of correlation scores but emphasized the 
importance of causal relationships and 
experimental studies for identifying keystone 
taxa. To aid future studies, we summarized 
a number of approaches that can be used 
to characterize and harness keystone taxa 
in various ecosystems, and we identified 
uncharted territories where microbial 
keystone taxa have not been identified.

Network scores have been popular to 
statistically identify keystone taxa in recent 
years, and it is important to continue this 
momentum to strengthen the repertoire of 
keystone taxa. For a range of taxa, it has been 
shown that keystone taxa identified using 
statistical tools indeed have an impact on 
microbiome structure and performance20,39,80. 
However, for many other keystone taxa, 
such experimental evidence is still missing. 
Hence, it is a challenge to complement 
statistical evidence with empirical evidence 
for keystone taxa in microbial communities 
(some experimental tools for doing this are 
highlighted above). Moreover, information 
on keystone taxa from the desert, tropical 
forest or vadose zone is rare or not yet 
available. Similarly, knowledge of how 
keystone taxa respond to environmental 
disturbance, pathogen attack in plants or 
medical intervention in humans would be 
valuable. For example, determining whether 
keystone taxa help microbiome resilience 
against perturbations could be tested. The 
role of keystone taxa in plant invasion is an 
equally interesting area, especially in the 
light of observations that some invasive 
tree species cannot establish themselves 
without their microbial symbionts or that 
invasive species alter the soil microbiome106. 
Moreover, our knowledge of fungal, archaeal 
and protistan keystone taxa is limited, and 
only a few studies have considered fungal–
bacteria or fungal–archaeal and bacterial–
archaeal co-occurrence networks38,39. 
A cross-​domain network may reveal how 
members of different taxonomic groups 
associate with each other, whether they share 
resources or whether there are keystone taxa 
important for inter-​kingdom associations. 

Another intriguing question is whether 
keystone taxa in microbial communities 
follow similar ecological principles (for 
example, drift, dispersal, diversification and 
environmental selection; sensu12) as keystone 
taxa in plant or animal kingdoms.

Linking community structure to function 
is a central goal in microbial ecology11, 
and it is necessary to extend microbial 
co-​occurrence patterns and keystone taxa 
to ecosystem processes (Fig. 3). Studies 
investigating keystone taxa could include 
promising culturing approaches to explore 
complex ecological relationships, such as 
commensalism and amensalism, in natural 
conditions and assess the effect of keystones. 
The actual importance of keystone taxa to 
microbiome functioning and ecosystem 
processes can only be derived from robust 
functional profiling using the latest tools, 
such as RNA-​stable isotope probing107 
coupled with metatranscriptomics or 
metaproteomics. Upon identifying keystone 
taxa in an environment, determining if there 
are structural keystones and functional 
keystones depending on whether they affect 
microbiome structure or functioning could 
be tested. As any change in microbiome 
structure may also have consequences for 
microbiome functioning, a clear distinction 
between structural and functional keystones 
in microbial communities is questionable. 
Nonetheless, the latest molecular tools 
have empowered microbiologists to test 
such theories and ideas. The contribution 
of microbial communities for ecosystem 
processes is often missing or insignificant 
in ecosystem models5. These models 
mostly consider the overall community 
characteristics (abundance, composition 
and diversity), which might blur the actual 
contribution of important microbial 
members. Keystone taxa observed across 
habitats and studies might be the missing 
pieces of the puzzle that could help 
microbial ecologists explain the unexplained 
variation in ecosystem processes.
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