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A B S T R A C T

Analytical sociology explains macro-level outcomes by referring to micro-level behaviors, and its
hypotheses thus take macro-level entities (e.g. groups) as their units of analysis. The statistical
analysis of these macro-level units is problematic, since macro units are often few in number,
leading to low statistical power. Additionally, micro-level processes take place within macro
units, but tests on macro-level units cannot adequately deal with these processes. Consequently,
much analytical sociology focuses on testing micro-level predictions. We propose a better al-
ternative; a method to test macro hypotheses on micro data, using randomization tests. The
advantages of our method are (i) increased statistical power, (ii) possibilities to control for micro
covariates, and (iii) the possibility to test macro hypotheses without macro units. We provide a
heuristic description of our method and illustrate it with data from a published study. Data and R-
scripts for this paper are available in the Open Science Framework (https://osf.io/scfx3/).

1. Introduction

Analytical sociologists share James Coleman's outlook that “[t]he principal task of the social sciences lies in the explanation of
social phenomena, not the behavior of single individuals” (1990, p.2). Looking at empirical research in sociology, however, it is clear
that while “[s]ocial theory continues to be about the functioning of social systems of behavior, (…) empirical research is often
concerned with explaining individual behavior” (Coleman, 1990, p.1). The analysis of individual behavior is necessary for a complete
understanding of systemic outcomes (a position known as ‘methodological individualism’). As analytical sociologists stress, however,
it is not generally sufficient for this understanding (e.g., Boudon, 1979). The reason for the lack of sufficiency lies in the potentially
complex ways in which individual behaviors interact to produce macro-level outcomes. The explanation of a macro-level outcome in
terms of its generative interdependent individual actions, is variously known as the ‘micro-macro link approach’ or the ‘social
mechanisms approach’. In the words of Hedström (2005, p.24) “[t]he core idea behind the mechanism approach is that we explain
not by evoking universal laws, or by identifying statistically relevant factors, but by specifying mechanisms that show how phe-
nomena are brought about.” Hedström offers a definition of mechanisms as consisting of “(…) a constellation of entities and activities
that are organized such that they regularly bring about a particular type of outcome” (2005, p.25).

The potential complexity of social mechanisms has long been acknowledged (e.g. Boudon, 1977; Lindenberg, 1977). Coleman
(1990, p.22), for instance, stresses that the macro-level outcomes to be analyzed frequently involve true interdependencies of in-
dividual behavior, going beyond mere “aggregation”. Hedström (2005, p.26) similarly emphasizes that “(…) the same entities
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(individuals actors) strung together in different ways can be expected to regularly bring about different types of outcomes”, sug-
gesting that the “stringing together” (i.e., the way in which individual actions interact) is an important factor determining macro
outcomes. Obviously, not all social mechanisms are complex in this sense, and ‘easy cases’ can be found where simple aggregation
explains macro outcomes. Generally, however, it is safe to say that analytical sociology has a lot to offer when explaining macro-level
outcomes produced by interdependent individual actions. For the explanation of such phenomena, we “(…) have to look at the system
of interaction between individuals and their environment, that is, between individuals and other individuals or between individuals
and the collectivity” (Schelling, 2006, p.14). To understand this system of interaction, analytical sociological theories of social
mechanisms are comprised of at least two parts: (i) a theory of individual behavior (the “micro foundations”, cf. Wittek et al., 2013,
p.5), and (ii) a theory of how individual behaviors combine, under specific rules (i.e., norms, institutions), to produce macro-level
outcomes (Coleman, 1990).

The focus on social mechanisms implies that in empirical research at least some of the hypotheses (and according to analytical
sociologists the quintessentially “sociological” among them) take human collectivities such as groups, teams or societies as their units
of analysis. This is true for most studies in the domain of ‘experimental behavioral game theory’ (e.g., Camerer, 2011), on which we
focus in this paper and in which groups of participants make strategic choices. The interest of such games (e.g., public good games,
coordination games, volunteer's dilemmas, etc.) lies not only in the behavior of individuals, but also in the group-level outcomes (e.g.,
whether the group's public good is successfully produced). Treating experimental groups as the unit of analysis for at least some
hypotheses seems to imply that a great many participants must be recruited and tested, which is potentially very onerous, as sta-
tistical power of tests using macro-level outcomes is generally low with a small number of groups. Therefore, most studies from this
domain focus on testing the micro-level hypotheses implied by their theories, which increases statistical power because of a larger
number of observations.

Focusing on the explanation of individual behavior works at least to some extent in the simple cases in which the macro-level
outcome is an aggregate (such as a count, a sum or a mean) of individual actions (or their consequences), for which a sampling
distribution can be derived. For instance, in an experimental linear public goods game with several treatments (e.g. Fehr and Gachter,
2000), mean contributions to the public good by participants can be computed per treatment, and treatments can be statistically
compared with regard to this mean. But even in this simple case the researcher has very little information about the sampling
distributions of macro-level explananda (e.g., total contribution at the group level) for different treatments, due to the low number of
groups.

From an analytical sociology perspective, testing only individual-level hypotheses fails altogether when the macro-level outcome
depends on interdependent individual actions in more complex ways. In such cases, the sampling distribution of aggregated in-
dividual behavior (in the sense of counts, sums or means) does not equal the sampling distribution of the macro-level outcome.
Moreover, the latter distribution (which is necessary for statistical inference concerning macro-level hypotheses) frequently cannot be
analytically derived. For instance, even in a simple step-level public goods game (e.g., Kerr, 1992, Van de Kragt et al., 1983), where
the public good is produced if and only if at least a certain minimum number of group members contribute, a higher number of
contributors across all groups does not imply a higher number of ‘successful’ groups (the relevant macro-level outcome). The number
of successful groups critically depends on the distribution of contributors across groups, and the aggregate sum of contributors
contains limited information about this. Hence, one is again left with taking observed groups as the unit of analysis for inference
about the macro-level outcome, resulting in low statistical power unless a considerable number of groups is available.

In this paper we offer an alternative to the standard solutions employed in experimental research of either exclusively focusing on
individual behavior or settling for low power tests and propose and illustrate a methodology allowing statistical inference concerning
the micro-macro link central to analytical sociology (Buskens et al., 2014; Hedström and Swedberg, 1998), using micro-level data only.
Our method allows statistically more powerful inferences about social mechanisms by exploiting all the information about macro-
level outcomes the data contain. Since we make all the data and R-scripts used for this research publicly available on the Open Science
Framework (https://osf.io/scfx3/), our methodology can be employed by any researcher whose data have a certain structure and
whose data and theory meet two assumptions.

The data structure to which our method applies is as follows. A set of N micro-level units (typically, (the behavior of) individual
people) is distributed across T treatments, with each micro unit assigned to a single treatment (i.e., in a between-subjects design). In
the remainder we will refer to such a distribution of micro units across treatments as a permutation. Within each treatment t the micro
units are distributed across Kt groups, with each micro unit assigned to a unique group. In the remainder we will refer to such a set of
groupings (one per treatment t) as a partition. The two core assumptions of our methodology are that (i) the micro-macro link or social
mechanism is formally expressible as a function of the micro-level data (‘individual behavior’), and (ii) the macro-level units
(‘groups’) in the data are randomly formed and do not lead to statistically dependent individual behavior (i.e., individual behavior is
statistically independent of group membership).1

Data from behavioral game theory experiments often satisfy these two assumptions. First, such research typically involves explicit
‘rules’ mapping individual behaviors to group outcomes and these rules thus codify the experiment's social mechanism. Meeting this

1 This independence is potentially conditional on covariates such as ‘treatment group’ or ‘order of experimental tasks’. Also, sometimes data on
observational covariates are collected within an experiment. Representing all such experimental and observational covariates by the symbol Z, the
second assumption can be formally expressed as Y ⊥ X |Z, where Y signifies individual behavior and X group membership. In words: individuals'
behavior in each treatment is statistically independent, conditional on relevant other variables. These other variables may be demographic (sex, SES,
education, etc.), personal characteristics (social preferences, intelligence, etc.) or behavior or choices in previous tasks of the experiment.
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assumption forces the researcher to explicate the social mechanism at the core of her theory. Quite apart from statistical inference,
this assumption is a conditio sine qua non for analytical sociology. Second, experimental macro units (such as groups or networks) are
very often artificially created in the laboratory, and hence do not involve many of the statistical dependencies real-world groups
have. This renders the second assumption more plausible. Note, however, that experiments involving communication between in-
dividuals before the behavior of interest almost inevitably violate the second assumption. This is not to say our method is principally
unsuited to observational research, but the purest illustrations are likely found in experiments. Therefore, we draw our two examples
from a published experimental paper in the field of experimental behavioral game theory. The paper used for illustration is the
Dijkstra and Bakker (2017) publication on Step-level Public Goods (SPG).

In the next section we state the purpose of our method and give its outline in terms of six steps that have to be completed in order
to apply it. The subsequent section illustrates with two examples. A conclusion and discussion section closes the paper.

2. Purpose and outline of our method

The purpose of our paper is to introduce and illustrate a statistical method enabling inferences on the social mechanism or micro-
macro link in applications, by deriving the sampling distributions of relevant macro-level explananda using micro-level data in those
applications. Our method is based on the principle of randomization tests (e.g., Edgington, 1995) to compare different conditions
under which the social mechanism under consideration is predicted to yield different macro-level outcomes (we will consistently use
the term “treatments” to refer to these conditions). We are thus concerned with research in which a number of human groups (such as
societies, communities, teams, neighborhoods, etc.) are categorized into different treatments (in our illustrations experimentally, but
potentially also observationally). A randomization test computes a statistic in the sample (here denoted S*) and compares its value to
the distribution of that statistic (S) assuming that the micro-level units of the treatments are exchangeable, i.e., the treatments are
identical (the macro-level H0). The “micro-level units of the treatments are exchangeable” is implemented in the randomization test
by repeatedly randomly allocating all micro-level units (of all treatments combined) to the treatments, i.e., by considering alternative
random permutations. The exact sampling distribution under H0 is obtained by tabulating the statistic S as calculated for each
possible permutation. Relevant p-values of the randomization test can then be computed.

Our test is based on the simple intuition that with random assignment of participants to treatments (i.e., random permutations),
and with randomly formed groups within treatments (i.e., random partitions given the permutations), experimental groups are
arbitrary. Thus, rather than testing macro-level hypotheses on these arbitrary groups, the test considers all permutations and all
partitions that could have occurred given the H0 of exchangeable micro-level units and identical treatments. More specifically, six steps
must be completed to apply our method. The contents of step 6 depend on whether a homogeneous or heterogeneous version of our test
is employed. In a homogeneous test, there are no covariates in the data explaining individual behavior, except for design char-
acteristics such as different roles agents may have in the social situation, and the treatment identifier. In a heterogeneous test, such
covariates do exist and are used when modeling individual behavior. Examples 1 and Examples 2 below illustrate the homogeneous
and heterogeneous cases, respectively. The six steps of our method are:

1. The macro-level explanandum (S) must be expressed as a function of micro-level behavior.
2. A (statistical) micro-level model must be estimated predicting individual behavior as a function of the treatment and potentially

other covariates.
3. Based on the first two steps, compute the observed sample value (S*) of the explanandum. Note how S* is based on the observed

permutation and partition of micro-level units, in the data.

Then, for each of a fixed number N of iterations, take steps 4 through 6. Step 4 generates a new permutation of micro-level units,
whereas steps 5 and 6 mirror steps 2 and 3, respectively:

4. Permute the micro-level units across the treatments, such that each micro unit is assigned to a unique treatment. It is important to
note that each micro unit together with all its values on the outcome variable (e.g. behavior choice), and all covariates (in the het-
erogeneous case) is randomly assigned to a treatment, in this step.

5. Estimate the same micro-level model as specified in step 2, but this time on the permuted data, rather than on the original data.
With the same micro-model we mean that the statistical micro-model has the same parameters as the model in step 2, but the
parameters are once more estimated using the permuted data, that is as if the current permutation were the true assignment of micro-
level units (with all their variable scores) to treatments.

If a homogeneous test is implemented, the micro-level predictions in step 5 (and step 2) will be identical for all micro-level units
with the same role, assigned to the same treatment in a given permutation. Consequently, under a homogeneous test all possible
partitions given a permutation yield the same value of the macro-level outcome S:

6 (Homogeneous). Compute S for this permutation.

If a heterogeneous test is implemented, the micro-level predictions in step 5 (and in step 2 as well) may differ among micro-level
units assigned to the same treatment in a given permutation, since other covariates besides treatments are used to model individual
behavior. Thus, not all possible groups of micro-level units from the same treatment in a given permutation necessarily yield the same
macro-level outcome, and we also have to inspect the different possible partitions given each permutation. Step 6 then becomes:
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6 (Heterogeneous). In the given permutation, consider K partitions. For each of these K partitions, compute S and tabulate the
distribution of the K values of S, for this permutation.

In a typical case (as in our examples below), micro-level units are so numerous that it is impractical to exhaustively enumerate all
N permutations mentioned at step 4 and all K partitions mentioned at step 6 (Heterogeneous), when applicable. In these cases, N
permutations are randomly drawn from the universe of permutations, and steps 4–6 are repeated many times (N=10,000, in our
examples). Within each of these repetitions, step 6 (Heterogeneous), if applicable, is also repeated many times (K = 500 partitions, in
Example 2).

Care must be taken that the permutations and partitions in steps 4 and 6 respect the original study design characteristics such as
roles agents may have in the social situation. For instance, if each group within a treatment by design consists of fixed numbers of
individuals with certain roles (such as one leader and three followers, or two parents and one child), then each partition in step 6
must yield groups of the same composition. Similarly, if a particular treatment in the original study contained 25 women and 13 men,
and if the gender composition is fixed by design, then in each permutation this treatment must contain 25 women and 13 men.

3. Two examples

To facilitate the understanding of our method, we draw two examples from the Dijkstra and Bakker (2017) publication on Step-
level Public Goods (SPG), from this journal.

Some theoretical and empirical background for our two examples
Many researchers regard the cooperative solution of adaptive problems (such as hunting or defense) as a key driver of human

evolution (e.g., Cosmides and Tooby, 1992; Kiyonari et al., 2000; Fehr and Fischbacher, 2003; Nowak, 2006; Mesterton-Gibbons and
Dugatkin, 1992; Trivers, 2006). However, cooperation is as much a problem as it is an adaptive solution. This conclusion follows from
the analysis of the large number of social situations producing social dilemmas that are identified in the behavioral sciences (Kollock,
1998; Dawes, 1980). In social dilemmas individual interests are at odds with group interests, in that all group members would be
better off if cooperation were wide-spread, but no individual group member has sufficient incentives to be the (sole) initiator of
cooperation.

Ranking high among cooperation problems are collective action attempts aimed at the production of public goods (or collective
goods; Ledyard, 1995; Olson, 1965). With respect to public goods, individuals participating in the joint action are said to invest in the
(production of the) public good. Public goods are goods for which it is true that (i) consumption by one individual does not rival with
consumption by another individual (jointness of supply), and (ii) it is (practically) infeasible to exclude individuals from consumption
(non-excludability) (Offerman, 2013). The latter characteristic makes provision of the good through the market mechanism im-
possible, since consumption cannot be rationed by prices. The former characteristic renders the production of public goods rife with
social dilemmas. In particular, if no single individual has sufficient interest in the public good and/or is sufficiently resourceful so as
to be willing and able to produce the public good alone, various social dilemmas arise (Raub et al., 2015). The social movements
literature in particular (e.g., McAdam and Diani, 2003; Goodwin and Jasper, 2014) is rife with examples of real-world public goods,
as is the work of Elinor Ostrom (1999).

Coordination problems (Ochs, 1995) present an important class of social dilemmas associated with public good production. In
coordination problems what is the best course of action for each individual depends on the behavior of others. Coordination problems
in public good production typically arise when the good's “production technology” implies that the good is produced if and only if a
sufficiently large or powerful subgroup of individuals invests. The coordination problem then amounts to identifying and motivating
the coalition of individuals who should invest. Such problems typically involve a complex micro-macro link: the ‘right number’ of the
‘right kind of people’ should invest to make the group successful, implying that investments cannot simply be tallied or summed to
determine group success. Thus, coordination problems in public good production are typically amenable to analysis with our method.

Several specific models have been proposed to analyze the coordination problem of finding the subset of necessary investors in
public good coordination problems (Marwell and Oliver, 1993; Diekmann, 1985; Bramoullé and Kranton, 2007). A prominent the-
oretical model, from which we draw our two examples, is the Step-Level Public Good game (SPG; Van de Kragt et al., 1983; Kerr and
Kaufman-Gilliland, 1994; Dijkstra and Bakker, 2017; Dijkstra and Oude Mulders, 2014). In an SPG a group of individuals can jointly
produce a public good valuable to all. Investing in the public good is costly, but the value of the public good (when produced) exceeds
this cost for each investor. Individuals may differ in the extent to which their investments have an impact on the production of the
public good. The public good is produced if and only if the total impact of the investors exceeds a given threshold. If investments fall
short of the threshold the public good is not produced, and any investors incur a net loss. If the public good is produced, all group
members enjoy a net gain. However, the net gain for investors is less than the net gain for non-investors, as the latter do not incur the
costs of investment. Hence, the SPG models a coordination problem in the context of the production of a public good, the problem
being the quest for a set of sufficiently impactful investors.

We employ the data from Dijkstra and Bakker (2017). These data are from an SPG experimental game introduced in Dijkstra and
Oude Mulders (2014). Individuals in the game are referred to as ‘players’, and this SPG has five of them. Each player has an
endowment of 10 points and decides (anonymously and in isolation) whether to invest or keep her entire endowment. When all players
have decided, the game ends.

Investing means a player loses her 10 points. In the event that the SPG is produced all players, regardless of their investments,
receive 15 points. Thus, investors end up with a total of 15 points (for a net gain of 5) while non-investors end up with a total 25
points (for a net gain of 15). If the SPG is not produced no points are awarded. In that case, investors end up with 0 points (for a net
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loss of 10), whereas non-investors simply keep their endowments of 10 points (gain nor loss).
The rules determining SPG production are as follows. Each player is assigned a share between 1 and 50, modeling her impact. It is

common knowledge that the shares of all five players sum to 100 and that no single player has a share greater than 50. The share
distribution is such that one player has a share of 50, one player has a share of 2, and three players have a share of 16. The SPG is
produced if and only if the shares of the investors sum to at least 51.

A successful group of investors must include the player with a share of 50. However, to put the sum of shares over the threshold,
the share 50 player must be joined by at least one other player. The game in the complete information version has nine Nash
equilibria (Dijkstra and Oude Mulders, 2014): one in which no player invests, four in which two players invest with certainty, and
another four in which two players invest with high probability. In the equilibria where players invest, the investors are the share 50
player and any one of the other players.

Dijkstra and Bakker (2017) report three experimental studies using this experimental SPG, and we apply our method to all three
studies separately. In all three experimental studies there were two treatments. In the incomplete information treatment (IIT) players
knew only their own shares. In the complete information treatment (CIT) players knew the distribution of all five shares in their group.
For a detailed description of the experimental design we refer to Dijkstra and Bakker (2017). Dijkstra and Bakker (2017) statistically
tested hypotheses about the effects of their information treatment on individual investment decisions. Our method, however, allows
drawing statistical inferences about treatment differences in a group's probability of successfully producing the public good.

Study 1 of Dijkstra and Bakker (2017) was a lab experiment with N1=120 participants. Participants were randomly assigned to
their player roles in groups of five, and groups were randomly assigned to the IIT and the CIT. Participants then played a one-shot
SPG. The experiment was programmed in the Z-Tree software (Fischbacher, 2007).2 Additionally, participants' social value orientation
(SVO) was measured using the 9-item triple dominance measure of Van Lange (1999). The SPG was incentivized, with participants
receiving 10 eurocents per point earned in the one-shot game.

Study 2 was an online experiment with N2=177 participants, using the Qualtrics online survey software (Qualtrics, 2014). None
of the participants in Study 2 had participated in Study 1. Participants were randomly assigned to their roles in either the IIT or the
CIT, and played the same one-shot SPG as in Study 1.3 Participants also completed the 9-item triple dominance SVO measure.
Participants were randomly drawn to be paid for their investment decisions. The probability of being paid for at least one of their
decisions was about 0.19. Participants selected for payment received 30 eurocents for each point earned in the experiment.

Study 3 was an online experiment with N3=315 participants, using the Qualtrics online survey software (Qualtrics, 2014). None
of the participants in Study 3 had participated in either of the other studies. The design and procedures of Study 3 were virtually
identical to the design of Study 2 (some additional observational measures were taken after the SPG decisions had been taken).
Importantly, note that in Studies 2 and 3 no real groups of participants were formed and no interaction between participants took
place. Randomly selected participants were only grouped after data collection for payment purposes.

Example 1. A homogeneous test.

Step 1 of our method requires us to specify the micro-macro link. The macro-level explanandum in our test is the group probability
of success, i.e. the probability that the public good is produced. Consider an arbitrary group g. If we let ps,i,g,t denote the probability of
investment by a share s player i in group g of treatment t, and let Pt,g denote group g's probability of success in treatment t, then the
rules of the SPG imply the following relation between these probabilities:

Pt,g= p50,i,g,t[1 – (1 – p2,j,g,t) (1 – p16,k,g,t) (1 – p16,l,g,t) (1 – p16,m,g,t)]
(1)

Where i, j, k, l, and m index distinct players composing group g. Equation (1) reflects that all individuals with the same role within
each treatment are exchangeable (i.e., all participants with the same share in the same treatment have exactly the same investment
probabilities), which is characteristic of the homogeneous case. Equation (1) follows directly from the fact that players' decisions are
statistically independent in the one-shot game. Note that the part in square brackets represents 1 minus the probability that none of
the share 2 and share 16 players invest. Pt,g is a macro-level variable determined by the micro-level decisions of group members. Thus,
equation (1) explicitly models the micro-macro link of analytical sociology, and completes step 1 of our method.

Step 2 is the specification of a statistical model predicting individual behavior. Table 1 aggregates the micro-level decisions by
study, share, and treatment. In each cell the proportions of invest/not invest decisions are given for participants with a given share, in
a given study, in a given treatment. For instance, the top-left cell of the table shows that in the CIT of Study 1 a proportion of 0.25 of
the share 2 players invested. In the simplest micro-level model this is also the predicted probability that a share 2 player in the CIT of
Study 1 invests. Consequently, any group of the right composition (one share 2 player, one share 50 player, and three share 16
players) drawn from the same treatment, will have the same success probability (cf. Equation (1)).

Before proceeding, we note that the first core assumption of our method (i.e., the micro-macro link is a function of micro-level
data) is met by the specification of Equation (1). Concerning the second core assumption (i.e., the micro-level data points are
statistically independent), since the SPG game was one-shot, no repeated interactions took place between participants. Any groups in

2 Random assignment of participants to groups and roles was handled by Z-tree. Random assignment of groups to treatments was implemented by
randomly assigning sessions (comprising between 2 and 4 groups) to treatments.
3 In studies 2 and 3, random assignment of participants to roles was handled by Qualtrics. For payment purposes the researchers randomly drew

cases without replacement from the data file.
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the data were randomly formed for payment purposes only, and this grouping did not affect participants' decisions. This is also true
for Study 1, in which participants did come to the laboratory to participate in separate sessions. Session nor group had any relation to
individual decisions in Study 1 (analyses not shown). Thus, also the second core assumption is satisfied.

Step 3 requires us to define the test statistic and compute its sample value. We will test the H0 PIIT,g ≤ PCIT,g’ against the alter-
native that PIIT,g > PCIT,g’ (cf. equation (1)), for two arbitrary groups, g and g’.4 For the homogeneous test S = PIIT,g - PCIT,g, where we
calculate PIIT,g and PCIT,g using (1) for each permutation of the data. The p-values of the randomization tests equal P(S≥ S*). We
approximate P(S≥ S*) and show the distribution of S for each study. Table 2 below reports the sample success probabilities for each
treatment Pt,g and the value of S*, for each study separately (last column). The Pt,g were computed based on Table 1 and Equation (1).
Study 1 shows a negative difference of S*=−0.060 running counter to our alternative hypothesis, and studies 2 and 3 show positive
differences of S*=0.108 and S*=0.204, respectively.

Steps 4 through 6 were performed N=10,000 times. Each time, we drew a random permutation (step 4), calculated the
equivalent of Table 1 for that permutation (step 5) and computed the value of S (the equivalent of Table 2) for that permutation (step
6). The left column of Fig. 1 shows both the distribution of S and P(S≥ S*) for each study for the homogeneous test. The approxi-
mated p-values for Study 1, Study 2, and Study 3 are 0.6377, 0.1482, 0.0233, respectively, only suggesting a negative effect of
complete information on the provision of the public good in Study 3.5

Comparison of our homogeneous test to a test on observed experimental groups
Although Dijkstra and Bakker (2017) do not perform a statistical test on the macro-level, their Study 1 does contain actual

experimental groups that could be used for a standard test of differences in group success between treatments. Of the 12 groups in the
IIT, 9 were successful and 3 failed. Of the 12 groups in the CIT, 8 were successful and 4 failed. A Fisher exact test on the difference in
success between the observed groups reveals no significant difference (p= 1), which is the same conclusion our test reached. It is
noteworthy that this classical Fisher test only uses 24 observations at the macro-level, whereas our test employs patterns in individual
data. A classical test comparing the two treatments cannot be performed for Study 2 and Study 3, as no actual groups were formed in
these studies. Hence classical methodology does not allow for testing the hypotheses, as opposed to the method proposed in this
paper.

Example 2. A heterogeneous test.

Step 1 in the heterogeneous test is identical to step 1 in the homogeneous test, and the two core assumptions are also met, since
we use the same theory and data as in the first example. In step 2 of the heterogeneous case we estimate the micro-level model by
controlling for certain design variables (i.e., the order in which experimental tasks were completed, for details see Dijkstra and
Bakker, 2017) and for SVO in addition to treatment and share, estimating each participant's investment probability using logistic
regression. Table 3 shows the logistic regression results for each study separately.

The models control for the order of experimental tasks. In all three studies the SVO questionnaire was either taken before the SPG
decision task or after (SVO first= 1 or 0, respectively). In Study 1 a repeated version of the SPG game was played (in a different
randomly composed group) either before or after the one-shot SPG we analyze. In studies 2 and 3 a version of the one-shot SPG in
which letter labels were used rather than numeric shares was either played before or after the shares treatment. We code the variable

Table 1
Investment decisions in each study, broken down by information treatment (CIT= complete information treatment; IIT= incomplete information
treatment) and shares, for step 2 of the homogeneous test; numbers in brackets are proportions of invest/not invest decisions.

Study Treatment Share 2 Share 16 Share 50 Tot

Investment Decision

Invest Keep Invest Keep Invest Keep

Study 1 CIT 3 (.25) 9 (.75) 11 (.306) 25 (.694) 11 (.917) 1 (.083) 60
IIT 2 (.167) 10 (.833) 15 (.417) 21 (.583) 9 (.75) 3 (.25) 60
Totals 24 72 24 120

Study 2 CIT 11 (.379) 18 (.621) 12 (.444) 15 (.556) 24 (.774) 7 (.226) 87
IIT 12 (.387) 19 (.613) 19 (.704) 8 (.296) 26 (.813) 6 (.188) 90
Totals 60 54 63 177

Study 3 CIT 9 (.29) 22 (.71) 46 (.517) 43 (.483) 19 (.633) 11 (.367) 150
IIT 7 (.226) 24 (.774) 48 (.48) 52 (.52) 30 (.882) 4 (.118) 165
Totals 62 189 64 315

4We use this directed alternative hypothesis, because in the original paper the authors show how investments in the CIT are lower for share 16
players than in the IIT, while investments of other players are not much different.
5 The supplementary information on the Open Science Framework (https://osf.io/scfx3/) contains R-scripts demonstrating that the p-values of the

sampling distributions our method generates are indeed uniformly distributed, Hence, the probability of a Type I error can effectively be controlled
at the chosen alpha level.
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Game (1=first, 0= second) to indicate whether the one-shot SPG with shares we analyze in this paper was played first or second.
Similar to the homogeneous test (Table 1) the models control for the share the participant was assigned to (share 16 is the reference
category). Finally, the models control for the number of proself choices the participants made out of 9 (Proself). We estimate
individual investment probabilities for each information treatment separately by including Info (1=CIT, 0= IIT) and all its in-
teractions. The Hosmer-Lemeshow GOF tests reported in Table 3 suggest the logistic model is a good fit to the data (Lemeshow and
Hosmer, 1982). Note how for each study, using the model in Table 3 to predict individual investment probabilities leads to (po-
tentially) different predicted probabilities for two players with the same share in the same treatment, due to differences in the other
covariates. Therefore, we will have to consider alternative partitions for each permutation, leading to a heterogeneous test.

Step 3 requires us to define the test statistic and compute its sample value. We test the same H0 as in the homogeneous case. For
the heterogeneous test PIIT,g and PCIT,g are not constant across partitions given the same permutation, as the values of the covariates
that affect the probability of contributing are not the same across partitions in the same permutation. Therefore, for the hetero-
geneous test we take = >S P PPr[ ]IIT g CIT g, , as our test statistic. To approximate S* we apply step 6 (Heterogeneous) for 500 partitions
for the true partition of participants across treatments, calculating PIIT,g and PCIT,g for each partition. This yields two distributions, one

Table 2
Success probabilities for each treatment for the homogeneous test, and the difference between treatments.

Sample size Success Probability Incomplete Info PIIT,g Success Probability Complete Info PCIT,g Difference S*= PIIT,g – PCIT,g

Study 1 120 0.626 0.686 −0.060
Study 2 177 0.800 0.692 0.108
Study 3 315 0.786 0.583 0.204

Fig. 1. Plots of approximate sampling distributions of S = PIIT,g - PCIT,g in the test without covariates (left column) and = >S P PPr[ ]IIT g CIT g, , in the
test with covariates (right column), for Study 1 (a), Study 2 (b), and Study 3 (c). The value of S*, the value of the statistic for the actual data, is
shown in all figures.
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for PIIT,g and one for PCIT,g, from which we find S*=0.344 for Study 1, S*=0.839 for Study 2, and S*=1 for Study 3.
Steps 4 through 6 were again performed N=10,000 times. Each time, we drew a random permutation (step 4), estimated

individual investment probabilities by calculating the equivalent of Table 3 for that permutation (step 5) and computed the value of S
for that permutation by randomly drawing 500 partitions (step 6). The right column of Fig. 1 shows the approximated distribution of

= >S P PPr[ ]IIT g CIT g, , in the heterogeneous test. Adding the covariates did not change the p-values substantially compared to the
homogeneous case; p=0.6764 for Study 1, p=0.1013 for Study 2, and p=0.0381 for Study 3, again suggesting only an effect of
information on the macro-level outcome in Study3.6

Note how no standard test is available to test for the success differences between observed groups in Study 1 (such as the Fisher
exact test we employed when comparing to our homogeneous test), controlling for the covariates in Table 3. This reveals another
advantage of our method over alternative standard tests; whereas traditional methodology cannot test hypotheses at the macro-level
while adequately controlling for covariates at the level of individuals, our proposed methodology can.

4. Discussion and conclusion

Analytical sociology is about explaining macro-level phenomena or relations by referring to micro-level behavior and interac-
tions. This implies that analytical sociology hypotheses take macro-level entities (such as groups, teams, organizations, or commu-
nities) as their units of analysis. The statistical analysis of these macro-level units, however, is problematic. In the first place, in
empirical research macro units are often few in number because they are expensive to investigate in their entirety. Thus, statistical
tests on these units have low power. In the second place, micro-level behavioral processes take place that affect macro-level out-
comes. In fact, this is the basic tenet of analytical sociology. But tests on macro-level units cannot adequately deal with these micro-
level processes. In response to these challenges, much analytical sociology focuses on testing micro-level (behavioral) predictions.
Our method offers a better alternative; formally express the dependence of macro-level outcomes on micro-level data, and test macro-
level hypotheses using randomization tests on the micro-level units.

Our method is suited for data that have a ‘between-subjects’ design: micro-level units (individuals) nested in macro-level units
(groups) nested in conditions (treatments). The core assumptions of our method are that (i) the dependence of the macro-level
phenomena of interest on the micro-level data is formally expressed, and (ii) the macro-level units (‘groups’) in the data are randomly
formed and do not lead to statistically dependent individual behavior. Data from experiments are most likely to have this structure
and meet these assumptions, but observational data are not principally excluded. The availability of our method (see https://osf.io/
scfx3/) may actually provide experimental researchers with incentives to collect more data meeting our assumptions, such as “one-
shot” designs, or series of “one-shot” experiments as in stranger or perfect-stranger matching designs.

We would like to draw attention to four strengths of our method. The first is that it forces researchers to explicate the micro-macro
link or social mechanism of their theory. The second strength is that statistical tests of social mechanisms are statistically more
powerful than standard tests that take the macro entities as their units of analysis. The third strength is that, contrary to what these
standard tests have to offer, our method allows controlling for micro-level covariates when testing macro-level hypotheses (cf. the
heterogeneous test in Example 2). The fourth strength is that our method facilitates the testing of macro-level hypotheses even in the
absence of actual macro-level units (cf. studies 2 and 3 in our examples).

Within the boundary of its assumptions, our method is general. Both of our examples involved dichotomous behavior (keep/invest
decisions), leading to logistic regression models of individual behavior in steps 2 and 5. However, our model can also be applied to

Table 3
Logistic regression results for step 2 of the heterogeneous test. Dependent variable is the log odds of the probability to invest.

Study 1 (N1=120) Study 2 (N2=177) Study 3 (N3= 315)

B S.E. B S.E. B S.E.

Intercept 0.15 0.61 1.34* 0.64 0.24 0.39
SVO first −0.66 0.60 0.15 0.50 −0.28 0.35
Game 0.85 0.62 −0.43 0.49 0.03 0.35
Share 2 −1.19 0.87 −1.19* 0.58 −1.18* 0.48
Share 50 1.83* 0.83 0.89 0.66 2.01*** 0.58
Proself −0.16 0.09 −0.12 0.07 −0.05 0.05
Info 0.24 0.88 −1.35 0.84 0.01 0.54
Info× SVO first −0.28 0.90 0.27 0.69 0.54 0.48
Info×Game −1.11 0.91 0.22 0.68 −0.27 0.49
Info× Share 2 0.80 1.20 0.92 0.80 0.19 0.66
Info× Share 50 2.59 1.61 0.53 0.88 −1.55* 0.73
Info× Proself −0.14 0.17 0.02 0.09 −0.003 0.07
Hosmer – Lemeshow GOF test =(8) 4.602 p=0.80 =(8) 5.612 p=0.69 =(8) 7.962 p=0.44

Note: * p < 0.05, ** p < 0.01, *** p < 0.001.

6 In the online files (https://osf.io/scfx3/) we demonstrate that our randomization tests of our hypothesis have the required properties, i.e., they
provide uniformly distributed p-values when the H0 is true.
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ordinal or continuous individual-level behavior variables, just as randomization tests can be applied to variables of any scale
(nominal, ordinal, interval, ratio). Simply replacing the binary logistic regression with the appropriate multinomial, ordinal, or OLS
regressions suffices. On the other hand, like any statistical method, our method is limited by its assumptions. The main limitation is
the assumption of (conditionally) independent micro-level observations. This assumption is constraining, since many real-world
groups imply statistically dependent individual behavior, virtually limiting the applicability of our method to experimental research.
A possible extension of our method to cases of dependent micro-level observations would be to include a covariance parameter in the
models of steps 2 and 5 to reflect the dependence between micro observations from the same macro-level unit. The value of this
covariance parameter could either be estimated from the data or, better yet, a range of values could be tried to investigate the
sensitivity of the statistical results to degrees of dependence in the data. As an example of such a covariance parameter we would like
to mention the intraclass coefficient, which is well-known from the context of multilevel analysis dealing with dependence of ob-
servations within macro-level units. Obviously, as permutations need to deal with this statistical dependency, an alternative pro-
cedure for random sampling of permutations needs to be developed to in that case.

Appendix A. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.ssresearch.2018.08.013.
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