
Chapter 5
Dynamics of a Chain with Four Particles,
Alternating Masses and Nearest-Neighbor
Interaction

Roelof Bruggeman and Ferdinand Verhulst

Abstract We formulate the periodic FPU problem with four alternating masses
which is the simplest nontrivial version. The analysis involves normal form calcu-
lations to second order producing integrable normal forms with three timescales. In
the case of large alternating mass the system is an example of dynamics with widely
separated frequencies and three timescales. The presence of approximate integrals
and the stability characteristics of the periodic solutions lead to weak interaction of
the modes of the system.

5.1 Introduction

For the mono-atomic case of the original periodic FPU-problem (Fermi-Pasta-Ulam
problem) with all masses (or particles) equal it was shown in [4] for up to six degrees-
of-freedom (dof) and for an arbitrary number of dof in [5], that the corresponding
normal forms are governed by 1 : 1 resonances and that these Hamiltonian normal
forms are integrable. This explains the recurrence phenomena near stable equilibrium
for long intervals of time.

In [1] we have studied the inhomogeneous FPU-problem which contains many
different resonance cases. In [9] and [10] recurrence and near-integrability aspects
of FPU cells were studied. The alternating case was studied in [2] for a FPU chain
with fixed end-points using analytic and numerical tools to obtain insight in the
equipartition of energy, in particular between the low (acoustic) frequency and the
high (optical) frequency part. A preliminary but important conclusion in [2] is that
for the masses considered and on long timescales no equipartition takes place; the
evidence is numerical. Inspired by [2] we will study the periodic FPU-problem in the
case of alternating masses. The simplest nontrivial form of this problem is for four
particles, it is necessary to understand this problem first. In a subsequent paper we
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will study the more general problem with an even number of particles. The emphasis
will be on periodic solutions, integrability of the normal forms (near-integrability of
the original system), invariant manifolds and recurrence phenomena; for recurrence
see also [9].

In a periodic chain, for (even) n particles with arbitrary masses m j > 0, position
q j and momentum p j = m j q̇ j , j = 1 . . . n, the Hamiltonian (see [1]) is of the form:

H(p, q) =
n∑

j=1

(
1

2m j
p2
j + V (q j+1 − q j )

)
with V (z) = 1

2
z2 + α

3
z3 + β

4
z4.

(5.1)
If α = 1,β = 0 we will call this an α-chain, if α = 0,β = 1 a β-chain. The quadratic
part of the Hamiltonian is not in diagonal form; for n = 4 the linearized equations
of motion can be written as:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

m1q̈1 + 2q1 − q2 − q4 = 0,

m2q̈2 + 2q2 − q3 − q1 = 0,

m3q̈3 + 2q3 − q4 − q2 = 0,

m4q̈4 + 2q4 − q1 − q3 = 0.

(5.2)

In system (5.2) the 4 alternating masses are 1,m, 1,m, with m > 1. Although this
number of particles is small, the problem of the dynamics of such a periodic chain is
by no means trivial. Moreover we will indicate that the dynamics of a small number
of particles in the chain is in a certain sense typical for much larger systems.

The mass ratio m : 1 is the important parameter, we put a = 1/m, 0 < a < 1.
The eigenvalues of system (5.2) will be indicated by λi , i = 1, . . . , 4, the corre-
sponding frequencies of the linear normal modes are ωi = √

λi . The numerical
value of H2 for given initial conditions is indicated by E0. We will use symplec-
tic transformation to put the linear part of the equations of motion in quasi-harmonic
form. The solutions in the eigendirections of the equations of motion linearized near
the origin are called the linear normal modes of the system, they can be continued
for the nonlinear system. The transformation to quasi-harmonic form is natural but
introduces an interpretation problem. Intuitively we expect the masses 1 to be more
excitable than the masses m. However, after symplectic transformation we have in
the resulting equations of motion a mix of both sets of particles and at the same time
a splitting of the spectrum in O(1) frequencies with modes that we will call ‘optical’
and O(

√
a) frequencies called ‘acoustical’. The behaviour of the solutions within

the two sets of particles can not in a simple way be identified with the normal mode
(quasi-harmonic) equations corresponding with the optical and acoustical part of the
spectrum.

In the following sections the analysis by averaging-normal forms is a basic tool.
For the general theory and results in the case of Hamiltonian systems see [6]. Res-
onances in the frequency-spectrum of the linearized equations of motion, generated
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by the quadratic part of the Hamiltonian H2, play a fundamental part in the analysis.
The cubic part H3 and if necessary the quartic part H4 will be normalized to H̄3, H̄4.

In [1] we have discussed a number of technical normal form aspects of averaging
for Hamiltonian systems. In a system of n perturbed harmonic equations we will often
transform to polar coordinates. If the frequencies are ω j , 1 ≤ j ≤ n we introduce

x j = r j cos(ω j t + ϕ j ) , y j = −r j ω j sin(ω j t + ϕ j ) (1 ≤ j ≤ 7) (5.3)

to produce an equivalent first-order system in the variables

X = (r1, r2, . . . , rn,ϕ1, . . . ,ϕn) .

This system is equivalent with the n dof system of perturbed harmonic equations
outside the normal mode planes.

The numerical experiments were carried out by Matcont under Matlab with
ode solver 78. The precision was increased until the picture did not change any-
more with typical relative error e−15, absolute error e−17. A number of algebraic
manipulations were carried out using Mathematica.

It will turn out that for the α- and β-chain especially the analysis for large mass is
interesting. The normal form systems are in this case examples of integrable systems
with widely separated frequencies. The dynamics involves periodic solutions, among
which three normal modes; their stability can be established from the equations and
the integrals. The normal form analysis has to be carried out to second order and
uses three timescales. Using these results we can sketch a global picture of the
phase-flow with a number of characteristic examples of recurrence phenomena. In
the discussion we will mention the relevance of our results for FPU-systems with
many more particles.

5.2 Periodic FPU Chains with 4 Alternating Masses

We find from the equations of motion, both for an α- and for a β-chain, the momentum
integral:

q̇1 + mq̇2 + q̇3 + mq̇4 = constant. (5.4)

For the linear system (5.2) we find the 4 eigenvalues:

λi = 2(a + 1), 2, 2a, 0.

with frequencies ω2
i = λi , i = 1, . . . , 4. We perform a symplectic transformation to

eigenmodes of the form q = Lax , p = Ka y, with the matrices
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La =

⎛

⎜⎜⎜⎜⎜⎜⎝

− 1√
2a+2

− 1√
2

0
√

a
2 a+2

a√
2a+2

0 −
√
a√
2

√
a

2a+2

− 1√
2a+2

1√
2

0
√

a
2 a+2

a√
2a+2

0
√
a√
2

√
a

2a+2

⎞

⎟⎟⎟⎟⎟⎟⎠
, (5.5)

Ka =

⎛

⎜⎜⎜⎜⎜⎝

− 1√
2a+2

− 1√
2

0
√

a
2 a+2

1√
2a+2

0 − 1√
2
√
a

1√
a
√

2a+2

− 1√
2a+2

1√
2

0
√

a
2 a+2

1√
2a+2

0 1√
2
√
a

1√
a
√

2a+2

⎞

⎟⎟⎟⎟⎟⎠
. (5.6)

The coordinates (x4, y4) correspond to the momentum integral (5.4). We proceed with
the reduced system (x j , y j ), 1 ≤ j ≤ 3, in which the components of the Hamiltonian
take the following form:

⎧
⎪⎨

⎪⎩

H2 = (1 + a)x2
1 + x2

2 + ax2
3 + 1

2 (y
2
1 + y2

2 + y2
3 ),

H3 = −2
√

2a(1 + a)x1x2x3,

H4 = 1
4 ((1 + a)2x4

1 + x4
2 + 6ax2

2 x
2
3 + a2x4

3 + 6(1 + a)x2
1 (x

2
2 + ax2

3 )).

(5.7)

The usual procedure for normalization as an approximation procedure is to rescale in
a neighborhood of equilibrium, in this case xi → εxi , yi → εyi , i = 1, 2, 3 with ε
a small positive parameter. This procedure yields, after dividing by ε2 in the Hamil-
tonian a system with a small parameter which is a measure for the distance to equi-
librium. The procedure will be implicit in our statements in the case that a is not a
small parameter. If 0 < a � 1 (large mass m) we will also leave out the scaling with
ε as a will be a natural small parameter. Still, also in this case, we will assume for the
solutions to be in a neighborhood of equilibrium; when starting closer to equilibrium
(small energy) the normal form results will improve.

5.3 The α-Chain

The equations of motion are for the α-chain with γ = 2
√

2a(1 + a):

⎧
⎪⎨

⎪⎩

ẍ1 + 2(1 + a)x1 = γx2x3,

ẍ2 + 2x2 = γx1x3,

ẍ3 + 2ax3 = γx1x2.

(5.8)

Special solutions are the normal modes associated with the eigenvalues 2(1 + a), 2
and 2a. These exact solutions are harmonic for an α-chain. The equilibria of system
(5.8) are the origin in phase-space and the points with coordinates:
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(x1, x2, x3, y1, y2, y3) =
(

δ1√
2(1 + a)

,
δ2√

2
,

δ3√
2a

, 0, 0, 0

)
,

with δi = ±1, i = 1, 2, 3 with δ1δ2δ3 = 1. The energy value of the four equilibria
outside the origin is in all cases 0.5. The energy manifold bifurcates geometrically
in the critical points of the energy manifold, the corresponding equilibria of the
equations of motion are unstable. For values of the energy between 0 and 0.5, the
energy manifold is compact.

The first order resonances in a three dof system like (5.8) are 1 : 2 : 1, 1 : 2 : 2,
1 : 2 : 3 and 1 : 2 : 4. Considering the spectrum of the linearized system (5.8) we
find no three dof first order resonances in a cell with four particles.
Two dof first order resonances occur ifa = 1

4 ,
1
3 . Second order resonances arise ifa =

1
8 ,

1
9 and if 0 < a � 1. It was shown in [6] Sect. 10.4, that the normal form of a two

dof Hamiltonian system is integrable. Adding a third dof with non-commensurable
third frequency as is the case here keeps to high order these normal forms integrable
as the added terms remain separated from the resonant two dof.

We conclude that for 0 < a < 1 a periodic FPU α-chain with four alternating
masses is in normal form near-integrable. The dynamics (periodic solutions and
stability) of the two dof cases can be found in the literature (for references see [6])
but is in this case fairly degenerate. The case of values of a very close to zero have
to be considered separately.

5.3.1 The α-Chain for Large Mass m

For large values of the mass we have a in a neighborhood of zero. Two of the fre-
quencies will be near

√
2, one will be

√
2a, the associated modes will be called the

optical group (x1, x2) and the acoustical group (x3). System (5.8) is an example of a
system with widely separated frequencies, see [7] and further references there. Fol-
lowing the analysis in [7] we apply normalization considering x3 as slowly varying.
The slow dynamics of x3 becomes more transparent when rescaling the Hamiltonian
to a related standard form by

x3 → (2a)−
1
4 x3, y3 → (2a)+

1
4 y3. (5.9)

This results in:

H2 = (1 + a)x2
1 + x2

2 + 1

2
(y2

1 + y2
2 ) + 1

2

√
2a(x2

3 + y2
3 )

and
H3 = −γ̄x1x2x3, γ̄ = 2

5
4
√

1 + a a
1
4 .

http://dx.doi.org/10.1007/978-3-319-63937-6_10
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In the equations of motion we rescale xi → a
1
8 xi , i = 1, 2; this choice is optimal for

keeping as many interactive terms in the approximations as possible. In [8] this is
called a significant degeneration of the differential operator. System (5.8) becomes
with the rescalings:

⎧
⎪⎨

⎪⎩

ẍ1 + 2x1 = γ̄x2x3 − 2ax1,

ẍ2 + 2x2 = γ̄x1x3,

ẋ3 = √
2ay3, ẏ3 = γ̄a

1
4 x1x2 − √

2ax3.

(5.10)

The terms with small parameter γ̄ = O(a
1
4 ) dominate. Introducing polar coordinates

x1 = r1 cos(
√

2t + φ1), ẋ1 = −√
2r1 sin(

√
2t + φ1),

x2 = r2 cos(
√

2t + φ2), ẋ2 = −√
2r2 sin(

√
2t + φ2),

we find after transformation and normalization to O(γ̄):

⎧
⎪⎨

⎪⎩

ṙ1 = − γ̄

2
√

2
r2 sin(φ1 − φ2)x3, φ̇1 = − γ̄

2
√

2
r2
r1

cos(φ1 − φ2)x3,

ṙ2 = + γ̄

2
√

2
r1 sin(φ1 − φ2)x3, φ̇2 = − γ̄

2
√

2
r1
r2

cos(φ1 − φ2)x3,

ẋ3 = 0, ẏ3 = 0.

(5.11)

For the third mode we find with y3(0) = 0:

x3 = x3(0), y3 = 0.

We put χ = φ1 − φ2. The solutions of the normal form have error O(a
1
4 ) on the

timescale a− 1
4 , see the appendix.

Integrals of the normalization. System (5.11) has the integral of motion E3 =
1
2

√
2a(x2

3 + y2
3 ) and the second integral

1

2
(r2

1 + r2
2 ) = E1 (5.12)

with E1 a positive constant. This integral is valid with error O(a
1
4 ). The choice of

polar coordinates means that we have to exclude normal modes, but we know already
that the original system (5.8) has three normal mode solutions. We have

d

dt
χ = − γ̄

2
√

2

(
r2

r1
− r1

r2

)
x3 cos χ.

From the equations for r1 in system (5.11) and the equation for χ we find
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Fig. 5.1 Interactions with the x3 mode for a = 0.01 in system (5.8). Left the action I3 =
1
2 (ẋ

2
3 + 2ax2

3 )with initial conditions x1(0) = x2(0) = 0.5, x3(0) = 0.1 and initial velocities zero so
I1(0) = I2(0) = 0.25, I3(0) = 10−4 resulting in 0 < I3 < 0.18. Right I3 if x1(0) = 0.1, x2(0) =
0.5, x3(0) = 0.1 so I1(0) = 0.01, I2(0) = 0.25, I3(0) = 10−4 resulting in (much smaller) 0 <

I3 < 0.005

dr1

dχ
= r2

sin χ(
r2
r1

− r1
r2

)
cos χ

.

Eliminating r2 with integral (5.12) the equation becomes separable. We find:

r1r2 cos χ = C, (5.13)

which is a third integral of motion of system (5.11); C is a constant determined
by the initial conditions. We conclude that to first order of approximation we have
no interaction between the first two modes (the optical part) and the third mode
(the acoustical part). However, a numerical experiment suggests that the x3 mode is
interacting with the other modes, see Fig. 5.1, so to show this analytically we will
compute a second order approximation later on.
Periodic solutions. At first order a special solution arises if

χ = 0,π.

This is possible if

d

dt
χ = − γ̄

2
√

2

(
r2

r1
− r1

r2

)
x3 cos χ = 0. (5.14)

We conclude for this special solution r1 = r2 with solutions for x1, x2 given by:

x1(t) = √
E1 cos(

√
2t + φ0), x1(t) = ±x2(t), (5.15)
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Fig. 5.2 Recurrence indicated by the Euclidean distance d with respect to the initial values as
a function of time in the α-chain with the conditions as in Fig. 5.1. If x1(0) �= x2(0) (right) the
recurrence takes longer

an approximation valid on the timescale a−1/4. Choosing x3(0), y3(0), solutions
(5.15) are determined uniquely. These solutions (xi , yi , i = 1, 2, 3) form manifold
M1 embedded in the energy manifold defined by the quadratic integrals E3 and E1

of system (5.11).
Another special solution of (5.14) arises if

χ = π

2
, 3

π

2
.

In this case the solutions of system (5.11) are determined by:

{
r1(t) = A cos( γ̄

2
√

2
x3(0)t) + B sin( γ̄

2
√

2
x3(0)t),

r2(t) = ∓A γ̄

2
√

2
x3(0) sin( γ̄

2
√

2
x3(0)t) ± B γ̄

2
√

2
x3(0) cos( γ̄

2
√

2
x3(0)t),

(5.16)

with x3(t) = x3(0),φ1(0) − φ2(0) = π/2, 3π/2 and constants A, B; analogously to
the case of M1, the solutions xi , yi , i = 1, 2, 3 form manifold M2 embedded in the
energy manifold.

Both for special solution (5.15) and (5.16) we have families of periodic solutions
on the energy manifold. This may signal a degeneration of the normal form at first
order in the sense of Poincaré [3] vol. 1. This gives another reason to compute a
second order approximation.
Integrability and recurrence. The normal form (5.11) of the α-chain for large mass
is clearly integrable. The three normal form integrals can be written as quadratic
expressions:
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1

2

√
2a(x2

3 + y2
3 ) = E3, ẋ

2
1 + 2x2

1 + ẋ2
2 + 2x2

2 = 2E1, 2x1x2 + ẋ1 ẋ2 = 2C.

(5.17)
The three integrals are exact integrals of the normal form (5.11) and approximate
integrals of the original equations (5.10). Remarkably enough the recurrence prop-
erties of the phase flow are different in the two cases of Fig. 5.1. In the case where
x1(0) = x2(0) = 0.5, we have rather strong recurrence, see Fig. 5.2 left, in the case
x1(0) = 0.1, x2(0) = 0.5 the recurrence times are longer; see Fig. 5.2. The two spe-
cial solutions obtained above suggest an explanation. Starting at the first special
solution we have to first approximation periodicity with period

√
2π, for the second

special solution we find a modulation of the period O(γ̄x3(0)).
We conclude that even if we have a system with integrable normal form, its recurrence
properties depend strongly on the initial conditions. We will return to this in Sect. 5.6.

5.3.2 Second Order Approximation for the α-Chain

A second order approximation according to [6] can be computed using Mathemat-
ica. As before we do not change the notation for the variables r1,φ1 etc. to avoid
too many new symbols. We find with γ̄ = O(a

1
4 ) (and a mix of variables):

⎧
⎪⎨

⎪⎩

ṙ1 = − γ̄

2
√

2
r2x3 sin χ, φ̇1 = − γ̄

2
√

2
r2
r1
x3 cos χ − 1

4a
1
2 x2

3 ,

ṙ2 = + γ̄

2
√

2
r1x3 sin χ, φ̇2 = − γ̄

2
√

2
r1
r2
x3 cos χ − 1

4a
1
2 x2

3 ,

ẋ3 = (2a)
1
2 y3, ẏ3 = −(2a)

1
2 x3 + (2)

1
4 (a)

1
2 r1r2 cos χ.

(5.18)

We deduce from system (5.18) that the quadratic integral (5.12) persists; dχ/dt does
not change at second order, so also the quadratic integral (5.13) persists. The two
special solutions (5.15) and (5.16) are slightly modified but correspond at second
order still with manifolds of special solutions. For x3, y3 we can write

ẍ3 + 2ax3 = 2ar1r2 cos χ.

Using integral (5.13) we have with y3(0) = 0 as second order approximation:

x3(t) = (x3(0) − C) cos(
√

2a t) + C (5.19)

with C = r1(0)r2(0) cos χ(0). This establishes the interaction with the x3 normal
mode as for initial values of x1, x2 producing an O(1) value of C , the amplitude of
x3 will grow even if x3(0) is small.
From system (5.8), so before rescaling, we can find the equivalent integral equation
for x3(t) which also holds for the rescaled quantities:
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x3(t) = x3(0) cos
√

2at + 2
√

1 + a
∫ t

0
x1(τ )x2(τ ) sin(

√
2a(t − τ ))dτ , (5.20)

where we have chosen ẋ3(0) = 0. The oscillating integral can be evaluated using
approximations for x1(t), x2(t) for instance the special solutions (5.15) (interaction
timescales t and a1/2t) and (5.16) (interaction timescales t, a1/4t and a1/2t).
Note that inspection of system (5.10) shows that neglecting terms O(a), we have
x1(t) = ±x2(t) exactly. This means that in this particular case x1(t)x2(t) will be sign
definite in the integral of (5.20) at this level of approximation.

5.4 The β-Chain for Large Mass m

The Hamiltonian given by (5.7) is positive definite outside the origin, so the origin is
the only equilibrium. The energy manifolds are compact. The remarks on the possible
resonances of the α-chain apply also to the β-chain. So we restrict ourselves to the
case of large mass m. The equations of motion are more complicated and are without
scaling of the coordinates:

⎧
⎪⎨

⎪⎩

ẍ1 + 2(1 + a)x1 = −(1 + a)2x3
1 − 3(1 + a)x1(x2

2 + ax2
3 ),

ẍ2 + 2x2 = −x3
2 − 3ax2x2

3 − 3(1 + a)x2
1 x2,

ẍ3 + 2ax3 = −3ax2
2 x3 − a2x3

3 − 3a(1 + a)x2
1 x3.

(5.21)

The three normal modes are exact solutions (elliptic functions) of the system. To
apply normalization we will assume that a is small and will rescale with respect to
equilibrium:

(xi , yi ) → a
1
4 (xi , yi )i = 1, 2, x3 → (2a)−

1
4 x3, y3 → (2a)+

1
4 y3.

This scaling keeps as many interaction terms as possible. We find after scaling:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẍ1 + 2x1 = −2ax1 − √
a(1 + a)2x3

1 − 3
√
a(1 + a)x1(x2

2 + 1
2

√
2x2

3 )),

ẍ2 + 2x2 = −√
ax3

2 − 3
2

√
2ax2x2

3 − 3
√
a(1 + a)x2

1 x2,

ẋ3 = √
2ay3, ẏ3 = −√

2ax3 − a( 3
2

√
2x2

2 x3 + 1
2 x

3
3 + 3

2

√
2(1 + a)x2

1 x3).

(5.22)

Neglecting terms O(a) we find with χ = φ1 − φ2 the normal form:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ṙ1 = + 3
√
a

8
√

2
r1r2

2 sin 2χ, φ̇1 =
√
a

16

(
3
√

2(r2
2 cos 2χ + 2r2

2 + r2
1 ) + 12x2

3

)
,

ṙ2 = − 3
√
a

8
√

2
r2

1r2 sin 2χ, φ̇2 =
√
a

16

(
3
√

2(r2
1 cos 2χ + 2r2

1 + r2
2 ) + 12x2

3

)
,

ẋ3 = √
2ay3, ẏ3 = −√

2ax3.

(5.23)
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We find again the integral E3 = 1
2

√
2a(x2

3 + y2
3 ) and the second normal form integral

(5.12). The equation for χ becomes

d

dt
χ = −3

√
2

8

√
a(r2

1 − r2
2 ) cos2 χ.

From system (5.23) we find also the third integral (5.13):

r1r2 cos χ = C,

with C determined by the initial conditions.
A special solution with constant amplitudes r1 and r2 may arise if

χ = ϕ1 − φ2 = 0,π/2,π, 3π/2.

From the equation for χ = φ1 − φ2 we find the requirement r1 = r2 correspond-
ing with four periodic solutions of the first order normal form. The initial val-
ues x3(0), y3(0) are still free, the solutions xi , yi , i = 1, 2, 3 produce manifold M1

embedded in the energy manifold.
Analogous to the case of the α-chain we find solutions from the equation for dχ/dt
with constant phase difference. These are found if

r1 �= r2, χ = π

2
, 3

π

2
.

For r1(t), r2(t) we find in this case goniometric functions of
√
at and, as for the α-

chain, a manifold M2 of special solutions xi , yi , i = 1, 2, 3 embedded in the energy
manifold.

At this level of approximation we find no interaction between the optical and the
acoustical group. This motivates us to compute the second order normal form.

5.4.1 Second Order Approximation for the β-Chain

A second order approximation according to [6] can be computed using again
Mathematica. We do not change the notation for the variables r1,φ1 etc. to avoid
too many new symbols. We find for the O(a)-terms to be added to the derivatives
ṙ1, φ̇1, ṙ2, φ̇2, ẋ3, ẏ3 in the normal form of system (5.23):
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⎧
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512r1r2

2 sin(2χ)
(
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√

2
(
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2

)
+ 48x2

3

)

−288x2
3

(
r2
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1

)
−51

√
2

(
2r2

2 r
2
1 (2 cos(2χ)+3)+r4

2 (2 cos(2χ)+3)+r4
1

)
−144

√
2x4

3

1024 + 1√
2

3
512r

2
1r2 sin(2χ)

(
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√
2
(
r2

1 + r2
2

)
+ 48x2

3

)

−288 x2
3

(
r2

1 (cos(2χ)+2)+r2
2

)
−51

√
2

(
r4

1 (2 cos(2χ)+3)+2r2
2 r

2
1 (2 cos(2χ)+3)+r4

2

)
−144

√
2x4

3

1024

0

− 1
4 x3

(
3
√

2
(
r2

1 + r2
2

)
+ 2x2

3

)

(5.24)

Integral (5.12) is conserved again to second order. The condition for constant ampli-
tudes r1 and r2 is again

χ = ϕ1 − φ2 = 0,π/2,π, 3π/2.

The requirement dχ/dt = 0 is satisfied for r1 = r2 + O(
√
a), producing four peri-

odic solutions.
For the third mode we find with integral (5.12) the equation:

ẍ3 + (2a + 3a
3
2 E1)x3 = −1

2

√
2a

3
2 x3

3 . (5.25)

The only critical point (equilibrium) is (0, 0)which is stable. This means that starting
near the origin, the solution will not move away. The results show for the β-chain
weak interaction between acoustical and optical group and dependence on the ini-
tial conditions. In general the solutions for the β-chain depend on the timescales
t,

√
at, at .

5.5 Stability of the Periodic Solutions for Large Mass m

The first and second order normal form analysis enables us to establish the stability of
the periodic solutions. Note however that for three and more dof instability in Hamil-
tonian systems from a perturbation (normal form) analysis is conclusive, stability is
not. Purely imaginary eigenvalues guarantee ‘stability on a certain timescale’.

• The x1 and x2 normal modes.
If either x1(0) or x2(0) is small, we conclude with integral (5.13) that C is small.
For the α- and the β-chain this implies with (5.19) and (5.25) that if x3(0) is small,
x3(t) remains small.
Consider now a neighborhood of the x1 normal mode for the α-chain.
Choose x3(0) > 0,χ(0) = 0 and ε > 0 such that if r2(0) = ε we have C =
x3(0)/2. From integral (5.13) we have that cos χ(t) can not vanish so that χ(t)
has to oscillate between −π/2 and +π/2. As x3(t) may only change sign on



5 Dynamics of a Chain with Four Particles … 115

the timescale 1/
√
a, we have that dχ/dt is sign definite unless r2(t) grows. We

conclude to instability of the x1 normal mode.
The same reasoning applies to the x2 normal mode of the α-chain.
For the β-chain the reasoning is similar but simpler as the equation for χ does not
depend on x3. With χ(0) = 0 we have that χ(t) has to oscillate between −π/2
and +π/2. The second order normal form for dχ/dt can only change sign if
r2

1 − r2
2 + O(

√
a) changes sign. Both normal modes are unstable for the β-chain.

• The x3 normal mode.
If both x1 and x2 are small we conclude with integral (5.12) that these modes
remain small. The normal mode x3 is stable both for the α- and the β-chain.

• The solution manifold M1 for r1 = r2,χ = 0,π.
We will use the first order approximations as using the second order does not change
the results qualitatively. We can consider the stability behavior with respect to the
x1, x2 modes and the x3 mode in the first order approximations separately.
The α-chain. Regarding the behaviour with respect to the x1, x2 modes we elimi-
nate r2 with integral (5.12) after which we linearize the normal form equations of
motion (5.11) and (5.23) in a neighborhood of r1 = r2,χ = 0,π. For the α-chain
we have the system:

ṙ1 = − γ̄

2
√

2
x3

√
2E1 − r2

1 sin χ), χ̇ = γ̄

2
√

2
x3

⎛

⎝

√
2E1 − r2

1

r1
− r1√

2E1 − r2
1

⎞

⎠ cos χ.

(5.26)
The Jacobian matrix yields if r1 = r2 = √

E1,χ = 0,π the eigenvalue equation:

λ2 − 4
γ̄2

2
x2

3 = 0.

This produces eigenvalues with opposite signs, we have instability.
From integral (5.12) we find C = ±E1. The approximation for x3 of the α-chain
(5.19) shows that also x3 will grow in size.
The β-chain. Repeating the analysis for the β-chain we find for the x1, x2 modes
the corresponding equations:

ṙ1 = +3
√
a

8
√

2
r1(2E1 − r2

1 ) sin 2χ, χ̇ = −3
√

2

4

√
a(r2

1 − E1) cos2 χ.

The Jacobian matrix yields if r1 = r2 = √
E1,χ = 0,π the eigenvalue equation:

λ2 + 9

8
aE2

1 = 0

and purely imaginary eigenvalues; the second order does not change this.
The second order approximation of x3 for the β-chain described by (5.25) does
not grow in size; we have stability of M1 for the β-chain.
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• The solution manifold M2 for χ = π/2, 3π/2.
In this case there is no restriction on r1, r2. We can expand the normal form equation
for χ near χ = π/2, 3π/2. We find from the equations obtained above for dχ/dt
that if r1 �= r2, χ will change. The case r1 = r2 produces eigenvalues zero and is
left as a degenerate case. Both for the α-chain and the β-chain we find instability
if r1 �= r2.

5.6 The Global Picture for Large Mass

We consider compact energy manifolds for the α-chain (energy between 0 and 0.5)
and the β-chain not too far from the origin of phase-space. The energy manifolds and
of course the manifold corresponding with H2 = E0 (constant), are topologically the
sphere S5. Both for the α- and the β-chain, we have that the x1 and x2 modes for
fixed E1 are restricted to the ellipsoid M12 which is S3 described by integral (5.12)
and is embedded in the energy manifold with in general 0 < E1 < E0.

A transversal of the flow on S5 will be 4-dimensional. Consider the transversal D
determined by y3 = 0 with x3 eliminated using the integral H2 = E0. The coordinate
plane x1, y1 is located in D containing as boundary the x1 normal mode which is S1.
Perpendicular to this plane is the coordinate plane x2, y2 in D with as a boundary
the normal mode x2; the boundary does not belong to the transversal. As for the x2

normal mode we have x1 = y1 = 0, the x2 normal mode will go through this point
in the centre of the x1, y1 coordinate plane. This means that the x1 and x2 normal
modes are linked. We can repeat this reasoning for a transversal containing the x3

normal mode. We conclude that the three normal modes are linked on S5. The stable
normal modes are surrounded by invariant tori embedded in the energy manifold.

The x3 mode plays a special part. The dynamics on M12 is still determined by
the third mode through the phases (or angles in action-angle representation). The
integral (5.13) restricts the dynamics on manifold M12. The solutions around the x3

normal mode move on tori on the 5-dimensional energy manifold that extend to the
normal modes x1 and x2 and of which the size depends on the initial conditions of
all variables.

The special solution (5.15) produces a torus M1 on the energy manifold with
r1 = r2 and shrinking diameter as x3(t) becomes more prominent. For the α-chain,
the torus is unstable, for the β-chain we have stability if x3(0) is small enough.

The special solution (5.16) of the normal form produces a torus M2 for which in
general r1 �= r2. It is unstable and may not persist under higher order perturbations.
For the α-chain the instability poses a problem when connecting the stable normal
mode x3 with the unstable tori. Note however that the instability of M1 arises only
if C of integral (5.13) is not small which it is near the x3 normal mode. As a further
illustration consider the linearization of the normal form (5.26). If r1, r2 = O(a

1
4 )

and r1 �= r2 we have near the x3 normal mode that ṙ1 = O(
√
a), χ̇ = O(a

1
4 ) which

is an obstruction to the validity of linearization.
For an illustration of the stability results by an amplitude-simplex see Fig. 5.3.
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Fig. 5.3 The amplitude-symplex for the α-chain that is a projection omitting the phases (or angles).
The front triangle corresponds with H2 = constant. The dots at the vertices indicate normal mode
periodic solutions. The manifolds M1 (r1 = r2) corresponds with tori that are unstable in the case
of the α-chain, stable for the β-chain. M2 is unstable if r1 �= r2 with r1 = r2 undecided

Fig. 5.4 Recurrence for 1000 timesteps indicated by the Euclidean distance d with respect to the
initial values as a function of time in the α-chain with a = 0.04, energy 0.1762. Left the conditions
x1(0) = 0.05, x2(0) = 0.4168, x3(0) = 0.01 near the x2 normal mode; we have recurrence with
0 ≤ d ≤ 0.9. Right the case where x3(0) is also small but more removed from the normal modes
with x1(0) = 0.4, x2(0) = 0.1, x3(0) = 0.01; the instability weakens the recurrence (0 ≤ d ≤ 0.9)

Consequences for recurrence
Recurrence of the flow as guaranteed by the Poincaré recurrence theorem, provides
us with additional information about the dynamics in phase-space. We will consider
some aspects for the α-chain as this chain has most instability. In Fig. 5.4 we start
near the stable x2 normal mode which results in relatively strong recurrent motion,
as expected. The result is rather different when starting away from the normal modes
with x1(0) �= x2(0); the recurrence is weakened by the instability of M2 although the
normal form is integrable.

In Fig. 5.5 we start near manifold M1 to observe good short-time recurrence. Right
we move to more general position on the energy manifold with x1(0) �= x2(0); this
produces rather bad recurrence.
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Fig. 5.5 Recurrence for 1000 timesteps indicated by the Euclidean distance d with respect to the
initial values as a function of time in the α-chain with a = 0.04, energy 0.1762. Left the conditions
x1(0) = 0.2943, x2(0) = 0.2943, x3(0) = 0.01; starting near M1 we have fairly good recurrence
with 0 ≤ d ≤ 1.1. Right the case where x1(0) = 0.37, x2(0) = 0.2167 and x3(0) = 0.5, away from
the normal modes; the motion along the tori weakens the recurrence (0 ≤ d ≤ 1.1). Extending the
picture to 5000 time steps does not improve the recurrence

5.7 Conclusions and Discussion

1. The periodic FPU-problem with 4 particles and alternating masses can be reduced
to a three dof Hamiltonian problem. The normal modes are exact periodic solu-
tions of the reduced system both for the α- and the β-chain.

2. Normal form calculations lead to an integrable system with three normal form
integrals and additional periodic solutions.

3. A second order normal form calculation is necessary to characterize the phase-
flow. This involves three timescales with the conclusion that we have weak inter-
action between the acoustical and the optical part of the system.

4. The integrability of the normal form, corresponding with approximate integrabil-
ity of the original system, keeps the system recurrent with fairly short intervals
of time.

5. We will show in a subsequent paper the important fact that the dynamics of the
four particles problem is in a certain sense typical for periodic FPU problems
with alternating masses and many more particles.

Appendix

In the error estimates of the normal form analysis integral inequalities can be useful.
We will use the specific Gronwall lemma formulated in [6], lemma 1.3.3.

Lemma 5.1 Let φ be a real-valued continuous (or piecewise continuous) functions
on a real t interval I : t0 ≤ t ≤ T . Assume φ(t) > 0 on I and δ1(ε), δ2(ε) positive
order functions (ε a small, positive parameter). If the inequality
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φ(t) ≤ δ2(ε)(t − t0) + δ1(ε)

∫ t

t0

φ(s)ds,

holds on I , then

φ(t) ≤ δ2(ε)

δ1(ε)
eδ1(ε)(t−t0).

We apply the specific Gronwall lemma to obtain:

Lemma 5.2 Consider the perturbation problem:

ẋ = δ1(ε) f (t, x) + δ2(ε)R(t, x), x(t0) = x0,

for I : t0 ≤ t ≤ T, x ∈ D ⊂ R
n, δ1, δ2, δ3(ε) order functions with δ2(ε) = o(δ1(ε))

as ε → 0 and continuous differentiability of the vector fields f, R on I × D; in
particular we have ||R(t, x)|| ≤ M,M > 0 for t ≥ 0. We neglect small terms to
consider the solution of

ẏ = δ1(ε) f (t, y), y(t0) = x0

andwe approximate y(t) by a procedure (averaging) for which we know that ||y(t) −
ȳ(t)|| = O(δ3(ε)) on the timescale 1/δ1(ε). Then we have on the timescale 1/δ1(ε)
the estimate

x(t) − y(t) = O(
δ2(ε)

δ1(ε)
+ δ3(ε)) on the timescale 1/δ1(ε).

Proof We formulate the equivalent integral equations for x(t), y(t):

x(t) = x0 + δ1(ε)

∫ t

t0
f (x(s), s)ds + δ2(ε)

∫ t

t0
R(x(s), s)ds, y(t) = x0 + δ1(ε)

∫ t

t0
f (y(s), s)ds.

Subtracting the two equations we have:

x(t) − y(t) = δ1(ε)

∫ t

0
( f (x(s), s) − f (y(s), s))ds + δ2(ε)

∫ t

0
R(x(s), s)ds.

Using the Lipschitz continuity of f (Lipschitz constant L) and the estimate for R we
have:

||x(t) − y(t)|| ≤ δ1(ε)L
∫ t

t0

||x(s) − y(s)||ds + δ2(ε)Mt,

and with Lemma 5.1:

||x(t) − y(t)|| ≤ δ1(ε)
M

L
eδ1(ε)Lt − δ2(ε)

δ1(ε)

M

L
.
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We conclude that y(t) approximates x(t)with error O( δ2(ε)
δ1(ε)

) on the timescale 1/δ1(ε).
We conclude with the triangle inequality that

||x(t) − ȳ(t)|| = ||x(t) − y(t) + y(t) − ȳ(t)|| ≤ ||x(t) − y(t)|| + ||y(t) − ȳ(t)||,

or

||x(t) − ȳ(t)|| ≤ O

(
δ2(ε)

δ1(ε)

)
+ O(δ3(ε))

on the timescale 1/δ1(ε).
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