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Chapter 5

Three-dimensional modeling for

functional analysis of cardiac

images { A review

Abstract | Three-dimensional (3-D) imaging of the heart is a rapidly developing
area of research in medical imaging. Advances in hardware and methods for fast
spatio-temporal cardiac imaging are extending the frontiers of clinical diagnosis and
research on cardiovascular diseases.
In the last few years, many approaches have been proposed to analyze images and
extract parameters of cardiac shape and function from a variety of cardiac imag-
ing modalities. In particular, techniques based on spatio-temporal geometric mod-
els have received considerable attention. This paper surveys the literature of two
decades of research on cardiac modeling. The contribution of the paper is three-fold:
1) to serve as a tutorial of the �eld for both clinicians and technologists, 2) to pro-
vide an extensive account of modeling techniques in a comprehensive and systematic
manner, and 3) to critically review these approaches in terms of their performance
and degree of clinical evaluation with respect to the �nal goal of cardiac functional
analysis. From this review it is concluded that whereas three-dimensional model-
based approaches have the capability to improve the diagnostic value of cardiac
images, issues as robustness, 3-D interaction, computational complexity and clinical
validation still require signi�cant attention.

Adapted from: A.F. Frangi, W.J. Niessen, and M.A. Viergever (2001). Three-dimensional
modeling for functional analysis of cardiac images: A review. IEEE Trans Med Imaging, in
press.

5.1 Introduction

C
ardiovascular disease (CVD) has been the number one cause of death in the
United States since 1900 in every year but one (1918). More than 2,600 Amer-
icans die each day of CVD; an average of one death every 33 seconds [3]. CVD

claims more lives each year than the next seven leading causes of death combined.
According to the most recent computations of the Centers for Disease Control and
Prevention of the National Center for Health Statistics (CDC/NCHS), if all forms of
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major CVD were eliminated, life expectancy would rise by almost 10 years while with
elimination of all forms of cancer the gain would be 3 years [3].1

Nowadays, there is a multitude of techniques available for cardiac imaging which
provide qualitative and quantitative information about morphology and function of
the heart and great vessels (Figure 5.1). Use of these technologies can help in guid-
ing clinical diagnosis, treatment, and follow-up of cardiac diseases. Spatio-temporal
imaging is a valuable research tool to understand cardiac motion and perfusion, and
their relationship with stages of disease.

Technological advances in cardiac imaging techniques provide 3-D information
with continuously increasing spatial and temporal resolution. Therefore, a single
cardiac examination can result in a large amount of data (particularly in multi-phase
3-D studies). These advances have led to an increasing need for eÆcient algorithms
to plan 3-D acquisitions, automate the extraction of clinically relevant parameters,
and provide tools for their visualization.

Segmentation of cardiac chambers is an invariable prerequisite for quantitative
functional analysis. Although many clinical studies still rely on manual delineation
of chamber boundaries, this procedure is time-consuming and prone to intra- and
inter-observer variability. Therefore, many researchers have addressed the problem
of automatic left (LV) and right (RV) ventricle segmentation. Since the shape of
the cardiac ventricles is approximately known, it seems natural to incorporate prior
shape knowledge into the segmentation process. Such model-driven techniques have
received ample attention in medical image analysis in the last decade [197, 274]. A
few advantages over model-free approaches are: a) the model itself can constrain the
segmentation process that is ill-posed in nature owing to noise and image artifacts;
b) segmentation, image analysis and shape modeling are simultaneously addressed in
a common framework; c) models can be coarse or detailed depending on the desired
degree of abstraction; d) in some approaches, most of the chamber's shape can be
explained with a few comprehensible parameters which can subsequently be used as
cardiac indices (cf. [20, 218,219,232,233] among others).

Use of geometric models is not completely new to the analysis of cardiac images.
As a matter of fact, traditional methods of obtaining parameters such as left ven-
tricular volume and mass from echo- and angiocardiography were based on (simple)
geometrical models [66, 79, 136, 152]. However, their use was mainly motivated by
the need of extracting 3-D parameters from two-dimensional (2-D) images and their
accuracy was therefore limited [306].

The literature on model-driven segmentation of cardiac images has grown rapidly
in the last few years and this trend is likely to continue. To the best of our knowledge
no survey is available that reviews this work.2 This paper presents a comprehen-

1At the time of writing, the authors could not �nd similar statistics for Europe. There is, however,
an ongoing European survey on CVDs whose results are expected to appear soon [273].

2After this chapter has been accepted for publication in journal form [105], the authors have found
a very recent parallel review paper by Suri [287]. Suri's review is complementary to ours in that it
also surveys the literature on two-dimensional and model-free cardiac image analysis. However, it
is less extensive in terms of three-dimensional modeling. The main conclusions of that review are
similar to ours. Although many approaches have been presented in the literature, most of them
are not yet ripe for clinical use. One of the main topics to be addressed in the future is clinical
evaluation.
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sive and critical review of the state-of-the-art in geometric modeling of the cardiac
chambers, notably the LV, and their potential for functional analysis. In order to
set reasonable bounds to the extent of this survey, we have con�ned ourselves to
peer-reviewed archival publications3 proposing methods for LV (RV) segmentation,
shape representation, and functional and/or motion analysis, that ful�ll the following
selection criteria:

� the technique is model-based,

� the reconstructed model is 3-D,4

� illustration on cardiac images is provided.

This chapter is organized as follows. Section 5.2 gives a brief overview of the
di�erent acquisition modalities that have been used in imaging the heart. Section 5.3
overviews and de�nes the most relevant clinical parameters that provide information
on cardiac function. Section 5.4 presents a systematic classi�cation of cardiac models
by type of geometrical representation/parameterization. Attention is also given to
the di�erent types of input data and features for model recovery. This section is
summarized in Table 5.1. Section 5.5 discusses cardiac modeling approaches with
respect to the functional parameters they provide and the degree of evaluation of these
methods. This section leads to Table 5.2 that links the clinical target of obtaining
functional information of the heart (Section 5.3) to the various technical approaches
presented in Section 5.4. Finally, Section 5.6 closes the survey with conclusions and
suggestions for future research.

5.2 Imaging techniques for cardiac examination

The physical properties on the basis of which the imaging device reconstructs an im-
age (e.g., radioactive emission of an isotope) are intimately related to some speci�c
functional aspects of the heart (e.g., its perfusion properties). Each imaging modality
presents advantages and limitations that in
uence the achievable modeling accuracy.
This section brie
y reviews the techniques most frequently used for 3-D clinical in-
vestigation of the heart. More extensive reviews and complementary readings can be
found in [38, 137,194,214,244,248,252,315].

5.2.1 Angiocardiography

Angiocardiography is the X-ray imaging of the heart following the injection of a
radio-opaque contrast medium. Although 2-D in principle, this technique can pro-
vide projections from two angles using a biplane system. Selective enhancement of
the lesion to be demonstrated can be accomplished by positioning an intra-vascular

3A few exceptions were made when the approaches were considered relevant and journal versions
were not available.

4Even if the imaging technique is not 3-D like, for instance, in the reconstruction of 3-D models
from multiple non parallel slices or from multiple 2-D projections.
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Figure 5.1. Diagram of the heart.

catheter through which the contrast medium is guided and injected. Angiocardiog-
raphy is usually good at anatomic delineation of lesions but much less satisfactory in
determining their severity and the degree of hemodynamic disturbance that they have
produced. This technique has been used for a long time to assess ejection fraction
and volumes [152] based on simpli�ed geometric models [66, 79, 136] of the LV, but
most radiologists use visual assessment based on experience [248].

5.2.2 Cardiac ultrasound

Two-dimensional ultrasonic imaging (US) of the heart or \echocardiography" [194,
244] allows the anatomy and movements of intra-cardiac structures to be studied non-
invasively. The application of pulsed and continuous-wave Doppler principles to 2-D
echocardiography (2DE) permits blood 
ow direction and magnitude to be derived
and mapped onto a small region-of-interest of the 2DE image. In color 
ow Doppler
mapping (CFM), the pulsed-wave signal with respect to blood velocity and direction
of 
ow throughout the imaging plane is color coded, and produces a color map over
the 2DE image. One of the limiting factors of 2DE is the ultrasound window (presence
of attenuating tissues in the interface between the US transducer and the organ of
interest). To overcome this problem transesophageal echocardiography can be used,
which allows for high-quality color 
ow images at the expense of being invasive.

Three-dimensional echocardiography (3DE) [214] is a relatively new development
in US that allows 3-D quantitation of organ geometry since the complete organ
structure can be imaged. This technique has been used to compute LV volume and
mass [8, 59, 120,174,283,294] and to perform wall motion analysis [187].
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5.2.3 Isotope imaging

Isotopes have been used to study left ventricular function and myocardial perfusion.
Radionuclide techniques for monitoring global and regional ventricular function fall
into two major categories: a) �rst-pass studies in which the injected bolus dose is
monitored during its �rst passage through the heart and great vessels; and b) gated
equilibrium studies, in which the tracer mixes with the blood pool before data col-
lection. First pass acquisitions are typically 2-D, while gated equilibrium studies can
be 2-D or 3-D (Single Photon Emission Computed Tomography { SPECT). Isotope
imaging can be used to assess parameters like ejection fraction [114] and regional wall
motion analysis [93, 96, 114]. It is also used to study myocardial perfusion [115] in
cases of ischemia or myocardial infarction, and to assess myocardial viability. The
overwhelming majority of radionuclide studies performed for perfusion assessment are
SPECT.

5.2.4 Cardiac Computed Tomography

Conventional Computed Tomography (CT) [38] had virtually no place in cardiovascu-
lar examinations. Nowadays spiral CT [159,220] is becoming increasingly popular for
cardiac imaging, with image quality rivaling that of magnetic resonance. Dynamical
Spatial Reconstruction [252] (DSR) uses multiple X-ray tubes and image intensi�er
chains to produce \real time" multiple cross-sections with similar acquisition times
to ultrafast CT but is not commercially available [248]. Electron Beam Computed
Tomography (EBCT) [37] or Ultrafast CT is both relatively inexpensive to perform
and capable of providing 3-D information on coronary calcium deposits (plaque) and
cardiac cavities' anatomy and function. A current limitation of this system (relative
to DSR) is that the spatial resolution in the transaxial direction is much less than in
the in-plane (often transverse) direction.

5.2.5 Magnetic Resonance Imaging

Cardiac Magnetic Resonance Imaging [315] (MRI) is now an established, although
still rapidly advancing, technique providing information on morphology and function
of the cardiovascular system [138]. Advantages of cardiac MRI include a wide topo-
graphical �eld of view with visualization of the heart and its internal morphology and
surrounding mediastinal structures, the capability of multiple imaging planes, and a
high soft-tissue contrast discrimination between the 
owing blood and myocardium
without the need for contrast medium or invasive techniques. Long- and short-axis
views of the heart, as used in echocardiography, can be obtained routinely since ar-
bitrary imaging planes can be selected.

Another advantage of MRI is that it can provide both anatomical and functional
information about the heart. Several researchers have used MRI to assess global and
regional, right and left ventricular function as represented by stroke volume, ejection
fraction and LV mass [60, 86, 151, 185, 192,299], wall-thickening [30], myocardial mo-
tion [198], and circumferential shortening of myocardial �bers [51]. Data from MRI is
more accurate than that derived from left ventricular angiocardiography, where the
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calculation is based on the assumption that the LV is ellipsoidal in shape. Volume
measurements by MRI are independent of cavity shape, with the area from contiguous
slices integrated over the chamber of interest.

In contrast with other techniques, including 2DE and angiocardiography, anatomic
information is easily de�ned on MRI. The advantages of MRI over 2DE are a wider
topographical window and a superior contrast resolution.

A decade ago, MR tagging was introduced independently by Zerhouni [326] and
Axel [12]. This technique is able to create and track material points (points at-
tached to a �xed location of the myocardium) over time. Myocardial deformations
can therefore be studied in a non-invasive manner. SPAtial Modulation of Magneti-
zation (SPAMM) creates two orthogonal sets of parallel planes (sheets) of magnetic
saturation, usually orthogonal to the imaging plane. Tissue deformation will be indi-
cated by the displacement of black (saturated) bands in the image that correspond to
the intersections of the imaging plane (tag grid). This grid only provides the in-plane
motion component (2-D motion). To reconstruct the 3-D motion of the material
points, a number of 2-D tagged image sections must be obtained in at least two ori-
entations. Further post-processing is then required to interpolate the displacement
�eld and to eventually perform strain analysis.

5.3 Classical descriptors of cardiac function

Development of models of the cardiac chambers has emerged from di�erent disciplines
and with various goals. Cardiac models have been used for deriving functional in-
formation, for visualization and animation, for simulation and planning of surgical
interventions, and for mesh generation for Finite Element (FE) analysis.

This survey will be con�ned to the application of modeling techniques for obtain-
ing classical functional analysis. Classical functional analysis can be divided into global
functional analysis (Section 5.3.1), and motion/deformation analysis (Section 5.3.2),
from which the most clinically relevant parameters can be obtained.

Model-based methods also allow one to derive new descriptors of cardiac shape
and motion. Such advanced descriptors have been mainly presented in the technical
literature and their clinical relevance has still to be assessed. Without pretending
to be exhaustive, Appendix 5.A summarizes a number of non-classical shape and
motion descriptors that demonstrate the extra possibilities provided by some advanced
methods.

5.3.1 Global functional analysis

Weber and Hawthorne [311] proposed a classi�cation of cardiac indices according
to their intrinsic dimensionality: linear, surface and volumetric descriptors. Linear
parameters have been used intensively in the past since they can easily be derived
from 2-D imaging techniques like 2DE and X-ray angiocardiography.5 However, they

5Such parameters are, for instance, left ventricular internal dimension (LVID), relative wall thick-
ness (RWT), and estimates of fractional shortening of the cardiac �bers (%�D) and their velocity
(Vcf ). For a detailed analysis of these parameters the reader is referred to Vuille and Weyman [306].
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assume an \idealized" geometry of the LV and strongly depend on external or internal
reference and coordinate systems. Besides total ventricular wall area, other surface
indices based on curvature and derived parameters have been investigated from 2-D
studies [21, 148, 189, 190]. More recently, many image processing approaches to left
ventricular modeling have suggested true 3-D global and local shape indices based on
surface properties.

In practice, assessment of cardiac function still relies on simple global volumetric
measures like left ventricular volume and mass, and ejection fraction. These and other
basic parameters will be presented in the following paragraphs.

Left ventricular volume (LVV). Left ventricular volume is a basic parameter
required to derive other LV indices like, e.g., ejection fraction. Angiocardiography
and echocardiography have been traditionally used to assess this quantity. In the
latter case, three approaches have been applied: represent the LV volume a) as the
volume of a single shape (e.g., truncated ellipse); b) as the sum of multiple smaller
volumes of similar con�guration (e.g., Simpson's method), and c) as a combination of
di�erent �gures [306, p. 585]. The achieved accuracy in the assessment of LVV with
echocardiography varies largely with the model used to represent the LV. The best
results have been obtained using Simpson's rule where in vitro studies have revealed a
relative error ranging from 5.9% to 26.6% depending on the particular implementation
and the number of short-axis slices used in the computation [306, p. 588]. It has been
shown that echocardiography consistently underestimates ventricular cavity, while
angiocardiography consistently overestimates true volumes [306]. In a recent study
by Lorenz et al. [185] with a canine model and autopsy validation, it has been shown
that cine MRI is a suitable and accurate method to estimate right and left ventricular
volume. In this study, MR-based and autopsy volumes agreed within 6 ml, yielding
no statistically signi�cant di�erences.

Left ventricular mass (LVM). Left ventricular hypertrophy, as de�ned by
echocardiography, is a predictor of cardiovascular risk and higher mortality [306, p. 599
and references therein]. Anatomically, LV hypertrophy is characterized by an increase
in muscle mass or weight.

Left ventricular mass is mainly determined by two factors: chamber volume, and
wall thickness. There are two main assumptions in the computation of LVM: a) the
inter-ventricular septum is assumed to be part of the LV, and b) the volume, Vm, of
the myocardium is equal to the total volume contained within the epicardial borders
of the ventricle, Vt(epi), minus the chamber volume, Vc(endo); LVM is obtained by
multiplying Vm by the density of the muscle tissue (1.05 g/cm3)

Vm = Vt(epi)� Vc(endo) (5.1)

LVM = 1:05� Vm (5.2)

LVM is usually normalized to total body surface area or weight in order to facilitate
inter-patient comparisons. Normal values of LVM normalized to body weight are
2.4�0.3 g/kg [185].

Stroke volume (SV). Stroke volume is de�ned as the volume ejected between
the end of diastole and the end of systole.

SV = end-diastolic volume (EDV)� end-systolic volume (ESV) (5.3)
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Alternatively, SV can be computed from velocity-encoded MR images of the aortic
arch by integrating the 
ow over a complete cardiac cycle [164]. Similarly to LVM
and LVV, SV can be normalized to total body surface. This corrected stroke volume
is known as stroke volume index (SVI). Healthy subjects have a normal SVI of 45� 8
ml/m2 [185].

Ejection fraction (EF). Ejection fraction is a global index of left ventricular
�ber shortening and is generally considered as one of the most meaningful measures
of the left ventricular pump function. It is de�ned as the ratio of the stroke volume
to the end-diastolic volume.

EF =
SV

EDV
� 100% =

EDV �ESV

EDV
� 100% (5.4)

Lorenz et al. measured normal values of EF with MR [185]. They found values of
67�5% (57{78%) for the LV, and 61�7% (47{76%) for the RV. Similar values were
obtained with ultrafast CT, echocardiography and X-ray angiocardiography [185,306].

Cardiac output (CO). The role of the heart is to deliver an adequate quantity
of oxygenated blood to the body. This blood 
ow is known as the cardiac output and
is expressed in liters per minute. Since the magnitude of CO is proportional to body
surface, one person may be compared to another by means of the cardiac index (CI),
that is, the CO adjusted for body surface area. Lorenz et al. [185] reported normal
CI values of 2.9�0.6 l/min/m2 and a range of 1.74{4.03 l/min/m2.

CO was originally assessed using Fick's method or the indicator dilution tech-
nique [139]. It is also possible to estimate this parameter as the product of the
volume of blood ejected within each heart beat (the SV) and the heart rate (HR).

CO = SV �HR (5.5)

In patients with mitral or aortic regurgitation, a portion of the blood ejected from
the LV regurgitates into the left atrium or ventricle and does not enter the systemic
circulation. In these patients, the CO computed with angiocardiography exceeds the
forward output. In patients with extensive wall motion abnormalities or misshapen
ventricles, the determination of SV from angiocardiographic views can be erroneous.
Three-dimensional imaging techniques provide a potential solution to this problem
since they allow accurate estimation of the irregular left ventricular shape.

5.3.2 Motion and deformation analysis

Motion analysis.6 A number of techniques have been used in order to describe
and quantify the motion of the heart. They can be divided into three main cate-
gories [195]: i) detecting endocardial motion by observing image intensity changes, ii)
determining the boundary wall of the ventricle, and subsequently tracking it, and iii)
attempting to track anatomical [46, 156, 240, 324], implanted [9, 41, 133, 146, 199, 247,
304] or induced [12, 76, 99, 153, 170, 210, 321, 325, 326] myocardial landmarks. There

6At this point it is worth mentioning an excellent on-line bibliographic database maintained
by the Special Interest Group on Cardiac Motion Analysis (SigCMA) that can be accessed at
http://www-creatis.insa-lyon.fr/sigcma. It also provides general bibliographic information on
model-based cardiac image analysis.
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are a few problems involved with each of these techniques. Assumptions must be
made about the motion (motion model) in the �rst two groups in order to obtain
a unique point-wise correspondence between frames. To this end, optic 
ow meth-
ods [2,74,75,81,242,293]7 and phase contrast MR [121,205,277,278] have been applied
for (i), and curvature-based matching [5,27,107,147,206] has been used to �nd point
correspondences in (ii). Landmark-based methods [9, 12, 41, 46, 76, 99, 133, 146, 153,
156, 170, 199, 210, 240, 247, 304, 321, 324{326] provide information on material point
correspondence. However, this information is mostly sparse and, again, assumptions
on the type of motion have to be made in order to regularize the problem of �nding a
dense displacement �eld. The use of implanted markers adds the extra complication
of being invasive, which precludes routine use of this technique in humans. Although
implanted markers are usually regarded as the gold standard, there are some concerns
in the literature about their in
uence on both image quality and modi�cation of the
motion patterns.

Wall thickening (WT). Azhari et al. [17] have compared wall thickening and
wall motion in the detection of dysfunctional myocardium. From their study, it was
concluded that wall thickening is a more sensitive indicator of dysfunctional contrac-
tion [17]. This �nding has triggered several researchers to de�ne methods to quantify
wall thickness. Azhari et al. [17], and Taratorin and Sideman [288] carried out a
regional analysis of wall thickness by dividing the myocardium into small cuboid ele-
ments. The local wall thickness is then de�ned as the ratio between the volume of the
particular element and the average area of its endocardial and epicardial surfaces [30].

The most widely employed method for wall thickening computation, however, is
the centerline method [269] and several improvements thereof [35,36,42,299]. Starting
with the endo- and epicardial contours at each slice, the centerline method, in its
original formulation, measures wall thickening in chords drawn perpendicular to a
line that is equidistant to both contours (the centerline). Although more accurate
than methods relying on a �xed coordinate system, this method still assumes that
the contours are perpendicular to the long axis of the LV. If this is not the case,
the myocardial wall thickness is overestimated which invariably occurs, for instance,
in slices that are close to the apex. Buller and co-workers [42, 299] introduced an
improvement on this method by estimating at each location the angle between the
wall and the imaging plane. Recently, Bolson and Sheehan [35, 36] have introduced
the centersurface method (true 3-D extension of the centerline method) which makes
use of a reference medial surface to compute the chords and subsequent wall thickness.

Strain analysis. Strain analysis is a method to describe the internal deforma-
tion of a continuum body. It is an appealing tool to study and quantify myocardial
deformation. Here we shall brie
y introduce some of the concepts related to strain
analysis. A comprehensive exposition of this theory can be found in Fung [109].

To describe the deformation of a body the position of any point in the body
needs to be known with respect to an initial con�guration; this is called the reference
state. Moreover, to describe position a reference frame is needed. In the following
a Cartesian reference frame will be assumed. It is also common to use curvilinear
coordinates for which some of the expressions simplify.

7For a survey of optic 
ow methods in computer vision see Beauchemin and Barron [26].
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A myocardial point, Mr, has coordinates fyig and a neighboring point, M0
r, has

coordinates fyi + dyig. Let Mr be moved to the coordinates fxig, and its neighbor
to fxi + dxig. The deformation of the body is known completely if we know the
relationship

xi = xi(y1; y2; y3) i=1,2,3 (5.6)

or its inverse,

yi = yi(x1; x2; x3) i=1,2,3 (5.7)

For every point in the body we can write

xi = yi + ui i=1,2,3 (5.8)

where ui is called the displacement of the particle Mr. In order to characterize
the deformation of a neighborhood, the �rst partial derivatives of Equations (5.6)-
(5.8) are computed. These derivatives can be arranged in matrix form to de�ne the
deformation gradient tensor : F = [@xi=@yj], (i; j = 1; 2; 3). The deformation gradient
tensor enables to estimate the change in length between the neighboring points fyig
and fyi + dyig, when they are deformed into fxig and fxi + dxig. Let d`r and d` be
these lengths before and after deformation. Then

d`2 � d`2r = 2

3X
i=1

3X
j=1

Eijdyidyj (5.9)

where E = [Eij ] is the Green strain tensor [109]
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where Æij is the Kronecker tensor. From the strain tensor it is possible to de-
compose the strains into two groups: axial and shear strains. The former correspond
to the diagonal elements and represent changes in length aligned with the axes of
the reference frame while the latter correspond to o�-diagonal terms or deformations
where two axes are coupled.

5.4 Overview of modeling techniques

A large e�ort has been devoted to the analysis and segmentation of cardiac images
by methods guided by prior geometric knowledge. When focusing on the way models
are geometrically represented, three main categories can be distinguished: 1) surface
models, 2) volumetric models, and 3) deformation models. In all cases both discrete
and continuous models have been proposed as well as implicitly de�ned surface models
(Figure 5.2).
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Figure 5.2. Proposed classi�cation of cardiac modeling approaches.

Alternatively, one may classify model-based approaches by considering the infor-
mation that is used as input for model recovery. This categorization is highly de-
termined by the imaging modality for which the method has been developed. There
are a variety of inputs for model recovery: 1) multiple 2-D projection images, 2)
multiple oriented 2-D slices, 3) fully 3-D grey-level images, 4) 3-D point sets, 5)
phase-contrast velocity �elds, and 6) MR tagging information.

In this chapter we will compare the di�erent methods with respect to type of
model representation, and types of input data and features that the model is recovered
from. Table 5.1, in which the di�erent approaches are grouped according to the type
of model representation, summarizes this section.

Keys to Table 5.1:

| Modality: BA = Biplane Angiocardiography; US = Ultrasound, MR = Magnetic
Resonance; DSR = Dynamic Spatial Reconstructor; CT = Computed Tomography; X =
transmission X-ray; SPECT = Single Photon Emission Computed Tomography; Syn =
Synthetic images; NS = Non Speci�c.
| Recovered from: M2DP = multiple 2-D projections; MO2DS = multiple oriented 2-D

slices; 3DV = 3-D volumetric images/feature maps; PS = point sets; TAG = MR tag
intersections, lines or surfaces.

Figure 5.3. Keys to Table 5.1.

5.4.1 Surface models

Many approaches to cardiac modeling focus on the endocardial (and/or epicardial)
wall. Three sub-categories are proposed: a) continuous models with either global,
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Table 5.1. Overview of cardiac modeling methods. See Keys in Figure 5.3.

Surface Models

Reference Model Potential Reported Input Feature

Continuous Yettram [316,317] Stacked curves BA BA M2DP manual contours
Young [323,324] Bicubic Hermite patches BA BA PS coronary bifurc. points

Spinale [280]RV Stacked hemiellipses BA BA M2DP manual contours
Pentland [234] FE and modal analysis NS X M2DP optic flow
Cauvin [44] Truncated bullet NS SPECT 3DV thresh. + morph. skel.

Czegledy [63]RV Stack of crescentic outlines NS CT 3DV linear measurements
Gustavsson [127] Cubic B-spline curves' mesh US US MO2DS manual contours

Sacks [256]RV Biquadric surface patches NS MR 3DV manual contours
Chen [47] Superquad. + spher. harm. NS BA PS coronary bifurc. points

Denslow [77]RV Ellipsoidal shell NS MR 3DV linear measurements

Maehle [187] Bicubic spline surf. patch. NS US MO2DS
edge detection +
manual correction

Chen [49] Voxel repres. / superquadric NS DSR 3DV shape & intens. prop.
Coppini [59] Spherical elastic surface NS US MO2DS NN edge detector
Goshtasby [123] Rational Gaussian surface NS MR 3DV zero-cross Laplacian

Matheny [193] 3-D/4-D harmonic surfaces NS DSR/BA PS
iso-surface,
coronary bifurc. points

Staib [281] Bayesian Fourier surface NS MR/DSR 3DV Gaussian gradient

Park [233] Superquadrics + par. func. MRtag MRtag PS motion field [321]
Bardinet [19,20] Superquadrics + FFD NS DSR/SPECT PS iso-surfaces
Declerck [69] Planispheric transformation NS SPECT 3DV norm. radial grad.
Sato [259] B-spline surface BA BA M2DP apparent contours

Discrete Geiser [111, 112] 12-sided stacked polygons US US MO2DS manual contours
Faber [95] 4-D discrete template NS MR/SPECT 3DV norm. radial grad.
Gopal [120] Polyhedral mesh NS US MO2DS manual contours
Friboulet [108] Triangulated mesh NS MR PS manual contours

Huang [145] Adaptive-size mesh NS DSR PS
data-to-node dist. +
data curvature

Faber [94] 3D discrete template SPECT SPECT 3DV radioact. distrib. prof.
Germano [116,117] Ellipsoid + local refinement SPECT SPECT 3DV radioact. distrib. prof.
McInerney [196] FE deformable balloon NS DSR 3DV Gauss/Deriche grad.
Ranganath [246] 2D snakes + propagation MR MR 3DV intens. prof. matching
Tu [297] Spherical template NS DSR 3DV 3D+t gradient
Nastar [213] Mass-spring mesh NS DSR 3DV edge distance map
Rueckert [254] Geom. Def. Template NS MR 3DV zero-cross Laplacian
Shi [87,272] Delaunay triangulation NS MR/DSR PS bending energy
Legget [174] Piecewise subdivision surf. NS US MO2DS manual contours
Montagnat [209] Simplex meshes US US MO2DS edges in cylind. coord.
Biedenstein [31] Bullet-like elastic mesh SPECT SPECT 3DV radioact distrib. prof.

Implicit Yezzi [318, 319] Implicit snakes NS MR 3DV Gaussian gradient
Tseng [295] Cont. Dist. Tranf. NN NS US MO2DS manual contours
Niessen [215] Implicit snakes NS MR/DSR 3DV Gaussian gradient
Lelieveldt [176] Fuzzy implicit surfaces CT/MR MR MO2DS air-tissue transitions

Volume Models

Continuous Creswell [61, 237] Approximating NURBS MR MR PS manual contours

Park [232] Superellipsoids + par. func. MRtag MRtag TAG
tag line intersections +
boundary points

Haber [130, 131] Physics-based FE MRtag MRtag TAG
tag line intersections +
boundary points

Shi [271] Biomech. tetrahed. FEM MR MR PS+3DV
bending energy +
MR velocity image

Discrete Kuwahara [172] Voxel representation MR MR MO2DS manual contours

O'Donnell [218, 219] Hybrid volum. ventriculoid MRtag MRtag TAG
tag line intersections +
boundary points

Deformation Models

Continuous Amini [5] Local quadric patches NS DSR/MR PS minimal conf. motion

Young [321] Bicubic Hermite FE MRtag MRtag TAG tag line intersections
Bartels [23] Multi-dimensional splines NS Syn 3DV intensity conservation

O'Dell [217] Affine + prolate spheroidal MRtag MRtag TAG tag lines

Young [325] Bicubic Hermite FE MRtag MRtag TAG tag lines

Moulton [211] Higher-order polyn. interp. MRtag MRtag TAG tag surface intersec.

Radeva [245] Trivariate cubic B-spline MRtag MRtag TAG short axis tag lines

Kerwin [153] Thin-plate splines MRtag MRtag TAG tag line intersections

Young [320] \Model tags" MRtag MRtag TAG tag lines

Huang [144] Four-variated cubic B-spline MRtag MRtag TAG tag surfaces

Discrete Moore [210] Discrete mesh MRtag MRtag TAG tag line intersections

Denney [76] Discrete grid MRtag MRtag TAG tag line intersections
Benayoun [27] Adaptive-size meshes NS DSR 3DV gradient
Papademetris [229{231] Delaunay triangulation NS MR/US PS intern. deform. energy
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local or hybrid parameterizations, b) discrete models, and c) implicitly de�ned de-
formable models.

Continuous models

In the early studies of cardiac images by 2DE and angiocardiography, cardiologists
used simpli�ed models of the LV in order to compute functional parameters like
ventricular volume and mass from 2-D images. Most of the times, simple ellipsoidal
models were considered. See, e.g., Vuille and Weyman [306] and Dulce et al. [86] for
a comprehensive review of such models and a comparison of their accuracy. In the
last decades, however, approaches have appeared that make use of 3-D acquisitions
to reconstruct models varying from global parameterizations of the LV surface [44,59,
69,123,193,232,235,281] to hierarchically parameterized models [20,47,116,127,176].

Global approaches. In this category we will discuss surface representations that are
based on simple geometric models. In general they can provide, with a limited number
of global parameters, a rough shape approximation. We also include in this category
surface representations obtained as series of basis functions with global support.

Cauvin et al. [44] model the LV as a truncated bullet, a combination of an ellipsoid
and a cylinder, that is �tted to the morphological skeleton of the LV. Metaxas and Ter-
zopoulos [204] have proposed superquadrics [22] to model simple objects with a small
number of parameters. Since the introduction of superquadrics, several extensions
have appeared in the literature. Chen et al. [49] apply superquadrics with taper-
ing and bending deformations to model the LV in an integrated approach for image
segmentation and shape analysis. The method iterates between a region-based clus-
terization step [48], using statistics of image intensity and gradient, and a shape-based
step that checks the consistency between the current segmentation and a superquadric
model. Park, Metaxas and Axel [233] have extended the 
exibility of superquadrics
by introducing parameter functions : radial and longitudinal contraction, twisting and
long-axis deformation. These allow for a more detailed representation of the LV while
keeping the intrinsic geometrical meaning of the superquadric parameters. LV mid-
wall motion is recovered using pre-processed MR tagging data obtained by sampling
the LV mid-wall surface from the 3-D Finite Element (FE) model of Young and
Axel [321].

Staib and Duncan [281] use sinusoidal basis functions to decompose the endo-
cardial surface of the LV. The overall smoothness of the surface is controlled by
adjusting the number of harmonics in the Fourier expansion. Model recovery is cast
into a Bayesian framework in which prior statistics of the Fourier coeÆcients are used
to further limit the 
exibility of the model. Matheny and Goldgof [193] compare
di�erent 3-D and four-dimensional (4-D) surface harmonic descriptions for shape re-
covery. Time can be incorporated in two ways in the model: a) hyper spherical
harmonics, where an event in space-time is converted from Cartesian coordinates to
hyper spherical coordinates, and b) \time-normal" coordinates which are formed by
including a temporal dependency to each spatial coordinate. Experiments carried
out with a 3-D CT data set of a canine heart have indicated that hyper spherical
harmonics can represent the beating LV with higher accuracy than direct normal ex-
tensions of spherical, prolate spheroidal and oblate spheroidal harmonics. Coppini et
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al. [59] reconstruct a 3-D model of the LV based on apical views in US images. LV
boundaries are obtained by grouping edges with a feed-forward neural network (NN)
integrating information about several edge features (position, orientation, strength,
length and acquisition angle). This allows discarding many edge points that are not
plausible LV boundary points. The 3-D LV geometry is modeled as a spherical elastic
surface under the action of radial springs (attracting the model to the edge points);
a Hop�eld [142] NN is used to solve the minimization problem involved in the re-
construction of this surface. Declerck, Feldmar and Ayache [69] have introduced a
spatio-temporal model to segment the LV and to analyze motion from gated SPECT
sequences. The model relies on a planispheric transformation that maps endocardial
points in one time frame to the corresponding material points in any other frame.
First, endocardial edge points are detected in all frames using a Canny-Deriche edge
detector [208] in spherical coordinates [70]. Selected points in subsequent frames
are matched to the current frame using a modi�cation of the Iterative Closest Point
(ICP) algorithm [29,70,98]. Based on corresponding point pairs, the parameters of a
planispheric transformation are retrieved by least-squares approximation. This trans-
formation allows to describe motion with just a few parameters and to relate them
to a canonical decomposition (radial motion, twisting motion around the apico-basal
axis, and long-axis shortening).

Hierarchical approaches. Some authors have addressed the problem of building
hierarchical representations where a model described with few parameters is comple-
mented with extra deformations that capture �ner details.8 Gustavsson et al. [127], for
instance, employ a truncated ellipsoid to obtain a coarse positioning of the left ventric-
ular cavity from contours drawn in two short-axis and three apical echocardiographic
views. Further model re�nement is achieved using cubic B-spline curves approximat-
ing manually segmented contours in multiple views. Chen et al. [47] and Bardinet et
al. [20] use superquadrics [22] to coarsely describe the LV. Their approaches funda-
mentally di�er in the representation of the additional deformation �eld. Chen et al.
use spherical harmonics in order to approximate the residual error between the su-
perquadric estimate of the endocardial LV wall and the true wall location. Spherical
harmonics have the advantage that �ne-tuning can be improved ad in�nitum with in-
creasing number of harmonics. However, adding a new coeÆcient in
uences the shape
of the model everywhere (non-local basis functions). Bardinet et al. [20] extend the
basic superquadric deformations (tapering and bending) through the use of free-form
deformations (FFD), a technique introduced in computer graphics by Sederberg and
Parry [266]. The superquadric is attached to a 
exible, box-like frame, inducing a
non-rigid deformation on the superquadric. Bardinet et al. use trivariate B-splines to
parameterize this deformation �eld. In a later work, Bardinet et al. [19] apply their
method to estimate left ventricular wall motion. This is accomplished by deforming
the full model (superquadric + FFD) in the �rst frame, and modifying only the FFD
in the subsequent frames. By tracking points with the same parametric coordinates
along the cardiac cycle, a number of dynamic parameters like wall thickening and
twisting motion are computed. Germano et al. [116, 117] have developed a system

8Similar approaches have been proposed in computer vision for modeling man-made objects [203,
276,291,302,303] and for elastic matching [18,98].
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for automatic quanti�cation of left ventricular function from gated perfusion SPECT
images. An iterative algorithm �ts an ellipsoidal model to a semi-automatically ob-
tained segmentation. This iterative algorithm incrementally adapts the ellipsoid's
parameters and center of mass so that accurate registration of the model is obtained
even in the presence of large perfusion defects. The ellipsoid de�nes a coordinate
system that is used to re�ne the model. A Gaussian model of the count pro�les is
used to compute radial o�sets corresponding to the endocardial and epicardial walls.
Although simple in its formulation, this method has proven very useful in determining
most of the classical cardiac functional parameters [115] from SPECT images and has
been extensively validated in humans [113,116,117].

Local approaches. A number of methods have been reported to provide surface
reconstruction using piecewise polynomial surfaces, e.g., B-splines or bicubic Hermite
surface patches. These techniques have appeared mainly in the context of surface
reconstruction from multiple cross-sections [172,187] or projections [259,280,316,317,
323]. Given the ill-posed nature of this problem, most of these techniques require
extensive user interaction. Usually, a set of land-marks or �ducial points are deter-
mined from each cross-section/projection and, using high-level knowledge about the
viewpoint and the geometry of the LV, a local surface approximation using surface
patches is performed.

A rather di�erent approach is the one by Pentland and Horowitz [234] who applied
modal analysis and FE to reconstruct a 3-D model of the LV from X-ray transmission
data. Modal analysis o�ers a principled physically-based strategy for reducing the
number of degrees of freedom of the model and to obtain an over-constrained problem
for shape recovery. Optic 
ow is used to derive the deformation of the 3-D model
from the 2-D views, and a Kalman �lter for tracking the structures over time.

Instead of working with multiple cross-sections or projection images, Goshtasby
and Turner [123] segment left and right ventricular endocardial surfaces from 3-D

ow-enhanced MR images. In this case, the endocardial surface is modeled as a
deformable cylinder using rational Gaussian surfaces [122]. The model is deformed to
�t the zero-crossings of the image Laplacian. To avoid attraction by spurious edges,
prior to �tting, the feature map is masked by a rough LV region-of-interest obtained
by intensity thresholding.

Right ventricle models. Some e�orts have also been directed toward geometric
modeling of the RV. This chamber has a more complex shape than the LV. Spinale et
al. [280] �t semi-ellipses to model the crescentic shape of the RV from biplane ven-
triculograms. Czegledy and Katz [63] model the RV using a crescentic cross-sectional
model composed of two intersecting circles of di�erent radii. This 3-D model is pa-
rameterized by only a few linear dimensions that can be measured directly from CT,
MR or US images. From these dimensions, the RV volume is approximated using
analytical expressions. Denslow [77] model the RV as the di�erence of two ellipsoids
(an ellipsoidal shell model). The parameters from this shell are estimated from MR
images (a long axis and a four chamber view) and from those, volume estimates can
be derived. Sacks et al. [256] model the endo- and epicardial walls of the RV by bi-
quadric surface patches (contours were manually traced from MR images), and have
studied surface curvature and wall thickness changes along the cardiac cycle using
this representation.
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Discrete models

An alternative to continuous surface representations is the use of discrete surface
models. Several methods have been reported in the literature and they can be grouped
in the following way.

Physics-based models. Physics-based modeling has attracted the attention of
many computer vision researchers. In this framework, surface recovery is cast into the
deformation of a virtual body (the geometric model plus its material properties) under
virtual external forces derived from image/point features, or user-de�ned constraints.
In the �nal (deformed) state, this virtual body reaches an equilibrium between the
external forces and internal (regularization) constraints. A good overview of the the-
ory of physics-based deformable models and its applications can be found in the book
by Metaxas [202] and in the survey by McInerney and Terzopoulos [197].

McInerney and Terzopoulos [196] have applied this theory to the segmentation
and tracking of the LV in DSR image sequences. A FE balloon [54] deformable
model is discretized using triangular elements, and deformed according to a �rst order
approximation of the Lagrange equations of motion. User-de�ned point constraints
can be interactively inserted to guide the deformation of the model and to avoid local
minima of the potential energy in which the model is embedded. In the Lagrangian
formulation, 3-D image sequences can easily be handled by making the potential
energy a function of time. Montagnat, Delingette and Malandain [209] apply simplex
meshes [72] to reconstruct the LV from multiple views of a rotating US probe. Images
are acquired in cylindrical coordinates coaxial with the apico-basal axis. Accordingly,
images are �ltered in cylindrical coordinates. Boundary points are detected based
on a combination of image gradient and intensity pro�les normal to the surface.
Finally, detected edge points are cast into point attraction-forces deforming the model
according to Newton's law of motion. Ranganath [246] reconstructs 3-D models
of the LV from MRI images using multiple 2-D snakes [149] and devising eÆcient
mechanisms for inter-slice and inter-frame contour propagation. Biedenstein et al. [31]
have recently published an elastic surface model and applied it to SPECT studies. The
elastic surface is deformed according to a second-order partial di�erential equation.
The external (image) forces are derived from the radioactive distribution function and
push the elastic surface toward the center surface of the LV wall. Wall thickness can
be then computed as the distance between the elastic surface and the mass points of
the radioactivity distribution gradient. Huang and Goldgof [145] have presented an
adaptive-size mesh model within a physics-based framework for shape recovery and
motion tracking. The optimum mesh size is inferred from image data, growing new
nodes as the surface undergoes stretching or bending, or destroying old nodes as the
surface contracts or becomes less curved. The method is employed to analyze LV
motion from a DSR data set. To establish point correspondences, an adaptive-size
mesh is generated for the �rst frame to be analyzed; subsequent frames further deform
this mesh while keeping its con�guration �xed.

Physics-based modeling frequently makes an assumption that can be problematic:
internal constraints are usually represented in the form of controlled-continuity stabi-
lizers [290]. It is known that, in the absence of image forces, deformable models tend
to shrink. To avoid this, Rueckert and Burger [254] simultaneously model the two



5.4 Overview of modeling techniques 87

cardiac chambers (RV and LV) using a Geometrically Deformable Template (GDT).
The standard stabilizers on the deformed model are replaced by a stabilizer on the
deformation �eld between a rest model and a deformed model. A GDT consists of
three parts: a) a set of vertices that de�nes the rest state (the template), b) a set of
vertices that de�nes a deformed state (an instance of the template), and c) a penalty
function that measures the amount of deformation of the template with respect to its
equilibrium shape (the stabilizer). Another solution to the above mentioned problem,
was proposed by Nastar and Ayache [213] who model a surface as a quadrilateral or
triangular mesh of virtual masses. Each mass is attached to its neighbors by perfect
identical springs with prede�ned sti�ness and natural length. The system deforms
under the laws of dynamics. In addition to elastic and image forces, an \equilibrium
force" determines the con�guration of the mesh in the absence of external forces.

Spatio-temporal models. Several researchers have developed models that explic-
itly incorporate spatial and temporal variations of LV shape. Faber et al. [95] use a
discrete 4-D model to segment the LV fom SPECT and MR images through a relax-
ation labeling scheme [157]. Endo- and epicardial surfaces are modeled as a discrete
template de�ned in a mixed spherical/cylindrical coordinate system co-axial with the
LV long-axis. Each point in the template represents a radius connected to this axis.
The model is spatio-temporal since the compatibility functions computed in the re-
laxation labeling scheme involve neighboring points both in space and time. In this
way, surface smoothness and temporal coherence of motion are taken into account.
Tu et al. [297] have proposed a 4-D model-based LV boundary detector for 3-D CT
cardiac sequences. The method �rst applies a spatio-temporal gradient operator in
spherical coordinates with a manually selected origin close to the center of the LV.
This operator is only sensitive to moving edges, and less sensitive to noise compared
to a static edge detector. An iterative model-based algorithm re�nes the boundaries
by discarding edge points that are far away from the global model. The model is
parameterized by spherical harmonics including higher order terms as the re�nement
proceeds.

Polyhedral models. LV polyhedral representations have been applied by several
authors [87, 94, 108, 112, 120, 174, 209, 272] in the literature. The approaches di�er
either in the type of polygonal primitive (e.g., triangular or quadrilateral meshes) or
the details of the shape recovery algorithm (imaging modality, input data or recovery
features). Shi et al. [87, 272] use a Delaunay triangulation [309] to build a surface
description from a stack of 2-D contours obtained with a combined gradient- and
region-based algorithm [45]. This representation is subsequently used for motion
analysis based on point correspondences. Bending energy under a local thin-plate
model is used as a measure of match between models of consecutive frames. Friboulet,
Magnin and Revel [108] have developed a polyhedral model to analyze the motion of
the LV from 3-D MR image sequences. LV contours are manually outlined using a
track-ball. After applying morphological and linear �ltering to diminish quantization
noise, the contours are radially resampled with constant angular step. Finally, the
stack of resampled contours is fed into a triangulation procedure [89] which generates
a polyhedral surface with approximately equal-sized triangles. Faber et al. [94] use a
combination of cylindrical and spherical coordinate systems to build a discrete model
of the left ventricle in SPECT perfusion images. A radius function de�ned in a discrete
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(orientation) space of longitudinal and circumferential coordinates describes the LV.
For each orientation, the radius is determined by �nding the position of maximal
perfusion (which is argued to occur in the center of the myocardium). After low-
pass �ltering to remove outlier radii, the radius function is mapped back to Cartesian
space where the surface is represented using triangular or quadrilateral meshes. This
approach shares some features of the work described in Faber et al. [95] but is purely
static. Legget et al. [174, 270] use piecewise smooth subdivision surfaces [143] to
reconstruct the LV geometry from manually traced contours in 3-D US images. Some
elements of the mesh can be labeled so that they allow for sharp edges (e.g., at the
mitral annulus and apex) and to de�ne regional surface descriptors. Also from 3-D
US images, Gopal et al. [120] apply triangulated surfaces to reconstruct the geometry
of latex balloons phantoms mimicking the LV. Three-dimensional reconstruction is
directly obtained by triangulating the points of manually delineated contours from a
stack of quasi-parallel slices.

Implicitly de�ned deformable models

Either in continuous or discrete form, the models in the two previous paragraphs
were characterized by having an explicit surface parameterization. A surface model
can also be de�ned by means of an implicit function. For instance, in the level-set
approach [267], a model is obtained as the zero level set of a higher-dimensional em-
bedding function. This technique, sometimes referred as geodesic deformable models
have been introduced independently by Caselles et al. [43] and Malladi et al. [188]
based on the work by Osher and Sethian [222]. Geodesic deformable models have been
applied by Yezzi et al. [318,319] to the segmentation of MR cardiac images. Recently,
Niessen et al. [215] have extended the method to treat multiple-objects and have ap-
plied it to the segmentation of 3-D cardiac CT and MR images. Although geodesic
models have the ability of handle changes in topology, unwanted and uncontrollable
topological changes can occur in images of low-contrast edges or with boundary gaps
since this is a purely data driven approach.

There are other types of implicit models not related to level-sets. Tseng, Hwang
and Sheehan [296], for instance, use a NN to de�ne a Continuous Distance Transform
(CDT) to the LV boundary. A feed-forward NN is trained to learn the distance
function to the endocardial and epicardial contours using a few hand-segmented image
slices. The surface of the LV is then represented as the zeroes of the distance function.
The NN can generalize the boundaries of the LV in the slices not included in the
training set, thus serving as an aid to segment a 3-D image for which the user has to
provide the segmentation of a few slices only. Under an aÆne deformation model, the
distance transform is used to match di�erent temporal frames and to derive motion
parameters. Wall thickness is computed by the centerline method [269] using two
CDT NNs for describing the endo- and epicardial surfaces.

A third approach to implicit modeling is the use of surface primitives which are
de�ned in implicit form. Lelieveldt et al. [176] segment thoracic 3-D MR images
using hierarchical blending of hyperquadrics [132] and concepts of constructive solid
geometry (CSG) [251]. The method provides an automatic, coarse segmentation of a
multiple-object scene with little sensitivity to its initial placement. The most repre-
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sentative organs in the thorax (lungs, heart, liver, spleen, and cardiac ventricles) are
incorporated in the model which can be hierarchically registered to the scanner coor-
dinate system using only a few coronal, sagittal and transversal survey slices. Owing
to the contextual information present in the model, this sparse information has suc-
cessfully been used to estimate the orientation of the long-axis of the LV. This allows
an observer-independent planning of 3-D long-axis acquisitions in patients [175]. This
technique was not designed to estimate accurate cardiac functional parameters but
can be used to generate a �rst initialization for more accurate algorithms.

5.4.2 Volumetric models

As opposed to the plethora of surface representations, the use of volumetric models
in the analysis and segmentation of cardiac images has received little attention.

O'Donnell et al. [218,219] were the �rst to suggest a volumetric model to recover
myocardial motion from MR tagging. The model, coined hybrid volumetric ventricu-
loid, can be decomposed into three parts: a) a thick-walled superquadric, b) a local
o�set either in non-parametric [219] or parametric [218] form, and c) a local defor-
mation in the form of a polyhedrization. The thick-walled superquadric represents a
high-level abstraction model of the myocardium that is further re�ned by the local
o�sets. Altogether, these two parts constitute the rest model of the myocardium that
is rigidly scaled to the dimensions of a new dataset. The local deformation �eld is
responsible of capturing the detailed shape variability of di�erent data sets. Park et
al. [232] have extended their LV surface model [233] to a super-ellipsoid model with
parameter functions. The model is �tted to tagged MR images providing a compact
and comprehensive description of motion. Radial and longitudinal contraction, twist-
ing, long-axis deformation, and global translation and rotation are readily available
from the parameter functions. Alternatively, standard strain analysis can be carried
out. It is also possible to estimate other volumetric parameters like SV, CO, LVV and
LVM. In order to �t the model, a set of boundary points is manually delineated and a
set of tags are semi-automatically tracked along the cardiac cycle using the algorithm
of Young et al. [325]. Therefore, the accuracy of all volumetric measurements depends
on the manual outlining.

Haber, Metaxas and Axel [130] have developed a model of biventricular geometry
using FEs in a physics-based modeling context. The 3-D motion of the RV is analyzed
by de�ning external forces derived from SPAMM MR tagging data [131]. Creswell et
al. [61] and Pirolo et al. [237] describe a mathematical (biventricular) model of the
heart built from 3-D MR scans of a canine specimen. Manual contour delineation of
the epicardial, and LV and RV endocardial boundaries provides a set of points that
is approximated with cubic non-uniform rational B-splines (NURBS [236]). From
this representation, a hexahedral FE model is built in order to generate a realistic
geometric model for biomechanical analysis.

Recently, Shi et al. [271] have introduced an integrated framework for volumetric
motion analysis. This work extends the surface model of Shi et al. [272] by combin-
ing surface motion, extracted from MR magnitude images, and motion cues derived
from MR phase contrast (velocity) images. The latter provide motion information
inside the myocardial wall but are known to be less accurate at the boundaries [205].
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The two sources of motion evidence (boundary and mid-wall motion) are fused by
solving the discretized material constitutive law of the myocardium assuming a linear
isotropic elastic material. In this framework, the measured boundary and mid-wall
motion estimates at two consecutive frames are used as boundary and initial con-
ditions of a FE element formulation. An advantage of this method with respect
to physically-based techniques is that material properties can be set based on ex-
perimental knowledge about myocardial mechanical properties, and not on a virtual
mechanical analog which usually leads to ad hoc parameter settings.

5.4.3 Deformation models

Hitherto, we have focussed on representing either the endocardial (or epicardial) sur-
face, or the volume comprised within the myocardial muscle. Tissue deformation,
however, can be modeled without necessarily modeling the ventricular boundaries.
To this end, material point correspondences in di�erent temporal frames are required.
These correspondences can be obtained by matching certain geometric properties over
time (general techniques). If images are acquired using MR tagging technology, sev-
eral other approaches can be applied that exploit the explicit correspondences inferible
from tag displacements (MR tagged-based techniques).

General techniques

Several techniques have been proposed in the literature for deformation recovery based
on shape properties only. These methods are attractive because of their generality.
On the other hand, one must reckon with the validity of the underlying assumptions
and/or motion models before they are applied to analyze image sequences correspond-
ing to normal and pathological myocardial motion patterns.

a) Continuous models
Amini and Duncan [5] have developed a surface model based on the assumption

of conformal motion, where angles between curves are preserved but not distances
between points. The LV surface is divided into locally quadric patches from which
di�erential properties can be computed. Inter-frame patch correspondences are ob-
tained using a metric that is minimal for conformal motion. An assumption of this
model is that the subdivision into surface patches and the number of neighboring
patches visited during the matching process are suÆcient to accommodate for the
largest stretching that can occur between frames. Bartels et al. [23, 24] model ma-
terial deformations with multi-dimensional splines. The method shares properties of
optical 
ow techniques to estimate motion �elds. However, those approaches do not
return an explicit model of the deformations (only displacements at discrete positions
are provided). The main assumption of this technique is that, for a given material
point, luminance is a conserved quantity. As in optic 
ow techniques, with only this
assumption the solution remains under-constrained and, therefore, a regularization
term must be added. Illustrations of the method on 2-D cardiac X-ray sequences
are provided and the formulation readily extends to 3-D sequences. However, it is
questionable whether luminance conservation can provide a reliable cue for deforma-
tion recovery in regions with homogeneous intensity, or in the presence of imaging
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artifacts and noise. For MR tagging, in particular, the approach must be adapted
since luminance is not conserved due to the physics of the imaging process [242].

b) Discrete models
Benayoun and Ayache [27] propose an adaptive mesh model to estimate non-

rigid motion in 3-D image sequences. The size of the mesh is locally adapted to the
magnitude of the gradient, where the most relevant information is supposed to appear
(e.g., cardiac walls). Mesh adaptation is carried out at the �rst frame only; subsequent
frames only deform the mesh to recover motion. The underlying hypothesis is that the
deformation is small. Meshes at two time instants are registered through an energy-
minimizing approach matching di�erential image properties (curvature and gradient).
Recently, Papademetris et al. [229{231] have proposed a deformation model inspired
by continuum mechanics. The method recovers a dense deformation �eld using point
correspondences obtained with the point-tracking algorithm of Shi et al. [272]. Regu-
larization is accomplished by measuring the internal energy of the myocardial tissue
assuming a linear elastic body model. This is equivalent to a regularization term on
the strain tensor space and not on the displacement �eld.9 Anisotropy of the �brous
structure of the LV is accounted for in the internal energy by making the model sti�er
in the �ber direction [125].

MR tagging-based techniques

The introduction of MR tagging has stimulated researchers to develop models of
cardiac tissue deformation. Compared to motion recovery based on point correspon-
dences or optic 
ow, MR tagging has the advantage that, in principle, material point
correspondences can be estimated from tag information. In this section, di�erent ap-
proaches for modeling the deformation �elds are reviewed. Accurate tag localization
is a pre-requisite for subsequent deformation recovery and, therefore, it is a closely
related topic to deformation models. A brief overview of tag tracking techniques is
given in Appendix 5.B.

a) Continuous models
Several approaches have been proposed in which the parameterization of the de-

formation �eld is a continuous function. The availability of continuous deformation
maps allows the computation of local strains. Young et al., for instance, developed a
model-based approach for tracking tag intersections [321] and tag stripes [325]10 that
has been validated using silicone gel phantoms [166]. A deformation �eld that maps
the �rst (undeformed) frame to a subsequent (deformed) frame is modeled through a
piecewise polynomial function. Two �tting steps are involved in this method. First,
the material points (tag intersections or stripes) in each deformed frame, t > 0, are

9Related regularization schemes are the global and body smoothing terms described in Young and
Axel [321] which act on the deformation gradient tensor. However, they are not directly interpretable
as an internal deformation energy.
10Amini et al. [4] have compared land-mark based (tag intersections) against curved-based tag

(stripes) tracking based on the simulator of Waks et al. [307]. It was concluded that as the number
of stripes/land-marks increases, the two methods give similar performances. Under large deforma-
tions, the degradation of the curve-based techniques is more graceful compared to land-mark based
methods.
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reconstructed in the coordinate system of the undeformed state, t = 0 (reconstruction
�t). In the latter frame, tag surfaces are arranged in true planes since no motion
has occurred yet. In the second step, the material points for t > 0, expressed in the
reference frame (t = 0), are used to reconstruct a displacement �eld relative to t = 0
(deformation �t).11

A similar approach is followed by O'Dell et al. [217]. One-dimensional displace-
ments are obtained by three independent sets of tag lines: one in the cardiac long-axis,
and two orthogonal sets in the short-axis view. Reconstruction of the deformation
�eld is performed in two interpolation steps. The �rst step assumes a global aÆne
transformation between two time frames. This is done to eliminate global bulk mo-
tion, and linear stretches and shear. In a second step, the residual deformation is
interpolated using a prolate spheroidal decomposition to describe the curvilinear de-
formations expected in the heart.

Both Young et al. [321,325] and O'Dell et al. [217] assume that the reference frame,
to which the strain analysis is related, is the undeformed state. This is normally
the �rst frame in the sequence (planar tag surfaces). Although this simpli�es the
problem by allowing to decouple the motion component normal to the tagging plane,
these methods cannot be used to compute strains between two arbitrary frames. The
latter can be useful in order to retrospectively select the reference frame to coincide
precisely with the diastole or systole, or to compute strains over a subset of the cardiac
cycle. To circumvent this limitation, Moulton et al. [211] have proposed a Lagrangian
approach that explicitly computes the intersection of the tag surfaces in two arbitrary
frames. Tag surfaces are obtained by interpolating the tag curves that are stacked
in di�erent imaging planes. Surface intersections de�ne a set of material lines for
each time frame. These points were used to perform strain calculations employing a
p-version of FE basis functions.

Radeva, Amini and Huang [245] use two coupled volumetric models: a tissue de-
formation �eld and a model describing the LV geometry. The �rst model is represented
by a cubic trivariate B-spline (coined B-solid by the authors); the second model is rep-
resented by two coupled surfaces (endo- and epicardium) �tted to boundary points. It
is assumed that the boundaries are either manually delineated or (semi)automatically
detected from the tagged images. The B-solid is deformed under thin-plate internal
constraints, and under two external forces. The �rst corresponds to tagging infor-
mation: the iso-parametric curves of the model are deformed to align with the tag
strips. Simultaneously, the B-solid is attracted towards the LV boundaries by inte-
grating a distance function to edge points on the epicardial and endocardial surfaces.
Therefore, in this method, boundary and tag information are incorporated in a uni�ed
approach. Since this method has been applied in combination with short-axis tagged
images only, it yields in-plane 2-D displacements. In a recent paper, Huang et al. [144]

11Both �tting steps handle sparse data and, therefore, regularization is needed. Regularization,
however, is known to introduce artifactual strains. The e�ect of three regularization terms has
been studied in [321]: i) a thin-plate spline stabilizer, ii) a global smoothing regularizer minimizing
the deformation gradient tensor, F , and iii) a local body regularizer minimizing the deformation
gradient tensor expressed in some natural local coordinate system (e.g., aligned in circumferential,
longitudinal and radial directions). Based on simulations of an axis-symmetric deformation of a thick
walled incompressible cylinder, it was shown that all three constraints yield similar results in the
strain analysis.
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have extended the method to analyze true 3-D deformations using a spatio-temporal
model. The method di�ers from the one of Radeva et al. in that no boundary informa-
tion is now incorporated. On the other hand, a spatio-temporal B-solid is constructed
through a 4-D tensor product spline (3-D+t). The �tting process to SPAMM data
is governed by a normal constraint which enforces the attraction produced by each
tag plane to be in its normal direction. Since multiple, orthogonal tag planes are
available, this allows a full 3-D reconstruction of the deformation �eld.

Kerwin and Prince [153] have developed an alternating projection technique to
accurately estimate the 3-D location of the intersection points of the tag grid. The
deformation �eld between two frames is recovered using thin-plate-spline interpola-
tion. Myocardial points are distinguished from those in static tissues by checking
whether they pass across the imaging plane over time. In points that do not ful�ll
the previous criterion, a test is performed to check their inclusion within the outlined
myocardial borders prior to rejection from the analysis. Such a rejection scheme is
important for proper visualization and analysis of myocardial motion.

Recently, Young [320] has introduced the concept of model tags that represent the
material surfaces within the heart tissue which are tagged with magnetic saturation.
Model tags are \attached" to the heart and deform with it. They are embedded
within a 3-D FE model describing the geometry of the LV; this model is linear in the
transmural direction and employs bicubic Hermite interpolation in the circumferential
and longitudinal directions. Instead of �nding the 3-D location of the tag plane
intersections, this approach �nds the intersections of the model tags with the imaging
planes (model tag intersections or MTI). The FE model is subsequently deformed so
that the MTI match the tag stripes in each image plane. Matching is carried out
by a local search algorithm guided by an orientation �lter. Additionally mechanisms
are incorporated to allow eÆcient user interaction and to correct for erroneous MTI
matches.

b) Discrete models

Moore et al. [210] use MR tagging to reconstruct the location of material points
through the cardiac cycle by interpolating the positions of the tags from short- and
long-axis image planes using an iterative point-tracking algorithm. Discrete tag lo-
cations are arranged in cuboid volume elements which are identi�ed in the deformed
and reference frames. For each element, a 3-D strain tensor is calculated using the
generalized inverse method [82]. Since the strain analysis is performed on a coarse
discrete grid, only average strains can be retrieved. The tag tracking procedure of
this method compensates for through plane motion. An important conclusion from
this work is that strain analysis can be largely in
uenced by through plane motion if
this is not corrected for.

Denney and Prince [76] employ a multidimensional stochastic approach to obtain
a dense discrete model of the displacement �eld from a sparse set of noisy measure-
ments (tag displacements). The displacement �eld is constrained to be smooth and
incompressible (isochoric deformation). This formulation leads to a partial stochastic
model of the deformation �eld that can be solved using Fisher's estimation frame-
work [265].
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Table 5.2. Overview of cardiac modeling methods: reported classical functional
parameters and their validation. See Keys and Notes in Figure 5.4

.

Evaluation Reference Modality
Parameters

F PP AU AH
Validation/Illustration

Global Motion Type No. Std. of Ref.

Qualitative or

No evaluation

Amini [5] DSR,MR � MF L M + + a 1 NA

Bartels [23,24] NS � MF L N + + m 1 GT
Benayoun [27] DSR � MF L A + � a 1 NA

Cauvin [44] SPECT LVV � C A + � P NA NA

Chen [47] BA LVV SA H M � � V 1 NA

Chen [49] DSR LVV � C N + � V 1 NA

Gustavsson [127] US LVV � H M = + V 1 NA

Huang [145] DSR LVV MF L M + + a 1 NA

Kerwin [153] MRtag � SA L Ay + � V 1 NA

Matheny [193] DSR LVV � G M + � a 1 NA

Maehle [187] US LVV WT L M � � V/P NA NA

McInerney [196] DSR LVV MF L I � � V 1 NA

Niessen [215] MR/DSR LVV WT L I + + a 1/1 NA

O'Donnell [218, 219] MRtag LVV WT,SA H M + + V 1 NA

Papademetris [231] US � SA L A + � a 3 NA

Pentland [234] X LVV MF G I + + V 1 NA

Radeva [245] MRtag LVV MF,SA L M � + V 1 NA

Rueckert [254] MR LVV MF L I + + V 1 NA

Staib [281] DSR/MR LVV � G I + + a 1/1 NA

Yezzi [318, 319] MR LVV WT L I + + V 1 NA

Young [323, 324] BA � SA L M + + a 1 NA

Young [320] MRtag � SA L I � + V 1 NA

Quantitative:

synthetic,

phantom and

animal models

Bardinet [19] DSR LVV MF H M + � a/m 1 OB/AS

Czegledy [63]RV CT RVV � C M = � p 10 AT

Denney [73, 76] MRtag � MF L Ay + � m/a 1/1 GT/NA

Denslow [77]RV MR RVV � C M = � p 13 AT
Germano [115{117] SPECT LVV,EF � H A + � p 1 GT
Gopal [120] US LVV � L M + � p 17 AT

Kerwin [153] MRtag � SA
z L Ay + � m � GT

Haber [130, 131]RV MRtag � MF,SA L M + + m 1 GT

Huang [144] MRtag � MF,SA L A + � m/a �/1 GT/NA
Legget [174, 177,212] US LVV,LVM � L M = � p/a 6/21+5 GT/AT

Moore [210] MRtag � SA L Ay + � m � AS

Moulton [211] MRtag � SA L My + � m/a �/7 NS/NS

O'Dell [217] MRtag � SA H My + � m � AS
Papademetris [229, 230] MR � SA L A + � a/a 8/3 AT

Sacks [256]RV MR � WT L M = + p/a 6/1 GT/NA
Sato [259] BA LVV � L M � + m/p 1/1 GT/AT

Spinale [280]RV BA RVV,SV WT L M = + p/a 22/24 AT/AT
Shi [272] MR/DSR � WT,MF L A + + a 12 AT
Shi [271] MR � MF,SA L A + - a 1 CL
Tu [297] DSR LVV � G M + + a 2 OB
Yettram [316,317] BA LVV � L M = � p 8 AT

Young [321] MRtag � SA L M + � m � AS

Quantitative:

clinical case

studies without

standard of

reference

Declerck [69] SPECT � MF G A + + V/P 3/1 NA

Kuwahara [172, 257] BA LVV,EF,SV � L M = � P 13 NA

Legget [174, 212] US LVV � L M � � V/P 6/2 NA

Moore [210] MRtag � SA L Ay + � V 1 NA

O'Dell [217] MRtag � SA
z H My + � V 10 NA

Park [232] MRtag LVV,EF MF C M + + V/P 1/1 NA

Park [233] MRtag LVV MF,SA C M + + V/P 1/1 NA

Young [323, 324] BA � SA L M + + V 1 NA

Young [321] MRtag � SA L M + � V 1 NA

Quantitative:

clinical case

studies with

standard of

reference

Bardinet [19] SPECT LVV WT,MF H M + � V 1 OB
Biedenstein [31] SPECT LVV � L I + � P 42 OB
Coppini [59] US LVV,EF � L N + � V 3 OB
Faber [95] SPECT/MR LVV WT L I + + V/P 22/16 OB
Faber [94] SPECT LVV � L I + + P 10 OB(m)
Germano [115{117] SPECT LVV,EF WT H A + � P 144/65 OB(m)/AT
Geiser [111, 112] US LVV,EF,SV,CO WT L M = � P 4 AT
Goshtasby [123] MR LVV � L I + + V 5 OB
Legget [174, 177] US LVV,SV � L M � � V 5 AT
Ranganath [246] MR LVV,EF � L I + + V 7 OB
Tseng [296] US LVV WT G I = � V 1 OB
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5.5 Discussion

Comparison of the performance of di�erent techniques is a diÆcult task due to the
diversity of approaches, the di�erent or complementary information obtained from
them, the di�erent imaging modalities and image acquisition protocols, and, last but
not least, the lack of a standard way of reporting on performance. In order to draw
some comparative conclusions we have classi�ed the existing methodologies according
to the degree of their validation (Section 5.5.1). At the same time, we introduce a
number of performance criteria (Section 5.5.2). In this comparison we have focussed
on techniques leading to traditional cardiac indices, viz. global (Sec 5.3.1) and motion
parameters (Sec 5.3.2). Table 5.2 summarizes this discussion.

5.5.1 Validation

Three main groups of papers can be distinguished: 1) with no evaluation or only
qualitative illustrations, 2) with quantitative evaluation on non-human data sets, and
3) with quantitative evaluation on human data sets. This classi�cation has been used
in constructing Table 5.2.

Although there are always exceptions con�rming the rule, Table 5.2 indicates
several trends. Most papers in the �rst category correspond to articles presenting
technical or methodological aspects of advanced modeling techniques. The result
sections in these papers are restricted to either technical aspects or proof-of-concept
illustration on realistic images hypothesizing the potential of the technique. Only a
few of them have seen follow-up articles con�rming those hypotheses in large stud-
ies. Further evaluation of these techniques is required in order to determine their
usefulness in clinical tasks.

Approaches in the second category are numerous. Methodologies in this category
have been evaluated on simulated images or in phantom experiments. These have
the advantage of providing ground truth to assess the accuracy and reproducibility
of the techniques. Owing to the use of idealized geometries and measurement con-
ditions, extrapolation of the results to in vivo human studies remains to be demon-
strated. Some papers in this second category have evaluated their techniques on ex
vivo or in vivo animal models. Several researchers have reported experiments with
dogs [19, 27, 77, 193, 196, 213, 215, 237, 256, 272, 280, 281], swines [77, 211, 280, 281] or
calfs [63,177,212].12 Only a few studies have compared measurements, obtained from
ex vivo [177, 212] or in vivo [229, 272, 280] animal studies, against other standard-
of-reference techniques. As representative examples we can mention the following
evaluation studies. Munt et al. [212] employed high-density laser scanning to com-
pute surface area from excised calf hearts. Leotta et al. [177] compared in vivo
stroke volumes in humans computed with their technique against those derived from
Doppler measurements. Spinale et al. [280] compared cardiac output and stroke vol-
ume measurements to those obtained by thermo-dilution. Shi et al. [272] validated

12Remarkably, a large amount of evaluations involving canine models have been acquired with
the dynamic spatial reconstructor. However, the reduced clinical availability of this technique and
its speci�c image properties makes it diÆcult to extrapolate the results of the evaluation to other
clinical imaging techniques.
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motion �eld computations against the trajectories of implanted copper beads �lled
with gadopentetate-dimeglumine (Gd-DTPA) and lead beads markers for myocardial
wall trajectories computed from MR and DSR images, respectively. Papademetris et
al. [229] evaluated their tissue deformation recovery algorithm against implanted so-
nomicrometers.

MR tagging techniques for reconstruction of myocardial motion or tissue deforma-
tion deserve separate attention. Most in vivo animal and human studies have reported
on Monte Carlo analysis of sensitivity to errors in tag localization and tracking, and
on the ability to recover the location of tags in di�erent frames [73,153,210,211,217].13

Several models have been used in the literature to benchmark the accuracy of motion
and deformation recovery. These evaluations were based, for instance, on spherical
and cylindrical models of cardiac motion [76,210,217,324], FE solutions with realistic
geometries [211], arti�cially generated motion trajectories [19] or synthetic images
using the cardiac motion simulator [144, 153, 155] developed by Waks, Prince and
Douglas [307] that builds upon the kinematic model of Arts et al. [10]. Recently, a
study was carried out by Declerck et al. [71] that thoroughly compared four tech-
niques [68, 76, 217, 226] for motion tracking from tagged MR. This paper provides
results on normal and pathological subjects. Although the general trends of motion
were captured correctly by all methods, this study shows that there are noticeably
di�erences in the displacement and strain computations provided by each technique.

Finally, the third category includes studies that reported application on human
volunteers and patients, including quantitative results in terms of cardiac functional
parameters. The size of the populations in most of these studies was small. With
only three exceptions, all studies were conducted on less than a dozen of volunteers
or patients.

5.5.2 Performance criteria

In the following subsections we elaborate on the criteria that we have used to compare
the di�erent methods.

Model complexity or 
exibility

The complexity or 
exibility of a technique has been categorized in four groups accord-
ing to the number of degrees of freedom14 (DOF) or parameters involved. 1) Compact
models with only a few parameters (on the order of a dozen). Prototypical examples
are superquadrics. 2) Flexible models with large number of DOFs and parameterized
with global -support basis functions. Representative examples are harmonic parame-
terizations of several types. 3) Flexible models with large number of DOFs and pa-
rameterized with local -support basis functions. Members of this family are B-spline
and polyhedral models. 4) Flexible hierarchical models encompassing a reduced set

13Validation MR tagging itself for describing tissue deformation has been addressed by Young et

al. [322] using a silicone gel phantom. Strains derived from MR tagging were compared to the
analytic equilibrium strains under a Mooney-Rivlin material law.
14Here we disregard the obvious rigid transformation parameters to instantiate the model in world

coordinates.
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Keys to Table 5.2:

| Parameters: bold = quantitative results reported; italic = computable from the
model (but quantitative results not reported). Motion parameters were classi�ed in
three categories: WT = wall thickening analysis, MF = wall/tissue motion �eld (not
including strain analysis), SA = strain analysis.
| Flexibility (F): C = compact model with small or medium number of degrees of

freedom (DOF), G = 
exible model with global support basis function and large
number of DOF, L = 
exible model with local support basis functions and large
number of DOF, H = hierarchical models.
| Pre-processing (PP) to initialize the model. N = none; M = manual

segmentation of contours and/or land-marks; A = (semi) automatic delineation of
contours and/or land-marks; I = approximated model initialization or land-mark
placement. Pre-computation of feature images (gradient, Laplacian, etc.) was not
considered as pre-processing.
| Automation (AM) after pre-processing and selection of ad hoc parameters:

(+) full, (�) interactive guidance may be required to correct/assist intermediate steps,
(=) relying on substantial human guidance.
| Ad hoc (AH) parameters: (�) none, or robustness demonstrated through

sensitivity analysis, (+) yes and no sensitivity analysis was performed.
| Validation/Illustration information. Type of evaluation/illustration set:

m = mathematical models, p = physical phantoms (mostly balloons or heart casts),
a = animal model, V = human volunteers and P = patients. Standard of reference:
AS = analytic solution, AT = alternative technique, CL = comparison to literature,
GT = ground truth, NS = numerical solution, OB(m) = human observer (involving
multiple modalities). Papers with several evaluation studies have multiple entries.

| NA = not available / reported
Notes:
zOnly the accuracy in determining tag intersections was computed. No quantitative
analysis reported on deformation �eld or strain analysis.
yMonte Carlo analysis of sensitivity for this factor is reported.

Figure 5.4. Keys and notes to Table 5.2.
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of DOFs coarsely describing shape, plus an extended set of DOFs giving extra 
ex-
ibility to the model. Representative of this family are superquadrics with free-form
deformations. Complexity is, to some extent, related to the computational demand
of an algorithm. Highly 
exible algorithms are usually related to higher computation
time for deforming them to a given image data set.15 On the other hand it is also a
measure of the ability of a modeling technique to accommodate for �ne shape details.

Although idealized models of ventricular geometry (mainly ellipsoids or ellipsoidal
shells) are appealing for their parsimony and for historical reasons, Table 5.2 shows
that no study has quantitatively demonstrated their accuracy in computing simple
measurements as LVV and EF. Compact models have developed in two di�erent
directions. On one hand, in particular for the RV, some researchers have evaluated
combinations of simple models that roughly derive RVV from a small number of
linear measurements [63, 77]. The models, however, remain highly constrained and
have been tested on ex vivo casts experiments only. A second direction has been to
trade-o� the compactness of the superquadric models and their 
exibility without the
need of hierarchical decompositions [232,233]. In this manner, 
exibility is added in
an elegant way by which each parameter function has an interpretation in terms of
local and global shape changes.

Most approaches that reached the stage of quantitative evaluation are based on

exible or hierarchical representations. Both present challenges and advantages. Flex-
ible representations (e.g., polyhedral meshes or harmonic decompositions) are highly
versatile and can accommodate detailed shape variations. Most of the quantitative
evaluation studies have been reported on local 
exible models, most of which are
able to cope even with complex topologies. On the other hand, restricting the space
of possible shapes is usually diÆcult or requires substantial manual intervention or
guidance [172,280,316,317]. Hierarchical or top-down approaches aim at a reduction
in computational time and at improving robustness by incrementally unconstrain-
ing the space of allowed shape variation [20, 47, 115, 127, 218, 219]. One weak point
in hierarchical approaches is the need for ad hoc scheduling mechanisms to deter-
mine when one level in the representation hierarchy should be �xed and a new level
added, and up to which level the model should be re�ned. Furthermore, optimization
procedures involved in the recovery of hierarchical models have to be designed with
particular care. It is unclear how it can be ensured that a succession of optimizations
at di�erent modeling levels actually leads to the optimum global deformation. Also
the question arises how to link di�erent levels of model detail with the resolution of
the underlying image data, and how to interact with the models if, after all, manual
editing is required. Still, hierarchical model representations are an active and chal-
lenging �eld in 3-D medical image segmentation research where several investigators
have presented encouraging results in cardiac [19,20,47,116,117,218,219] and thorax
modeling [176,186].

15Actually, it is the conjunction of model parameterization and the recovery strategy which de-
termines the computational load of an approach. It would have been very interesting to report
computation time with each technique. Unfortunately, variability in hardware architecture over
time and techniques renders any quantitative comparison unrealistic.
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Robustness and e�ective automation

Processing prior to model recovery, automation of the recovery algorithm itself, and
the presence of ad hoc parameters are factors that determine the robustness of a tech-
nique and its e�ective automation. By e�ective automation we refer to the automation
of the overall approach, from raw images until the presentation of the functional pa-
rameters.

Before a given model can be �tted or deformed to a data set, almost every tech-
nique requires some type of pre-processing to convert the raw grey-level images into a
representation suitable for shape recovery. Section 5.4 has suggested a classi�cation
of types of input data. For the sake of simplicity, Table 5.2 only indicates the de-
gree of manual involvement to obtain the corresponding input data. Four categories
were considered: (N) no pre-processing required, (I) manual initialization of land-
marks/models, (A) (semi) automated initialization of land-marks/models integrated
into the technique, and (M) fully manual segmentation of land-marks/contours. Al-
though variability inherent to the pre-processing can have a marked e�ect on the
overall performance of a technique, this factor is usually disregarded in the evaluation
of algorithms. A remarkable exception is the evaluation of MR tag tracking algorithms
using Monte Carlo analysis to assess the in
uence of erroneous tag localization in the
recovery of tissue deformation [73, 153, 210, 211, 217]. Model initialization is also re-
lated to the issue of pre-processing. Although a few techniques make explicit mention
of the procedure required to initialize the model [31, 176, 215, 232, 233, 325], model
initialization in a 3-D environment can be non-trivial or require expert guidance.

Another factor undermining robustness and reliability of a technique, is the pres-
ence of ad hoc parameters that have to be set by the user. This can be particularly
problematic when such parameters are highly dependent on a given data set. This is
a known problem, for instance, of many physics-based deformable models for which
several weights must be tuned to balance the smoothing constraints to the external
energy terms. However, in the literature, analysis of sensitivity of the result to the
weighting parameters is mostly missing. In Table 5.2, we have classi�ed the di�erent
techniques into two categories according to the presence of user-de�ned ad hoc param-
eters: (�) no parameters or parameters with corresponding analysis of sensitivity, and
(+) parameters for which no sensitivity analysis was performed. The fact that several
methods do not present ad hoc parameters (�) does not have to be confounded with
overall robustness. Even within the approaches with quantitative evaluation, many
papers in the (�) category either require substantial pre-processing [20,120,174,211,
217, 229, 230, 321] or human guidance [63, 77, 111, 112, 296, 316, 317]. Both factors
in
uence the robustness and reproducibility of the derived functional information.

Finally, Table 5.2 also indicates the degree of user guidance (automation) of the
�tting procedures for given input data (pre-processing) and set of ad hoc parame-
ters. Three degrees of automation were used to classify the approaches: (=) relying
on substantial human guidance, (�) manual interaction can be necessary for guid-
ing/correcting the deformation, and (+) fully automated. In general terms, the larger
the need for human intervention during the �tting procedure, the less robust a tech-
nique will become, and the more prone it will be to inter/intra-observer variability of
the �nal results.
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5.6 Conclusions and suggested future research

In this chapter we have reviewed techniques for 3-D geometric modeling and analysis
of cardiac images. In particular, we have focussed on those techniques leading to
traditional indices of cardiac function. We have proposed a systematic classi�cation
of the approaches based on the type of representation of the geometric model, and
the type of input data required for model recovery (Table 5.1). Furthermore, we have
given a critical assessment of these approaches according to the type of functional pa-
rameters that they provide, their degree of evaluation, and the performance achieved
in terms of modeling 
exibility, complexity, and e�ective automation (Table 5.2).

From the surveyed literature, four main lines of future e�orts can be distinguished:

1) Research on modeling and model deformation techniques. The last two decades
have witnessed an enormous amount of e�orts in 3-D models of LV and RV. This
holds true for all imaging modalities (cf. Table 5.1). In spite of the large number of
attempts, no approach has simultaneously achieved robustness, automation, model

exibility and computational speed. Manual outlining and analysis of cardiac images
is still the most popular technique in clinical environments.

Several issues will require more attention in order to integrate the advances of
modeling techniques into clinical practice. Accurate 3-D modeling techniques are, in
general, computationally intensive. Exploration of 
exible modeling techniques that
make an eÆcient use of their degrees of freedom will be worthy of further research.
So far the main 
ow of e�orts has been focussed on adopting generic geometrical
representations to build cardiac shape models (e.g., superquadrics, B-splines, polyhe-
dral meshes, Fourier descriptors, etc.). As a consequence, in generating a realistic LV
shape, the representations are either too restrictive or require a considerable amount
of parameters. The question arises of how to infer a compact representation giving
rise to realistic shapes, possibly learned from examples.16 Modeling approaches that
go from shape examples to a speci�c shape representation can reduce computational
demands and improve their robustness. A small number of eÆciently selected model
parameters reduces the dimensionality of the model recovery problem, and naturally
constrains its results owing to model speci�city.

Further investigation of suitable image features will be needed to improve shape
recovery. In particular, incorporation of domain knowledge about the type of image
modality (and acquisition protocols) can play an important role in increasing the
accuracy of shape recovery techniques.

Most of the modeling techniques presented in this review were either purely geo-
metric or inspired in a virtual physical analog (physics-based approaches). Recently,
a few papers have introduced known biomechanical properties of the heart in the for-
mulation of models that analyze cardiac images [229{231,271]. Further development
of such approaches, and their application to segmentation tasks, can be a natural way
of extending the ideas of physics-based methods and of relating some of the ad hoc
parameters with experimental evidence provided by biomechanics.

16An interesting approach is to extract statistical models from sample shapes [56] and to capture
the most representative degrees of freedom via principal component analysis. Although interesting
results have been obtained in 2-D applications, more research is needed to solve practical problems
in their 3-D extensions.
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2) Research on interactive model-based segmentation. Table 5.2 supports the idea
that model-based cardiac segmentation has not reached the status of being e�ectively
automated since current techniques either require substantial expert guidance, ad hoc
parameter �ne-tuning or non-trivial pre-processing. Although full automation is a
desirable end goal, its diÆculty has been acknowledged many times in the literature.
There is a growing consensus that user interaction is, to some extent, unavoidable,
and that it has to be considered as an integrated part of the segmentation procedure.
Therefore, development of eÆcient tools for 3-D interaction will play an important
role in the near future. \EÆcient" entails that with minimal and intuitive user inter-
action the operator keeps control over the segmentation process to correct or overrule
its results where it has failed, and to guide the algorithm in abnormal situations (e.g.,
in front of a pathological case). Of course, the issue of reproducibility in case of
human intervention needs attention. Where well-de�ned repetitive tasks are recog-
nized, or where a local user interaction can be extrapolated to a broader area, the
process should be automated, thus improving segmentation throughput and repeata-
bility. How to devise such eÆcient and intuitive mechanisms for 3-D manipulation of
models and volumetric data, and how to integrate them into the deformation of the
models remain topics of future research.

3) Research on functional cardiac descriptors. There are many shape and motion
parameters other than traditional indices (cf. Appendix 5.A). Unfortunately, although
these new indices seem to provide richer information and/or a more detailed analysis
of cardiac function, their clinical evaluation has been very limited. As a consequence,
it is diÆcult to determine their clinical relevance and the extra information provided
with respect to traditional indices like LVV, EF, etc. The lack of clinical evaluations
may be related to the fact that advanced 3-D modeling techniques, from which these
parameters can be derived, are computationally expensive and require considerable
user intervention. The need of considerable pre- and post-processing procedures, ad
hoc parameter settings and technical understanding of the modeling technique itself
may explain why most of the described approaches are not available as stand-alone
prototypes on which clinical studies can be carried out routinely.

There is certainly place for development of novel shape and motion descriptors.
However, there is even a larger need for evaluation of already existing indices on
reference data sets and/or large scale clinical studies. It is remarkable that this lack
of large evaluation studies is present even in many techniques aiming at the extraction
of traditional functional parameters (Table 5.2).

It is unrealistic to expect that every new technique proposed in the future will go
through the process of a thorough clinical evaluation study. Unfortunately, many re-
search institutes working on geometric modeling and shape analysis are not located in
a clinical environment. Access to state-of-the-art image material and derived param-
eters for testing and benchmarking purposes is, therefore, diÆcult. In this respect, a
public, common database of a representative set of images from di�erent modalities
would be highly bene�cial. This database should establish a few standard data sets
(both synthetic and clinical study cases) with as much independent measurements as
possible of mass, stroke volume, etc. With the current speed of development in the
imaging modalities, such a database should be updated regularly to be representative
of the state-of-the-art imaging technology.
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4) Multi-disciplinary approaches. When imaging and modeling techniques get
more complex, the interplay of clinicians, medical physicists and technologists in
a common environment becomes increasingly important. Several issues have to be
addressed in a cooperative fashion: the interrelationship between image acquisition
and cardiac modeling, the development of e�ective visualization techniques of 4-D
data sets, realization of intuitive interfaces to interact with geometric models at the
various stages of initialization, deformation and eventual correction of results, and
concise transferal of clinical information from images/models to the cardiologists.

It is to be expected that approval by clinicians of a model-based technique that
provides functional parameters will depend on close collaboration between technicians
involved in image acquisition, computer scientists devoted to the development of
eÆcient modeling and model recovery techniques, and cardiologists providing feedback
about the desired information and display methods, the validity of the assumptions
and the design of evaluation studies.

5.A Appendix: Non-traditional shape and motion
descriptors

Three-dimensional model-based analysis of left ventricular shape and motion has the
potential of providing rich morphological and functional information. Current clinical
assessment of cardiac function is based mainly on global parameters as LVV and EF.
However, several researchers have demonstrated in the past the importance of local
functional indices as wall thickening and segmental motion analysis [124,228,268,269],
and local curvature and shape [21, 148,189,190] as potential cardiac indexes. Unfor-
tunately, most of these studies were based on 2-D imaging techniques. Although they
can indicate major trends about cardiac shape, a 3-D analysis would be bene�cial
to better account for the true cardiac geometry. In this section, we brie
y summa-
rize several new indices proposed in the literature that describe shape and/or motion.
Some of these indices have been presented as a by-product of a speci�c modeling tech-
nique while others are easily computable from any model representation. Therefore,
this distinction seems a natural classi�cation.

A. Generic descriptors

Mean and Gaussian curvature. The principal curvatures (k1 and k2, respectively)
measure the maximum and minimum bending of a regular surface.17 Rather than
using principal curvatures it is more common to use two derived quantities known as
Gaussian (K = k1k2) and mean (H = (k1+k2)=2) curvatures. By analyzing the signs
of the pair (K;H) it is possible to locally distinguish between eight surface types [28].

Friboulet et al. [107] have studied the distribution of the Gaussian curvature in
the LV at di�erent phases of the cardiac cycle. From this study it was concluded
that this distribution remains structurally stable over time. Whereas the LV free wall

17A subset M � R
n is called a regular surface if for each point p 2 S, there exists a neighborhood

V of p in and a map x : U 7! R
n of an open set U � R

2 onto V \M such that: 1) x is di�erentiable,
2) x : U 7! R

n is a homeomorphism, and 3) each map is a regular patch, i.e., it has a full rank
Jacobian for any x 2 U .
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provides rich and dense curvature information, the curvature at the septal wall is less
suitable to establish point correspondences. Similar �ndings were made by Sacks et
al. [256] with respect to the RV free wall: the RV free wall has relatively uniform
distribution of principal curvatures, and the surface geometry of the RV free wall
does not change signi�cantly from end diastole to end systole.

Shape index and shape spectrum. Although mean and Gaussian curvatures are
related to the concept of curvedness, there still remains scale information in these
shape descriptors. To overcome this problem, Clarysse et al. [52] have used the shape
index (s) and the curvedness (c), two parameters that were introduced by Koenderink
and van Doorn [161] and are de�ned as follows:

s =
2

�
tan�1

�
k2 + k1
k2 � k1

�
(5.11)

c =

�
k21 + k22

2

� 1
2

(5.12)

While c is inversely proportional to the object size, s de�nes a continuous distri-
bution of surface types ranging from cup-like umbilic (s = �1) to peak-like umbilic
(s = 1) points. It can be shown that while the shape index is invariant by homothecy,
the curvedness is not. In this way, shape information and size can be easily decoupled.

The shape spectrum [80], 
(h; t), is a global shape index de�ned as the fractional
area of the LV with shape index value h, at time t


(h; t) =
1

A

ZZ
S

Æ(s(x)� h) dS (5.13)

where A =
RR

S dS is the total area of the surface S, dS is a small region around
the point x, and Æ(�) is the one-dimensional Dirac delta function. Cardiac deformation
can be analyzed by tracking the shape index and curvedness of similar shape patches
(SSP) over time. SSP are connected surface patches whose points have similar shape
indices, i.e., the shape index falls within a given range s ��s. Clarysse et al. have
shown the potential applicability of these indices by analyzing phantoms of normal and
diseased LVs. A LV model of dilated cardiomyopathy, and a model of an ischemic LV
(both akinetic and hypokinetic in the left anterior coronary territory) were generated
using 4-D spherical harmonics. The curvedness spectrum was signi�cantly altered
by both pathologies, even when they were localized (ischemic models). Reduction of
the global function in the dilated myocardium had no signi�cant repercussion on the
shape index spectra. This could be an indicator that this pathology mostly a�ects the
magnitude of motion only. An alternative to global analysis is to track the curvature
parameters in predetermined regions. Clarysse et al. have tracked three reference
points over time: the apex, a point in the anterior wall, and a point in the cup of the
pillar anchor. Using the local temporal variation of the curvedness and shape index,
it was possible to distinguish between the normal and diseased model. A potential
problem of this techniques is the reliable tracking of SSPs. If local deformations are
too large the trace of points might be lost.

Local stretching. Mishra et al. [206] have presented a computational scheme to
derive local epicardial stretching under conformal motion. In conformal motion, it
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is assumed that motion can be described by a spatially-variant but locally isotropic
stretching factor. In particular, for any two corresponding patches before and after
motion, P and P , the local stretching factor, � , can be computed from the change in
Gaussian curvature and a polynomial stretching model by means of the relationship

K =
K

�2
+
f(E;F;G; �; �u; �v ; �uu; �vv)

�2
(5.14)

where f(�) is the polynomial stretching model (linear or quadratic in [206]), E, F ,
and G are here the coeÆcients of the �rst fundamental form [78], and (u; v) are coor-
dinates of a local parameterization of the surface patch. Mishra et al. [206] present a
method to solve for � in Equation (5.14) and show that the local epicardial stretching
factors computed over the cardiac cycle follow a similar evolution to the temporal
variation of the principal strains obtained by Young et al. [323] using strain analysis
techniques.

B. Model-speci�c shape descriptors

Geometrical cardiogram (GCG). Azhari et al. [15] describe a method for classi�ca-
tion of normal and abnormal LV geometries by de�ning a \geometrical cardiogram"
(GCG), a helical sampling of the LV geometry from apex to base [16]. The GCG
at end systole and at end diastole are subsequently analyzed via a Karhunen-Loeve
Transform (KLT) to compress their information. A truncated set of the KLT basis
vectors is used to project the GCG of individual patients into a lower-dimensional
space, and the mean square error between the projected and original GCG is used to
discriminate between normal and abnormal LV [14]. From this vectorial representa-
tion LVV and EF [16], and WT [17] can also be computed.

Deformable superquadric and related models. One of the �rst 3-D primitives
used to model the LV was the superquadric. It is a natural extension of the simpli�ed
geometric models originally used in 2DE [306] and angiocardiography [66,79,136,152].
Along with three main axes indicating principal dimensions, the superquadric models
can be endowed with additional parametric deformations as linear tapering and bend-
ing [20, 49], free-form deformations [19], displacement �elds [218, 219] or parametric
functions providing information about radial and longitudinal contraction, twisting
motion, and deformation of the LV long-axis [232, 233] and wall thickness [233]. In
particular, Park et al. [232,233] suggest to decompose deformation and motion into a
few parametric functions that can be presented to the clinician in the form of simple
plots. All these functions are either independent of the total LV volume (e.g., twist-
ing) or can be normalized with respect to the dimensions of the LV (e.g., radial and
longitudinal contraction). This allows inter-patient comparisons of contraction and
shape change.

Global motion analysis based on departure from an aÆne model. Friboulet et
al. [108] modeled the LV using a polyhedral mesh at each frame of the cardiac cycle.
The state of the LV was characterized by the center of gravity and the moments of
inertia of the polyhedral mesh. The deformation between two frames was hypothesized
to follow an aÆne model. By de�ning a metric to compare two di�erent polyhedral
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representations, the authors were able to quantify the di�erence between the actual
inter-frame deformation and the corresponding deformation derived from an aÆne
motion model. Several parameters of global motion are then derived: the temporal
variation of the longitudinal and transversal moments of inertia, and the proportion
of total motion explained by the aÆne model. By means of case studies it was
demonstrated that these global indices are able to discriminate between normal (EF =
0:71) and highly diseased (EF = 0:1) LVs. On the other hand, the global nature of
these indices precludes the quanti�cation of localized, inhomogeneous dysfunction of
the LV.

Motion decomposition through planispheric transformation. Declerck et al. [69]
have proposed a canonical decomposition of cardiac motion into three components:
radial motion, twisting motion around the apico-basal axis, and long-axis shortening.
This decomposition is achieved through a transformation of the Cartesian coordinates
of the LV wall to a planispheric space. In this space, a 4-D transformation is de�ned
that regularly and smoothly parameterizes the spatio-temporal variation of the LV
wall. Since the canonical decomposition of motion can be directly obtained in the
planispheric space, these descriptors also vary smoothly along the cardiac cycle. Fi-
nally, by tracking the position of material points over time in the planispheric space
and subsequent mapping to Cartesian coordinates, it is possible to reconstruct their
3-D trajectories.

Modal analysis: deformation spectrum. Nastar and Ayache have introduced the
concept of deformation spectrum [213] which can be applied within the framework of
modal analysis [235]. The deformation spectrum is the graph representing the value
of the modal amplitudes as a function of mode index. The deformation spectrum
corresponding to the deformation between two image frames describes which modes
are excited in order to deform one object into another. It also gives an indication of the
strain energy [213] of the deformation. As a consequence, a pure rigid deformation has
zero strain energy. Two deformations are said to be similar when the corresponding
deformation �elds are equivalent up to a rigid transformation. In order measure
the dissimilarity of two deformation �elds, the lower-order modes related to rigid
transformation are discarded. The di�erence of the deformation spectra so computed,
can be used to de�ne a metric between shapes (e.g., the LV in two phases of the cardiac
cycle) that can be applied to classify them into speci�c classes (e.g., normal/abnormal
motion patterns). Finally, the amplitude of the di�erent modes can be tracked over
time. Using Fourier spectral analysis, Nastar and Ayache have shown that these
modes concentrate in a few low-frequency coeÆcients.

5.B Appendix: MR tag localization techniques

Early attempts to model myocardial tissue deformation tracked tag grid intersections
manually over time [321]. Other researchers [73,76,131,153,210,217] have used semi-
automatic tools [11, 128, 129], based on snakes, to locate and track tag intersections
and to de�ne myocardial contours. Although they still require user interaction, these
tools can speed up the manual procedure while reducing inter-observer variability [25].

Young et al. [325] propose an interactive scheme for tag tracking. The 2-D tag
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grid is modeled as a whole (active carpet). Separate manual segmentation of the LV
boundaries is required to compute myocardial strains only. Tag tracking is performed
using a modi�ed snake [149] algorithm. Since tags show up in these images as dark
lines (intensity valleys), the image intensity is used as external energy. Additionally
interactive guidance is supported by introducing user-de�ned constrains. Only points
in the myocardium mask are tracked in each frame while carpet points outside the my-
ocardium (inactive points) provide a weak form of continuity. Kraitchman et al. [166]
have introduced an interactive method for tracking tag intersections. The method
shares some features of the active carpet model of Young et al. [325]. The carpet
of tag intersections is modeled as a mass-spring mesh of triangles. Tag intersections
are tracked by means of a correlation-based external energy and, eventually, adding
interactive constraints. Finally, this technique allows to compute average strains on
the triangular patches. Another method for automatic tracking of the SPAMM grid
has been presented by Kumar and Goldgof [170]. In the �rst frame template matching
is applied to provide an initial position of the tag grid. In this frame, the tag grid
has a high contrast and a regular arrangement. In the subsequent frames, each line
of the tag grid is independently tracked using a discrete thick snake with a width of
two pixels (the typical tag width). The product of the image intensity in the two
pixels is used as external energy to attract the snakes to the tag lines. Although these
methods for extracting tag intersections can be useful for 3-D deformation analysis,
in the original formulations, the methods proposed in [325], [166] and [170] have all
been applied to 2-D strain analysis.

There exist other approaches not based on snakes. Zhang et al. [327] decouple
horizontal and vertical tag tracking via Fourier decomposition and spectral masking.
In order to compensate for spectral cross-modulation from perpendicular lines, local
histogram equalization is needed prior to spectral analysis. Detection of tag lines is
simpli�ed in the pre-processed images and a simple local search can then be used
to track local intensity minima (tag lines) over time. Kerwin and Prince [155] have
developed a method to simultaneously detect and track tag surfaces without the
need for prior 2-D tag tracking. Tag surfaces are modeled using a kriging update
model [65,154]. This model parameterizes tag surfaces using a global quadratic surface
plus a local stochastic displacement. A recursive spatio-temporal scheme is developed
that updates the kriging model. Measurements to update the model are obtained
through a local search for tag lines. In this search a matched �lter is employed
modeling the intensity pro�le across a tag line. Recently, Osman et al. [110,224] have
introduced and evaluated a method for cardiac motion tracking based on the concept
of harmonic phase (HARP). The method uses isolated spectral peaks in the Fourier
domain of MR tagged images as a cue for tag tracking. The inverse Fourier transform
of a spectral peak is a complex image whose computed angle is called harmonic phase
image. In Osman et al. [224, 225] it is shown how this angle can be treated as a
material property that can be related to myocardial strain. This technique has the
advantage that is fast, fully automatic and provides dense material properties. So
far the method has been applied to 2-D images and thus only provides information
about \apparent motion". In Osman and Prince et al. [223], the authors present
several visualization techniques that can be used to display the information provided
by HARP images.


