
A journey of a thousand miles begins with a single step.

| Confucius, 551-479 B.C.

Chapter 2

Multiscale vessel enhancement

�ltering

Abstract | The multiscale second order local structure of an image (Hessian) is
examined with the purpose of developing a vessel enhancement �lter. A measure
of vessel-likeliness is obtained on the basis of all eigenvalues of the Hessian. This
measure is tested on two-dimensional Digital Subtraction Angiography (DSA) and
three-dimensional aortoiliac and cerebral Magnetic Resonance Angiographic (MRA)
data. Its clinical utility is shown by the simultaneous noise and background sup-
pression and vessel enhancement in maximum intensity projections and volumetric
displays.

Adapted from: A.F. Frangi, W.J. Niessen, K.L. Vincken, and M.A. Viergever (1998).
Multiscale vessel enhancement �ltering. Medical Image Computing & Computer Assisted
Interventions, MICCAI98 (Boston, USA), vol 1496 of Lecture Notes in Computer Science,
pp. 130{7.

2.1 Introduction

T
he development of accurate visualization and quanti�cation techniques for
the human vasculature is an important prerequisite for a number of clinical
procedures. Grading of stenoses is important in the diagnosis of the severity of

vascular disease since it determines the treatment therapy. Interventional procedures
such as the placement of a prosthesis in order to prevent aneurysm rupture or a bypass
operation require an accurate insight into the three dimensional vessel architecture.

Both two-dimensional projection techniques, such as Digital Subtraction An-
giography (DSA), and three-dimensional modalities as X-ray rotational angiography,
Computed Tomography Angiography (CTA) and Magnetic Resonance Angiography
(MRA) are employed in clinical practice. Although CTA and MRA provide volu-
metric data, the common way of interpreting these images is by using a maximum
intensity projection.

The main drawbacks of maximum intensity projections are the overlap of non-
vascular structures and the fact that small vessels with low contrast are hardly visible.
This has been a main limitation in time-of-
ight MRA [84]. In contrast enhanced
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MRA [243] the delineation of these vessels is considerably improved, but other organs
can be still projected over the arteries.

The purpose of this chapter is to present a method to enhance vessel structures
with the eventual goal of vessel segmentation. A vessel enhancement procedure as a
preprocessing step for maximum intensity projection display will improve small vessel
delineation and reduce organ overprojection. Segmentation of the vascular tree will
facilitate volumetric display and will enable quantitative measurements of vascular
morphology.

There are several approaches to vessel enhancement. Some of them work at a �xed
scale and use (nonlinear) combinations of �nite di�erence operators applied in a set of
orientations [50, 83, 84]. Orkisz et al. [221] presents a method that applies a median
�lter in the direction of the vessel. All these methods have shown problems to detect
vessels over a large size range since they perform a �xed scale analysis. Moreover,
to handle voxel anisotropy, these methods usually need to resample the dataset or
to resource to 2 12D processing [221]. Multi-scale approaches to vessel enhancement
include \cores" [13], steerable �lters [162,163], and assessment of local orientation via
eigenvalue analysis of the Hessian matrix [184,260].

The multiscale approach we discuss in this chapter is inspired by the work of
Sato et al. [260] and Lorenz et al. [184] who use the eigenvalues of the Hessian to
determine locally the likelihood that a vessel is present. We modify their approach
by considering all eigenvalues and giving the vessel likeliness measure an intuitive,
geometric interpretation. Examples on medical image data are included.

2.2 Method

In our approach we conceive vessel enhancement as a �ltering process that searches
for geometrical structures which can be regarded as tubular. Since vessels appear in
di�erent sizes it is important to introduce a measurement scale which varies within a
certain range.

A common approach to analyze the local behavior of an image, I(x), is to consider
its Taylor expansion in the neighborhood of a point xo,

I(xo + Æxo; �) � I(xo; �) + ÆxToro;� + ÆxToHo;�Æxo (2.1)

This expansion approximates the structure of the image up to second order. ro;�

and Ho;� are the gradient vector and Hessian matrix of the image computed in xo at
scale �. To calculate these di�erential operators of I(x) in a well-posed fashion we
use concepts of linear scale-space theory [102,160]. In this framework di�erentiation
is de�ned as a convolution with derivatives of Gaussians:

@

@x
I(x; �) = �
I(x) � @

@x
G(x; �) (2.2)

where the D-dimensional Gaussian is de�ned as:

G(x; �) =
1

(2��2)D=2
e�

kxk2

2�2 (2.3)
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The parameter 
 was introduced by Lindeberg [181] to de�ne a family of normalized
derivatives. This normalization is particularly important for a fair comparison of the
response of di�erential operators at multiple scales. When no scale is preferred 

should be set to unity.

Analyzing the second order information (Hessian) has an intuitive justi�cation in
the context of vessel detection. The second derivative of a Gaussian kernel at scale
� generates a probe kernel that measures the contrast between the regions inside
and outside the range (-�,�) in the direction of the derivative (Figure 2.1(a)). This
approach is the one followed in this work.
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Figure 2.1. a) The second order derivative of a Gaussian kernel probes in-
side/outside contrast of the range (��,�). In this example � = 1. b) The second
order ellipsoid describes the local principal directions of curvature.

The third term in Equation (2.1) gives the second order directional derivative,

ÆxToHo;�Æxo = (
@

@Æxo
)(

@

@Æxo
)I(xo; �) (2.4)

The idea behind eigenvalue analysis of the Hessian is to extract the principal directions
in which the local second order structure of the image can be decomposed. Since this
directly gives the direction of smallest curvature (along the vessel) application of sev-
eral �lters in multiple orientations is avoided. This latter approach is computationally
more expensive and requires a discretization of the orientation space.

Let ��;k denote the eigenvalue corresponding to the k-th normalized eigenvector
û�;k of the Hessian Ho;� , all computed at scale �. From the de�nition of eigenvalues:

Ho;�û�;k = ��;kû�;k (2.5)

and it follows that
ûT�;kHo;�û�;k = ��;k (2.6)
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By analyzing Equations (2.4)-(2.6) a nice geometric interpretation arises. The eigen-
value decomposition extracts three orthonormal directions which are invariant up to
a scaling factor when mapped by the Hessian matrix. In particular, a spherical neigh-
borhood centered at xo with radius 1, Nxo

, will be mapped by Ho onto an ellipsoid
whose axes are along the directions given by the eigenvectors of the Hessian and the
corresponding axis' semi-lengths are the magnitudes of the respective eigenvalues.

This ellipsoid locally describes the second order structure of the image (thus we
coin it second order ellipsoid {Figure 2.1(b)-) and can be used as an intuitive construct
for the design of geometric similarity measures.

In the remainder of the chapter �k will be the eigenvalue with the k-th smallest
magnitude (j�1j � j�2j � j�3j). Under this assumption Table 2.1 summarizes the
relations that must hold between the eigenvalues of the Hessian for the detection of
di�erent structures. In particular, a pixel belonging to a vessel region will be signaled
by �1 being small (ideally zero), and �2 and �3 of a large magnitude and equal
sign (the sign is an indicator of brightness/darkness). The respective eigenvectors
point out singular directions: û1 indicates the direction along the vessel (minimum
intensity variation) and û2 and û3 form a base for the orthogonal plane. We are
interested in vessel likeliness measures suited for medical images. In MRA and CTA,
vessels emerge as bright tubular structures in a darker environment. This a priori
information related to the imaging modality can be used as a consistency check to
discard structures present in the dataset with a polarity di�erent than the one sought.
Accordingly, we shall look for structures whose �2 and �3 are both simultaneously
negative.

To summarize, for an ideal tubular structure in a 3-D image:

j�1j � 0 (2.7)

j�1j � j�2j (2.8)

�2 � �3 (2.9)

and the sign of �2 and �3 indicate its polarity.
We emphasize that all three eigenvalues play an important role in the discrim-

ination of the local orientation pattern. This will yield expressions that di�er from

2-D 3-D orientation pattern

�1 �2 �1 �2 �3

N N N N N noisy, no preferred direction

L L H- plate-like structure (bright)

L L H+ plate-like structure (dark)

L H- L H- H- tubular structure (bright)

L H+ L H+ H+ tubular structure (dark)

H- H- H- H- H- blob-like structure (bright)

H+ H+ H+ H+ H+ blob-like structure (dark)

Table 2.1. Possible patterns in 2-D and 3-D, depending on the value of the eigen-
values �k (H=high, L=low, N=noisy, usually small, +/- indicate the sign of the
eigenvalue). The eigenvalues are ordered: j�1j � j�2j � j�3j.
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the similarity measures proposed by Sato et al. [260] and Lorenz et al. [184] who
only make use of two eigenvalues in their respective 3-D line �lters. In particular,
Sato's approach [260] uses a di�erent eigenvalue ordering scheme: they are sorted in
increasing value (not magnitude), and only the two largest are considered in the line
�lter. This implies that dark and bright lines are not treated in a similar manner.

Our dissimilarity measure takes into account two geometric ratios based on the
second order ellipsoid. The �rst ratio accounts for the deviation from a blob-like
structure but cannot distinguish between a line- and a plate-like pattern:

RB =
Volume=(4�=3)

(Largest Cross-Section Area=�)3=2
=

j�1jpj�2�3j (2.10)

This ratio attains its maximum for a blob-like structure and is zero whenever �1 � 0,
or �1 and �2 tend to vanish (notice that �1=�2 remains bounded even when the second
eigenvalue is very small since its magnitude is always larger than the �rst).

The second ratio refers to the largest area cross-section of the ellipsoid (in the
plane orthogonal to û1) and accounts for the aspect ratio of the two largest second
order derivatives. This ratio is essential for distinguishing between plate-like and
line-like structures since only in the latter case it will be zero,

RA =
(Largest Cross-Section Area)=�

(Largest Axis Semi-length)
2 =

j�2j
j�3j (2.11)

The two geometric ratios we introduced so far are grey-level invariant (i.e., they
remain constant under intensity re-scalings). This ensures that our measures only
capture the geometric information of the image. However, in MRA and CTA im-
ages there is additional knowledge available: vessel structures are brighter than the
background and occupy a (relatively) small volume of the whole dataset. If this infor-
mation is not incorporated background pixels would produce an unpredictable �lter
response due to random noise 
uctuations. However, a distinguishing property of
background pixels is that the magnitude of the derivatives (and thus the eigenvalues)
is small, at least for typical signal-to-noise ratios present in acquired data sets. To
quantify this we propose the use of the norm of the Hessian. We use the Frobenius
matrix norm since it has a simple expression in terms of the eigenvalues when the
matrix is real and symmetric. Hence we de�ne the following measure of \second order
structureness",

S = kHkF =

sX
j�D

�2j (2.12)

where D is the dimension of the image.

This measure will be low in the background where no structure is present and
the eigenvalues are small owing to the lack of contrast. In regions with high contrast
compared to the background, the norm will become larger since at least one of the
eigenvalues will be large. We therefore propose the following combination of the
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components to de�ne a vessel likeliness function,

Vo(s) =
(
0 if �2 > 0 or �3 > 0;

(1� exp
�
�RA

2

2�2

�
) exp

�
�RB

2

2�2

�
(1� exp

�
� S2

2c2

�
)

(2.13)
where �, � and c are thresholds which control the sensitivity of the line �lter to the
measures RA, RB and S. The idea behind this expression is to map the features
in Equations (2.10)-(2.12) into probability-like estimates of vessel likeliness according
to di�erent criteria. We combine the di�erent criteria using their product to ensure
that the response of the �lter is maximal only if all three criteria are ful�lled. In
all the results presented in this work � and � were �xed to 0.5. The value of the
threshold c depends on the grey-scale range of the image and a quarter of the value
of the maximum intensity at the vessels of interest has proven to work in most cases.
However, the results are fairly insensitive to this threshold and, for a standard imaging
protocol, it can be �xed.

The vessel likeliness measure in Equation (2.13) is analyzed at di�erent scales, �.
The response of the line �lter will be maximum at a scale that approximately matches
the size of the vessel to detect. We integrate the vessel likeliness measure provided
by the �lter response at di�erent scales to obtain a �nal estimate of vessel likeliness:

Vo(
) = max
�min����max

Vo(�; 
) (2.14)

where �min and �max are the maximum and minimum scales at which relevant struc-
tures are expected to be found. They can be chosen so that they will cover the range
of vessel widths.

For 2-D images we propose the following vessel likeliness measure which follows
from the same reasoning as in 3-D,

Vo(s) =
(
0 if �2 > 0;

exp
�
�RB

2

2�2

�
(1� exp

�
� S2

2c2

�
)

(2.15)

Here, RB = �1=�2 is the blobness measure in 2-D and accounts for the eccentricity
of the second order ellipse.

Equations (2.13) and (2.15) are given for bright curvilinear structures (MRA and
CTA). For dark objects (as in DSA) the conditions (or the images) should be reversed.

2.3 Results

2.3.1 2-D Digital Substraction Angiography images

In this section we show some results of vessel enhancement �ltering in 2-D DSA im-
ages. These images are obtained by acquiring an X-ray projection when intra-arterial
contrast material is injected. A reference image is �rst acquired without contrast,
which is subtracted from the image with contrast for background suppression. If no
motion artifacts are present the subtracted images are of such good quality, that fur-
ther processing is not desirable. We therefore only apply our enhancement �lter to
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(a) (b) (c) (d)

Figure 2.2. a) Part of a contrast X-ray image of the peripheral vasculature. b) Cal-
culated vessel likeliness of the left image. c) Calculated vessel likeliness after inver-
sion of the grey-scale map. d) Image obtained by subtracting reference (without
contrast) image from left image; shown here to facilitate visual inspection of the
results of the �ltering procedure.

the contrast images directly, and use the subtracted images to be able to judge the
performance of the vessel enhancement �lter.

In Figure 2.2, a part of an image of the peripheral vasculature is shown, where
performance of subtraction is usually quite good. Although contrast is not very high
in the contrast images, the method detects most vessels, over a large size range.
Notice however that some artifacts where introduced in regions where background

uctuations have line patterns.

2.3.2 3-D Magnetic Resonance Angiography images

We have applied our method to three-dimensional aortoiliac and cerebral MRA data-
sets, to show the potential of enhancement �ltering to improve visualization of the
vasculature. In Figure 2.3 (left) we show a maximum intensity projection which is
applied directly to the grey-scale data of an MRA dataset of the aortoiliac arteries.

By determining the vessel likeliness of the MRA image at multiple scales we obtain
separate images depicting vessels of various widths. This is shown in Figure 2.4. Here
we plotted maximum intensity projections of the vessel likeliness at four scales. The
rightmost image shows how we can combine these multiscale measurements by using a
scale selection procedure (recall that we work with normalized derivatives), eventually
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(a) (b) (c)

Figure 2.3. a) Original maximum intensity projection of a contrast (Gd-DTPA)
MRA image. b) Maximum intensity projection of vessel enhanced image where good
background suppression has been achieved. c) Closest vessel projection, facilitated
by the �lter's ability to suppress background structures.

yielding a display of both the small and large vessels. Since the enhancement �ltering
does not give a high output at other structures, additional information can more easily
be visualized. In the middle frame of Figure 2.3 we show the maximum intensity
projection which is obtained after vessel enhancement �ltering. In the right frame a
closest vessel projection is shown. In this case, it is possible to determine the order in
depth of various vascular structures. The excellent noise and background suppression
provided by the vessel likeliness measure greatly facilitates the use of a closest vessel
projection. In order to compare the results of the vessel enhancement procedure with
renderings obtained using a threshold on the original image, we show both renderings
in Figure 2.5. We see that the original image has more background disturbance.
However, the vessels tend to be narrower in the vessel enhancement image compared
to the original dataset. This is due to the fact that at the boundaries of vessels the
vessel likeliness is not very high. The vessel enhancement �ltering should be used in a
subsequent segmentation procedure for obtaining quantitative measurements on the
vasculature.

As a last example of the utility of vessel enhancement �ltering we applied the
procedure to the MRA dataset of the cerebral vasculature of Figure 2.6(a). In order
to show the vessel enhancement with accompanying noise suppression, we both scaled
the original MRA dataset and the vessel likeliness measure between 0 and 1, and
window-leveled the image between 0 and 0.1. Figure 2.6(b) shows that the vessel
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(a) (b) (c) (d) (e)

Figure 2.4. a-d) Vessel likeliness obtained at increasing four increasing scales (� =
1, 2, 4 and 8 pixels). e) Result after scale selection.

enhancement procedure keeps the vascular structure while removing noise.

2.4 Discussion

We have presented a method for vessel enhancement �ltering which is based on local
structure. To this end we examined the local second order ellipsoid. Since we use
information about all axes of the second order ellipsoid (all eigenvalues), the approach
is a generalization of other existing approaches on the use of second order information
for line detection. Recently, Sato et al. [260] and Lorenz et al. [184] used eigenvalue
analysis of the Hessian for vessel enhancement, but they did not use all eigenvalues
simultaneously. We have shown the excellent noise and background suppression in a
two clinical imaging modalities, underlying the potential of the approach.

It is important to realize that we do not obtain a segmentation of the vasculature.
Only if an accurate model of the typical luminance in the perpendicular direction of
the vessel is known, an estimate of the size of the vessel can be made based on the
response of the �lter over scales. However this is often not the case. For example,
in MRI it is common to reduce the reconstruction time by restricting the number
of lines in k-space (scan percentage) which accounts for a reduction of the e�ective
Fourier spectrum of the measured signal. This technique can lead to ringing artifacts
(overshoot) in high transition steps (for example, in vessels boundaries) thus violating
simpli�ed pro�le models (Gaussian/bar-like [163,184]). The vessel likeliness measure
can serve as a preprocessing step for visualization and segmentation of this type of
images.
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(a) (b)

Figure 2.5. a) Volume rendering based on threshold of the original dataset. b) Vol-
ume rendering based on threshold of the vessel likeliness image.

(a) (b)

Figure 2.6. a) Original maximum intensity projection of a contrast-enhanced MRA
dataset of the cerebral vasculature. The image is window-leveled to ten percent of
the grey-value range to visualize the noise. b) Maximum intensity projection of the
vessel likeliness measure with the same window-level settings. Noise is suppressed
while largely maintaining the vasculature.


