
Chapter 12
Spin Interference Effects in Rashba
Quantum Rings

Carmine Ortix

Abstract Quantum interference effects in rings provide suitable means to control
spins at the mesoscopic scale. In this chapter we present the theory underlying spin-
induced modulations of unpolarized currents in quantum rings subject to the Rashba
spin-orbit interaction. We discuss explicitly the connection between the conductance
modulations and the geometric phase acquired by the spin during transport, as well
as pathways to directly control them.

12.1 Quantum Rings with Rashba Spin-Orbit Interaction:
Effective One-Dimensional Hamiltonian

The effect of the Rashba spin-orbit interaction [1] on electronsmoving inmesoscopic
rings has been studied in several contexts, including magnetoconductance oscilla-
tions [2, 3] and persistence currents [4, 5]. Essentially all these theoretical studies
have employed one-dimensional (1D) model Hamiltonians. Different Hamiltonians
havebeenusedbydifferent authors in the past, and consequently someambiguitywith
regard to the correct form of the 1D Hamiltonian exists in the literature. Aronov and
Lyanda-Geller [2], for instance, studied the effect of the Rashba spin-orbit interaction
on the Aharonov-Bohm conductance oscillations using a non-Hermitean operator.
The procedure for obtaining the correct one-dimensional Hamiltonian in quantum
rings in the presence of Rashba spin-orbit interaction has been first provided by
Meijer et al. [6], who started out from the full two-dimensional (2D) Hamiltonian
of a two-dimensional electron gas (2DEG) subject to a strong confining potential
with circular symmetry forcing the electrons to be localized on the quantum ring
in the radial direction. This procedure, which is the most rigorous, and physically
sound one, corresponds precisely to the so-called “thin-wall” quantization procedure
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originally introduced by Jensen and Koppe [7], and da Costa (JKC) [8] to describe
the quantum mechanics of non-relativistic particles constrained to generic “curved”
n-dimensional manifolds but embedded in a n + 1 Euclidean space.

In the absence of spin-orbit coupling, the JKC approach predicts the existence of
a curvature-induced quantum geometric potential (QGP), which causes intriguing
phenomena at the nanoscale [9–19]. In periodically minimal surfaces, for instance,
the QGP leads to a topological band structure [10]. Similarly, in spirally rolled-up
nanotubes the QGP has been shown to lead to winding-generated bound states [19].
These curvature effects have been predicted to become evenmore pervasive in strain-
driven nanostructures where the nanoscale variation of strain induced by curvature
leads to a strain-induced geometric potential that is of the same functional form as
the QGP, but gigantically boosting it [20].

The JKC thin-wall approach has been recently shown to be well founded also
in presence of externally applied electric and magnetic fields [21, 22] and sub-
sequently employed to predict novel curvature-induced phenomena, such as the
strongly anisotropic ballistic magnetoresistance of spirally rolled-up semiconduct-
ing nanotubes without magnetism and spin-orbit interaction [23]. Finally, the exper-
imental realization of an optical analog of the curvature-induced QGP has provided
empirical evidence for the validity of the JKC squeezing procedure [24]. As we
will show below, the JKC procedure can be also applied without restrictions in the
presence of spin-orbit coupling, thereby allowing to derive the correct Hermitean
Hamiltonian of quantum rings with an arbitrary geometric shape.

To start with, we recall that in the usual effective-mass approximation, the move-
ment of the charge carriers in presence of spin-orbit interaction can be described
with an effective Schrödinger-Pauli equation acting on a two-dimensional spinor ψ :

(
p2

2m�
+ α · σ × p

)
ψ = E ψ, (12.1)

where p = −i�∇ is the canonical momentum operator and the σ ’s are the usual Pauli
matrices generating theClifford algebra ofR3, which obey the anticommutation rela-
tions

{
σi, σj

} = 2 ηij with ηij the standard spatial metric given by the identity matrix.
In addition, we introduced the vector α with magnitude corresponding to the spin-
orbit interaction constant, and direction determined by the effective electric field from
which the spin-orbit coupling originates. Finally m� is the material dependent effec-
tive mass of the carriers. In the remainder, we will use Latin indices for spatial tensor
components of the flat Euclidean three-dimensional spacewhereasGreek indiceswill
be used for the corresponding tensor components in curved space. Adopting Einstein
summation convention (12.1) can be generalized to a curved three-dimensional space
as follows

Eψ =
[
− �

2

2m�

(
Gμν∂μ∂ν − Gμν Γ λ

μν∂λ

)

−i � Eμνλ αμςν∂λ

]
ψ, (12.2)
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where Gμν is the inverse of the metric tensor Gμν , Eμνλ is the contravariant Levi-
Civita tensor – it can be written in terms of the usual Levi-Civita symbol as Eμνλ =
εμνλ/

√||G|| – and we introduced the affine connection

Γ λ
μν = 1

2
Gλξ

[
∂νGξμ + ∂μGξν − ∂ξGμν

]
.

Finally, the ς ’s are the generators of the Clifford algebra in curved space
{
ςμ, ςν

} =
2Gμν .

To proceed further, we need to define a coordinate system. We therefore start out
by defining a planar curve C of parametric equations r = r(s) with s indicating the
corresponding arclength. Theportion of the three-dimensional space in the immediate
neighborhoodofC canbe thenparametrized asR(s, q2, q3) = r(s) + N̂ (s) q2 + B̂ q3,
where N̂ is the unit vector normal to C, but residing in the curve plane, while B̂ is
the binormal vector perpendicular to the quantum ring plane. The structure of the
corresponding three-dimensional spatial metric tensor can be determined using that
the two orthonormal vectors T̂ (s) = ∂sr(s) and N̂ (s) obey the Frenet-Serret type
equations of motion as they propagate along s

(
∂sT̂ (s)
∂sN̂ (s)

)
=
(

0 κ(s)
−κ(s) 0

)(
T̂ (s)
N̂ (s)

)
, (12.3)

where κ(s) denotes the local curvature of the quantum ring. With this, the metric
tensor corresponding to the three-dimensional portion of space explicitly assumes
the diagonal form

G =
⎛
⎝
[
1 − κ(s)q2

]2
0 0

0 1 0
0 0 1

⎞
⎠ ,

whose determinant ||G|| = [
1 − κ(s)q2

]2
. The generators of the Clifford algebra

for the metric tensor written above can be derived introducing the Cartan’s dreibein
formalism [25]. At each point, we define a set of one forms with components eiμ and

a dual set of vector fields eμ
i obeying the duality relations eiμe

ν
i = δμ

ν and eiμe
ν
j = δ

j
i ,

and corresponding to the “square root” of the metric tensor Gμν = eiμδije
j
ν . The

generators of the Clifford algebra can be then expressed as ςμ = eiμσi. For the metric

tensor written above, the dreibein field can be chosen as eis = T̂ i(s) (1 − κ(s)q2),
eiq2 = N̂ i(s) and eiq3 = B̂i(s). This immediately allows to identify the ς ’s as ςs =
σT (1 − κ(s)q2), ςq2 = σN , and ςq3 = σB written in terms of a local set of three Pauli
matrices comoving with the Frenet-Serret frame σT ,N ,B = σ · (T̂ , N̂ , B̂).

In the same spirit of JKC [7, 8], we now apply a thin-wall quantization proce-
dure and take explicitly into account the effect of two strong confining potentials
in the normal and binormal directions VλN (q2), VλB(q3) respectively, with λN ,B the
two independent squeezing parameters. Furthermore, we introduce a rescaled spino-
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rial wavefunction χ such that the line probability can be defined as
∫

χ†χ dq2 dq3.
Conservation of the norm requires

N =
∫ √||G|| ds dq2 dq3 ψ†ψ =

∫
ds dq2 dq3 χ†χ,

from which the rescaled spinor χ ≡ ψ × ||G||1/4.
In the λN ,B → ∞ limit, the spinorial wavefunction will be localized in a narrow

range close to q2,3 = 0. This allows us to expand all terms appearing in (12.2) in
powers of q2,3. At the zeroth order we then obtain the following Schrödinger-Pauli
equation:

E χ =
[
− �

2

2m�

(
ημν∂μ∂ν + κ(s)2

4

)
− i� εμνλ αμσν∂λ

−i� εμνq2 αμσν

κ(s)

2
+ VλN (q2) + VλB(q3)

]
χ (12.4)

In the equation above, we have used that in the q2,3 → 0 limit the only non-vanishing
affine connection componentΓ q2

s s = κ(s), and employed the limiting relations for the
derivatives of the original spinor in terms of the rescaled one

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂q2ψ = ∂q2χ + κ(s)

2
χ

∂2
q2ψ = ∂2

q2χ + κ(s)∂q2χ + 3

4
κ(s)2χ.

The presence of the relativistic spin-orbit interaction in (12.4) prevents the separa-
bility of the quantum dynamics along the tangential direction of the planar curve
from the normal quantum motion. However, the strong size quantization along the
latter direction still allows us to employ an adiabatic approximation [20], encoded in
the ansatz for the spinorial wavefunction χ(s, q2, q3) = χT (s) × χN (q2) × χB(q3)
where the normal and binormal wavefunctions solve the Schrödinger equation

− �
2

2m�
∂2
q2,q3 χN ,B + VλN ,B(q2,3) χN ,B = EN ,B χN ,B.

We can assume the two confining potential to take either the form of an harmonic
trap∝ q22,3 or an infinite potential well centered at q2,3 ≡ 0. Taken perturbatively, the
first derivatives terms ∂q2,3 of (12.4) vanish and thus the effective one-dimensional
Schrödinger-Pauli equation for the tangential wavefunction reads
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E χT =
[
− �

2

2m�

(
∂2
s + κ(s)2

4

)
− i�αNσB∂s (12.5)

+i�αB

(
σN∂s − σT

κ(s)

2

)]
χT ,

where we explicitly considered a spin-orbit coupling originating either from an elec-
tric field orthogonal to the ring plane (αN ) or from an electric field pointing in the
normal direction to the ring (αB). Equation (12.5) represents the correct effective one-
dimensional Schrödinger-Pauli equation for a single electron in presence of Rashba
spin-orbit interaction, and generalizes the result obtained for a circular quantum ring
[6, 26, 27]. The corresponding Schrödinger-Pauli operator is indeed Hermitian as
can be shown by calculating its matrix elements in any complete basis, or simply
noticing that it can be written, using anticommutators, in the compact form

EχT =
[

p̂2s
2m�

− �
2κ(s)2

8m�
+ αN

2

{
p̂s, σB

}

−αB

2

{
p̂s, σN

}]
χT ,

where the tangential momentum operator p̂s = −i�∂s.

12.2 Conductance Modulations in Rashba Circular
Quantum Rings

In this section, we discuss the quantum transport properties of a mesoscopic bal-
listic device in which a circular quantum ring with Rashba spin-orbit couplings is
symmetrically coupled to two contact leads (c.f. Fig. 12.1a). The transport properties
can be analyzed straightforwardly in the linear response regime, in which the system
is subject to a constant, low-bias voltage. According to the Landauer formula, the
zero-temperature conductance reads [26]

G = e2

h

N∑
m,m′=1

∑
σσ ′

T σ ′,σ
m′,m (12.6)

where T σ ′,σ
m′,m denotes the quantum probability of transmission between incoming

(m, σ ) and outgoing (m′, σ ′) states on the semi-infinite ballistic leads, with m,m′
and σ, σ ′ the mode and spin quantum numbers, respectively. The total number of
modes M = 1 in an effective one-dimensional description. Assuming perfect cou-
plings between the leads and the ring, and thus neglecting backscattering effects, the
quantum transmission probability are entirely determined by the eigenstates of the
Hamiltonian (12.5) for the Rashba spin-orbit coupled quantum ring.



332 C. Ortix

Fig. 12.1 a Sketch of the spin interferometer devices based on amesoscopic ring with Rashba spin-
orbit interaction (Adapted from [28]). b Energy levels in a quantum ring with Rashba spin-orbit
interaction plotted as a function of the mode quantum number n. The two time-reversal channels I ,
II are indicated

We first analyze a circular quantum ring with a Rashba spin-orbit interaction
due to a radial electric field [29, 30]. Adopting polar coordinates, the effective one-
dimensional Hamiltonian (12.5) then takes the following form:

H = − �
2

2m�R2
∂2
φ + i

α�

R
σz∂φ. (12.7)

The corresponding one-dimensional spinorial eigenstates can be simply found as

Ψ ↑
n (φ) = einφ

(
1
0

)
,
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Ψ ↓
n (φ) = einφ

(
0
1

)
,

with the associated eigenenergies reading

E↑,↓(n) = �
2

2m�R2
n2 ∓ �α

R
n.

The energy splitting due to the Rashba spin-orbit interaction implies that incoming
spins |σ 〉 entering the ring at φ = 0 with a Fermi energy EF can propagate coherently
along four different channels obtained by solving E↑,↓(n) ≡ EF . Specifically, two
opposite spin states |n1; ↑ 〉, |n2; ↓ 〉 propagate along the upper branch of the ring,
whereas their time-reversal partners | − n1; ↓ 〉, | − n2; ↑ 〉 propagate along the lower
branch of the ring. The interference between the channels at φ = π then implies that
injected spins leave the ring in a mixed spin state:

|σout〉 =
∑
s=↑,↓

∑
i=1,2

〈ni; s|σ 〉 × einiπ |ni; s〉.

Choosing a complete basis of incoming and outgoing spin states, the spin-resolved
transmission probabilities are obtained as T σ ′σ = |〈σ ′|σout〉|2. By further summing
over the spin indices σ ′ and σ , we thereby obtain the total conductance

G = e2

h
[1 + cos (n1 − n2)π ] (12.8)

The relation between the two wave numbers n1, n2 can be simply found to be n1 −
n2 ≡ QR ≡ 2m�Rα/�. With this, it follows that the conductance exhibits uniform
oscillations as a function of the spin-orbit interaction strength, which is the signature
of the Aharonov-Casher effect [31] for spins traveling in an external electric field.

The radial electric field considered above, however, does not correspond to the nor-
mal situation in which the electric field is orthogonal to the plane in which the quan-
tum ring resides. When considering this, the one-dimensional Hamiltonian (12.5)
for a quantum ring with circular symmetry explicitly reads:

H = − �
2

2m�R2
∂2
φ + i

α�

R

[
σN∂φ + σT

2

]
, (12.9)

where we introduced the two local Pauli matrices
{

σN = cosφ σx + sin φ σy

σT = − sin φ σx + cosφ σy
. (12.10)

The spinorial eigenstates of theHamiltonian above can be found using a trial spinorial
wavefunction of the form Ψ = einφ × [

χ1e−iφ/2, χ2eiφ/2
]T
, where the amplitudes

χ1,2 are determined by the effective Hamiltonian
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H̃ =

⎛
⎜⎜⎜⎝

�
2

2m�R2
(n − 1

2 )
2 −�α

R
n

−�α

R
n

�
2

2m�R2
(n + 1

2 )
2

⎞
⎟⎟⎟⎠ . (12.11)

Apart from a trivial rigid energy shift, the eigenenergies are simply obtained as

EI ,II (n) = �
2

2m�R2

[
n2 ∓ n

√
1 + Q2

R

]
,

where the index I , II refers to the two time-reversed channels guaranteed byKramers’
theorem. The corresponding spinorial eigenstates can be found to be

Ψ I
n (φ) = einφ

⎛
⎝ cos γ

2 e
−iφ/2

sin γ

2 e
iφ/2

⎞
⎠ ,

Ψ II
n (φ) = einφ

⎛
⎝ sin γ

2 e
−iφ/2

− cos γ

2 e
iφ/2

⎞
⎠ .

Here the tilt angle γ is related to the dimensionless Rashba strength QR intro-
duced above by tan γ = QR. In the limit of strong Rashba spin-orbit interaction,
i.e. QR → ∞, the tilt angle γ → π/2 in which case the eigenstates of the Hamil-
tonian correspond to the spin eigenstates of σN . This limit therefore corresponds
to the “adiabatic” limit in which the spin carriers of the quantum ring orient along
the effective momentum dependent Rashba magnetic field in the in-plane normal
direction (c.f. Fig. 12.2a). For finite values of the dimensionless Rashba strength QR

instead, the spin carriers acquire a finite out-of-plane component, which is a unique
signature of the non-adiabatic spin transport along the ring (c.f. Fig. 12.2b). Such
a non-adiabaticity in the spin motion is immediately reflected in the ballistic trans-
port. Considering as before, incoming spins that propagate coherently along the four
available channels of the quantum ring, i.e. |n1, I〉; |n2, II〉; | − n1, II〉; | − n2, I〉, we
have that the mixed spin state leaving the ring at φ = π can be written as

|σout〉 =
∑
s=I ,II

∑
i=1,2

〈Ψ s
ni (φ = 0)|σ 〉 × |Ψ s

ni (φ = ±π)〉.

where π (−π ) refers to the modes propagating along the upper branch and the lower
branch of the quantum ring respectively. By summing the spin-resolved quantum
transmission probabilities, we obtain that the total conductance takes the following
form

G = e2

h
[1 − cos (n1 − n2)π ] (12.12)
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Fig. 12.2 a Quantum ring with Rashba spin-orbit coupling. The spin-orbit coupling induces an
effective in-plane magnetic field BSO , which is perpendicular to the electron momentum p. b In
non-adiabatic transport, the electron spin do not align to BSO but acquire an additional out-of-plane
component (Adapted from [28])

From the eigenenergies written above, we have that n1 − n2 =
√
1 + Q2

R and thus
the total conductance can be written as

G = e2

h

[
1 + cos

(
π

√
1 + Q2

R − π

)]
(12.13)

There are two features that differentiate the conductance oscillations in (12.13) as
compared to the oscillations predicted for a quantum ring with a spin-orbit coupling
originating from a radial electric field. First, contrary to the uniform oscillations
found in (12.8), (12.13) implies the occurrence of quasiperiodic oscillations for small
Rashba strength QR < 1. Second, in the large Rashba regime QR � 1, one observes
a relative π phase shift between the two conductance modulations (c.f. Fig. 12.3).

As a spoiler for the next section, we here anticipate that this π phase shift is
the principal consequence of the π Berry phase [32] acquired by the spins while
precessing around the effective momentum dependent radial Rashba magnetic field
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Fig. 12.3 Conductance modulation profiles of one-dimensional quantum rings as a function of the
dimensionless Rashba strength QR. The blue line corresponds to a Rashba spin-orbit originating
from an electric field orthogonal to the ring plane, whereas the red line is for a Rahsba spin-orbit due
to a radial electric field. The latter also corresponds to the incomplete result of [33]. The conductance
modulation profiles agree with a related model for one-dimensional rings based on a transfer matrix
approach [34]

due to the out-of-plane electric field. Furthermore, the specific influence of quantum
geometric phases in the conductance can be also seen by rewriting (12.13) as follows

G = e2

h

{
1 + cos

[
πQR sin γ − π (1 − cos γ )

]}
.

The phase in the equation above has then two important contributions: One is the
dynamical phase πQR sin γ who also manifests itself for a radial electric field. The
other is the Aharonov-Anandan [35] phase π (1 − cos γ ) for non-adiabatic cyclic
motion. It corresponds to the solid angle accumulated by the change of spinor orien-
tation during transport, and reduces to the π spin Berry phase in the purely adiabatic
limit γ → π/2. This formulation of the conductance in terms of geometric and
dynamical phases will be analyzed in detail in the next section (Sect. 12.3).

12.3 Conductance Modulations as a Probe
of the Aharonov-Anandan Geometric Phase

In this section, we derive the relation between the conductance modulation and the
Aharonov-Anandan geometric phase [35] for a quantum ringwith generic shape. This
will also allow us to show that real-space geometric deformations directly influence
the geometric quantum phase and hence the spin transport properties.
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We start out from the one-dimensional Hamiltonian in the presence of Rashba
spin-orbit interaction (due to a perpendicular electric field) derived in Sect. 12.1:

H = − �
2

2m�
∂2
s + i�α

2
[σN (s)∂s + ∂sσN (s)] , (12.14)

where, for simplicity, we have disregarded the quantum geometric potential since
it can be assumed to be a small perturbation as compared to the Rashba spin-orbit
interaction. Let us discuss the spin textures that are generally realised in a quantum
ring with Rashba spin-orbit interaction. To show this, we rewrite the Hamiltonian
written above as

H = H 2
l − α2m�

2
σ0

with σ0 being the identity matrix and Hl reading:

Hl =
(
i

�√
2m�

∂s + α
√
m�

√
2

σN (s)

)
.

Clearly,Hl andH have common eigenstates with an eigenvalue relation given byE =
E2
l − α2m�/2. Let us now introduce the spin orientation of a given spin eigenmode

|ΨE〉 as the corresponding expectation value of the spin operators in the local Frenet-
Serret reference frame (see Sect. 12.1), i.e. 〈σ 〉 = {〈σT 〉, 〈σN 〉, 〈σz〉}. It is possible to
determine the equation for the spatial derivative of the local spin components using
that the Schrödinger equation Hl |ΨE〉 = El |ΨE〉 can be rewritten as

i∂s|ΨE〉 = Ĝ(s)|ΨE〉 (12.15)

〈ΨE |i∂s = −〈ΨE |Ĝ(s)

where we introduced the operator Ĝ(s)

Ĝ(s) = −σN (s)

2 lα
− σ0

√
2m�E

�2
+ m� 2

α2

�2
,

and lα is the characteristic spin-orbit interaction length defined by 1/lα = 2m�α/�.
Equation (12.15) yield the general expression for the spatial derivative of the expec-
tation value of the spin components

∂s〈σ 〉 = i〈[G, σ ]〉 + 〈∂sσ 〉 (12.16)

with [A,B] indicating the commutator of A and B. Using the commutation relations
for the local Pauli matrices we have
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[
Ĝ(s), σT (s)

]
= i

σ z

lα
[
Ĝ(s), σN (s)

]
= 0

[
Ĝ(s), σz

]
= −i

σT

lα

(12.17)

To proceed further, we use that the spatial derivative of the local Pauli matrices
obey the Frenet-Serret equations, ∂sσN (s) = −κ(s)σT (s) and ∂sσT (s) = κ(s)σN (s),
with κ(s) the local curvature. When combining these relations with (12.17), we
therefore find the following equations for the spatial derivative of the spin expectation
values: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∂s〈σN 〉 = −κ(s)〈σT 〉
∂s〈σT 〉 = −〈σz〉

lα
+ κ(s)〈σN 〉

∂s〈σz〉 = 〈σT 〉
lα

(12.18)

The equations above represent a fundamental relation that links the geometric curva-
ture of the quantum ring, the Rashba SO coupling, and the electron spin orientation
in the local Frenet-Serret frame. It can be also written in the compact form

∂s〈σ 〉 = −heff × 〈σ 〉, (12.19)

where we introduced the local field heff = {0, l−1
α , κ(s)} which lies in the normal-

binormal plane, and depends on the local curvature and effective spin-orbit length
introduced above. With this, it also follows that the spin direction lives in a Frenet-
Serret-Bloch sphere [36] (see Fig. 12.4). Equation (12.19) generally implies that due
to a non zero curvature, the electron spin acquires a finite out-of-plane binormal ẑ
component. In particular, for a circular quantum ring where the curvature is constant
κ(s) = −1/R we find, in agreement with the results presented in Sect. 12.2, a local
spin orientation given by tan θ = 2m�αR/� = QR (c.f. Fig. 12.4). More importantly,
a non trivial component along the tangential direction appears provided the curvature
is not constant. Although the derivative ∂s of the spin vector locally vanishes if the
spin is aligned to the effective spin-orbit field, variations of the local curvature yields
a non-vanishing torque which results into a component of the spin vector parallel to
the electron propagation direction. Such a torque effect due to the geometric shape
of the quantum ring is manifested by considering the example of a quantum ring
of total length L with an elliptical shape and a ratio a/b between the minor (a) and
the major (b) axes of the ellipse. This is a paradigmatic case of a quantum ring with
positive but non-uniform curvature that can be suitably enhanced (suppressed) at the
positions nearby the poles of the major (minor) axes. There are two distinct spin
texture regimes in this Rashba quantum ring. For very strong spin-orbit interactions
or quasi-constant curvature, i.e. a/b � 1, the electron spin is pinned nearby the quasi-
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Fig. 12.4 The
Frenet-Serret-Bloch sphere
in the moving frame of the
charge carriers in a generic
quantum ring with the
vectors associated to the
electron spin orientation and
the effective local field heff
(Adapted from [36])

static effective field heff in the Frenet-Serret-Bloch sphere. In the regime of weaker
spin-orbit interaction or sizable non-uniform curvature profile, instead, the electron
spin is not able to follow the periodic motion of the effective spin-orbit field. As
a result, a finite spin component along the tangential direction appears, and in the
local frame the electron spin starts to wind both around the normal and the binormal
directions. These features of the spin textures are shown in Fig. 12.5 where we report
the spin textures of an elliptical quantum ring obtained by solving a tight-binding
model Hamiltonian derived by discretizing (12.14) on an atomic chain [36]. For
very weak spin-orbit coupling strength (c.f. Fig. 12.5a), the spin textures are almost
aligned along the binormal direction ẑ. In an intermediate regime ofRashba spin-orbit
strength instead, the torque exerted on the spin yields complex three-dimensional spin
textures (c.f. Fig. 12.5b–f). In the very large spin-orbit interaction regime instead, the
spin completely aligns along the normal direction signaling an almost adiabatic spin
motion.

These variety of complex three-dimensional spin textures are not only interesting
per se: they indeed strongly impact the spin transport properties. To show this, we
will now find a link between the spin textures and the quantum phases for a cyclic
evolution in a generic quantum ring.We therefore start by noticing that the real space
evolution of the spin eigenmode is regulated by (12.15). Closely following Aharonov
and Anandan [35], we use that for any one-dimensional quantum ring the spinorial
wavefunction |Ψ (s)〉 must satisfy the condition

|Ψ (L)〉 ≡ eiχ |Ψ (0)〉.
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Fig. 12.5 Evolution of the electronic trajectories on the Bloch-Frenet-Serret sphere and spin tex-
tures in the lab frame for a quantum ringwith elliptical shapewith ratio between theminor andmajor
axes a/b = 0.4 and different values of the spin-orbit coupling strength α. Panels (a–f) correspond
to m�αL/� = 1, 4, 8, 10, 12, 50 (From [36])

We then define a newwavefunction |Ψ̃ (s)〉 = e−iβ(s)|Ψ (s)〉 in such away that β(L) −
β(0) = χ . It immediately follows that |Ψ̃ (L)〉 = |Ψ̃ (0)〉 and from (12.15) that

−∂sβ(s) = 〈Ψ |Ĝ(s)|Ψ 〉 − 〈Ψ̃ |i∂s|Ψ̃ 〉 .

Therefore, we can express the total phase χ accumulated by the charge carriers once
they complete the spatial loop as the sum of a geometric Aharonov-Anandan (AA)
phase and a dynamical phase as follows

gAA =
∫ L

0
〈Ψ̃ |i∂s|Ψ̃ 〉ds (12.20)

d = −
∫ L

0
〈Ψ |Ĝ(s)|Ψ 〉ds . (12.21)

The dynamical phase can be immediately linked to the expectation value of the local
spin as

d = m�α

�

∫ L

0
〈σN (s)〉ds + const. (12.22)

In order to find the relation between the local spin expectation value and the geometric
(AA) phase we first relate the local normal direction, as well as the tangential one,
to the Euclidean coordinates via:
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⎧⎨
⎩
N̂ (s) = cosφ(s)x̂ + sin φ(s)ŷ

T̂ (s) = − sin φ(s)x̂ + cosφ(s)ŷ,

where φ(s) is a real-valued function, which is related to the local curvature via the
Frenet-Serret equations yielding

φ(s) = −
∫ s

0
κ(s′)ds′.

Next, we express the normalized spinorial eigenfunction in the following general
form

|Ψ 〉 =
⎛
⎝ exp[−iφ(s)/2] exp[iθ⇑(s)]A⇑(s)

exp[iφ(s)/2] exp[iθ⇓(s)]A⇓(s)

⎞
⎠ ,

where A⇑,⇓(s) are real-valued functions. Such a general expression is convenient
since we can express the expectation values of the local spin components in the
following form ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

〈σT 〉 = 2A⇑(s)A⇓(s) sin
[
θ⇓(s) − θ⇑(s)

]

〈σN 〉 = 2A⇑(s)A⇓(s) cos
[
θ⇓(s) − θ⇑(s)

]

〈σz〉 = A⇑(s)2 − A⇓(s)2

(12.23)

Furthermore,wehave that
∫ L
0 κ(s′)ds′ = 2πNκ withNκ integer for a closed curve.The

same holds true for the phase difference θ⇓(s) − θ⇑(s), which acquires a phase shift
2πW withW the winding number of the normal and tangential local spin expectation
values around the out-of-plane binormal direction, i.e. W = 1

2π

∫ L
0 qNT (s) where we

introduced

qNT (s) = 〈σN 〉∂s〈σT 〉 − 〈σT 〉∂s〈σN 〉
〈σT 〉2 + 〈σN 〉2 .

With this, it follows that

|Ψ̃ 〉 =
(

A⇑(s)
exp[iφ(s)] exp[i(θ⇓(s) − θ⇑(s))]A⇓(s)

)
,

and the AA phase can be simply expressed as

gAA = π

(
Nκ + W − 1

2π

∫
〈σz〉[κ(s) + qNT (s)]ds

)
. (12.24)

The knowledge of both the geometric AA phase (12.24) and the dynamical phase
(12.22) also allows to express in a straightforward manner the conductance of a
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generic ballistic one-dimensional ring. By using that the transmission along the arms
of ring can be described using a spin rotation operator [36, 37], one finds the relation
between the conductance and the quantum phases to be given by

G = e2

h
{1 + cos (gAA + d)} , (12.25)

where the dynamical phase has to be computed disregarding the constant factor in
(12.22).

For a circular quantum ring, the dynamical as well as the AA phases can be easily
computed by noticing that 〈σN 〉 = sin γ , and 〈σz〉 = cos γ . By also considering that
Nκ = −1, we therefore find the result for the conductance modulation anticipated in
Sect. 12.2, that is

G = e2

h

[
1 + cos

[
πQR sin γ − π (1 − cos γ )

]]
.

Most importantly (12.22) and (12.24) directly yield a connection between the
complex three-dimensional spin textures due to shape deformations and the spin
transport properties. This is manifested in Fig. 12.6 where we show the influence
of the geometric shape deformation on the spin interference patterns for the case of
elliptical quantum rings [36]. One can observe distinct geometrically driven channels
of electronic transportwith a changeover fromconstructive to destructive interference
as the ratio between the ellipse axis a/b increases. This results therefore yield a tight
connection between the conductance and the character of the spin textures in aRashba
quantum ring.

12.4 Topological Transitions in Spin Interferometers

In the former sectionwehave shown the connection between the spin textures realized
in generic quantum rings and the spin geometric phase, with the latter that can be
directly probed by changes in the conductance interference patterns. The spin textures
of quantum rings can be also directly controlled using an externally applied magnetic
field in the ring plane. The Zeeman coupling

HZ = g�μBσy

indeed changes the solid angle accumulated by the spin eigenmode during transport
in a quantum ring and consequently the non-adiabatic AA phase. This can be verified
in the small B limit, in which case, by employing standard perturbation theory [28],
the conductance modulations of a circular quantum ring can be written as
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Fig. 12.6 Contour map of the cosine of the geometric phase (a), the spin component of the dynam-
ical phase (b), and the total phase (c) contributing to the conductance for a quantum ring of total
length L with elliptic shape as a function of the ellipse ration a/b and the dimensionless spin-orbit
coupling strength L/(4π lα) (From [36])

G = e2

h

{
1 + cos

[
π

(√
1 + Q2

R − 1 + φ(B)

)]}
,

where φ(B) ∝ B2. This magnetic-field-induced shift in the interference pattern has
been experimentally verified in arrays of InGaAs-based quantum rings [28]. Note
that the magnetic field contribution to the conductance modulations only enters in
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Fig. 12.7 The Berry phases
in the adiabatic limit for a
circular quantum ring with
an additional planar
magnetic field. For
BSO � B, the accumulated
Berry phase correspond to π .
The opposite limit gives
instead a 0 Berry phase From
[38] (Copyright 2015
American Physical Society)

the AA phase. This is because for a quantum ring with symmetrically coupled leads,
electronic spins acquire the sameZeemandynamical phase, and therefore theZeeman
effect only contributes the geometric part of the quantum phase.

An external magnetic field can, however, also directly modify the topology of
the effective magnetic field felt by the carriers during transport, thereby paving the
way for the development of topological spin engineering. An early proposal for the
topological manipulation of electron spin, which has been put forward by Lyanda-
Geller [39], involved the abrupt switching of Berry phases. Assuming an entirely
adiabatic spin transport, it was predicted that a change in the winding number asso-
ciated with the effective field felt by the charge carriers (c.f. Fig. 12.7) would mani-
fest itself as a steplike characteristic in the quantum ring conductance. The intrinsic
non-adiabatic nature of the spin transport discussed in the former section, however,
requires a more sophisticated approach [38].

Saarikoski et al. have thereby analyzed the electronic transport characteristic of a
spin interferometerwith an externally applied planarmagnetic field considering rings
tangentially coupled to leads. In this geometric configuration, indeed, the dynamical
Zeeman phases can yield both constructive and destructive interference. Henceforth,
the conductance will be modulated by both a magnetic field dependent dynami-
cal phase and the magnetic field dependent geometric phase. In Fig. 12.8 we report
the behavior of the two quantum phases in the spin-orbit coupling, magnetic field
parameter space. The interference pattern possesses radial wave fronts, which can
be mainly ascribed to Zeeman oscillations. Most importantly, one observes distinct
phase dislocations along the critical line where the effective magnetic field textures
change topology, i.e. at BSO = B (c.f. Fig. 12.7). This result is surprising since the
topology of the magnetic field textures is reflected in an abrupt change of the con-
ductance modulations even though the spin dynamics is completely non-adiabatic as
testified by the complex behaviors of the geometric and dynamic phase for BSO � B.
Whether or not the existence of phase dislocation can be linked to an “effective”
Berry phase with phase slips at the critical line is a matter of future investigations.
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Fig. 12.8 Contour map of the cosine of the geometric phase (top panel), the dynamical phase
(middle panel), and the total phase (bottom panel) as a function of the spin-orbit coupling and
Zeeman splitting in a ballistic single-mode quantum ring tangentially coupled to leads From [38]
(Copyright 2015 American Physical Society)
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