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Summary. In most real life studies, auxiliary variables are available and are employed to ex-
plain and understand missing data patterns and to evaluate and control causal relationships
with variables of interest. Usually their availability is assumed to be a fact, even if the variables
are measured without the objectives of the study in mind. As a result, inference with missing
data and causal inference require some assumptions that cannot easily be validated or checked.
In this paper, a framework is constructed in which auxiliary variables are treated as a selection,
possibly random, from the universe of variables on a population. This framework provides con-
ditions to make statistical inference beyond the traces of bias or effects found by the auxiliary
variables themselves.The utility of the framework is demonstrated for the analysis and reduction
of non-response in surveys. However, the framework may be more generally used to understand
the strength of association between variables. Important roles are played by the diversity and
diffusion of the population of interest, features that are defined in the paper and the estimation
of which is discussed.
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1. Introduction

There have been two crucial and very influential developments in statistical theory over the
last half-century: missing data inference and causal inference. The well-known missing data
mechanisms missingness completely at random, missingness at random and missingness not
at random (Little and Rubin, 2002) and variants of them (see Seaman et al. (2013)) appear
frequently in the literature. They provide sufficient and necessary conditions to separate the
confounding of selection and measurement, or selection and treatment, in case part of the data
is missing. These conditions are formulated in terms of the variables of interest and variables
that are auxiliary to the study. The theory of causal inference, e.g. Rubin (2005), Heckman
(2008), Pearl (2009) and Robins and Hernán (2009), provides tools to investigate the presence
and absence of causation, making use of graphical representations of the variables and labelling
them, for instance, as instrumental, backdoor or frontdoor variables.

However, both statistical inference with missing data and causal inference treat the variables
that are studied in the data as fixed and given, and the generation of the variables themselves
is not modelled. Clearly, associations between variables are modelled extensively, but the way
that they arise and are measured or observed is essentially left open. As a consequence, suffi-
cient conditions are available to ignore missing data, but one may fail to come up with vari-
ables that actually satisfy these conditions or motivate why they should hold. See, for instance,
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Molenberghs et al. (2008) for a discussion on the missingness at random and missingness not
at random assumptions and the more general discussion on enriched data through coarsening
in Molenberghs et al. (2012).

Causal inference theory provides structured methodology on how to evaluate causal re-
lationships and to free the estimation of causal effects from confounding, but it does not
tell us why causal relationships are absent or present. A good example is the exclusion
restriction in sample selection models, which states that at least one variable should be
excluded, i.e. an instrumental variable, to guarantee identifiability of correlations between error
terms.

This paper is motivated by the conviction that the nature of the variables themselves and the
way in which they are generated need to be modelled to understand and evaluate the validity of
assumptions underlying statistical inference. The paper models the generation of variables and
the associations between them. In the model, an important role is played by the diversity and
diffusion of populations with respect to so-called variable-generating distributions. Diversity is
defined as the maximal resolution of such a distribution, whereas diffusion is defined in terms
of the relative bin sizes. It is shown that diversity and diffusion are important properties of a
population that appear in association measures.

Four research questions are discussed.

(a) Can a sensible framework be constructed that captures random generation of auxiliary
variables?

(b) What implications follow from the framework about the associations between variables?
(c) Can the diversity and diffusion of a population for a variable-generating distribution be

estimated?
(d) Can the framework assist in checking the validity of statistical inference?

To answer the last research question, the framework is applied and demonstrated in the setting
of missing data. Over recent decades interest in statistical data has increased strongly, which
went parallel to a very strong increase in computational power and to the computerization of
society. Data collection is costly and missing data are difficult to avoid. Therefore, in many
statistical areas modelling of missing data is a key endeavour, and it seems to become even more
important with the interest in ‘big data’. Without a complete theory about the causes for the
missing data, however, it must be accepted that the available auxiliary variables do not guarantee
a missingness at random mechanism. The framework that is presented here gives conditions to
extrapolate the traces of bias found by auxiliary variables to other variables, i.e. to missingness
not at random mechanisms. The original motivation for this paper came from the pursuit to
reduce the effect of missing data in surveys through so-called adaptive survey designs (Schouten
et al., 2013; Wagner et al., 2013; Särndal and Lundquist, 2014). In these designs, data collection
strategies (i.e. treatments) are adapted to auxiliary information that becomes available before
or during data collection. The designs assume that detectable bias due to non-response is a
signal of even larger biases on variables of interest to the survey. Typically, the proportion of
explained variation in non-response by such variables is quite low, and the designs are often
criticized for removing non-response bias during the data collection stage that could equally
well be removed in the estimation or adjustment stage. It is explained in this paper that the
theoretical results provide conditions for the efficacy of such designs to remove bias, even after
adjustment. However, the results can be applied more generally to evaluate any non- (fully)
randomized data collection.

In Section 2, the conceptual framework is laid out. In Section 3, the estimation of diversity
is discussed. Section 4 elaborates the framework to missing data in surveys. To demonstrate the
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utility of the framework and to answer the last research question, in Section 5, the missing data
in an on-line panel are evaluated. Section 6 ends with a discussion.

The data that are analysed in the paper and the programs that were used to analyse them can
be obtained from www.risq-project.eu.

2. A framework for the generation of variables on a population

This section sets the basic theory and constructs. In Section 2.1, notation is introduced and the
generation of variables on a population is modelled. In Section 2.2, population diversity and
diffusion are defined. In Section 2.3, two theorems are presented under the framework where
variables are treated as randomly generated. In Section 2.4, the expected number of categories
for randomly generated variables is elaborated.

2.1. The generation of variables on a population
The objective of this section is to model associations between variables on a population. Al-
though the framework could (and should) be extended to variables with a continuous mea-
surement level, the attention is limited to categorical variables. An extension to continuous
variables is not straightforward and may complicate the interpretation of the framework that is
presented here, which by itself represents a conceptual change in thinking about statistical data.
Furthermore, in many settings of interest such variables are coded as categorical variables.

Suppose that there is a population of interest of size N on which measurements can be made
by using a set of potential instruments and that the measurements are termed variables once
they are stored. Suppose that the variables, as selected by the measurer, are drawn randomly
from the pool of potential variables according to some probability distribution.

The number of variables that can be formed on a population can be very large, whereas the
number of available variables in a data set is typically relatively small. As a result, it is pointless, or
even meaningless, to attempt to construct various families of variable-generating distributions
and to derive empirically to what family a set of variables belongs. Here, it is shown that two
subclasses of such distributions, uniform grouping and clustered grouping, may be sufficiently
general.

2.1.1. Random-grouping distributions
An instrument is a random grouping of population units. Let si be the indicator representing to
what group unit i is assigned, and let s= .s1, s2, : : : , sN/T be the vector of indicators (with T for
transpose). Let C be the (random) number of groups or categories of the resulting variable. Let
p.C, s/ represent a random-grouping probability distribution defined on {1} × {1}N ∪ {2} ×
{1, 2}N ∪ {3} × {1, 2, 3}N ∪: : : ∪ {N} × {1, 2, : : : , N}N . Let A1, A2, : : : , AC denote the groups
and let Δi,c be the 0–1 indicator for the event si = c. Finally, let Cmax be the smallest c with
p.C>c/=0. The resulting groups of population units represent a variable, say Z.

Multiple instruments, labelled m=1, 2, : : : , M, are independent draws from possibly different
distributions pm.C, s/ and lead to series of variables Z1, Z2, Z3, : : : , ZM . The random generation
of variables may lead to constant variables, to copies of the same variable, to variables that are
each other’s complement and to variables that are linearly dependent. In practice, one will often
avoid such variables and may reject them. In those cases, the generation of variables is not
independent. However, when Cmax = 2 and N = 100, which seems to be a modest population
size, then the number of possible variables is already very large and equals 2100. For relatively
small numbers of variables, it will happen rarely that two copies are generated or that a constant
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is constructed. This seems to appeal to intuition, as it indeed happens rarely that measurements
on a population lead to such events in practice.

The population covariance between two realizations of variables, say Z1 and Z2, will be
denoted by Γ.Z1, Z2/, with

Γ.Z1, Z2/= 1
N

N∑
i=1

s1,is2,i −
(

1
N

N∑
i=1

s1,i

)
1
N

N∑
i=1

s2,i:

Essentially, the grouping distributions p.C, s/ determine the expected associations that will be
found between the variables. For a simple example, let Cmax =2 and N =3, let p1.C, s/ be Poisson
sampling with equal inclusion probabilities and let p2.C, s/ be Poisson sampling with unequal
inclusion probabilities

p1.si =1/=0:6, ∀ i,

and

p2.si =1/=
{

0:8 if i=1,
0:6 if i=2,
0:1 if i=3:

Suppose that one of the two distributions is selected. Let Z1 and Z2 both be randomly generated
from this distribution and let sm,i denote the 0–1 indicator for selection of unit i for variable m.
The expected probability that any of the variables equals 1 is P.Zm =1/= .1=N/ΣN

i=1pk.sm,i =1/.
The expected probability that they jointly equal 1 is

P.Z1 =1, Z2 =1/= 1
N

N∑
i=1

pk.s1,i =1, s2,i =1/= 1
N

N∑
i=1

p2
k.s1,i =1/:

Hence, the expected covariance between Z1 and Z2 equals 0 for p1 and 0.087 for p2. It can be
shown that, with independent draws from the same distributions p.C, s/, the expected covariance
of two variables will always be non-negative. Hence, to reach a negative expected covariance
we must select different distributions p.C, s/. This is in fact what questionnaire designers some-
times do on purpose to identify measurement error; they vary the direction of scales to detect
inconsistent answering patterns.

There is a similarity between independent draws from a grouping distribution and exchange-
ability of sequences of random variables. A sequence is exchangeable when any permutation of
the outcome values has the same probability distribution. If a sequence of random variables is
generated independently from a grouping distribution, then any permutation of the sequence
has the same probability of being generated. Since the numbers of categories per variable are
random, a more general definition of exchangeability would be needed to describe independent
draws from any grouping distribution. Nonetheless, it holds that exchangeable sequences, like
independently drawn variables, have a non-negative covariance; see O’Neill (2009). Note that
the exchangeability is in the variables and not in the population units, as was recently discussed
by Mealli and Rubin (2015).

Before we move to subclasses of variable-generating distributions, one important observation
is made: any combination of multiple variables through a crossing of the categories could be
generated directly from one draw of some random-grouping distribution on the population.
Consequently, theorems about the properties of a single randomly drawn variable generalize to
multiple independently drawn variables.
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Lemma 1. Any variable Z̃ that results from the cross-classification of an independently
generated set of variables Z1, Z2, Z3, : : : , ZM is itself generated from some p̃.C, s/ on the same
population.

Proof. Each variable Zm leads to groups Am,1, Am,2, : : : , Am,Cm . A cross-classification cor-
responds to repeated intersections of the sets of groups and results in a new number of groups
C̃ and a new set of groups Ã1, Ã2, : : : , ÃC̃. The probability that a specific combination C̃ and
Ã1, Ã2, : : : , ÃC̃ occurs depends on the underlying distributions to the variables Z1, Z2, Z3, : : : , ZM

and defines p̃.C, s/. Because N is assumed finite, such a distribution always exists.

2.1.2. Uniform grouping and clustered grouping
A natural subclass of grouping distributions is distributions that have equal and independent
unit assignment probabilities for all population units. They are termed uniform grouping dis-
tributions and are defined as follows.

Definition 1. p.C, s/ is a uniform grouping distribution, if conditional on the number of
groups C the population units are assigned following a multinomial distribution with sample
size parameter N and some cell probabilities, say λC

1 , λC
2 , : : : , λC

C.

Hence, the family of uniform grouping distributions is a mixture of multinomial distributions
where the mixture is defined by the marginal distribution p.C/. This family conforms to a quasi-
random selection of variables. Note, however, that some groups may not be assigned any units
and remain empty. Let the random variable CA denote the number of non-empty groups. Lemma
2 shows that lemma 1 holds within the family of such distributions.

Lemma 2. Any variable Z̃ that results from the cross-classification of an independently
generated set of variables Z1, Z2, Z3, : : : , ZM from the family of uniform grouping is itself
generated from some uniform grouping p̃.C, s/ on the same population.

Proof. Let p̃.C=c/=p{min.N, ΠM
m=1Cm,A/=c}, with Cm,A the number of non-empty groups

for variable m, and p̃.s|C = c/ follow a multinomial distribution with sample size parameter
N and cell probabilities λ̃

C

c . The λ̃
C

c s could, in principle, be derived from the cell probabili-
ties λCm

1 , λCm

2 , : : : , λCm
C by fixing labels for the intersections of groups of the M variables and

then taking products of the cell probabilities. The cell probabilities then need to be adjusted
for the condition that the total number of groups is C. This would be a rather cumbersome
derivation. More simply we could state, without further specification, that each group in the
cross-classification must have some cell probability. p̃.C, s/ is a uniform grouping distribution
and is the distribution of the cross-classification of the variables Z1, Z2, Z3, : : : , ZM . �

Uniform grouping distributions with unequal unit assignment probabilities correspond to
targeted selections of variables. However, as long as unit assignment probabilities are unequal
to 0 or 1, all variables have a non-zero probability of being selected. This is different when such
probabilities are simultaneously equal to 0 or 1 for at least two units in the population. This is
termed clustered grouping.

Definition 2. p.C, s/ is a clustered grouping distribution if ∃ i, j for which p.si = sj/=1.

Clustered grouping distributions imply that two units can never be discerned, i.e. the exper-
imenter has no instrument that enables separation of the two units. It should be noted that
also for non-clustered grouping distributions it may occur by chance that two units are not
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separated by any of the selected measurements and appear in the same category of the result-
ing variables. Again it holds that a combination of variables generated from (non-)clustered
grouping distributions is generated from a (non-)clustered grouping.

Lemma 3. Any variable Z̃ that results from the cross-classification of an independently
generated set of variables Z1, Z2, Z3, : : : , ZM from non-clustered grouping distributions is
itself generated from some non-clustered grouping p̃.C, s/ on the same population.

Proof. For any individual variable every pair of units may end up in different groups with a
non-zero probability. It must surely hold for intersections of these groups that two units end up
in different intersections with a non-zero probability. �

Lemma 4. Any variable Z̃ that results from the cross-classification of an independently
generated set of variables Z1, Z2, Z3, : : : , ZM from the same clustered grouping distributions
is itself generated from some grouping distribution p̃.C, s/ on the same population with the
same clustering.

Proof. For every individual variable, the same clusters of units end up in the groups. It holds
for intersections of these groups that clusters still appear in the same intersections. �

The two classes of grouping distributions can be combined and then lead to clustered uniform
grouping. Under clustered uniform grouping, clusters instead of units are randomly allocated
following a multinomial distribution with C cells and certain cell probabilities.

Lemmas 1–4 together ensure that uniform grouping and clustered uniform grouping provide
a rich framework to evaluate associations between variables; first, a set of variables can always
be combined in one variable and, second, it is true by definition that a single variable came from
a clustered uniform grouping.

2.2. Population diversity and diffusion
Here, two general properties of a population are defined relative to a variable-generating or
random-grouping distribution: diversity and diffusion.

Definition 3. The diversity of a population with respect to a variable-generating distribution
p, denoted as G.p/, is the number of clusters of units for distribution p.

Definition 4. The diffusion of a population with respect to a variable-generating distribution
p, denoted as D.p/, is the sum of the squared relative cluster sizes for distribution p. More
specifically, when G.p/ clusters exist, labelled g =1, 2, 3, : : : , G.p/, with relative cluster sizes qg,
i.e. ΣG.p/

g=1 qg =1, then D.p/=ΣG.p/
g=1 q2

g.

In other words, the diversity is the maximal grid or resolution of the variable-generating
distribution, whereas the diffusion measures the amount of clustering via the second moment
of the relative grid sizes. It is straightforward to show that 1=G.p/�D.p/<1, and the diffusion
equals 1=G.p/ when all clusters have an equal size. In Section 2.3, it is shown that the diffusion
plays an important role in associations between variables. The definitions imply that for a
uniform grouping distribution G.p/ = N and D.p/ = 1=N. In what follows, the dependence
on p is suppressed in the notation.

So far, the terms instruments and measurements have been used loosely, but a more funda-
mental discussion is needed. What is meant by measurements? First, to talk of a population,
the units that are contained in it must be identifiable and separable in place and time. Hence,
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identifiers of population units or locations of units in time are not part of the measurements;
they serve to demarcate the units. Second, some measurements are already employed to separate
a population from larger populations, e.g. humans from animals; such measurements will lead
to constants. Third, measurements need to apply to the unit itself and not to its environment,
e.g. questions like who is the current President or what is the age of your mother? Finally, one
may conjecture that measurers, apart from identifiers and location variables, never have a suf-
ficient range of measurements to separate all population units, i.e. they always apply clustered
grouping. The observable diversity G is smaller than the population size N; it depends on the
available instruments and may change once new instruments have been developed or discovered.

Diversity and diffusion could also be defined as properties of a superpopulation from which a
finite population is drawn. The clusters with their cluster sizes may then be seen as the blueprints
of the superpopulation, and its diversity is unrelated to the actual size of the finite population,
N. However, the actual size of the population, obviously, censors and masks the real diversity
and diffusion of the underlying superpopulation. For this reason, diversity and diffusion are
defined as properties of a finite population.

2.3. Associations between randomly generated variables
Suppose that an analysis is directed at explaining a variable of interest Y by using auxiliary
variables .X1, X2, : : : , XM/T. For the sake of demonstration, let Y be quantitative. A researcher
may then be interested in the variance S2.YX/, where YX is the projection of Y on the space that
is formed by the variables .X1, X2, : : : , XM/T.

Let the projection for unit i, YX,i, be defined as

YX,i =
C∑

c=1
Δi,c

N∑
h=1

Δh,cyh

N∑
h=1

Δh,c

, .1/

with yi the value of Y for unit i. Next, let ȲX be the average of the projected values and let S2.y/

be the variance of the measurement values of Y . It is easy to show that ȲX = ȳ always holds,
regardless of the grouping distribution.

First, suppose that there is one auxiliary variable X; then the following theorem applies (with
CA the number of non-empty cells).

Theorem 1. If X is generated from a uniform grouping distribution, then by Taylor series
approximation

E{S2.YX/}= E.CA/−1
N −1

N∑
i=1

.yi − ȳ/2: .2/

For a proof of theorem 1, see Appendix A.
Since, because of lemma 2, a combination of a series of independently generated variables

from uniform grouping distributions is itself generated from a uniform grouping distribution,
theorem 1 also applies to series of variables. The sizes of the cell probabilities λC

1 , λC
2 , : : : , λC

C in
the uniform grouping determine the expected number of non-empty cells, E.CA/.

A researcher may be interested in the proportion of unexplained variance, R2.Y/:

R2.Y , X/=1− S2.YX/

S2.y/
: .3/

Under the conditions of theorem 1, the expected value of equation (3) reduces to
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E{R2.Y , X/}=1− E.CA/−1
N −1

:

For clustered uniform grouping, a similar result can be derived. Let the clusters be labelled
g =1, 2, : : : , G, qg be the relative cluster size and yg be the average value within cluster g.

Theorem 2. If X is generated from a clustered, uniform grouping distribution, then by Taylor
series approximation

E{S2.YX/}= G{E.CA/−1}
G−1

G∑
g=1

q2
g.yg − ȳ/2, .4/

where higher order terms are cubic in the qg (and yg). If, additionally, Γ{q2
g, .yg − ȳ/2}= 0

and Γ{qg, .yg − ȳ/2}=0, then

E{S2.YX/}= G{E.CA/−1}D.p/

G−1
S2

B.y/, .5/

where S2
B.y/= .1=G/ΣG

g=1.yg − ȳ/2 is the between variance for the clusters.

For a proof of theorem 2, see Appendix A.
The two conditions Γ{q2

g, .yg − ȳ/2}= 0 and Γ{qg, .yg − ȳ/2}= 0 are very similar in nature
and assume a lack of relationship between cluster sizes and deviances between the cluster yg

and the overall mean. When the cluster sizes are equal, i.e. qg =1=G, then the conditions hold.
Note that theorem 2 is a generalization of theorem 1. Because of lemmas 2 and 4, theorem 2 can

be extended again to series of variables generated from clustered, uniform grouping distributions
with the same clustering of population units, i.e. sampled from the same subset of variables.

2.4. Expected numbers of categories
Next to the diffusion parameter D, the expected number of groups or variable categories, E.CA/,
determines the expected proportion of variance that is explained. The literature on sample
occupancy numbers and occupancy probabilities (see Song et al. (2007)) can be employed to
derive expressions for E.CA/ under clustered uniform grouping (and the special case of uniform
grouping).

When one variable is drawn from a clustered uniform grouping distribution with cell proba-
bilities λc

1, λc
2, : : : , λc

c and pc =P.C = c/, then the expected number of non-empty cells is

E.CA/=
C∑

c=1
pc

{
c−

c∑
m=1

.1−λc
m/G

}
: .6/

For equal cell probabilities, equation (6) reduces to

E.CA/=
C∑

c=1
pcc

{
1−
(

1− 1
c

)G}
, .7/

and, when pL =1, for some L, then

E.CA/=L

{
1−
(

1− 1
L

)G}
: .8/

From equation (6), the number of categories over M independently generated variables from a
clustered uniform grouping can be derived by noting that C cells are formed with probability
Σ{.c1,:::,cM/:ΠM

k=1ck=C}ΠM
m=1pCm and that cell .c1, c2, : : : , cM/ has cell probability ΠM

m=1λ
Cm
cm

. For
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(a) (b)

(c) (d)

Fig. 1. Expected number of categories, E.CA/, relative to the population diversity G, over M variables
for various values of the population diversity (a) G D 100, (b) G D 1000, (c) G D 10000 and (d) G D 100000:
per panel, the number of independently generated variables from uniform grouping is varied from M D 1
to M D 15; P.C D 2/ D 1 in the clustered uniform grouping distribution and five values of λ2

1 are shown,
λ2

1 2{0.5, 0.6, 0.7, 0.8, 0.9}

general probabilities pc and λc
1, λc

2, : : : , λc
c, the expression is cumbersome to write down. Instead,

it is illustrated how fast the expected number of categories converges for p2 =1, i.e. two cells are
formed per variable, for different values of the population diversity G and for different values
of cell probability λ2

1. Note that λ2
2 =1−λ2

1.
Fig. 1 depicts the expected number of categories relative to the population diversity G for

increasing numbers of variables. Four populations are considered with an increasing diversity,
G = 100, 1000, 10000, 100000. The cell probability λ2

1 is varied from 0.5 to 0.9. As expected,
convergence depends strongly on the population diversity and on the cell probability λ2

1. For
G = 100, all expected numbers of categories are close to G, except for λ2

1 = 0:9, after M = 15
variables have been drawn. For G = 100000, 31219 and 2987 non-empty cells are expected to
be formed for cell probability λ2

1 =0:5 and λ2
1 =0:9 respectively.

Generally, as the length of the series increases, the expected number of groups, E.CA/, will
increase with it and the proportion of unexplained variance will decrease. However, although
asymptotically E.CA/ → G, under uniform grouping, the increases in the number of groups
become smaller with every new variable and convergence is very slow. In practice, this find-
ing is encountered in settings where auxiliary variables are used because they happen to be
available.
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2.5. Drawing samples from a population
In practice, often a population is observed through (random) samples. The theory in the previous
sections can readily be applied to samples when variable-generating distributions are groupings
of the resulting sampled subpopulation. However, when variables are generated on the full
population first and next are applied to the sample, then the theory no longer holds. In this
section, we briefly discuss the consequences of applying such variables to samples.

For convenience, we assume a simple random sample without replacement of size n from the
population (of size N). The relative cluster sizes qg are then replaced by random variables qg,n
that vary from one sample to another. The absolute cluster size nqg,n has a binomial distribution,
Bin.Nqg, n=N/. Now, theorem 2 can be extended by first conditioning on the qg,n and next taking
expectations over the qg,n. This gives

Es[Ep{S2.YX/}]= G{Ep.CA/−1}
G−1

G∑
g=1

Es.q
2
g,n/.yg − ȳ/2,

where Ep denotes expectation over the variable-generating distribution and Es over the sample.
From the binomial distribution it follows that

Es.q
2
g,n/=q2

g + 1
n

(
1− n

N

)
qg,

and we can conclude that simple random samples lead to a sample-size-dependent overestima-
tion of the total variation.

The sample diffusion, Dn =ΣG
g=1q2

g,n, has expected value Es.Dn/=D+ .1=n/.1 −n=N/. For
relatively small samples, the sample diffusion will tend to 1=n and the diversity will be close to
the sample size.

3. Estimation of population diversity and diffusion

Can the population diversity G be identified for clustered grouping distributions? The answer to
this question is no, unless the grouping distribution is modelled. For clustered uniform grouping,
it would be possible, but a large number of randomly drawn variables is needed, unless it is known
or assumed that cluster sizes are equal.

However, the diffusion parameter D, that showed its importance in theorem 2, can be es-
timated on a relatively small series of variables. D is the inverse of the diversity G, when all
clusters have an equal size, qg =1=G. Hence, when clusters have an equal, or nearly equal, size,
estimating the diffusion parameter implies estimating the diversity.

Suppose that .X1, X2, : : : , XM/T is generated independently from a clustered uniform group-
ing distribution. An obvious statistic to consider is Pearson’s χ2-statistic between pairs of vari-
ables. It is shown that this statistic is a simple function of D. Consider two variables, say X1 and
X2. Let Cm be the number of non-empty groups for variable m, and let δm

g,c be the 0–1 indicator
for cluster g in group c for variable m. The population χ2-test statistic, when variables X1 and X2
are used to form a contingency table, is denoted as χ2

N.1, 2/ and is defined in terms of observed
and expected frequencies under independence

χ2
N.1, 2/ :=

C1∑
k=1

C2∑
l=1

(
N

G∑
g=1

qgδ
1
g,kδ

2
g,l −N

G∑
g=1

qgδ
1
g,k

G∑
g=1

qgδ
2
g,l

)2

N
G∑

g=1
qgδ

1
g,k

G∑
g=1

qgδ
2
g,l

, .9/
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which, because clustered uniform grouping is independent of the cluster sizes qg, can be simpli-
fied to

χ2
N.1, 2/=ND

C1∑
k=1

C2∑
l=1

.Gk,l −Gk:G:l=G/2

Gk:G:l=G
, .10/

with Gk,l the count of clusters in cell .k, l/ of the contingency table and Gk: and G:l the marginal
counts of clusters for X1 and X2 respectively. The expectation of equation (10) can be derived by
conditioning on the numbers of groups C1 and C2. Following standard theory, the conditional
expectation equals the degrees of freedom multiplied by D, i.e.

E{χ2
N.1, 2/|C1, C2}=ND.C1 −1/.C2 −1/, .11/

and, hence,

E{χ2
N.1, 2/}=ND{E.CA/−1}2: .12/

For equal cluster sizes, qg =1=G, equation (11) equals the degrees of freedom times the average
absolute cluster size N=G.

Based on a series of variables .X1, X2, : : : , XM/T the population diffusion can be estimated
from realizations of Pearson’s χ2-statistics on all pairs of variables in a data set. Let χ2

N.m1, m2/

represent the statistic for variables Xm1 and Xm2 based on the full population. In practice,
the statistic will often be estimated on the basis of a sample, say of size n. Let χ2

n.m1, m2/ be
the sample-based statistic. To provide an asymptotically unbiased estimator for the population
χ2-statistic (10), χ2

n.m1, m2/ needs to be multiplied by N=n. Treating parameters that may drive
the distribution of the groups sizes Cm as nuisance parameters, an estimator for the population
diffusion may be derived by maximizing the conditional likelihood given the group sizes. To
derive the estimator, it is assumed that {1=.ND/}χ2

N.m1, m2/ follows a χ2-distribution with
.Cm1 −1/.Cm2 −1/ degrees of freedom. It can be shown that the maximum conditional likelihood
is obtained for

D̂=

M−1∑
m1=1

M∑
m2=m1+1

χ2
n.m1, m2/=n

M−1∑
m1=1

M∑
m2=m1+1

.Cm1 −1/.Cm2 −1/

: .13/

In deriving equation (13), it is ignored that the χ2
n.m1, m2/ are based on only M variables, which

introduces some dependence between them.
It may again be assumed that variables are generated on the full population before they are

applied to the sample. If so, the relative cluster sizes need to be replaced by sample-based versions
and the expectation of the sample-based χ2-statistic deviates from equation (11) because of the
sampling variation. As was shown in Section 2.5, the expectation of the sample diffusion shows
a sample-size-dependent overestimation of the true population diffusion. As a consequence,
equation (13) also has a non-negative bias.

To this point, the cell probabilities λC
c have remained unspecified, but they obviously determine

the size of groups and, therefore, the appearance of variables. Without further specification or
model it is infeasible to estimate them, unless the number of variables is unrealistically large.
The modelling and estimation of these parameters is left to future papers; a straightforward
option might be to model them as drawn from Dirichlet prior distributions.
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4. Application of framework to missing data in surveys

In this section, the general theory of Section 2 is applied to missing data in surveys. For missing
data, the aim is to understand the magnitude of selection effects based on a set of auxiliary vari-
ables. The auxiliary variables are assumed to be drawn from a variable-generating distribution
and bias in these variables translates to other non-observed variables.

In the application, the focus is on bias of population means. Let Y be a variable of interest in
the survey that is observed only for respondents and let μ̂Y be an estimator for its population
mean μY , employing a vector of auxiliary variables, X= .X1, X2, : : : , XM/T. Let ρi represent the
response probability of population unit i. The response probability is defined as the variation
in response that is the result of changing individual and data collection circumstances that the
survey cannot control or is not willing to control. The definition of a response probability has
been subject to debate over recent decades. The postulation of response probabilities conforms
to a so-called random-response model, as opposed to a fixed response model in which pop-
ulation units either respond or not, e.g. Schouten et al. (2009) and Särndal (2011). Here, we
adopt a random-response model. Individual circumstances that cannot be fully controlled are,
for example, the mood of the sample person or the family circumstances as a whole. Data col-
lection circumstances that cannot be fully controlled are, for example, weather conditions, big
(inter)national events like sports championships, the mood of interviewers or the malfunction
of Internet connections. Let ρX.xi/ be the response propensity for unit i given the auxiliary
variables, e.g. Rosenbaum and Rubin (1983).

Schouten et al. (2016) showed that for the doubly robust estimator the maximal absolute
remaining bias after adjustment, |B.μ̂Y /| = |E.μ̂Y / − μY |, under missingness not at random
non-response, is proportional to

|B.μ̂Y /|∝√
[{CV2.ρ/−CV2.ρX/}R2.Y , X/], .14/

where CV is the coefficient of variation, CV.ρ/=S.ρ/=ρ̄, and the proportion of unexplained vari-
ance, R2.Y , X/, is defined by equation (3). Either when the proportion of unexplained variance
is 0 or when the variance of response propensities equals that of the true response probabilities,
then equation (14) equals 0 and bias is removed. Schouten et al. (2015) showed that similar up-
per limits can be constructed for the inverse propensity weighting estimator and the generalized
regression estimator.

Schouten et al. (2009) defined response to be strongly representative when response proba-
bilities are constant for all population units and weakly representative with respect to X when
the response propensities ρX.x/ are a constant function. CV.ρ/ and CV.ρX/ can be seen as the
distance to strongly and weakly representative responses respectively.

In Section 4.1, first the setting is discussed where the range of survey target variables is wide
and the objective may be to obtain a general representativeness of response. Next, in Section
4.2, the setting is discussed where there are a few key variables for which representativeness is
needed.

4.1. Detection of general bias due to missing data
Suppose that the objective is to detect bias due to non-response in a survey, and that the variables
of interest are diffuse and large in number, e.g. an omnibus survey or panel. In this setting, the
interest is not in bias in a specific variable of interest. So the unexplained variance in equation
(14) is of no direct interest and attention may be restricted to the first term

B1 =√{CV2.ρ/−CV2.ρX/}: .15/
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Obviously, the ρi cannot be measured directly as they are largely unknown to population units
themselves. The response to a survey is, however, one realization of this variable for the sample,
and the response propensity ρX can be estimated.

Now, in the theorems of Section 2.2, let yi = ρi be the variable that needs to be explained.
Since ρ̄X = ρ̄ for any grouping distribution, CV.ρX/ is S.ρX/ divided by the constant ρ̄.

When X is constructed by uniform grouping, then by theorem 1

E{CV2.ρX/}= E.CA/−1
N −1

CV2.ρ/, .16/

and, when X is constructed by clustered uniform grouping, then by theorem 2

E{CV2.ρX/}= G{E.CA/−1}D

G−1
CV2

B.ρ/, .17/

when Γ{q2
g, .ρg − ρ̄/2}=0 and Γ{qg, .ρg − ρ̄/2}=0, and CV2

B.ρ/=S2
B.ρ/=ρ̄2. It seems reasonable

to assume that the covariances are negligibly small, as the diversity of most survey target pop-
ulations may be expected to be relatively large and the qg to be relatively small and close in size.

Ignoring higher order terms, it holds for the expected value of equation (15) that

E.B1/∼=√
[CV2.ρ/−E{CV2.ρX/}]=

√[
E{CV2.ρX/}N −E.CA/

E.CA/−1

]
, .18/

E.B1/∼=√
[CV2.ρ/−E{CV2.ρX/}]=

√[
E{CV2

B.ρX/}
[

G−1
G{E.CA/−1}D

−1
]]

, .19/

under uniform and clustered uniform grouping respectively.
Consequently, when two different survey designs lead to different CV.ρX/ for variables

.X1, X2, : : : , XM/T from a uniform grouping distribution, then the design with the lowest value
is to be preferred; a lower value implies that the expected remaining bias after adjustment with X

by using a range of estimators is also smaller for an arbitrary other variable. When the grouping
distribution is clustered uniform, then the same holds for an arbitrary other variable with the
same clustering.

A natural follow-up question is whether it is sensible to pursue actively a survey response with
a smaller CV.ρX/ in the data collection stage. It can be shown that this is true under (clustered)
uniform grouping. In adaptive survey designs, e.g. Schouten et al. (2013) and Wagner et al.
(2013), resources are reallocated in between waves of a survey or during data collection to
reduce the risk of non-response bias. Different groups, identified by using auxiliary variables,
receive different treatments. Schouten et al. (2013) suggested formulating the allocation problem
as a mathematical optimization problem with CV.ρX/ as objective function, subject to cost,
precision and logistical constraints. Within the range of designs that satisfy the constraints, the
optimization prefers a design that has smallest CV.ρX/. Theorem 3 in Appendix B shows that
the optimized design is at least as good as the best strategy.

In the application of Section 5, it is demonstrated how a series of auxiliary variables can be
employed to evaluate attrition in a panel, i.e. where the focus is on general representativeness.

4.2. Detection of non-response bias in a variable of interest
Very often surveys have a restricted set of topics and variables of interest. Say that Y is one
such variable, generated from some grouping distribution pY .C, s/. Because a survey sample
unit is usually informed about the topics and purpose of the survey, it cannot be assumed
that Y is generated independently from the response probability variable ρ. However, when
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a set of auxiliary variables X = .X1, X2, : : : , XM/T is generated independently from both the
survey outcome variable Y and the response probability ρ, then still they can be employed to
make statements about the non-response bias for Y , and, subsequently, also about expected
differences in bias for different survey designs.

One option to employ auxiliary variables is to derive the expectation of equation (14) under
clustered uniform grouping. This is, however, not straightforward, as such an evaluation will
involve the covariance between the response probabilities and the values of Y . It is, therefore,
left to future research.

Another option to employ auxiliary variables is to construct relevant subsets of auxiliary
variables based on the observed associations of auxiliary variables to either the survey outcome
variable or the response probability. Under the first approach, auxiliary variables are included in
the analysis whenever they have a minimal association with the survey outcome variable and are
otherwise discarded. The bias component (15) can then again be evaluated and compared as in
Section 4.1, but only for the selected auxiliary variables. Under the second approach, auxiliary
variables are included in the analysis whenever they have a minimal association with response
and are otherwise discarded. Now the other bias component, the coefficient of determination
R2.Y , X/, can be evaluated, but again for the selected variables only. The subset depends on
the approach that is followed, i.e. a minimal association with the survey outcome variable or
to the response probability, and to the original clustering of the auxiliary variable grouping
itself and the height of the selection threshold. A minimal association may be operationalized
by setting a lower threshold to the coefficient of determination or to other association measures
like Cramèr’s V .

Obviously, none of the auxiliary variables may meet the requirement, in which case no state-
ments are possible. This may occur either by the small number of variables or by the clustering to
which they are subject themselves in their generation. In fact, for clustered uniform grouping, the
probability of generating a variable that satisfies the threshold may be 0. However, when the prob-
ability of accepting a variable is positive, then application of theorem 2 to the resulting grouping
distribution may still be deemed useful and informative. When the auxiliary variables are them-
selves generated by uniform grouping, then obviously the survey outcome variables (under ap-
proach 1) or the response probabilities (under approach 2) are themselves elements of the subset.

In the application of Section 5, the effect of attrition on a number of survey outcome variables
of general interest in a panel is evaluated. This is done by accepting auxiliary variables only when
they show a minimal association with these outcome variables.

5. A case-study: the Dutch ‘Longitudinal Internet studies for the social sciences’
panel

To show the utility of the framework in checking validity of inference under missing data, the
theory of Sections 2–4 is applied to the Dutch on-line ‘Longitudinal Internet studies for the social
sciences’ (LISS) panel of the Center for Economic Research and Data at Tilburg University. The
panel was established in November 2007 and panel members were recruited from simple random
samples of the general population. First, the diversity of the panel population is discussed. Next,
the attrition in the panel over the years 2007–2014 is evaluated from a general viewpoint and
from the focus on four survey variables of interest. Finally, utility of the framework is discussed.
The data set and R code can be found at www.risq-project.eu/tools.html.

5.1. The diversity of the panel members
People who register for the LISS panel receive monthly invitations to participate in up to three
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surveys. The panel is set up for academic purposes; academic researchers can apply for a survey
to be fielded in the panel. As a service to these panel users and to avoid the repetition of similar
questions in different surveys, a series of 10 core studies is conducted for each panel member.
The 10 core studies are repeated annually or biannually. The themes of the core studies are
assets, family and household, income, health, housing, personality, politics and values, religion
and ethnicity, social integration and leisure, and work and schooling. From the LISS panel,
2205 panel members were selected who participated in all LISS panel core studies that were
fielded between December 2007 and December 2009. These 2205 people are followed in the
subsequent five years up to December 2014 and their answers to the core study surveys are
treated as auxiliary variables.

A total of 1306 variables was selected from the 2480 survey questions in the 10 core studies. The
survey questions that were not selected either did not apply to the person or could not be used for
various reasons. The following survey items were omitted: questions about other people than the
panel member or about general knowledge, open-ended questions, questions with continuous
measurement level and no obvious classification, questions with a high rate (greater than 5%)
of refusal answers, and factual questions with a high rate (greater than 5%) of ‘do not know’
answers. Part of the questions with a continuous measurement level were, however, available as
recoded categorical variables and were used to replace the original non-coded questions. ‘Do not
know’ answers to non-factual questions were coded as separate substantive categories. Given
the range of topics and the sheer size, the core study variables are viewed as the universe from
which variables can be selected at random. The average number of variable categories for the
1306 selected questions is 4.95 but is skewed to the right. The median number of categories is 4.
The variables include 10 demographic and economic variables that are asked or linked in many
cross-sectional surveys: gender, age, marital status, ethnicity, income, educational level, type of
household, degree of urbanization of area of residence, type of dwelling and socio-economic
status. In the following sections, these 10 variables will be compared with random draws of
variables. They are denoted as XD.

Can the diversity of the 2205 selected panel members be estimated? First, it should be noted
that core study survey questions were taken from existing general population surveys. Hence, it
must be assumed that they were first formed for the population as a whole and then applied to
the panel. Given the reasoning of Section 2.5 and given that the sample of 2205 people is small
relative to the full population, the diversity must tend to 2205. Indeed, no two panel members
were found who answered identically to all 1306 questions. Hence, G = 2205 is taken as the
diversity parameter. As a check, the diversity was also estimated by using equation (13). In
doing so, it was assumed that the clusters are equal in size, so that the diffusion is the inverse
of the diversity G. The resulting estimate for G is Ĝ = 431, which is substantially lower than
2205. Hence, there is some clustering in the 1306 survey questions, even after mixing the 10 core
study surveys. This is most likely to be due to the repetition of similar survey questions to form
psychometric and sociometric latent constructs. This clustering is ignored in what follows when
drawing variables but may have a small effect.

5.2. Evaluating the general effect of attrition in the panel
The attrition patterns in the years 2010–2014 of the 2205 panel members are evaluated by using
their answers to the 1306 questions from 2007 to 2009. The panel has an infinite horizon; panel
members drop out only when they become inactive for a longer period. Five time points are
considered, January 1st of 2010, 2011, 2012, 2013 and 2014. The first row of Table 1 contains
the rates of attrition at each time point. Since the panel has a wide range of possible survey
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Table 1. Estimated coefficients of variation averaged over all single variables, for random draws of 10
variables and for the 10 demographic variables

Results for the following years:

2010 2011 2012 2013 2014

Attrition rate (%) 12 21 27 31 35
Single X CV.ρX1 / 0.006 0.010 0.014 0.017 0.019

̂CV.ρ/ 0.141 0.239 0.336 0.393 0.451
Random X1, : : : , X10 CV.ρX10 / 0.018 0.033 0.048 0.057 0.066

CV.ρX10 /
̂CV.ρ/

×100 .%/ 13 14 14 15 15

Demographic CV.ρXD
/ 0.033 0.069 0.089 0.106 0.127

CV.ρXD
/

̂CV.ρ/
×100 .%/ 23 29 26 27 28

topics, the general representativeness of the panel is of interest. Following Section 4.1, the
representativeness is assessed by coefficients of variation CV of attrition propensities estimated
at each time point. Four questions are asked.

(a) How does the expected total CV of attrition probabilities change over time?
(b) Do the demographic variables explain more variation than variables drawn from a uniform

grouping?
(c) How much of the maximal variation comes from substantive variables?
(d) Is it sensible to adapt panel data collection?

The first two questions are answered by estimating three different CVs:

(a) the CV of attrition propensities in models with only one variable at a time averaged over
all 1306 variables,

(b) the CV of attrition propensities in models with 10 randomly drawn variables, averaged
over 200 independent draws and

(c) the CV of attrition propensities in a model with the 10 demographic variables.

The three are denoted as CV.ρX1/, CV.ρX10/ and CV.ρXD/ and are given in the second, fourth
and last rows of Table 1.

Consider, first, the average single variable CV.ρX1/ (second row). The values are relatively
small. Since G=2205 and ̂E.CA/=4:95, theorem 2 tells us that the expected proportion of vari-
ance that is explained by one randomly drawn variable should indeed only be .4:95−1/=2204×
100% = 0:18% of the CV of the response probabilities over the 2205 panel members. By ap-
plication of equation (17), the third row of Table 1 estimates the true coefficient of variation
as

ĈV.ρ/=
√{

G−1

̂E.CA/−1

}
CV.ρX/, .20/

which is roughly 24 times the average single variable CV. From 2010 to 2014, the values increase
steadily and the representativeness becomes weaker when the panel members grow older.

Consider next the CV.ρX10/ and CV.ρXD/ (fourth and sixth rows). The CV.ρX10/ are approx-
imately three times larger than the CV.ρX1/, whereas the CV.ρXD/ are approximately six times
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Table 2. Estimated total coefficients of variation divided by
maximal coefficients of variation

Year 2010 2011 2012 2013 2014
̂CV.ρ/
CVmax

×100 .%/ 39 47 55 59 62

Table 3. Preferred time points over 200 random draws of
10 auxiliary variables

Year 2010 2011 2012 2013 2014
Fraction preferred 69 18 9 3 1

CV (%)

larger. The fifth and last rows in Table 1 show the estimated relative size of the coefficients relative
to the estimated total coefficient, ĈV.ρ/. For the randomly drawn variables, the relative sizes
fluctuate between 13% and 15%, and for the demographic variables they fluctuate between 23%
and 29%. It must be concluded that the demographic variables explain much more variation
than do average auxiliary variables.

Note that the E.CA/−1 for 10 randomly drawn variables is on average only nine times larger
than for a single variable, confirming the slow convergence of explained variation for randomly
drawn variables.

To answer the third question, the maximal coefficients are estimated. The maximal CV can
be derived by assuming that all response probabilities are either 0 or 1, i.e.

CVmax =
√{ρ̄.1− ρ̄/}

ρ̄
: .21/

Table 2 presents the estimated coefficients ĈV.ρ/ divided over the CVmax. The fractions grow
steadily from 2010 to 2014 but still make up only 62% at the end. Hence, a considerable pro-
portion of the maximal variation is not accounted for by the 1306 variables. Given that these
variables are viewed as the universe of variables, a substantial part of the variation seems to
come from panel data collection circumstances that cannot, or are not, controlled for.

The last question is about the utility of adaptation of panel data collection to known values
of the auxiliary variables. Table 1 shows that the growing attrition from 2010 to 2014 coincides
with growing CVs. However, the 1306 variables are not constant in their preferred time point of
attrition. Table 3 presents the fractions of the 200 draws in which a time point was preferred in
terms of the estimated coefficients of variation by the 10 randomly drawn variables. In around
70% of the draws, January 2010 was preferred, and for the remaining draws other years were
preferred. This result implies that there is a potential for adaptive survey designs that vary the
horizon of panel membership and/or refreshment strategies over auxiliary variables.

5.3. Evaluating the effect of attrition on key survey variables
Whereas in Section 5.2 the focus was on general representativeness, the focus, here, is on specific
survey variables. From the core studies, four variables were selected that are viewed as key survey
variables within the corresponding studies. They are usually asked as one of the first questions
in the questionnaire or in one of the main questionnaire modules. The variables are ‘How would
you describe your general health?’, ‘Do you practice sports?’, ‘Do you agree or disagree with the
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Table 4. Numbers of selected variables
and selected demographic variables

Number of selected X

All Demographic
variables X

Health 187 4
Sports 235 3
Surveys 25 0
Dwelling 411 10

statement “Surveys are important for society”?’ and ‘How satisfied are you with your current
dwelling?’. The four questions are repeated in each wave of the corresponding core study. The
answers to these four questions in the 2007–2009 core studies are used to follow the panel in the
years 2010–2014.

The first approach of Section 4.2 is followed: auxiliary variables are selected on the basis of
a minimal association with each of the four survey outcome variables and the coefficients of
variation of the attrition propensities for the variables selected are evaluated and compared.
Variables were maintained in the models for attrition whenever their value of Cramèr’s V ex-
ceeded 0.05. This value seems rather small. However, the expected value of Cramèr’s V is equal
to the square root of the diffusion for a uniform grouping and is only about 0.02. For higher
threshold values, the number of variables selected decreases very quickly. Two questions are
asked:

(a) ‘What representativeness patterns are found by auxiliary variables that satisfy the thresh-
old?’ and

(b) ‘Are the same patterns found by demographic variables that satisfy the threshold?’.

To answer the first question, the selection of auxiliary variables is evaluated. The second and
third columns in Table 4 show the overall number of variables and the number of demographic
variables respectively that satisfy the threshold for each of the survey variables. The numbers
are largest for the ‘Dwelling’ variable and all demographic variables reach the threshold. For
the ‘Survey’ attitude variable, the numbers are smallest and none of the demographic variables
reaches the threshold.

To answer the first question, 200 independent draws of 20 variables from the 1306 variables
were generated, for each set, variables that did not reach the threshold were deleted and the av-
erage coefficient of variation over the 200 draws was computed; to avoid large numbers of empty
models for attrition, 20 variables were drawn. Table 5 shows the average coefficients of variation
for the subsets of selected auxiliary variables (the second to fifth rows). For comparison, the
overall (estimated) coefficient of variation ĈV.ρ/ of Section 5.2 is given in the first row. The
results show that representativeness grows weaker for all four subsets when time progresses, but
with different rates and with slightly different patterns. For the ‘Dwelling’ subset the represen-
tativeness is weakest throughout all years, whereas for the ‘Surveys’ subset it is strongest. For
the ‘Surveys’ subset the coefficient stabilizes after 2012, whereas for the other variables there is
a constant increase.

To answer the second question, the coefficients of variation for the demographic variables
selected were estimated and are given in Table 5 (the sixth to ninth rows). The eighth row is
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Table 5. Estimated total coefficients of variation, estimated coefficients of
variation for the survey variables and estimated coefficients of variation for
demographic variables after filtering on a minimal association to key survey
variables per time point

Results for the following years:

2010 2011 2012 2013 2014

̂CV.ρ/ 0.141 0.239 0.336 0.393 0.451
Random X1, : : : , X20 Health 0.008 0.017 0.024 0.030 0.037

Sports 0.006 0.016 0.026 0.031 0.038
Surveys 0.003 0.005 0.009 0.008 0.008
Dwelling 0.012 0.022 0.033 0.042 0.050

Demographic X Health 0.030 0.065 0.075 0.095 0.102
Sports 0.017 0.046 0.065 0.081 0.096
Surveys — — — — —
Dwelling 0.032 0.069 0.090 0.106 0.127

empty, because none of the demographic variables is included in the ‘Surveys’ subset. Now,
the coefficients are much larger, which may be expected from the findings of Section 5.2. Like
for the random draws, the demographic variables indicate that the ‘Dwelling’ subset shows the
weakest representativeness in all years. However, for the ‘Health’ and ‘Sports’ subsets, patterns
are slightly different and do not fully confirm the findings for the random draws.

5.4. Checking validity of statistical inference
In the application, does the framework assist in checking the validity of inference? Two subsets
of auxiliary variables were distinguished: a random selection and standard demographic and
socio-economic variables. In a panel, random subsets may be obtained in a panel recruitment
survey or a baseline core study. The demographic subset may also be obtained in a recruitment
survey or by linkage from administrative data. The standard subset is available and used in
analyses and adjustment of non-response bias in many surveys. In inference about the variables
of interest in the LISS panel, researchers will normally attempt to account for panel attrition
by weighting response or imputing non-response given the auxiliary variables. To remove the
selection bias, the attrition must be missing at random for a survey variable of interest using
such subsets of auxiliary variables.

Under the framework, it becomes clear that attrition is not missing at random for variables
of interest conditionally on both subsets of auxiliary variables and that remaining bias exists.
It does show that the standard subset of auxiliary variables is relatively powerful. However,
through the coefficients of variation of estimated propensities, the random subset does allow
for estimating a maximal bias over all variables and over subsets of variables. Furthermore, it
allows for ranking different designs to deal with attrition.

6. Discussion

This paper is based on the rationale that the nature of variables that are used for statistical
inference is often discarded but is crucial in evaluating assumptions under which inference is
valid. Such variables may be assumed to be picked in some random fashion from the universe
of potential variables. Depending on the diversity of the population, the size of this ‘universe’ is
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larger or smaller. Little diversity implies that the set of potential variables is small and indepen-
dent draws of variables show more association. Four research questions were posed about the
construction of a framework for the generation of variables, the consequences for associations
between variables, the estimation of population parameters that are important in these associa-
tions and the utility of the framework for statistical inference. They are briefly discussed, before
limitations and future research are discussed.

It is shown that a framework can be constructed for random generation of auxiliary variables.
The straightforward approach is to enumerate and label all possible variables and to draw vari-
ables at random. This approach is, however, not useful as it does not model collinearity, which
is the driving force in associations between variables. For this reason, an approach was taken
where the population units are randomly grouped to form variables. Obviously, the framework
needs more discussion and evaluation. For example, continuous variables have been ignored
completely.

Associations between variables explored by using two classes of variable-generating distribu-
tions are considered: uniform grouping and clustered grouping. These two classes seem suffi-
ciently wide to model a wide range of settings. The first, uniform grouping, amounts to a fully
random selection of variables and leads to powerful conclusions about associations. When aux-
iliary variables are indeed selected at random, then they detect traces of missing data bias and
associations and enable conclusions beyond the mere associations that they themselves show.
The second, clustered grouping, corresponds to a random selection from subsets of the universe
of variables. Clustering essentially bounds the potential to extrapolate observed associations
and limits conclusions.

A first approach is presented to estimate the diversity and diffusion of a population; key
parameters in associations between variables. Importantly, such an endeavour to construct
estimators will always be limited to observable diversity and diffusion, i.e. given the subset
of variables for which we have instruments. However, in organically grown populations, these
features of a population should be relatively stable in time and change only gradually.

In the setting of missing data, the framework turned out to be a very useful way of looking at
auxiliary variables. Assumptions about missing data mechanisms are substituted by assumptions
about the generation of auxiliary variables. This substitution, obviously, does not solve the
missing data problem. Nevertheless, assumptions about the generation of auxiliary variables
may be more intuitive and, therefore, easier to check. With a range of data sets it may be
possible to estimate the population diversity. From there, it may be possible to construct a basis
of variables for a population, i.e. to select a set of variables that are not correlated and describe
the full diversity of a population. Furthermore, it may be possible to judge a set of variables,
e.g. from a survey, on their cohesion relative to a fully random set of variables. Such features
would help checking validity of variable generation.

The framework could be applied in a relatively straightforward way to explore confounding of
selection and treatment effects in causal inference, by viewing available confounders as randomly
picked. For causal effects, the aim would be to understand the amount of confounding with
selection in observational studies or quasi-randomized trials. Covariates, either baseline or
observed during treatment, may be assumed to follow a variable-generating distribution, so
that again confounding effects can be translated to other, non-observed variables. The same
argument as given for inference under missing data can be applied: when one treatment shows
a larger effect than another, after controlling for confounding detected for randomly drawn
auxiliary variables, then the treatment is expected to show a larger effect after controlling for
confounding on all variables. This argument resembles the discussion in Joffe (2000) about
confounding by indication. An application to causal inference is left to future papers.
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Given that one accepts the framework, there are still some challenges. First, the number of
auxiliary variables must be large to draw conclusions. Essentially, the variables are just draws
and, as usual, quite a few are needed to obtain a precise picture of the parameters of interest,
i.e. population diversity and specific diversity of variables of interest. For numbers of auxiliary
variables that are common in practice, precision may often remain too low. Second, it is as-
sumed that variables are measured without error and are intrinsic to the population units. If an
instrument shows faulty measurements or if a person provides answers with some measurement
error, then the variables become obscured by the noise that is added. As a result, the diversity
of the population is judged to be much higher than it really is, as all associations become at-
tenuated. Third, and most importantly, it seems most reasonable that variables are generated
from subsets of possible variables, i.e. by clustered random grouping. Consequently, conclusions
apply to subsets as well and may underestimate the full diversity. It is plausible that the auxiliary
variables that are used most frequently have actually proved themselves in time to be relevant
in a broad sense. Probably the archetype variables are gender and age. The case-study hints at
this conclusion.

These challenges may be picked up in future research. It would be worthwhile to attempt to
replicate the estimation of population diversity as is done in this paper. One would have to deal
with the complication of measurement error, but, as mentioned above, many populations may
be expected to have stable features in time.
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Appendix A: Proof of theorems 1 and 2

Since theorem 1 is a special case of theorem 2, i.e. by taking clusters identical to units, it suffices to prove
theorem 2.

Let Gc =ΣG
g=1δg,c be the number of clusters that is assigned to cell c and pc =ΣG

g=1δg,cqg be the relative
size of cell c. In deriving the expectation E{S2.YX/}, first the conditional expectations E{S2.YX/|CA =
M, G1 =n1, : : : , GM =nM} are evaluated. The variance can be expressed as

S2.YX/=
C∑

c=1
pc

(
G∑

h=1
δh,cqhyh

pc

− ȳ

)2

=
C∑

c=1
Gc

pc

Gc

(
G∑

h=1
δh,cqhyh

Gc

Gc

pc

− ȳ

)2

, .22/

so that

In equation (23) the pcs and δh,cs are the only random variables as nc is fixed. Setting A=ΣG
h=1δh,cqhyh=nc

and B=pc=nc, the conditional expectation on the right-hand side of equation (23) can be written as
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E

{
B

(
A

B
− ȳ

)2∣∣∣∣Gc =nc

}
=E

(
A2

B

∣∣∣∣Gc =nc

)
−2ȳE.A|Gc =nc/+ ȳ2E.B|Gc =nc/: .24/

A second-order Taylor series approximation of the first term of equation (24) around .E.A/, E.B// leads
to

E

(
A2

B

)
= E.A/2

E.B/
+ var.A/

E.B/
−2

cov.A, B/E.A/

E.B/2
+ var.B/E.A/2

E.B/3

+O[E{B−E.B/}3]+O[E{B−E.B/}{A−E.A/}2]+O[E{B−E.B/}2{A−E.A/}], .25/

where the condition Gc =nc is omitted from the notation for convenience.
The third- and higher order terms of equation (25) are ignored in what follows. The other terms in

equation (25) can be evaluated:

E.B|Gc =nc/= 1
G

,

var.B|Gc =nc/= 1
nc

(
1− nc

G

)
1

G−1

G∑
g=1

(
qg − 1

G

)2

,
.26/

E.A|Gc =nc/= ȳ

G
,

var.a|Gc =nc/= 1
nc

(
1− nc

G

)
1

G−1

G∑
g=1

(
qgyg − ȳ

G

)2

,
.27/

cov.A, B|Gc =nc/= 1
nc

(
1− nc

G

)
1

G−1

G∑
g=1

q2
gyg − 1

nc

(
1− nc

G

)
1

G−1
ȳ

G
: .28/

Combining equations (24)–(28) gives

E

{
B

(
A

B
− ȳ

)2∣∣∣∣Gc =nc

}
= 1

nc

(
1− nc

G

)
G

G−1
ȳ2

G∑
g=1

(
qg − 1

G

)2

+ 1
nc

(
1− nc

G

)
G

G−1

G∑
g=1

(
qgyg − ȳ

G

)2

−2
1
nc

(
1− nc

G

)
G

G−1
ȳ

G∑
g=1

q2
gyg +2

1
nc

(
1− nc

G

)
1

G−1
ȳ2

= 1
nc

(
1− nc

G

)
G

G−1

(
G∑

g=1
q2

gy
2
g + ȳ2

G∑
g=1

q2
g −2ȳ

G∑
g=1

q2
gyg

)

= 1
nc

(
1− nc

G

)
G

G−1

G∑
g=1

q2
g.yg − ȳ/2: .29/

Now, inserting equation (29) in equation (23) gives

E{S2.YX/|CA =M, G1 =n1, : : : , GM =nM}= G

G−1

G∑
g=1

q2
g.yg − ȳ/2

M∑
c=1

(
1− nc

G

)

= G

G−1
.M −1/

G∑
g=1

q2
g.yg − ȳ/2: .30/

Equation (30) does not depend on the Gc, so the conditioning on G1 =n1, : : : , GM =nM can be removed:

E{S2.YX/|CA =M}= G

G−1
.M −1/

G∑
g=1

q2
g.yg − ȳ/2: .31/

Now, weighting equation (31) by the probabilities P.CA =M/ leads to equation (5):

E{S2.YX/}= G

G−1
{E.CA/−1}

G∑
g=1

q2
g.yg − ȳ/2: .32/
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Equation (31) can be rewritten as

E{S2.YX/}= G

G−1
{E.CA/−1}[Γ{q2

g , .yg − ȳ/2}+DS2.y/−DΓ{qg, .yg − ȳ/2}], .33/

so the additional conditions, Γ{q2
g , .yg − ȳ/2}=0 and Γ{qg, .yg − ȳ/2}=0 lead to equation (6).

Appendix B: Proof of expected gain of adaptive survey design

Say that T strategies are available, labelled d = 1, 2, : : : , T , where design d has response probabilities ρd .
The adaptive survey design optimization creates a mix of these strategies based on the observed response
propensities ρX,d , d =1, 2, : : : , T , which leads to a design with response probabilities ρ̃ and response propen-
sities ρ̃X. In general, ρ̃X 	= ρX,d but is a mix of the ρX,d.c/ over groups and strategies, unless one of the
strategies is superior to all possible mixes. The following theorem holds for uniform grouping and can be
extended to clustered uniform grouping following a similar reasoning.

Theorem 3. If X is generated from a uniform grouping distribution, then

E{minρ̃∈P̃ S2.ρ̃X/}� E.CA/−1
N −1

mind S2.ρd/, .34/

E{minρ̃∈P̃ CV2.ρ̃X/}� E.CA/−1
N −1

mind CV2.ρd/, .35/

where minimization is over P̃ ={ρ= .ρ1, ρ2, : : : , ρC/T|ρc ∈{ρX,1.c/, : : : , ρX,D.c/}, c=1, 2, : : : , C}.

Proof. A proof is given for the case where T = 2 and a single X is generated with P.C = 2/ = 1.
Generalizations to arbitrary T and to general p.C/ are straightforward but cumbersome in notation.
Lemma 2 again helps to generalize to series of variables.

It is straightforward to derive the expected remaining within variance of response probabilities in any
group c formed by a uniform grouping variable X, say S2

w.ρ|X = c/. Since under uniform grouping all
clusters have the same distributional properties, it must hold that

E{S2
w.ρ|X= c/}=E

{
E.CA/−1
C.N −1/

}
S2.ρ/: .36/

Hence, a smaller observed variance of response propensities for a particular survey design gives a smaller
expected remaining within variance for that design.

For D=2 and C =2, there are four possible designs: d =1 is assigned to both X=0 and X=1, d =1 is
assigned to X=0 and d =2 is assigned to X=1, d =2 is assigned to X=0 and d =1 is assigned to X=1,
and d = 2 is assigned to both X = 0 and X = 1. The resulting response propensities are denoted by ρX11,
ρX12, ρX21 and ρX22. So ρXkl = .ρX,k.1/, ρX, l.2//T. Obviously, ρXkk =ρX,k, as both groups always have design
k.

Now, the left-hand terms of equations (34) and (35) reduce to

E{minρ̃∈P̃ S2.ρ̃X/}=E{min
k, l

S2.ρXkl/},

E{minρ̃∈P̃ CV2.ρ̃X/}=E{min
k, l

CV2.ρXkl/},

and, by standard probability theory, it holds that

E{mink, l S
2.ρXkl/}�mink, l E{S2.ρXkl/}

and

E{mink, l CV.ρXkl/}�mink, l E{CV.ρXkl/}:

Since it is true that

E{S2.ρXkk/}=E{S2.ρX,k/}= E.CA/−1
N −1

S2.ρk/
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and

E{CV2.ρXkk/}=E{CV2.ρX,k/}= E.CA/−1
N −1

CV2.ρk/,

theorem 3 holds for T =2 and C =2.
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