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A BAYESIAN ANALYSIS OF DESIGN PARAMETERS IN
SURVEY DATA COLLECTION
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In the design of surveys, a number of input parameters such as contact
propensities, participation propensities, and costs per sample unit play a
decisive role. In ongoing surveys, these survey design parameters are
usually estimated from previous experience and updated gradually with
new experience. In new surveys, these parameters are estimated from ex-
pert opinion and experience with similar surveys. Although survey insti-
tutes have fair expertise and experience, the postulation, estimation, and
updating of survey design parameters is rarely done in a systematic way.
This article presents a Bayesian framework to include and update prior
knowledge and expert opinion about the parameters. This framework is
set in the context of adaptive survey designs in which different
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population units may receive different treatment given quality and cost
objectives. For this type of survey, the accuracy of design parameters
becomes even more crucial to effective design decisions. The framework
allows for a Bayesian analysis of the performance of a survey during
data collection and in between waves of a survey. We demonstrate the
utility of the Bayesian analysis using a simulation study based on the
Dutch Health Survey.

KEYWORDS: Adaptive survey design; Gibbs sampler; Nonresponse;
Response propensities; Survey costs.

1. INTRODUCTION

Over the last two decades, there has been an increasing interest in survey data
collection monitoring, analysis, and intervention or adaptation. The main driv-
ers for this are the diversification of data collection that followed the emer-
gence of online communication, the lack of predictability of survey response
propensities despite years of research into survey design, the gradual increase
in costs per respondent when response rates are kept at traditional levels, and
the availability of a wide range of data collection process data (termed para-
data). For instance, see Kreuter (2013) to get a view on research aiming at a
deeper understanding of data collection processes. In a changing survey data
collection environment with unpredictable and, hence, only partially controlla-
ble outcomes, a close watch of the progress of data collection is imperative.
For this purpose, timely and accurate estimates of survey design parameters,
such as contact propensities, participation propensities, costs per contact, and
costs per interview, are needed.

These developments paved the way for survey designs that adapt or tailor
strategies and effort to known and relevant characteristics of sampled units
from the target population. Such designs we term “adaptive,” (see Groves and
Heeringa 2006; Wagner 2008; and Schouten, Calinescu, and Luiten 2013). In
order to adapt, accurate estimates of survey design parameters are needed at
the deeper level of population subgroups. This higher resolution puts pressure
on the accuracy of such parameter estimates. Burger, Perryck, and Schouten
(2017) analyzed the performance of adaptive survey designs under inaccurate
design parameter estimates and concluded—not surprisingly—that biased pa-
rameter estimates may lead to suboptimal and, consequently, inefficient
designs.

A natural approach to evaluate inaccuracy of survey design parameters and
to account for the uncertainty in the optimization of survey design is through
Bayesian analysis (Gelman, Carlin, Stern, and Rubin 2014). In such an analy-
sis, survey design parameters are treated as random variables and are assigned
prior distributions, which are then updated and transformed to posterior distri-
butions during data collection. These posterior distributions may be used as
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prior distributions in new waves of the same survey. The added benefit is that
prior distributions may also be elicited from expert judgment, so that historic
survey data in one survey may also be reused in other surveys. Other advan-
tages of using a Bayesian approach is that we are able to account for the uncer-
tainty in survey design parameters and any function of these parameters. In
addition, we are able to obtain distributional estimates, such as percentiles,
which can be used to develop other types of quality indicators for monitoring
adaptive survey designs.

Despite these advantages, Bayesian analysis of survey data collection is
rare, and literature is very thin. An exception is Schafer (2013). Reasons for
this absence may be that a Bayesian analysis is not straightforward conceptu-
ally or computationally, that the added value may be unclear to survey design-
ers, and that the elicitation of prior distributions is complex and cumbersome
in practice. Therefore, we have the following objectives:

(1) to set up (sufficiently general) models for survey design parameters

(2) to introduce a Bayesian analysis of survey design parameters

(3) to introduce a Bayesian analysis of quality and cost indicators based on
survey design parameters

(4) to evaluate under what conditions a Bayesian analysis has added value

We show that a Bayesian analysis can be set up and applied to a variety of
survey designs. Our focus on overall quality and cost indicators is motivated
by the desire to ultimately adapt data collection strategies to different popula-
tion subgroups. To reach this goal, we include linked auxiliary data and para-
data in models for survey design parameters. The main objective here,
however, is to show that Bayesian analysis can be effective in monitoring and
analyzing survey data collection and also demonstrate how a Bayesian ap-
proach can be used through a particular set of model assumptions. We empha-
size the generalizability of the methodology where other model assumptions
can be used.

A Bayesian analysis of data collection is by itself not novel. There is a vast
literature in biostatistics and medical statistics that presents methodology to
monitor and optimize treatments using prior knowledge or beliefs. There is a
close resemblance to dynamic treatment regimes and continual re-assessment
methods in clinical trials (e.g., O’Quigley and Shen 1996; Heyd and Carlin
1999; Murphy 2003; Scharfstein, Daniels, and Robins 2003; Schulte, Tsiatis,
Laber, and Davidian 2014). An application to survey data collection is, how-
ever, novel and introduces three specific elements: a multi-dimensionality of
survey target variables, a very explicit focus on data collection costs, and a
multitude of quality indicators describing different survey errors. In the analy-
sis, we assume that survey data collection consists of a series of phases for
which costs and quality are evaluated separately and cumulatively, including
all outcomes, up to a current phase. Per phase, survey design parameters are
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defined and are assigned prior distributions. A Gibbs sampler with data aug-
mentation is applied to derive posterior distributions.

The explicit presentation of uncertainty in survey design parameter values is
an advantage of Bayesian analysis by itself. However, a Bayesian analysis has
even more added value when the inclusion of prior knowledge from historic
survey data and expert knowledge provides stronger guidance to design deci-
sions than a non-Bayesian analysis. In order to prove this, we take two
approaches in a simulation study linked to the Dutch Health Survey. We grad-
ually misspecify the locations of the prior distributions and gradually increase
the variance of the prior distributions. We do this to analyze if and when the
prior information is too weak to be of use and may just as well be replaced by
a fully noninformative prior distribution.

A natural subsequent step is to adapt survey design within the Bayesian
analysis framework. In order to be able to do so, a range of strategies needs to
be randomized and available. We discuss randomization of strategies in the
Bayesian analysis, and we distinguish contact and participation in obtaining re-
sponse, but we leave actual optimization to future articles.

In this article, we focus on adaptive survey design with the objective to min-
imize nonresponse error. Survey design parameters associated with measure-
ment error (e.g., the adjusted mode effect) are out of scope in this article. We
refer to Calinescu (2013) and Calinescu and Schouten (2015) for designs incor-
porating both types of survey errors.

This article has three main sections: In section 2, we describe the various adap-
tive survey design strategies and link them to response propensities and costs, the
survey design parameters of interest. In section 3, we break down the response
propensities and costs into their basic components (e.g., contact propensities and
cost components per call, present models for these components) and assign prior
distributions. Apart from the survey design parameters themselves, we also con-
sider a number of functions of these parameters like the response rate, overall
costs, and coefficient of variation of the response propensities. In section 4, we in-
vestigate the utility of Bayesian analysis through a simulation study on the Dutch
Health Survey and we close with a discussion in section 5.

2. ADAPTIVE STRATEGIES AND DESIGN
PARAMETERS

In this section, we provide the necessary background for the models of section 3.

2.1 Types of Strategies and Notation

The design of each survey has a range of features, for example, sample design,
advance letter, contact protocol, screener interview, number of phases,
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reminder protocol, use of incentive, mode of administration, interviewer, re-
fusal conversion procedure, and type of questionnaire. The aggregate of
choices made for the design features is called a data collection strategy or sim-
ply strategy. In nonadaptive survey designs, these features are implemented
uniformly over the whole sample (i.e., there is one strategy). In adaptive survey
designs, part of the design features may be implemented differently for differ-
ent sample units (i.e., there is a set of strategies). For examples, see Groves and
Heeringa (2006); Wagner (2008); Coffey, Reist, and White (2013); and
Schouten, Calinescu, and Luiten (2013).

Different sample units may be distinguished based on linked auxiliary data
from the sampling frame or administrative data, from paradata obtained during
data collection, or from survey data from previous waves in longitudinal or
panel settings. By analogy to clinical trials (e.g., Scharfstein, Daniels, and
Robins 2003 and Murphy 2003), an adaptive strategy based on auxiliary data
available at the start of data collection is called static and an adaptive strategy
based (also) on auxiliary data collected during data collection is called dy-
namic. In our implementation, it is decided beforehand what strategy is applied
to each sample case when all auxiliary data is available. Hence, at the start of
data collection, we may not know the exact strategy since it depends on para-
data, but once it becomes available, the action is fixed. As an example, we may
make the decision a priori that young males that do not respond to the web
questionnaire should receive a face-to-face interview only if there was an at-
tempt to respond to the web questionnaire. We only know if there was such an
attempt after the start of the data collection.

For a subject i in the sample, let x; be the vector of auxiliary variables,

!

Xi = (X0,1ir -+ + > X0umguis -+ - XT\Lis - - + s XTmp i) 5
! . oy . .
where xo; = (X014, - - - ,X0.m,,;) contains the my auxiliary variables available at
1 : L
the start of data collection, and x,; = (X1, ..., X, are the auxiliary varia-

bles that are observed for the sample units in phase 7. Typical auxiliary varia-
bles available at the start of data collection are those variables linked to the
sample frame from a register, such as age and gender. Auxiliary variables that
are observed for sample units in phase ¢ are typically paradata that have been
collected to inform the data collection process, such as the number of contact
attempts or whether the respondent “broke-off” connection when responding
to a web questionnaire.

Let the survey design consist of a maximum of 7 phases, labelled
t=1, 2,...,T. (The use of # to denote phase does not necessarily indicate
that it is related to time.) We define S; as the collection of all possible actions
in phase 7 and let s, represent the action taken in phase ¢. Possible actions may
include moving from a web questionnaire to a face-to-face interview or stop-
ping contact attempts. We define the total collection of possible actions:
S = UszlS,. The action sets may contain sg, which, if selected, implies that
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no attempt is made to obtain a response. We define the collection of survey
strategies from phase one to 7" as

Siri=A{(s1,...,87):85,€S,t=1, 2,...,T},

and let 51 7 € S r denote one possible strategy (i.e., sequence of actions from
phase one through phase 7).

2.2 Survey Design Parameters

Adaptive survey designs either maximize a quality objective subject to cost con-
straints and other quality constraints or minimize a cost objective subject to qual-
ity constraints. The quality and cost constraints depend on the setting in which
the survey is conducted but may concern any survey error. Three sets of survey
design parameters suffice to compute most of the quality and cost constraints:

(1) response propensities, pz;(si,7), per unit i and strategy s, r

(2) costs, Cr;(s1.7), per unit i and strategy s; 7

(3) strategy-specific bias on a specified key survey outcome variable,
D; (sl,T), per unit i and strategy sy r relative to a benchmark strategy

In this article, we concentrate on nonresponse and costs, and to keep the
scope manageable, we do not model key survey variables. For this reason, we
do not consider the third set of parameters, the strategy-specific biases, relative
to a benchmark strategy. We leave this to future research.

There are two options in defining and modeling survey design parameters:
the stratum or subgroup level and the individual sample unit level. The first op-
tion implies that the average response and costs in a stratum are modeled (i.e.,
addressing variation within such strata), whereas the second option implies
that models for individual units are created. The two options, essentially, repre-
sent two main approaches in adaptive design, stratum allocation, and case pri-
oritization (e.g., Peytchev, Riley, Rosen, Murphy, and Lindblad 2010;
Wagner, West, Kirgis, Lepkowski, Axinn et al. 2013; Rosen, Murphy,
Peytchev, Holder, Dever et al. 2014; Luiten and Schouten 2013; Sarndal and
Lundquist 2014; and Schouten and Shlomo 2017). In this article, we model in-
dividual design parameters, since it offers more flexibility. Any stratification
may still be applied afterwards, and stratum design parameters may be derived
from the individual propensities and cost functions.

3. MODELING SURVEY DESIGN PARAMETERS

We construct hierarchical Bayes models for response propensities and costs per
sample unit and assign prior distributions to the parameters in these models.
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3.1 Decomposition of Survey Design Parameters

We give basic models for response propensities and costs. We break down
these parameters into their basic components: contact propensities and costs
and participation propensities and costs. Outcomes other than contact, noncon-
tact, and refusal/participation are possible and can be included in a relatively
straightforward way. However, the number of parameters to be estimated
increases with each outcome that we include.

We make two general assumptions: First, we assume that making contact,
obtaining participation, and the costs associated with an individual sample unit are
independent of contact, participation, and the costs of any other individual sample
unit. Thus, we ignore any effect that clustering of sample units may have on
response or costs. Second, we assume that there is a stable workload for data
collection across interviewers (i.e., we ignore any impact of differential sam-
ple sizes).

However, we do allow for associations between contact propensities over
phases, between participation propensities over phases, and between cost func-
tions over phases.

Let x,;(s1,7) be the propensity of a contact in phase, r = 1, 2,..., T, under
strategy s 7 given that the unit did not respond in earlier phases and is eligible
for follow-up. Let 4,;(s1r) be the propensity of a participation in phase ¢ of
subject i under strategy s; 7 given contact.

We assume that propensities do not depend on the future actions after phase
t, that is, for all s, 7 and an alternative §,, 7,

Kl,i(sl,tasIJrl,T) = Kt,i(sl,t’§t+1,T)) = 1) 27 RN T7

)“I,i(sl,tasIJrl,T) = “t,i(sl,t7§t+l.,T>7 = 17 27 ey T7

and we omit the dependence on the future actions in the notation. Furthermore,
81,1 = 81.

The response propensity through phase ¢ of a subject i under strategy s, is
denoted by p,;(s1,). When in subsequent phases all nonresponse receives a
follow-up, then the response propensity through all 7" phases of data collection
equals

pri(sir) = Kui(s1)) Aui(st)

t—1

T
+Z H(l — rpi(s1g) Ani(s1) |sei(s1e) Ani(siy) |- (D)

t=2 =1

When in subsequent phases only noncontacts receive a follow-up, (i.e., refusal
conversion is not allowed), then this response propensity is
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pri(sir) = Kii(s1) Avi(si)

=3 ([0 st ot o) @

In general, the costs per sample depend on the phase, the sample unit, and the
strategy. We define for a sample unit i with auxiliary vector x; in phase ¢, fol-
lowing strategy s1, € S

e Cp,(s1,) as the cost to make a contact attempt (visit or call)
* Cg, (517,) as the cost for the response given contact in phase ¢
o Cyg, (sl_,,) as the cost for a nonresponse given contact in phase ¢

For some actions, these functions may be identical to zero (e.g., a response
or nonresponse to a web survey). In this article, we make the simplification
that cost functions do not depend on the phase and history of actions but only
on the current action, i.e.,

Co,t,i(sl,t) = Coi(s1), CR,t‘i(sl,z) = Cri(s;), Cnryi (Sl,t) = Cnri(s). (3)

The cost parameters C;(s; ) can be written using these components and the
contact and participation propensities. Under (3), when all nonresponse
receives follow-up, we get

CT,i(Sl,T) = Cols1)+ w1(s1) (1 - j-l,i(sl))CNRA,i(Sl)

+  kii(s1) Aui(s1) Cri(si)
-1

4 ZT: H (1= ryi(s1y) A[,i(ﬁ,l)))

=1

T
)
-

(Coils1s) + wri(sre) (1= 20i(s1s)) Curi(s1,)

+ Kt,i(sl,t) ;bz,i(sl,z) CR,i(Sl,z)>>- 4)

For self-administered modes, like web or mail, we are unable to discern a non-
contact from a refusal in most cases. For this reason, for these modes, we
model only one binary indicator for response/nonresponse, and we model only
contact costs and response costs.

3.2 Models for Survey Design Parameter Components

General models for ,;(s1,) and 4,;(s1,) accounting for all possible associa-
tions with the full set of actions sy ,, the auxiliary vector x;, and the phase ¢
would be very complicated and cumbersome and may lead to confusion rather
than clarification. We refer to Durrant, D’ Arrigo, and Steele (2011), Durrant
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and Steele (2013), Durrant, Maslovskaya, and Smith (2015), who describe
multilevel models and hazard rate models for such general settings. We, there-
fore, make a number of simplifications in the model specification.

We model the contact propensities with a probit model (i.e., using a bino-
mial link function). Each sample unit has a contactability represented as a con-
tinuous latent variable Zfi (S1,t), and contact is obtained when this latent
variable is larger than zero,

1, Zfi(slﬁf) >0,

“fi (S 1-1) =

07 Zfl‘(sl,t) < Ov

where ufl (S1,;) is the indicator of contact of subject 7 in phase ¢ following strat-
egy s1, and Z{(s1,) ~ N(u(s1,4), a(s1,)). for some p, ;(s1,), 0,i(s1,) so that

kii(s10) = P(Z5(51,) > 0).
Form < my, letof,,, (s1,) be the regression coefficient in phase ¢ correspond-
ing to the m-th entry in the auxiliary vector x;;, given that s, is applied to a
unit. Obviously, of , (s1,) =0, when k > 1. Let o (s1,) = (25, (s14),- -+
o m (514)) be the coefficients corresponding to x,; in phase 7. The model can
be written as follows:

t—1

ZE(s1a) = Do (s0a)xei + &5,

k=0

where ¢S ~ N(0, 1) is an error term for the uncertainty of contact of the
subject.

Now, the number of coefficients in all contact propensity models is 21{20
(T — k)my for one specific strategy s; 7. The total number of coefficients
depends on the sizes |S;| of the action sets. It is clear that this number can be-
come very large—too large to be feasible in estimation. Hence in practice,
models are usually simplified by lowering the number of coefficients.

We evaluate a model that has all important features for adaptive survey
designs, but that is as simple as possible. First, to be able to include dynamic
adaptive survey designs, we need to include paradata. To keep the model sim-
ple however, we assume there is just one phase, say f;, in which paradata is
collected. Up to phase f;, only the auxiliary variables in xo; can be used to
model the propensities. After phase #;, the auxiliary variables obtained in phase
t; can also be included in the model. Second, we account for dependence of
success in a certain phase on past actions, which can be included by introduc-
ing a fixed or random effect per possible history. We add the history as a ran-
dom effect here. Since we add a dependence on the history of actions, the
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regression coefficients become necessarily dependent on the phase. The model
becomes

o€ (s.)x0; + 65 4+ 8 (s t <t
Z5(s14) = ol a0 ( 1”); - )
OCEO(SZ)XOJ‘ + CZEI (s,)x,l it 8,(’:1» + 5t (Su), t>1,

where ¢ (s1,-1) is a random effect.

The model for the participation propensity can be derived analogously and
is not given. The ocf,(, etcl and 5ZC (Sl,t) are replaced by ocfk, sfi and 5‘: (slﬁ,).

We make the simplification that cost functions do not depend on the phase
and design features in previous phases but only on the current phase and de-
sign features. A model for the costs functions is

Coi(5) = 7,(5)x; + £gi(s), s€S ©)

where g € {0, R, NR}, 7,(s) are regression parameters allowing for interac-
tion between the current action s and the auxiliary vector x;, and the ¢, ;(s) are
error terms that again allow for an interaction with the current action. The error
terms are modeled as independent normal, but other distributions may be con-
sidered depending on the application when costs components are skewed or at-
tain values close to zero:

E.i(s) ~ N(O, aéz,(s)). (7)

3.3 A Bayesian Analysis of Survey Design Parameters

We make the analysis Bayesian by assigning prior distributions to the regres-
sion coefficients and random effects of section 3.2. Our aim is the derivation of
the posterior distributions of the individual response propensities pr; (slyT)
and the individual cost parameters Cr ; (slj) per strategy given observed data.
These propensities and costs are, in general, complex functions of the underly-
ing survey design parameters per phase. We derive expressions for the full
conditional distributions of the regression coefficients and random effects, but
we propose to rely on numerical approximations and Markov Chain Monte
Carlo (MCMC) methods to generate draws from the posterior distributions.

3.3.1 Prior distributions. We assign prior distributions to the model parame-
ters in (5), (6), and (7). We assume that regression slope parameters and disper-
sion parameters are independent over different data collection phases, but they
may be dependent within a phase.

For the regression slope parameters and random effects in contact and par-
ticipation models, we choose normal prior distributions. Despite being based
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on normal distributions themselves, probit models do not allow for conjugate
pairs of prior and posterior distributions for the regression parameters (e.g.,
Albert and Chib 1993). The normal distributions are obvious choices (see
Gelman et al. 2014) but may also be replaced by other distributions. Let
h € {“C”,“P”}. The contact and participation regression slope parameters are
modeled as

o (s) ~ N (1" (s), Z"(s)), (®)

and the contact and participation random effects are modeled as

ot ~N(0, (7)), ©)
where (t)* are specified covariance matrices.

The models for the cost functions are linear. Here, conjugate prior-posterior
pairs are possible. We choose normal distributions for the regression slope
parameters and inverse Gamma for the regression dispersion parameters.
Inverse Gamma distributions are suggested for random effect variance parame-
ters, see Gelman (2000), as they lead to conditionally conjugate prior-posterior
pairs. Let again g € {0, R, NR}.The cost regression slope parameters are
modeled as

7o(8) ~ Nty (s), 2 (5)), (10)
and the cost error term variances are modeled as
a5 (s) ~ T (ag(s), by(s)). (11)

The contact, participation, and costs models are hierarchical Bayes because dif-
ferent individuals share parameters and because random effects spread out
over phases ¢ and actions s;. The normal and inverse Gamma probability distri-
butions for the regression parameters and random effects are then called
hyperpriors. The hyperparameters in (8) to (11) need to be elicited from his-
toric survey data or expert knowledge.

3.3.2 Posterior distributions. The aim is to derive the posterior distributions
of response propensities and cost parameters given the observed data. The ob-
served data consists of the following:

e The response outcome per phase per sample unit: u, ;

e The realized costs per phase per sample unit: o, ;, cg,,; and cyg,,;. Per phase
Crsi OF Cyry; 1s observed only when contact is made. Contact costs are al-
ways observed in every phase. Since we do not model variation in costs for
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contact, response and nonresponse when the same action is applied in multi-
ple phases, we average realized costs over all phases that employed the same
actions.

e The complete auxiliary vector: x;

Data collection strategies may be randomized in order to learn about multi-
ple strategies simultaneously. There is a vast literature on efficient randomiza-
tion in adaptive or dynamic treatment regimes (e.g., Murphy 2003;
Chakraborty and Murphy 2014; and Laber, Lizotte, Qian, Pelham, and
Murphy 2014). In general, designs are called sequential multiple assignment
randomized trial (SMART) (e.g., Lei, Nahum-Shani, Lynch, Oslin, and
Murphy 2012), when the randomization is independent of future outcomes
and, hence, allows for disentangling the outcomes for different strategies. As
mentioned in section 2.1, we assume that randomization is only at the outset;
strategy allocation probabilities may depend on auxiliary information known at
the start of data collection but not on paradata. In addition to the above, we
also observe the series of actions, or simply strategy, that were applied per
sample unit: s/ ;.

In the following, we use p(s1r) and C(s; 7) as shorthand for the vector of
response propensities and cost parameters over all sample units for a particular
strategy. In the same fashion, we use u;, cg, cg, cyg, and x to denote the vectors
of outcomes, realized costs components, and auxiliary variables over sample
units. With {s; 7}, we denote the vector of used strategies for all sample units.
To shorten expressions, we use o, d,7, 6> for the vectors of regression slope
parameters, random effects, and regression dispersion parameters over phases
and actions. For convenience, we use p to express joint and marginal density
functions; we omit the reference to the random variables to which they apply
and ignore differences between discrete and continuous probability distribu-
tions. Finally, in the density functions, we omit the dependence on the
hyperparameters.

The joint posterior distribution of interest is

p(P(Sl.T)a C(SI,T) ‘uta €0, CR; CNR; X, {si[’T})' (12)
This joint density follows from integration over all possible combinations of
regression parameters o, f,J,7, 6> and cannot be written in closed form. A
straightforward solution is to apply a Gibbs sampler to the joint density of the
regression parameters o, f3, 8,7, 67 :

p<a757?a02|uIaCO7CR7CNR1x7 {Sil‘T})' (13)

An approximation to the joint density in (12) comes as an important by-
product of a Gibbs sampler applied to (13); per draw the response propensities
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and cost parameters can be computed by (5) and (6) and inserting them into (1)
or (2) and (4).

A Gibbs sampler for (13) involves repeated draws from the conditional den-
sities of each regression parameter, given the observed data and the other re-
gression parameters, the so-called full conditionals. Appendix A contains
expressions for the full conditionals per regression parameter. There is a range
of options for sampling from these conditional distributions (see for example
Albert and Chib 1993 and Gelman et al. 2014). We choose the approach pro-
posed by Albert and Chib (1993), where we include draws of the latent varia-
bles for contact and participation in the Gibbs sampler as a form of data
augmentation. In order to carry out the data augmentation, we programmed the
Gibbs sampler in R and did not make use of standard libraries in R (e.g., mcmc
or gibbs.met) or SAS (e.g., PROC MCMC). The code is available upon
request.

3.4 A Bayesian Analysis of Functions of Survey Design Parameters

For monitoring and optimization of data collection, the focus is on functions of
the design parameters that correspond to overall quality or cost objectives. We
consider three such functions here: the response rate, the total costs, and the co-
efficient of variation of the response propensities; other functions can often be
analyzed in an analogous way. See Nishimura, Wagner, and Elliott (2016) for
a discussion of indicators.

Let d; represent the design or inclusion weight for sample unit i,
i=1, 2,...,n. The weighted response rate, RR, for strategy s; 7 can be writ-
ten as

1 n
RR(s17) =5— Y _dipr(s17), (14)
Z i i=1

i=1

the total costs, or required budget, B, associated with slT are

B(sir) = ZCT.i(Sl,T)a (15)
P

and the coefficient of variation of the response rate, CV, is

L Zdi(pT,i(sl,T) - RR(slf))z
dii=1
CV(X,SLT) == RR(s1 1) ) (16)

where > d; = N for many customary sampling designs.
i=1
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For the CV (Schouten, Cobben, and Bethlehem 2009; De Heij, Schouten,
and Shlomo 2015), we explicitly denote the dependence on the covariate vec-
tor X; for any other choice of auxiliary variables, it will generally attain a dif-
ferent value.

The prior and posterior distributions for these three functions are determined
by the prior and posterior distributions of the components of the response pro-
pensities and cost functions. The posteriors have even more complex forms
than the posteriors for individual response propensities and cost parameters.
However, (14) through (16) can again be approximated as a by-product of the
Gibbs sampler in section 3.3.2.

3.5 Model and Prior Specification

We have specified a sufficiently general Bayesian model for nonresponse and
costs over a sequence of data collection phases. The model choices consist of
the types of nonresponse, the covariates included in the various nonresponse
and cost models, the potential inclusion of interactions between covariates in
these models, the link function to transform the latent propensity to a binary
nonresponse outcome, the normality of the cost error terms, the random effects
to introduce dependency on historic actions, and, the prior specifications of the
various regression parameters. The efficacy of the analysis depends heavily on
these specifications, so that exploratory model checks and data analysis are im-
perative (Gelman et al. 2014, Chapters 6 and 7). For example, some costs com-
ponents may be skewed so that a log transformation is needed to justify a
normal error model. Some costs components may also attain values close to
zero so that a distribution with support [0, o) may need to be favored over a
normal distribution.

It goes beyond the scope of this article to discuss nonresponse and cost
model specification in full detail. We refer to Groves (1989), Bethlehem,
Cobben, and Schouten (2011), and Kreuter (2013). However, we recommend
keeping models parsimonious and only including elements that are, or may be,
varied in (adaptive) survey design. More specifically, include cost components
that vary between design choices and consider nonresponse type, covariate,
and design feature combinations that are known to be effective and matter to
the key survey variables.

The Bayesian modelling has two elements: the hierarchy/levels and the
prior distributions. Hierarchy introduces dependence between parameters
such as the random effects in our models, because parameters are known to
be associated and for parsimony. We recommend following empirical results
in the literature and performing model checking when historic survey data
are available. The choice of prior distributions and their associated hyper-
parameters can be influential. We investigate the sensitivity of the specifica-
tion of the prior distributions in section 4. Sensitivity analyses, such as in
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this article, are imperative to find the right level of prior variance when
experts are consulted and to select the right amount of historic survey data
when parameters change over time.

4. A SIMULATION STUDY TO INVESTIGATE THE
UTILITY AND SENSITIVITY OF BAYESIAN ANALYSIS

In the simulation study, we investigate the impact of prior distribution specifi-
cation and of survey sample size. Specifically, we look at the added value of
the prior information and the sensitivity to prior specification. More generally,
we aim to demonstrate the use of the Bayesian approach and the importance of
a sensitivity analysis. First, we present the specifics of the simulation study and
discuss how we attempt to prove the efficacy of a Bayesian analysis. Next, we
show results of the simulation study and discuss the conditions under which
the analysis is useful.

4.1 Design of the Simulation Study

To evaluate the utility and sensitivity of a Bayesian analysis, we compare pos-
terior distributions of response rates, coefficients of variation of response pro-
pensities, and total costs starting from different prior distributions for the
survey design parameters, more specifically, for the regression slope and
dispersion parameters in contact, participation, and cost models per data collec-
tion phase. The prior distributions are compared against fully non-informative
priors, which have (arbitrary) large variances and expectations that are the
same for all population subgroups. These priors conform to lack of knowledge
at the start of data collection which we view as a benchmark choice. The
Bayesian analysis still allows for an easy display of uncertainty during and af-
ter data collection. We make two comparisons that both start from “true” pri-
ors. The true priors have expectations that exactly match the simulation model
and have variances that correspond to the standard errors for a historic dataset
of sample size 10,000 (i.e., as if we have already observed a fairly large and
unbiased realization of the survey). In the first comparison, we gradually mis-
specify expectations of the true priors in order to mimic bias due to time
change or change of survey design. However, the variances of the priors re-
main the same. In the second comparison, we gradually increase variances but
keep expectations constant in order to mimic imprecision. The two compari-
sons allow us to see how much gain comes from the prior knowledge. Note
that in our implementation of adaptive survey design, the information in the
prior determines only the optimization of the choice of actions in between
waves but not during data collection, even if the design is dynamic.
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We quantify this gain by the square root of the posterior mean of (® — ®0)2,
which we call the root mean square error (RMSE) of the posterior distribution rel-
ative to the simulation model values. Let p,(®|u, ¢y, cr, Cnr, X, {s’lT}) be a pos-
terior for a data collection quality or cost indicator ® of interest (e.g., the
response rate, CV, or total costs), using prior 7. The RMSE for this indicator and
prior is then defined as,

RMSE(O; ) = \/ (E,,(®) — ©p)* + var,_(O), (18)

where ©y is the simulation model value.

We base our simulation study on the 2015 Dutch Health Survey (HS)
(CBS 2018). The HS has a sequential mixed-mode survey design with the
web, followed by face-to-face interviewing, i.e., non-respondents to a web
survey invitation are re-allocated to interviewers. We consider three data
collection phases: web, short face-to-face, and extended face-to-face. The
extended face-to-face corresponds to an additional round of face-to-face
visits for those sample units that have not been contacted or that are soft
refusals after three face-to-face visits. Two auxiliary variables, gender and
age, are linked from administrative data, and one variable, web break-off, is
added from phase one paradata. Gender and age are crossed to form six
strata, {0-29 years, 30-59 years, 60 years and older} x {female, male}.
Web break-off is a binary indicator for a broken-off web response; it is not
crossed with the gender-age variable but added as a main effect. We refer
to the variables as “GenderAge” and “BreakOff.” From 2015 HS data, con-
tact propensities, participation propensities, and costs per sample unit are
derived for the three phases and used to simulate analysis data sets of
sample size 1,250, 2,500, 5,000, and 10,000. The simulation
probabilities and costs are given in Appendix C. To model contact and par-
ticipation, we use a probit regression with GenderAge in phase one and
GenderAge + BreakOff in phases two and three. For phase one (online data
collection), we set participation propensities equal to response and partici-
pation costs are set to zero. We do this because online surveys costs are
only associated with the contact and not with the interview. For phases two
and three, we do distinguish contact and participation propensities. To
model costs, we use a linear regression with GenderAge in all phases.
Table 1 gives simulation response rates, coefficients of variation, and total
costs cumulatively for all phases based on the true simulation model values
in the top row of each section.

We chose prior distributions as specified in section 3.3.1 and applied the
Gibbs sampler of section 3.3.2. We refer to Appendix B for details about prior
elicitation.

Misspecification was introduced by shifting contact and participation propen-
sities for each subgroup in the same direction. For the online phase one, they
were increased by 2 percent, 5 percent, and 10 percent. For the face-to-face
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Table 1. Expected Response Rates (RR), Coefficients of Variation (CV) and Total
Costs (B) Cumulatively Based on the 2015 HS Simulation Model, and Based on
the Three Misspecified Priors (Missp light; Missp medium; Missp strong).

Data Web Face-to-face short Face-to-face extended
RR True 30.2% 57.6% 60.5%
Missp light 32.2% 57.2% 59.7%
Missp medium 35.2% 56.8% 58.8%
Missp strong 40.2% 56.8% 58.2%
Ccv True 0.277 0.069 0.102
Missp light 0.260 0.061 0.094
Missp medium 0.238 0.049 0.082
Missp strong 0.208 0.036 0.063
B True 3.0 15.2 194
Missp light 3.0 14.5 19.5
Missp medium 3.0 13.6 19.8
Missp strong 3.0 12.1 20.3

phases, they were decreased by 2 percent, 5 percent, and 10 percent for the
remaining nonrespondents. We denote the 2 percent as “Missp light,” the 5
percent as “Missp medium,” and the 10 percent as “Missp strong.” Hence,
we mimic an overestimation of online response and an underestimation of
subsequent face-to-face response, which essentially leads to an underestima-
tion of required budget. Table 1 also contains the expected response rates,
coefficients of variation, and costs based on the three sets of misspecified
priors. The convergence properties of the Gibbs Sampler are presented in
Appendix D.

4.2 Simulation Results

We evaluate the utility of the Bayesian analysis by assuming the effect of
increasing the variances of prior distributions and shifting their
expectations.

4.2.1 Variance of the prior distributions. In the first evaluation, we focus on
the variance term of the RMSE of the posterior distributions and vary the sam-
ple size of the observed data. The true prior is compared with the relatively
non-informative prior.

Table 2 shows the RMSE for the non-informative and the true priors for
four sample sizes: 1,250, 2,500, 5,000, and 10,000 units. Three variance levels
are used to misspecify the true prior according to its scale as follows: the vari-
ance is obtained corresponding to a historic data set of a modest size of 1,250
units leading to a large prior variance (denoted “V large”); the variance is
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Table 2. RMSE*1000 for Fully Non-informative and True Priors for Response
Rates (RR), Coefficients of Variation (CV) and Costs (B) Cumulatively after Each
Phase and for a Dataset of Sample Sizes 1,250, 2,500, 5,000 and 10,000. The true
priors have a variance corresponding to historic sample units of size 1,250 (V
large), 2,500 (V mod) and 10,000 (V small). F2F and F2FE are short for face-to-
face in phase two and extended face-to-face in phase three.

Size Prior RR cv B

Web F2F F2FE Web F2F F2FE Web F2F F2FE

1,250 Non-informative 14 19 15 46 45 37 10 316 374
True V large 10 12 10 21 23 18 10 218 273
True V mod 8 9 8 14 15 12 10 178 223
True V small 7 8 8 10 116 142

N
W
)]

2,500 Non-informative 10 10 10 12 55 41 9 239 298
True V large 8 8 8 10 35 25 9 204 247
True V mod 7 7 7 8 25 17 9 181 217
True V small 4 4 4 6 9 7 9 128 148
5,000 Non-informative 6 7 7 9 23 16 9 156 183
True V large 6 6 6 8 18 13 8 143 166
True V mod 5 6 6 7 15 10 8 134 157
True V small 4 4 4 5 7 6 9 105 121
1,0000 Non-informative 5 5 5 7 8 9 10 120 135
True V large 4 5 5 6 8 9 9 114 130
True V mod 4 5 5 6 8 10 9 111 125
True V small 3 4 4 5 8 9 10 10 108

designed to correspond to a historic data set of a moderate size of 2,500 units
leading to a moderate prior variance (denoted “V mod”); the variance is
obtained corresponding to a historic data set of a large size of 10,000 units
leading to a small prior variance (denoted “V small”).

We note that the RMSE depends on the scale of the population parameters
of interest; RMSE values for costs are, therefore, larger.

The RMSE values under the true priors are always lower than for the non-
informative prior, as expected. The gap gets larger when the sample size
decreases or the true prior variance decreases. However, for a sample size of
10,000, the added value of prior information is already quite small. For even
larger sample sizes, it will not make much difference whether the prior knowl-
edge is added or not.

The most advantageous setting is where both prior variance and the ob-
served data sample size are smallest. The biggest gap in RMSE is indeed found
for a prior with variance “V small” and sample size 1,250. The RMSE values
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of this combination are comparable to that of the non-informative prior with
sample size 10,000.

In the analysis, we consider the population as a whole. However, when
methods are applied to subpopulations, sample sizes are smaller, and the prior
distributions still have added value.

The results of the first evaluation suggest that a Bayesian analysis is advan-
tageous for small to modest size samples of (sub)populations and where his-
toric survey data and expert knowledge lower the variances of the posterior
distributions.

4.2.2 Misspecification of the prior distributions. In the second evaluation,
we gradually misspecify the prior distributions for the contact and participation
regression slope parameters and compare the RMSE to a fully non-informative
prior. We view the non-informative prior again as the analysis benchmark.

Table 3 contains the RMSE values for non-informative and misspecified pri-
ors estimated using the Gibb sampler. Again, we choose three variance levels,
corresponding to a historic dataset of 1,250 (“V large”), 2,500 units (“V
mod”), and 10,000 units (“V small”’). Furthermore, we evaluate four sample
sizes: 1,250, 2,500, 5,000, and 10,000. Recall from table 1 that, for phase one,
the misspecification leads to a growing overestimation of the response rate and
a growing underestimation of the coefficient of variation, whereas costs are
fixed. The cumulative response rates after phases two and three are affected
only a little, but the coefficient of variation is underestimated. The cumulative
costs after phase two are underestimated, but after phase three they are slightly
overestimated.

The main observation from the RMSE values in table 3 is that a misspecified
prior can be worse than a non-informative prior, but the misspecified prior will
outperform a non-informative prior when the misspecification is modest or the
variance of the prior is relatively large. Furthermore, in close analogy to the
results in the previous subsection, it holds that the larger the sample of the ob-
served data, the smaller the misspecification must be to outperform the non-
informative prior.

The 2 percent shift in propensities under misspecified light is small enough
for the CV to get RMSE values that are similar or smaller than those for the
non-informative prior. This holds also to some extent for the 5 percent and 10
percent shifts under misspecified moderate and large, when the variance of the
prior is large.

For the response rate and costs, RMSE values are almost always larger for
the misspecified priors, unless the variance of the prior is relatively large.

As expected, decreasing the sample size of the observed data leads to higher
RMSE values for all priors. When sample sizes are lowered, in general, the
misspecified priors will ultimately perform better than the non-informative
prior according to the RMSE shown in (18), since the infinite variance of the
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non-informative prior will dominate over the misspecification. The (pathologi-
cal) exception is where the expectation of the non-informative prior happens to
be close to the true value (e.g., true contact or participation propensities do not
vary between subpopulations and are also close to 50 percent).

The results of this second evaluation suggest turning points for the
utility of a Bayesian analysis that depend on the size of the misspecifica-
tion, the size of the sample, and the variance of the prior distributions. This
is a complex function that requires further study. However, the
results under the current simulation model show that misspecification may
be very influential and may quickly reduce the added value of a Bayesian
analysis.

To give a further impression, figure 1 shows posterior distributions pro-
duced by the Gibbs sampler for a selection of the regression slope parame-
ters over the three phases. Next to the posterior densities, the densities of
the selected priors are also shown, as well as the density of the true prior
assuming a historic dataset of 10,000 sample units. The posterior densities
clearly have different means and variances, depending on the prior
specification and the data sample size. However, in most cases, the poste-
rior densities overlap with the true prior and often have very similar
support.

5. DISCUSSION

We introduced a Bayesian model for survey design parameters related to re-
sponse and costs. The model is general in that it describes multiple data collec-
tion phases, includes both auxiliary variables that are available before data
collection starts and auxiliary variables that become available during data col-
lection (paradata), acknowledges multiple nonresponse outcomes, accounts for
dependence on previous actions, and enables the inclusion of randomization
over different data collection strategies. Many surveys conducted by statistical
institutes can fit into this framework. Furthermore, we constructed an analysis
strategy based on a Gibbs sampler in which all model parameters are repeat-
edly drawn. The Gibbs sampler provides estimates for the posterior distribu-
tions of the contact and participation propensities and the costs per sample
unit. From the Gibbs sampler, the posterior distributions for overarching qual-
ity indicators, such as the response rate or coefficient of variation of the re-
sponse propensities, and cost indicators can easily be derived as an important
by-product. Under this particular model, the computational time of the Gibbs
sampler was manageable and sufficiently short to run overnight for a range of
scenarios. We are thus able to meet the first three objectives of the article as
stated in the introduction to set up a Bayesian analysis for survey data collec-
tion monitoring and analysis.
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Figure 1. Empirical Posterior Densities for the Slope Parameters for the Gibbs
Sampler Runs of the Misspecified and Non-informative Priors for Different

Phases and Different Data Sets.
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The fourth and most important objective is to show the added value and sen-
sitivity of a Bayesian analysis. In the evaluation, we viewed a fully non-
informative prior as the benchmark in which no historic survey data or ex-
pert knowledge is incorporated. The evaluation is based on a simulation
study using realistic contact propensities and costs and participation pro-
pensities and costs from a multimode survey. The evaluation shows that the
Bayesian analysis is sensitive to misspecification in the propensities and
costs; shifts in propensities and costs should be relatively modest to outper-
form an analysis with a non-informative prior. The corresponding turning
point does depend on the variance of the informative prior and conse-
quently hints at some form of moderation of historic/expert knowledge.
The evaluation also shows that without misspecification the Bayesian anal-
ysis is to be favored to a “non-Bayesian” analysis, especially for smaller
sample sizes of observed data. More generally, the evaluation provides an
appreciation for the Bayesian approach and the need to carry out a sensitiv-
ity analysis.

What are the implications of these findings for prior elicitation? In general,
it warrants sensitivity analyses. When priors are based on historic survey
data, then careful consideration is needed of the timeliness and the amount of
historic survey data that are available. Such a sensitivity may be partially
overcome by moderating the strength of historic survey data over time (i.e.,
the more timely the data and knowledge, the more power is attached). Such
moderation can be done using so-called power priors (Ibrahim and Chen
2000; Ibrahim, Chen, Gwon, and Chen 2015). However, moderation may
also be achieved by adding a hierarchical level to the Bayesian models repre-
senting change in time, which comes at the cost of extra model parameters.
In retrospective Bayesian analyses, we are currently investigating the use of
moderation in time. When priors are based on expert knowledge, then it is to
be recommended to vary the prior variance level (i.e., to explore the weight
that is given to the experts).

We touched only briefly on the elicitation of prior distributions from expert
knowledge. In models with many auxiliary variables, such elicitation may be
difficult to conduct. Furthermore, data collection experts will generally not be
able to provide values for slope and dispersion parameters in regression models
but only for propensities and costs at the subgroup level. An effective elicita-
tion of expert knowledge, therefore, will require some interpolation or propor-
tional fitting of detailed models to marginal distributions that are given by
experts. This tradeoff holds, especially for settings where priors are elicited
from different but similar surveys. In order to develop effective prior elicitation
procedures, we currently apply the Bayesian analysis framework to a broad set
of case studies.

We see three conceptual limitations to our study that deserve future re-
search and extension. First, although our model for monitoring of response
and costs has general features, it does not fit all possible data collection
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designs and analyses, and particular designs and analyses may require adap-
tations of the model. In addition, we assumed normal distributions based on
our dataset, although it is straightforward to specify the models according to
the distributions found in the data. We believe that such changes are rela-
tively modest given the exposition in this article. Second, we have not yet
considered the (key) survey variables. Such variables may be modeled and
monitored simultaneously, and design decisions may be based on a mix of
overall quality and cost indicators and key survey estimates. Such an exten-
sion is fairly easy but does introduce new modeling choices because values
of survey variables are unknown for nonrespondents. For this reason, we
leave this extension to future research. Third, and strongly related to the pre-
vious point, we focused on nonresponse and have not yet considered
strategy-dependent measurement biases. Such an extension is clearly worth-
while for multimode surveys.

Ultimately, the Bayesian analysis framework should support adaptive sur-
vey design decisions. Such an application means that historic survey data and
expert knowledge should be comprised of multiple, possibly randomized, strat-
egies and that observed data may be used to learn and update strategies for
which information is weak or missing.

APPENDIX A: THE GIBBS SAMPLER AND
CORRESPONDING FULL CONDITIONALS

The Gibbs sampler has the following steps:

(1) Set the random effects for the contact and participation equations to zero,
5ZC =0 and 5f = 0, and fit regression models to all contact, participation,
and cost equations and use the resulting estimated parameter values as
starting values for the regression parameters ¢, o, 7.

(2) For each unit (i) in each phase (t), sample the latent variables ZZCI and Zr‘;
from p(Z5|o©, &, ugi, xi, {s 7}) and p( Zf|a®, &, i, xi, {5 1 }).

(3) For each phase, sample the contact slope parameters of from
p(“ﬂztc’(stcvxia{sllj})~ )

(4) Sample the random effects 5tc from p(étc ’ZZC Lo x;, {shr})-

(5) For each phase, sample the participation slope parameters of from
p(“ﬂztpv 5f>xia {sllﬁr})- ‘

(6) Sample the random effects &] from p (5 |ZF, o x;, {si7})-

(7) For the three cost components, sample the variance parameters ¢ from
p(az‘% €05 CRy CNR, X, {Sll,T})-

(8) For the three cost components, sample the slope parameters y from
p(?‘aza €0, CR, CNR, X, {Sll’T})~

(9) Return to step 1.
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In the remainder of this appendix, we provide expressions for the full con-
ditionals of the various regression model parameters for response and costs
that are sampled in the Gibbs sampler.

A.1 Full conditionals for regression parameters in response propensity
models.

Contact propensity and participation propensity models have the following
form:

Zi(s14) = ou(se)xei + i + 0 (s1-1),

where Z, (s ) is a latent variable, and x,; is a column vector of baseline and
paradata covariates of length m. The regression parameters are the slope
parameters in the vector o, and the random effect J,. Apart from these, also
the latent variable Z, ; is updated in the Gibbs sampler, although it is not of di-
rect interest. In a survey, we only observe whether Z, ; (sl‘,) > 0 occurs or not.
In the main text, the superscripts “C” and “P” are added to distinguish contact
and participation models, but for the derivation of full conditionals, this dis-
tinction is not important; it is fully analogous.

In the following, the vector of random effects in phase ¢ for all possible histo-
ries of actions, 51,1, is denoted by J,. Obviously, each survey sample unit re-
ceived just one treatment series of actions. We add the subscript i to indicate the
strategy that was assigned to unit i (i.e., s; 1, is the series of actions assigned to
unit i in phases one to 7). We let J,; be the random effect that applies to unit i.

A.1.1 Slope parameters in contact model. For o,(s), the prior distribution is
normal o, (s) ~ N(u(s), Z(s)). The full conditional distribution is also normal,
and we denote it as,

(0 (8) |t 245 015 %, 814) ~ N(ppyrr (8), Zruee(s))- (A1)

To derive the expectation and covariance of the full conditional distribution for

action s, we need to restrict to sample units that reached phase ¢ and for which

siy =s. Let this number be n,(s). For convenience, we label the units

i=1, 2,...,m(s). Let zj;=2z;—0dy and let z7 =(z |,... ’Z;n,(s))T'

Furthermore, let X be the n,(s) x m covariate matrix with sample units as rows.
It follows that the parameters in (A1) can be written as,

Srunn(s) = () +x7%) (A2)

e (s) = Zeona () ((2(9)” uls) + X7 ) (A3)
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A.1.2 Random effects. We will now derive the posterior distribution of
o, (Sl,t) for all possible strategies up to phase ¢, s;,. We assume that the prior
distribution is the same for all strategies, J;(s1,,) ~ N (0, 72). Furthermore, we
assume that the random effects are independent. Hence, the full conditional dis-
tribution depends only on the outcomes of all sample units that reached phase
¢ and that have exactly the strategy sy, i.e., s;, = s;1,. Let there be n,(s,)
such units, labeled i = 1, 2,...,n,(s1,). The full conditional distribution,

(51 (Sl,z) |O(1(S1)7 Ury 2%, 81.0) ~ Ny (s), Zroee(s))- (Ad)

Let Z(s1,) = z1.i(s1.4) — 0(s,)x,;, then it follows that the parameters in (A4)
can be written as,

Zpyrc(s) = ((73)71 Jrnr(Sl,z))il, (AS)

nr(f .t) ~
prvne(s) = Zrone(s) D 0" Zilse). (A6)

A.1.3 Latent response propensity. The last variables to update for the propen-
sity models are the latent variables Z, ; for the sample units that reached phase
t. It holds that (Z|oy, &;,x,51,) ~ N(ot(si0)x; + 0,4, 1) distributed. When
u; =1, then Z; >0 and (Z|us,0,0,x,5,) is the normal distribution
restricted to the positive real axis. For u,; = 0, (Z,,,- |u,, o, O, X, 81,) is the nor-
mal distribution restricted to the non-positive real axis.

There are no explicit expressions for this distribution. When the outcome is
up; = 1, draws from N(o, (s;,)x; + 0y, 1) are repeated until a draw is positive.
For u,; = 0, draws are repeated until a non-negative value is found.

A.2. Full conditionals for regression parameters in costs models.

We will derive the parameters of the posterior distributions of the parameters
in the costs models. There are three such models: one for contact, one for par-
ticipation, and one for refusal. The derivation of full conditionals is fully anal-
ogous so that we omit reference to the specific type of costs. The model has
the form,

Ci(s) = y(s)x; + &f(s), (A7)
&(s) ~ N(0,0°(s)), (A8)

where x; is the column vector of baseline covariates of length m and &(s) is
action-dependent error term. In this article, the costs depend on the action that
is applied but not on the phase in which it is applied. For actions that are ap-
plied in multiple phases, we therefore consider the average costs over all
phases. The parameters that need to be updated and that require full
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conditional distributions are the slope parameters y(s) and the dispersion
parameters o> (s).

In updating regression parameters for a specific action s, we need to restrict
ourselves to sample units that were treated by action s at least once during the
survey. Let there be n(s) such units. The observed c¢; then is the average cost
for the sample unit over all phases in which the action has been applied. We
let ¢ be the column vector of length n(s) containing the values of the sample
units.

A.2.1 Slope parameters. The prior distribution for the slope parameters is
multivariate normal, y(s) ~ N (u(s), £(s)). The full conditional distribution
is also normal, and we denote it as,

(7(s)le, x, %) ~ N(upyrr(s), Zruee(s)). (A9)

Let X be the n(s) x m covariate matrix with sample units as rows.
It follows for the parameters in (A9) that

1
a2(s)

trurs(s) = Zrure(s) (a%(s)

Zrure(s) = ( X'X + (22(s>)‘1)1, (A10)

XTeg + (Zz(s))l,u(s)) (A11)

A.2.2 Variance of error term. The prior distribution is inverse Gamma
a?(s) ~ T"(a(s), b(s)). The full conditional is also inverse Gamma:

(0'2(5)|y, ¢, x) ~ T Yapyrr(s), brocc(s)). (A12)

Given the notation introduced earlier, we have for the parameters in (A12),

aFULL(s) = CI(S) =+ @ (A13)

bruna(s) = b(s) + 3 (e(s) = Xy(s)(els) = X3(s)). (Al4)

APPENDIX B: ELICITATION OF HYPERPARAMETERS
IN THE HEALTH SURVEY SIMULATION STUDY.

In the simulation study, we have probit regression models for contact and par-
ticipation and linear regression models for costs. In phase one, there is only a
contact model, whereas in phases two and three, there are also models for par-
ticipation. Hence in total, there are ten models. For an informative prior,
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hyperparameters are needed for all regression coefficients in all models. We
elicited informative priors by assuming that a historic Health survey data set
of sample size n = 10,000 was available. Per type of regression coefficient,
we explain how we proceeded in constructing priors.

Regression slope parameters in cost models are as follows: The slope param-
eters y(s) and yg(s) are normally distributed, and a saturated model with vari-
able AgeGender is applied. In a saturated linear model, each parameter is
estimated using only the sample units in the corresponding population stratum.
Consider the parameter y. for a particular stratum and a particular strategy.
Based on historic data, the parameter is estimated as the average of the ob-
served individual costs cc; for sample units in the stratum that received the
specified strategy. The average stratum costs are approximately normally dis-
tributed with expectation equal to the true - and variance equal to aj—f Given
that we simulate data ourselves in this article, we can derive hyperparameters
directly from the simulation model values.

Regression dispersion parameters in cost models are as follows: The disper-
sion parameters 0% (s) and g%(s) have an inverse Gamma distribution and are
constant over population strata. Consider ¢ for a particular strategy. Given his-
toric data, it is estimated as the sample variance over the observed individual
costs c¢; for sample units that received the specified strategy. The sample vari-
ance divided over the true variance o7 and multiplied with n — 1 is approxi-
mately 7>, distributed. The expectation and variance of a y2_, distribution are,
respectively, n — 1 and 2(n — 1). This means that the sample variance has an
expectation and variance equal to, respectively, 6% and 2¢¢./(n — 1). An inverse
Gamma distribution, '~ (a, ), has expectation and variance equal to, respec-
tively, #/(o — 1) and f*/((o — 1)*(o — 2)). Hence, « and 8 can be derived as
x=2+1(n—1)/c% and p=0o%+4%(n—1). Again, under the simulation
model, these hyperparameters can be derived directly from the simulation values.

Regression slope parameters in contact/participation models are as fol-
lows: The elicitation of hyperparameters is analogous for contact and partici-
pation models. Because of the probit link function, there is no explicit
expression for estimators for the regression slope parameters. Given that we
include only main effects for baseline covariates, xy, and paradata, xi, it is
therefore not straightforward how to choose hyperparameters based on his-
toric data in an analytic way. For this reason, we simulated 2,000 datasets of
size 10,000 and fitted probit regression models to each dataset. Over the
2,000 fitted vectors of parameters, means and variances were computed for
single slope parameters and covariances for pairs of slope parameters. These
means, variances and covariances were used as hyperparameters. Somewhat
surprisingly, absolute covariances were sometimes quite large, especially
between the slope parameters of the two vectors xo and x;. Obviously, this
approach can only be applied in a simulation study; for a real historic data-
set, another approach is needed.
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APPENDIX C: SIMULATION STUDY PROPENSITIES
AND COSTS.

Tables C.1 and C.2 present the contact propensities, participation propensities
and contact and participation costs, respectively, per phase and

AgeGender x Break-off subgroup for the simulation study in Section 4.

Table C.1: Contact and Participation Propensities per Phase and Subgroup.

Phase 1 Phase 2 Phase 3

Response Contact Participation Contact Participation

15-24, F, no break-off 0.30 0.70 0.58 0.50 0.30
15-24, F, break-off 0 0.70 0.87 0.50 0.59
15-24, M, no break-off 0.28 0.70 0.64 0.50 0.36
15-24, M, break-off 0 0.70 0.93 0.50 0.65
25-44, F, no break-off 0.33 0.74 0.49 0.62 0.22
25-44, F, break-off 0 0.74 0.94 0.62 0.66
25-44, M, no break-off 0.31 0.74 0.44 0.62 0.16
25-44, M, break-off 0 0.74 0.94 0.62 0.66
45-65, F, no break-off 0.35 0.80 0.38 0.90 0.10
45-65, F, break-off 0 0.80 0.95 0.90 0.72
45-65, M, no break-off 0.40 0.80 0.36 0.90 0.08
45-65, M, break-off 0 0.80 0.95 0.90 0.69

Table C.2: Contact and Participation Costs per Unit per Phase and Subgroup.
Standard Deviations Are Given within Brackets.

Phase 1 Phase 2 Phase 3

Response Contact Participation Contact Participation

15-24, F, no break-off 3 (1) 11(1) 16 (1) 14 (1) 16 (1)
15-24, F, break-off 3(1) 11(1) 12 (1) 14 (1) 12 (1)
15-24, M, no break-off 3 (1) 12 (1) 14 (1) 15 (1) 14 (1)
15-24, M, break-off 3(1) 12(1) 10 (1) 15 (1) 10 (1)
25-44,F, no break-off 3 (1) 10 (1) 21 (1) 13 (1) 21 (1)
25-44, F, break-off 3(1) 10 (1) 19 (1) 13 (1) 19(1)
25-44, M, no break-off 3 (1) 10 (1) 20 (1) 13 (1) 20 (1)
25-44, M, break-off 3(1) 10 (1) 18 (1) 13 (1) 26 (1)
45-65, F, no break-off 3 (1) 8 (1) 26 (1) 11 (1) 18 (1)
45-65, F, break-off 3(1) 8 (1) 21 (1) 11(1) 21 (1)
45-65, M, no break-off 3 (1) 9(1) 24 (1) 12 (1) 24 (1)

45-65, M, break-off 3(1) 9(1) 20 (1) 12(1) 20 (1)

610z Aenuga4 |z uo Jasn Alsianiun yosaan Aq €81250S/ L S1/17/9/A0elisqe-ajo1e/wessl/uod dno-ojwapedse//:sdijy woly papeojumoq



A Bayesian Analysis of Design Parameters in Survey Data Collection 461

APPENDIX D: CONVERGENCE PROPERTIES OF THE
GIBBS SAMPLER.

The Gibbs sampler produces a draw of a Markov chain that has the posterior
distribution of interest as its stationary distribution. The Markov chain is initi-
ated from one or more starting values. Under certain conditions, the Markov
chain takes time to converge to its stationary distribution. For this reason, usu-
ally a burn-in period is discarded where the Markov chain has not yet reached
its stationary distribution. After the burn-in period, the Markov chain moves
through its parameter space at a certain “speed.” This speed is termed the mix-
ing property of the chain and determines the required length of the Markov
chain (i.e., the number of iterations in the Gibbs sampler). Both the burn-
period and the mixing of the Gibbs sampler cannot be determined with cer-
tainty, since the stationary distribution is unknown. However, various diagnos-
tics have been developed to make an empirical assessment. We checked the
burn-in period and convergence of the Gibbs sampler using the Raftery Lewis
convergence diagnostic (Raftery and Lewis 1992) as implemented in the R
package CODA. We required that the 2.5 percent-quantile of the posterior dis-
tribution could be approximated with a specified precision. We apply the
Raftery and Lewis convergence diagnostic on the first 5,000 iterations to deter-
mine the number of iterations that are needed for convergence.

Somewhat surprisingly, we found for all scenarios that the burn-in pe-
riod is very short and below 100 iterations. Nonetheless, we always discard
the first 5,000 iterations. We then carried out the second part of iterations.
The starting values here are the parameters obtained after 5,000 iterations
in the first run. The number of iterations in the second run is derived from
the Raftery and Lewis convergence diagnostic. Convergence was usually
reached within 4,500 iterations, however we had some cases where up to
10,000 iterations were required. Computation times in R were roughly
5,000 iterations in twenty minutes. Figures D1, D2, and D3 show Gibbs
sampler runs for regression slope parameters in phase one and three for
contact model and phase two for participation model under the non-
informative, true, and misspecified strong prior. The plots Gibbs iteration
(I) are the first 1,000 runs from the originally discarded 5,000 runs under
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Figure D1. Gibbs Sampler Draws for the Phase One Contact Slope Parameters
under a Non-informative Prior.
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Figure D4. Gibbs Sampler Draws for the Phase Two Contact Slope Parameters

under the Non-informative Prior.

the burn-in, and in the plots Gibbs iteration (II), the first 1,000 runs from
the second set of runs to convergence. Figure D4 shows the regression
parameters in phase two for contact model for the second run to conver-
gence. Here, 10,000 iterations were required by the Raftery and Lewis con-

vergence diagnostic.
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