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Local Image Structure and Procrustes Metrics∗

Jan Koenderink† and Andrea van Doorn‡

Abstract. The differential geometry of images (one of numerous applications but certainly an important one) in-
volves singly isotropic space, rather than Euclidean space, the reason being that image intensity is not
commensurate with the dimensions of the image plane. The Procrustes root mean square nonuni-
formity measure in such spaces immediately leads to a principled definition of curvedness, shape
index, and orientation of local second-order structure. However, it is categorically different from the
conventional curvature-based measures. One obtains a natural Euclidean metric of shape space that
is readily extended to the cubic and quartic orders of approximation. In this setting, it is simple to
derive the marginal probability densities for curvedness, shape index, and orientation for isotropic
and anisotropic Gaussian random fields. For slight anisotropies, the marginals are much closer to
those empirically found in natural images than the conventional formalisms suggest. The main ar-
ticulation fits the edge and ridge structure imposed by the linear and quadric orders. The cubic
and quartic structures contribute in a natural manner to these edge and ridge structures, whereas
their higher-order saddle structures contribute little to the variance and can generally be ignored in
applications.
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1. Introduction. In image processing, local image structure is mainly of interest in the
design and analysis of various feature detectors, the generic instance perhaps being “edge
finders” [51]. In vision science, local image structure is of major interest because most of
the processing in the front-end visual system is of a local nature. The generic elements are
so-called receptive fields of various complexity. Among the simplest receptive field structures,
one recognizes generic instances of edge finders. Indeed, from their early discovery, receptive
fields have been identified as local feature detectors, the features being elementary geometrical
configurations like edges or bars.

A principled formalism that accounts for a large fraction of the receptive fields in the visual
front end is the theory of scale-space jets [33, 29, 30, 44, 14, 58, 45, 46]. Virtually all local
processing identified in the primary visual cortex can be described that way. It is an attractive
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294 JAN KOENDERINK AND ANDREA VAN DOORN

Figure 1. The derivatives of images at a given scale are exactly calculated using derivatives of Gaussian
filters. This allows stable computation of essentially exact partial derivatives of any order at any scale. The
implementation in the human brain involves overcomplete bases of directional derivatives. One needs only one
type of filter per order; a complete basis for order n involves n+ 1 independent directions [29, 30]. A “cortical
pinwheel” implements essentially all orientations for the order 2 (“line finder” [21]) derivatives. (For the sake
of clarity, the positive and negative lobes of the receptive fields have been color coded red and blue here, the zero
level being represented as gray.)

description because its image processing power is well proven by the numerous applications
in, for instance, medical image processing. From a conceptual perspective, the description is
attractive because it maps local image structure seamlessly on differential geometry. Thus,
standard mathematical accounts immediately map on technical implementations and double
as likely frameworks for parts of brain theory.

The fundamental structures of differential geometry are the local jets, which are complete
sets of partial derivatives up to some maximum order. At any given order, there is a freedom
of representation; for instance, one might implement the second order in terms of the partial
derivatives {∂xx, ∂xy, ∂yy} in Cartesian coordinates {x, y}. This is indeed the standard repre-
sentation adopted in image processing. However, the brain uses a different implementation in
that it maintains an overcomplete basis of directional derivatives (like ∂xx for the x-direction)
in any direction.

In the case of image processing, all expressions used in this paper can be implemented
exactly by substituting convolution with Gaussian derivative filters for the Cartesian partial
derivatives [33, 44, 14, 58] (see section 10). In the case of brain theory, one would rewrite all
expressions in terms of unidirectional derivatives (see Figure 1).

The present discussion skips such issues because many apparently different implemen-
tations are equivalent under linear combination. It is assumed here that the visual cortex
maintains (over-)complete representations of jets up and including order 4 at any point. This
involves 14 DOF (two for the linear, three for the quadric, four for the cubic, and five for the
quartic order), which is slightly less than a 4× 4-pixel icon. Moreover, it is assumed that this
involves a continuous range of spatial scales.1 Thus, “local” can imply any size. The local
processing is the same at all scales.

1In practice, discretely sampled, of course.
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An image is a cross section of a fiber bundle E2 × I (here I denotes the isotropic line),
not E3, because pixel intensities2 and image plane distances are mutually incommensurable,
as is generically the case with graphs. Evidently, E2 × I is quite distinct from E3; thus,
the notion of “surface normal” loses its meaning, and the classical (Gaussian) differential
geometry [15, 57] fails to apply.

A convenient formalism that allows one to retain much of the flavor of the classical dif-
ferential geometry of surfaces is to treat images as surfaces (more properly “cross sections”)
in singly isotropic space E2 × I, where I is the isotropic line [39, 63]. Assuming Cartesian
coordinates {x, y, z}, with {x, y} ∈ E2 and z ∈ I, the degenerate metric is

(1) ds2 = dx2 + dy2.

In the generic case that x1 6= x2 or y1 6= y2, the mutual distance d12 of two points is√
(x1 − x2)2 + (y1 − y2)2. In case d12 = 0 (and only in that case!), one says that their special

distance δ12 is z1 − z2, where the latter is a signed quantity [39, 63]. The special distance
remains undefined for points that are separated in the image plane. Points at zero distance
that have nonzero special distance are said to be mutually parallel points in analogy to the
case of planes [39, 63].

There exists a complete treatment of the differential geometry of curves and surfaces in
graph spaces that is largely analogous to the classical differential geometry of surfaces [55].
Whereas it is not exceptional to see expressions taken from the latter applied to images
regarded as surfaces, such a practice is actually meaningless because it implicitly mixes mu-
tually incommensurable dimensions. Moreover, it complicates matters unnecessarily because
the analogous expressions in singly isotropic space are invariably much simpler than those for
Euclidean space [39, 63].

This paper focusses mainly on surface shape in the infinitesimal neighborhood of a point.
Thus, it is natural to concentrate on truncated Taylor expansions

(2) z(x, y) =
n∑
k=0

(
1

k!

k∑
i=0

ak−i ix
k−iyi

)
,

where it will rarely be advantageous to go beyond order n = 4 (see section 8). Orders 0 and 1
will generally be disregarded, the reason being that order 0 specifies location, whereas order
1 specifies spatial attitude, both in xyz-space. Either is immaterial to shape.

In fact, the group of similarities of singly isotropic space is3 [37, 55]

x′ = τx + ρ(x cosϕ− y sinϕ)

y′ = τy + ρ(x sinϕ+ y cosϕ)

z′ = µz + χxx+ χyy + σz.(3)

2Notice the use of I instead of R+. It is assumed that the jets are applied to the logarithm of the intensity,
which is the natural scale-invariant way to treat nonnegative quantities. This is implemented in the visual
system. In image processing, one has a choice. However, one often is forced to use JPEG (etc.) instead of raw
images, in which cases in-camera compression usually implements a roughly logarithmic mapping.

3This is readily obtained from the usual Euclidean expressions, remembering that sin εp = εp and cos εp = 1
(generally, f(p+ εq) = f(p) + εf ′(p) q [62]).
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Figure 2. The effect of an isotropic similarity in the y = 0 plane. Left: original configuration; right:
after an isotropic rotation over an angle 0.5 (remember that the isotropic angle is not periodic; the range
is R) and a similarity “of the second kind” [63] (“first kind” a Euclidean similarity in the image plane) of
magnification 0.5. Notice that all movements are in the image intensity (z) direction. Thus, image intensity
and distance in the image plane never “mix,” which is as it should be, but has the consequence that the proper
geometry is non-Euclidean.

The vector τ denotes a translation in the image plane, ϕ a rotation in the image plane,
and ρ a similarity in the image plane. In this paper, these are ignored; thus, x′ = x, y′ = y.
One is left with (3) (see Figure 2). The parameter µ parameterizes an isotropic shift; it will
generally be ignored too.

The vector χ parameterizes an isotropic rotation, whereas σ parameterizes an isotropic
scaling. For σ = 1, one has the important “proper movements” or congruences that allow the
formal definition of local shape.

It is entirely possible to develop a theory of shape in terms of curvature; indeed, Strubecker
has done so [38, 37, 55]. However, here we explore an alternative (and unconventional) route
to shape, based on the root mean square (RMS) deviation from planarity. This has the
advantage of not requiring any smoothness assumptions; mere integrability suffices. Thus,
the resulting theory also applies to fractal surfaces and so forth.

2. The RMS deviation from planarity. The primary objective is to set up a “shape space”
for the second order. This could be done following the usual path as first traced by Gauss for
the Euclidean case and specialized by Strubecker for the singly isotropic space. However, this
approach fails to yield a shape metric; it only yields a shape description.

An alternative approach seeks to define a general measure of any type of deviation from
planarity, the plane being considered “shapeless.” One uses the variance of the deviations
from, say, planarity. Such a measure could then easily be generalized to a full shape metric. Of
course, this will not yield much of a shape description. However, by focusing on a single order
(say, order 2), this is easily amended by drawing on the conventional approach. In essence, the
variance of deviations from planarity is a generalization of the Procrustes distance as pursued
by Kendall for the case of point configurations [26, 27, 5, 24, 16]. However, this generalization
involves some novel twists because it depends upon the size of the region of interest (ROI).
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Consider a (monochrome) image z(x, y), assuming (for the moment and without loss of
generality) z(0, 0) = zx(0, 0) = zy(0, 0) = 0, where z is taken as log intensity. Notice that
gamma transformations [23] become scalings, leaving the shape invariant. Evidently, the
variance of a general quadric

(4) z(x, y) =
1

2

(
a20x

2 + 2a11xy + a02y
2
)

must diverge when taken over the full plane. However, the interest is in local regions of
interest. Accordingly, the spatial weighting function (of unit integral weight)

(5) w(x, y; s) =
e−

x2+y2

2s2

2πs2

is introduced, where s is a measure of the linear size of the ROI. The variance of the deviations
from planarity is then defined as z2 − z2, where

(6) f(s) = 〈f(x, y)〉 =

∫ +∞

−∞
f(x, y)w(x, y; s) dx dy.

This variance is evidently a function of s, the size of the ROI (see below).
It is convenient to notice that (the integrations being elementary) 〈xn−mym〉 = 0 when n

or m odd; otherwise,

(7) 〈xn−mym〉 =
2

n
2 Γ(m+1

2 )n−m+1
2

π
sn,

as this allows one to find the variance of arbitrary truncated Taylor expansions by simple
algebraic combination. Up to order n = 8, the results gathered in Table 1 cover all cases
discussed in this paper.4

Table 1
The values of 〈xn−mym〉 for the orders up to 8 and n ≥ m and s = 1.

m = 0 2 4 6 8

n = 0 1
2 1 1
4 3 1 3
6 15 3 3 15
8 105 15 9 15 105

Throughout this paper, the size s of the ROI is set to unity. However, it is important
to take due notice of the s-dependence of the variances of the various orders. As the size
of the ROI is increased, the importance of the higher orders increases accordingly. This is a
well-known effect; e.g., if one is restrained to a limited region, the earth will appear flat, and
if one increases the scope, the importance of the second-order terms may dominate the lower
orders, and the curvature of the globe becomes noticeable.

4We consider Taylor expansions, including quartic terms; thus, because we need to consider variances, we
have to reckon with orders as high as 8.
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The Procrustes metric can also be used incrementally, as will often be advantageous in
applications. For instance, the cubic order then yields the distance to the quadric order
approximation and so forth. The RMS deviation is really a nonuniformity measure.

The variance for the zeroth order vanishes, as expected, because the zeroth-order approx-
imation is the featureless plane.

Although the first order is not of importance because it can always be removed, it is still
of some interest to see how the variance works out for this simple case. The variance for the
first order is5

(8) Γ(1) = a2
10 + a2

01,

that is, the squared modulus of the gradient, a differential invariant. This makes obvious
intuitive sense. The gradient is a vector {p, q} (the reason for this notation will become clear
in section 3) and thus transforms as

(9)

(
p′

q′

)
=

(
cosϕ sinϕ
− sinϕ cosϕ

)(
p
q

)
,

here written in a form that readily generalizes to the higher orders (see section 3).
In most cases involving shape, one simply annuls the contribution due to the gradient

through an isotropic rotation. The case is only mentioned here because it illustrates that the
Procrustes measure leads to the natural result that “gradient space” has the metric of E2.
More generally, we use a congruence to ensure that 〈f(x, y)〉, 〈fx(x, y)〉, and 〈fy(x, y)〉 are all
zero at {0, 0} for the given (assumed fixed) scale.

This defines a reference plane that comes in place of the conventional tangent plane. The
reference plane is defined whenever the integral equation (6) exists. It naturally depends upon
the scale. It is a “flat earth” reference.

The variance of the second order is

(10) Γ(2) =
1

2
(a2

20 + 2a2
11 + a2

02),

often called “bending energy”[59], which can be shown to equal (κ2
1 +κ2

2)/2, where κ1,2 denote
the principal curvatures [57]. Thus, the variance equals the so-called Casorati curvature [10]
squared, a well-known differential invariant (for instance, see [20, 49]). However, the nature
of the derivation is quite different from that conventionally associated with either “bending
energy” or “Casorati curvature.”

Felice Casorati (1835–1890) introduced this “curvature”6 as a more commonsense curva-
ture measure as compared to the Gaussian curvature or the mean curvature, his arguments
being that it is nonnegative and only vanishes for planes [10]. He was severely chastised for this
rather arbitrary choice, and his measure was soon forgotten. Koenderink and van Doorn [32]

5Notice the notation Γ(1). For the RMS deviation at any order Γ will be used, when necessary in order to
avoid ambiguity a subscript (like in Γ(1)) will be used.

6The quotes indicate that Casorati’s measure is not a curvature in the conventional sense, that is, a rate
of change of spatial attitude, like the rotation of the normal when moving in a certain direction in Gauss’s
classical treatment [15].
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reintroduced it a century later (being unaware of Casorati’s paper at that time) and suggested
the term “curvedness,” which is now in regular use. Casorati’s intuition was evidently very
close to the nature of the present derivation; he was primarily interested in the deviation from
planarity.

Notice that (10) is formulated in a somewhat opaque (although conventional) form. Reason
is that various important facts are not explicitly displayed. For instance, a20 + a02 is a
differential invariant (the Laplacian), and one would like to see that appear explicitly. A
coefficient like a20 has no geometrical meaning, whereas the Laplacean a20 + a02 has. We
consider more appropriate formulations below.

The present explanation as the RMS deviation from planarity yields an independent and
intuitive alternative to the differential geometry. It is essentially a Procrustes metric in
Kendall’s [26, 27] sense. Notice that the notion of reference plane (as different from “tangent
plane”) does not imply smoothness and likewise that the notion of nonplanarity (as different
from “curvature”) does not involve a change of spatial attitude with displacement. This is
not at all “differential geometry” in the proper sense, although it—of course, intentionally—
appears that way.

For the pure third order, one considers the general cubic

(11) z(x, y) =
1

3!

(
a30x

3 + 3a21x
2y + 3a12xy

2 + a03y
3
)
.

This is a pure cubic, “pure” meaning that one uses a reference quadric instead of a reference
plane. One finds that the cubic variance is

(12) Γ(3) =
1

12
(5(a2

30 + a2
03) + 6(a21a03 + a12a30) + 9(a2

21 + a2
12)).

Likewise, for the pure (analogous definition) fourth order, that is,

(13) z(x, y) =
1

4!

(
a40x

4 + 4a31x
3y + 6a22x

2y2 + 4a13xy
3 + a04y

4
)
,

one obtains the variance

(14) Γ(4) =
1

12
(2(a2

40 + a2
04) + 3a22(a40 + a04) + 5(a2

31 + a2
13) + 6(a2

22 + a31a13)).

These are evidently differential invariants with potential applicability. However, they do not
seem to have found much use. In order to be able to make intuitive—that is, geometrical—
sense of such expressions, one needs to put the various orders of the Taylor series in a form
that exhibits their relation to changes of orientation in the picture plane in an explicit form.
This is discussed in the next section.

When computing the variance of the full Taylor expansion ((2), that is, referenced to the
plane), one finds that the terms in s4 involve a certain mixture of the linear and cubic orders,
namely,

(15) Γ(1,3) = a01(a03 + a21) + a10(a12 + a30),

where the notation should be self-explanatory. Notice that the mixed term can assume nega-
tive values.
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Likewise, one finds that the terms in s6 involve a certain mixture of the quadric and
quartic orders, namely,

(16) Γ(2,4) =
1

2
(a20(a40 + a22) + 2a11(a31 + a13) + a02(a04 + a22)).

The significance of this will become clear later in the discussion (section 8). It derives from
correlations between the first and the third and between the second and the fourth orders.
Notice that there is no such interaction between even and odd orders. Thus, Γ(1,3) can be
understood as a third-order “correction” on the first order that is irrelevant for small regions
because of going with s4 instead of s2. An analogous reasoning applies to Γ(2,4). This illustrates
the importance of the size of the ROI.

3. Canonical forms for orders up to 4.

3.1. The zeroth order. The zeroth order plays no role because it can always be trans-
formed away. However, it may be instructive to see what one would obtain in case one kept it.

The zeroth order is, of course, trivial. The variance vanishes as expected and does not
depend upon the width s. After all, z(x, y) = a00 is just the reference plane up to an isotropic
translation.

3.2. The linear order. Since an isotropic rotation will annul the slope at a fiducial point,
the variance of the linear order is usually of no interest. Nevertheless, it is still of some interest
to mention this case in order to see how it reveals properties of the Procrustes metric that
will appear in much greater complexity at the higher orders.

The space of linear bivariate polynomials is usually known as “gradient space.” The vari-
ance is simply the squared distance to the origin Γ2 = p2 + q2 (notice that we succinctly write
Γ for Γ(1) and {p, q} for {a10, a01}, a practice that we will continue for the higher orders),

and the mutual distance of two instances is
√

(p1 − p2)2 + (q1 − q2)2; thus, gradient space is
a Euclidean plane in the Procrustes metric.

The unit variance locus is the unit circle S1. Each point on that locus can be moved to
any other by a Euclidean rotation about the origin, so all points on the circle have the same
shape: The shape space is degenerated into a point. The habitus is

(17) z(x, y) = Γ(x cosϕ+ y sinϕ),

where ϕ is a pure directional parameter, there Being no need for a shape descriptor. The
factor Γ is only a size parameter, an amplitude—it does not affect shape. The canonical
linear shape is simply z(x, y) = x.

A smooth relief maps into gradient space as a (locally) two-dimensional patch. The generic
singularities are folds and cusps ([61, 1], Figure 3), the former images of the zero locus of the
quadric discriminant (see below) and the latter involving the cubic terms.

3.3. The quadrics. A simple reordering of terms7 in (4),

(18) a20x
2 + 2a11xy + a02y

2 = p
x2 + y2

2
+

(
q
x2 − y2

2
+ r xy

)
,

7Notice that the notation p, q, r, s, . . . is used for the canonical coefficients of all orders. This will not lead
to confusion in this paper since the analysis is done per order. However, the reader should beware.
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Figure 3. Left: an image (or relief); right: its map in gradient space. Notice the folds and cusps. These
are the generic singularities. This is a simple example: Typical images will give rise to hundreds or thousands
of cusps in some particular network. Some statistical measure then often makes sense.

Figure 4. The quadrics are linear combinations of (x2 + y2)/2 (left) and (x2 − y2)/2 or xy (right). The
former is rotationally invariant, and the latter repeats after a half-turn.

setting p = a20 + a02, q = a20 − a02, and r = 2a11, yields immediate insight into the structure
of the second order as it presents the form as the sum of an isotropic part and an anisotropic
part that repeats after a half-turn (see Figure 4). Apparently, the parameters {q, r} have no
individual relevance but transform as a pair; thus, it is meaningful to write8

(19) {q, r} = Λ{cos 2Φ, sin 2Φ}

with Λ2 = q2 + r2. The parameter Φ is just the orientation of the largest principal curvature,
whereas the shape and Casorati curvature (an amplitude, or size, parameter) will depend
upon the pair {p,Λ}. Indeed, a short calculation reveals that the squared Casorati curvature is
Γ2 = p2 + Λ2 = p2 + q2 + r2, whereas the shape index (Figure 5) is Ψ = arctan(p/Λ). One has

8Notice the use of parameters Γ, Λ, Ψ, . . . , a notation that will be used for all orders. This should not lead
to ambiguity since the discussion is per order. Where necessary, one may use a subscript indicating the order,
like in Λ(2) and so forth.
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Figure 5. The shape index scale of the quadrics. It is a continuum; here, only the major landmarks are
shown. The limits of the scale are convex and concave umbilical, and the center is the symmetric saddle. In
between are the parabolic ridge and rut.

Figure 6. The foliation of the quadrics shape space by the concentric spheres of constant Casorati curva-
ture Γ (left), the half-planes of constant orientation Φ (center), and the semicones of constant shape index Ψ
(right). In each case, half of the space was cut out so as to render the structure more intuitively legible.

(20)

p′q′
r′

 =

1 0 0
0 cos 2ϕ sin 2ϕ
0 − sin 2ϕ cos 2ϕ

pq
r

 ,

an equation similar to (9).
Notice that the variance of the difference of two quadrics is simply their Euclidean distance

in the {p, q, r}-space. This quadric shape-space has a natural Euclidean metric.
It is immediate to show that

Γ sin Ψ = p,

Γ cos Ψ cos 2Φ = q,

Γ cos Ψ sin 2Φ = r.

Thus, the Casorati curvature Γ, the shape index Ψ, and the orientation Φ form a polar
coordinate system for the shape space (see Figures 6 and 7). The locus of unit variance is S2.
Antipodal points are related by a z-inversion, and points on small circles concentric with the
umbilical axis can be superimposed through a Euclidean rotation about the origin.D
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Figure 7. This is a very coarse-grained partition of the quadrics shape space. Notice that it is axially
symmetric about the umbilical axis (red line partly visible at top). The interior of the yellow semicone contains
convexities, and that of the blue semicone contains concavities. The space outside the cones is the region of
saddle shapes. The central plane is the locus of symmetrical saddles; it divides the saddles into ridge-like and
rut-like.

Thus, all distinct shapes are exhausted by a single meridian of the unit sphere, being
mutually distinguished by the latitude, which is the conventional shape index. The habitus
(see Figure 4) is conveniently written as

(21) z(x, y) = Γ
(
cos Ψ(x2 + y2) + sin Ψ

(
(x2 − y2) cos(2Φ) + 2xy sin(2Φ)

))
,

which can be simplified to z(x, y) = cos Ψ(x2 + y2) + sin Ψ(x2 − y2) by factoring out the
orientation and size so as to obtain the pure shape dependence.

This discussion reveals that the usual definition of the shape index is not just a convenience,
as it is often made out to be [32], but that Casorati curvature, shape index, and orientation
have an intimate relation and need to be defined as a triple instead of individually.

For constant Casorati curvature, one obtains a “shape sphere.” Notice that the attitude
runs at double speed, though, making the Shape sphere formally analogous to the Poincaré
sphere in optics [53, 6] or the Bloch sphere [4] in quantum mechanics. Disregarding the
orientation, the shape space modulo size and attitude reduces to a meridian of the sphere. This
explains why the shape index space is a finite segment I1, really one half of S1. The endpoints—
the poles of the sphere—represent the umbilical points and the center the symmetric saddle
(Figure 5).

More generally, the p-axis is the locus of umbilicals, the plane p = 0 the locus of symmet-
rical saddles, and the right circular cone about the p-axis with semi-top-angle π/4 the locus
of parabolic, or cylindrical, points (the zero locus of the quadric discriminant; see Figure 7).
Moreover, the spheres concentric with the origin are loci of constant Casorati curvature. The
origin itself represents the planar point.

A general surface will map on a smooth surface in shape space. From this, one immediately
obtains a number of general observations. For instance,

◦ flat points generally do not occur on smooth reliefs;
◦ umbilical points are generically isolated;
◦ parabolic point generically lie on smooth curves;
◦ the surface parcellates in elliptical and hyperbolical regions, with parabolic curves as

their common boundaries;
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Figure 8. The Whitney umbrella [60, 17], also known as a “pinch point.” It is a locus where a surface
starts to intersect with itself.

◦ the elliptical regions are either convex or concave; they cannot be mixed and do not
share a common boundary.

A pure quadric maps on a point in shape space, cubic terms extend that to a planar patch,
and quartic terms yield a curved surface patch. Thus, one needs at least the four lowest orders
to even start a description of the nature of the relief in a local neighborhood, which is why
the present discussion includes the cubic and quartic terms.

The generic singularities of the image in shape space are Whitney umbrellas [60, 17].9

These are related to the self-intersections of the surface, and the Whitney umbrella (Figure 8)
represents a pinch point (or cuspidal point).

3.4. The cubics. For the general cubic, one rewrites the relief of (11) as (setting
p = 3(a12 + a30)/4, q = 3(a03 + a21)/4, r = (a30 − 3a12)/4, and s = (3a21 − a03)/4)

(22)
1

3!

[
(p+ r)x3 + (q + 3s)x2y + (p− 3r)xy2 + (q − s)y3

]
.

This is indeed natural because the parameters {p, q, r, s} transform as

(23)


p′

q′

r′

s′

 =


cosϕ sinϕ 0 0
− sinϕ cosϕ 0 0

0 0 cos 3ϕ sin 3ϕ
0 0 − sin 3ϕ cos 3ϕ



p
q
r
s

 .

Thus, any cubic is the sum of two canonical cubics (a “shoe surface” (Figure 9, left) and
a “monkey saddle” (Figure 9, right)) that mutually transform differently, one turning three
times as fast as the other.

9Try z(x, y) = (2x2 + y2)/2 + (x3 + x2y + xy2 + y3)/6 + (x4 + y4)/24 to see a Whitney umbrella in shape
space. A parametric model of the Whitney umbrella is x(u, v) = uv; y(u, v) = u; z(u, v) = v2, or, as an implicit
equation, x2 = y2z, where the negative z-axis is the handle of the umbrella.
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Figure 9. The cubics are linear combinations of the shoe surface (left) and the monkey saddle (right). The
shoe surface repeats after a full turn and the monkey saddle after a third turn. Notice that the shoe surface
looks—in a global view over the ROI—much like a planar slope. Indeed, this part of the cubics tends to correlate
strongly with the first order. The monkey saddles rarely play a role in applications.

Notice that the coefficients p and q are the cubic terms occurring in the mixed variance
(15). This apparently happens because they transform just like the gradient. (See (9) and
also section 8.)

Define the parameters

Γ =
√
p2 + q2 + r2 + s2(24)

Λ = arctan(
√
p2 + q2,

√
r2 + s2)(25)

Ψ = arctan(p, q)(26)

Φ = arctan(r, s)(27)

where Γ ∈ (0,∞), Λ ∈ (0, π/2), Ψ ∈ (0, 2π/3), and Φ ∈ (0, 2π). This allows one to parame-
terize the 3-sphere in terms of hyperspherical coordinates

(28)


p
q
r
s

 = Γ


cos Λ cos Φ
cos Λ sin Φ
sin Λ cos 3Ψ
sin Λ sin 3Ψ

 .

One has p2 + q2 = Γ2 cos2 Λ, r2 + s2 = Γ2 sin2 Λ. For any Λ, one obtains a Clifford torus
(or flat10 torus, a topological product of two circles S1 × S1). The 3-sphere Γ = 1 foliates
into such flat tori [40, 28, 7], each torus parameterized by {Φ,Ψ}. One parameter is just the
orientation, so fixing either Φ or Ψ, one obtains a circle. The analog of the shape index is thus
a pair like {Λ,Φ} (say, fixing Ψ), where Λ selects a certain torus and Φ a point on the circle.
This geometry can be explicitly visualized through stereographic projection from {1, 0, 0, 0}
(Figure 10).

The full cubic shape space is E4. Ignoring Casorati curvature (the original definition
suitably extended), one obtains a shape sphere S3. This sphere naturally foliates into flat tori,

10“Flat” implies that the surface can be rolled out over the plane. Indeed, the {Φ,Ψ}-coordinate patch is
just a rectangle with its opposite sides identified.
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Figure 10. The flat tori in cubic shape space shown in stereographical projection from {1, 0, 0, 0}. The
parameter Λ is set to a number of constant values, and the hue reveals the value of parameter Ψ. Right: half
of the space has been cut out, thus showing the foliation by flat tori to good advantage.

thus explaining 1 DOF of the cubic shape index. Any torus foliates into circles parameterized
by orientation. Ignoring orientation, one obtains a circle representing the remaining DOF of
the canonical cubic shape. This explains the geometrical structure of cubic shape space to
the extent required for the present discussion.

The cubic habitus as a function of the shape index pair is

(29) z(x, y) =
1

3!

(
cos Λ

(
x2 + y2

)
(x cos Φ + y sin Φ) + x sin Λ

(
x2 − 3y2

))
,

where the parameter range should be restricted so as to avoid congruent repeats. This con-
struction yields a cubic scale space in Cartesian and polar coordinates, with a simple Euclidean
Procrustes metric.

The monkey saddle part (Figure 9, right) is only of minor interest in applications involving
natural images (see below), whereas the shoe-surface part occurs as a refinement on the
gradient, that is, the edge character of the relief11 (see section 8).

3.5. The quartics. Introducing the parameters p=3(a04+2a22+a40)/8, q=(a40−a04)/2,
r = a13 + a31, s = (a04 − 6a22 + a40)/8, and t = (a31 − a13)/2 in (13), the quartic part can be
rewritten as

z(x, y) =
p

4!

(
x2 + y2

)2
+
q

4!

(
x2 − y2

) (
x2 + y2

)
+
r

4!
2xy

(
x2 + y2

)
+

s

4!

((
x2 − y2

)
− 2xy

) ((
x2 − y2

)
+ 2xy

)
+

t

4!
4xy

(
x2 − y2

)
.

11Remember that a generic “edge detector” [51, 9, 30, 58] is nothing but a first-order directional derivative
at some finite scale [30].
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Figure 11. The quartics are a linear combination of these three surfaces. The leftmost is rotationally
symmetric, the center one repeats after a half turn, and the rightmost one repeats after a quarter turn. Notice
that the former two are very similar—in a global view of the ror—to the quadrics. Indeed, this part of the
quartics tends to correlate strongly with the quadrics (Figure 4). The higher-order saddles rarely play a role in
most applications.

This is again natural because the parameters {p, q, r, s, t} transform as

(30)


p′

q′

r′

s′

t′

 =


1 0 0 0 0
0 cos 2ϕ sin 2ϕ 0 0
0 − sin 2ϕ cos 2ϕ 0 0
0 0 0 cos 4ϕ sin 4ϕ
0 0 0 − sin 4ϕ cos 4ϕ



p
q
r
s
t

 .

Thus, any quartic is the sum of three canonical quartics that mutually transform differently,
and one turns two times and another four times as fast as the first one (Figure 11).

Notice that the mixed variance (16) can be expressed as a linear combination of terms p,
q, r, which indeed transform just like the quadric case.12 See also section 8.

The quartic variance satisfies Γ ∝ 5
3p

2 + q2 + r2 + s2 + t2. The full quartic shape space
is E5, the Procrustes metric—deviation from planarity—again induces a natural Euclidean
representation. Disregarding Casorati curvature (the original definition suitably extended),
one obtains a shape sphere S4. Again, there are various loci on the shape sphere that represent
congruent shapes.

The quartic shape index has 3 DOF. It can be studied in a similar way as done for the
cubics. However, this will rarely be of interest because the high-order saddle part has no
relevance to most applications involving natural images (see below).

4. The edge and ridge character of the relief. As an explicit polar representation, it is
convenient to write

(31)

z(%, ϕ) = p00 + p20
%2

2
+ p40

%4

24
+ %

(
(p11 + p31

%2

6
) cosϕ+ (q11 + q31

%2

6
) sinϕ

)
+

%2

2

(
(p22 + p42

%2

12
) cos 2ϕ+ (q22 + q42

%2

12
) sin 2ϕ

)
+R(%, ϕ),

12A direct calculation shows that the mixed variances are Γ(13) = 4
3

(
p(1)p(3) + q(1)q(3)

)
(15) and

Γ(2,4) = 1
6

(
4p(2)p(4) + 3q(2)q(4) + 3r(2)r(4)

)
(16), where we use {p(i), q(i), r(i), . . .} for the parameters of the

orders i.
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Figure 12. Two images used to illustrate various facts. Left: an isotropic random Gaussian image with
a Gaussian autocorrelation function (henceforth called “noise image”); right: the “twigs image,” which is a
texture-like natural image.

where

(32) R = (p33 sin 3ϕ+ q33 cos 3ϕ)
%3

6
+ (p44 sin 4ϕ+ q44 cos 4ϕ)

%4

24

represents the contributions of the higher-order saddles. It is immediate to see how this form
can be extended to progressively higher orders. However, this is unlikely to be of interest in
applications.

Here the {pnm, qnm} are the coefficients of

(33) {cosmϕ, sinmϕ}%
n

n!
.

The part withoutR explicitly describes the edge ({cosϕ, sinϕ}) and ridge13 character ({cos 2ϕ,
sin 2ϕ}) of the relief [19, 18, 41, 42, 43] up to order 4.

This representation immediately reveals the angular properties of directional derivatives of
any order (here limited to 4, but the series can be continued indefinitely, of course). It might
be said to represent the angular spectrum of the relief explicitly. Although one would prefer
Cartesian coordinates in technical image processing, it is well known that the visual cortex uses
(overcomplete) bases of directional derivatives [21]. Here (31) is the natural representation of
the “orientation pinwheel” [22], the neural implementation of the polar bases [29].

In “natural images” (Figure 12), one finds empirically that the edge components of the
linear and cubic orders tend to be aligned [19, 18, 41, 42, 43]. Likewise, one finds that the

13The famous instance is the Hubel and Wiesel [21] “line detector.” Formally, this is just a second-order
directional derivative at some finite scale [29].
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ridge components of the quadric and quartic orders also tend to be aligned [19, 18, 41, 42, 43].
That is,

(34)

∣∣∣∣p11q31 − p31q11

p11p31 + q11q31

∣∣∣∣� 1

and

(35)

∣∣∣∣p22q42 − p42q22

p22p42 + q22q42

∣∣∣∣� 1.

For Gaussian random images, this can be shown to apply on the average (see section 8).

5. Distributions in relief-shape space. Consider the second order. A natural way to
sample from the shape space is to draw from an isotropic normal distribution centered at the
origin of pqr-space [3] with, say, variance s2. In polar coordinates, the probability density
function is

(36) P (Γ,Λ,Φ, s) =
Γ2e−

Γ2

2s2 cos(Ψ)

2
√

2π3/2s3
,

from which one easily derives the marginals

(37) PΓ(Γ) =

√
2
πΓ2e−

Γ2

2s2

s3
, PΨ(Ψ) =

cos Ψ

2
, PΦ(Φ) =

1

2π
.

Thus, the distribution of the Casorati curvature follows a Maxwell–Boltzmann distribution,
whereas the distribution of orientations is uniform, both much as expected. The distribution
for the shape index is zero at the umbilical endpoints of the scale and peaks at the symmetric
saddles (see Figure 13, left).

-
π

�
-
π

�
� +

π

�
+
π

�
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-
π
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-
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�
� +

π

�
+
π
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���
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���
��������� ������ �������� �����

Figure 13. Left: the marginal distribution of the quadric shape index for a normal, centered distribution
in shape space. It peaks at the symmetric saddle and vanishes at the limits of the scale, reflecting the fact
that umbilics occur only as isolated points. Right: the distribution for points on an isotropic random Gaussian
image (see (44)). This distribution peaks at the parabolic points.
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However, this ignores the fact that the samples should derive from an image. A generic
example is the isotropic random Gaussian image (Figure 12, left). In this case, the spatial
derivatives and thus the coefficients of the quadric are mutually correlated [48, 3, 50]. One
has

(38)

(
∂p∂qz

∂xpyq

)(
∂p′∂q′z

∂xp′yq′

)
= (−1)

1
2

(p+p′+q+q′)m(p+p′)(q+q′),

where mrs = Mr+sµrs with r = p + p′, s = q + q′. The “circular moments” Mn depend only
on the sum of the orders, whereas the angular distributions µrs are captured by averages over
directions.

For the Gaussian autocorrelation function exp(−(x2 + y2)/(2σ2)), one has

(39) Mn = π22
n+5

2 Γ

(
n+ 3

2

)
σ−n−1

and

(40) µrs =
((−1)r + 1) ((−1)r+s + 1) Γ

(
r+1

2

)
Γ
(
s+1

2

)
4πΓ

(
1
2(r + s+ 2)

) .

For other autocorrelation functions, one simply obtains an overall constant factor; thus, the
actual form of autocorrelation function is irrelevant here.

The covariance matrix Σ2 for the derivatives {∂xx, ∂xy, ∂yy} reveals correlations between
the partial derivatives, whereas the covariance matrix Ξ2 for the canonical coefficients {p, q, r}
is diagonal:

(41) Σ2 =
M4

8

3 0 1
0 1 0
1 0 3

 , Ξ2 ∝

2 0 0
0 1 0
0 0 1

 .

Thus, the canonical coefficients are mutually uncorrelated, and the power is equally distributed
between p2 and q2 + r2.

Likewise, in the cubic case for the derivatives {∂xxx, ∂xxy, ∂xyy, ∂yyy} and the canonical
coefficients {p, q, r, s}, one has

(42) Σ3 = −M6

16


5 0 1 0
0 1 0 1
1 0 1 0
0 1 0 5

 , Ξ3 ∝


9 0 0 0
0 9 0 0
0 0 1 0
0 0 0 1

 ,

from which it follows that the distribution of power between p2 + q2 and r2 + s2 is 9:1.
For the quartic case for the derivatives {∂xxxx, ∂xxxy, ∂xxyy, ∂xyyy, ∂yyyy} and the canon-

ical coefficients {p, q, r, s, t}, the covariance matrix is

(43) Σ4 =
M8

128


35 0 5 0 3
0 5 0 3 0
5 0 3 0 5
0 3 0 5 0
3 0 5 0 35

 , Ξ4 ∝


18 0 0 0 0
0 16 0 0 0
0 0 16 0 0
0 0 0 1 0
0 0 0 0 1

 ,

so the distribution of power is very uneven, p2 : q2 + r2 : s2 + t2 = 9 : 16 : 1.
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Figure 14. Empirical shape index marginal distributions for the two images (Figure 12). As is the case for
almost any instance, the distributions are strongly peaked at the ruts and ridges. Moreover, there is a marked
asymmetry, no doubt due to factors of ecological optics. Compare this to Figure 13, right.

These correlations determine the various marginal distributions for Gaussian random sur-
faces. Most importantly, the power of the higher-order saddles is very low, only 10% for the
cubic and 4% for the quartic parts. This is indeed trivially confirmed by a numerical in-
vestigation involving Gaussian random surfaces, but, more importantly, essentially the same
statistics prove to apply14 to the case of natural images.

In the case of the quadrics, the marginal that yields the PDF of the shape index is (the
integrations over the Casorati curvature and the orientation being elementary)

(44) QΨ(Ψ) =
23/2 cos Ψ

(3 + cos 2Ψ)3/2
,

an expression that has been derived earlier [36, 43]. It has the result that parabolic points
become relatively more numerous (Figure 13, right).

In order to quantify this, the shape index range may be divided into the ranges E+ =
(−π

2 ,−
3π
8 ) (elliptic convex), P+ = (−3π

8 ,−
π
8 ) (ridges), H = (−π

8 ,+
π
8 ) (saddles), P− = (π8 ,

3π
8 )

(ruts), and E− = (3π
8 ,

π
2 ) (elliptic concave). These are the Voronoi cells for the special

points ±π
2 (umbilics), ±π

4 (parabolic points), and 0 (the symmetric saddle).
Granted the Voronoi cells, one counts the probability of encountering elliptic pE , parabolic

pP and hyperbolic pH cases. This allows the definition of the ridginess R = pP and ellipticity
E = pE/(pE+pH). For the distribution PΨ, one finds R = 0.541 . . ., E = 0.166 . . ., and for the
distribution QΨ, one finds R = 0.582 . . ., E = 0.328 . . .. Apparently, the ridginess increases
when one considers points sampled from an image instead of shape space proper.

It has been noticed [43] that the empirical distribution for natural images is markedly more
peaked at the ruts and ridges than what is seen for the Gaussian random surfaces (example
in Figure 14). One likely reason appears to be the violation of isotropy. In order to check
this, one has to derive the probability density function for the shape index of a nonisotropic
Gaussian random surface (no result appears to be recorded in the literature). The covariance
matrix for the derivatives {∂xx, ∂xy, ∂yy} is readily available [3]:

14At least in the (many) instances tried more or less at random.
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Figure 15. The marginal distribution of the quadric shape index (left) for a Gaussian random surface with
anisotropy index 0.7. It peaks strongly at the parabolic points; thus, the surface consists mainly of ruts and
ridges. For the ideal Gaussian random surface, ruts and ridges are equally likely. In natural images, one often
finds asymmetries, no doubt due to various physical factors: The radiometry works out quite differently for
concavities (effects of vignetting and interreflections) and convexities (mainly shading proper). At the right
is the marginal distribution of the orientations for the same anisotropy. For a natural image, one would not
expect to see this since the orientation of the anisotropy would vary from region to region; thus, the articulation
seen here would average out.

(45)
M4

8

3ξ−4 0 1
0 1 0
1 0 3ξ4

 ,

where ξ denotes the stretch of the x-axis, whereas ξ−1 is the corresponding shrink of the
y-axis. A convenient index of anisotropy is s = (ξ4 − 1)/(ξ4 + 1).

However, although marginalization with respect to the Casorati curvature is immediate,
the marginalization with respect to the orientations leads to integrals that cannot be done in
closed form (at least, Mathematica gives up). However, numerical integration is easily and
stably done to any desired accuracy. As expected, the PDF peaks rather strongly at the
parabolic shapes, even for moderate degrees of anisotropy (see Figure 15).

The anisotropy for the natural images is not necessarily reflected in the overall ridge
orientation distribution (see Figure 16). In such images, the local anisotropies are not lined
up. In the case of the twigs image, the distribution of orientations is almost flat, although
there are evidently very strong local anisotropies (Figure 17).

Right from the beginning [36, 43], it was noticed that real images yield results that differed
from the predictions. The reason is clear by now: In real images, one deals with a spectrum
of anisotropy depending upon the size of the ROIs. This effectively decouples the histogram
of shape indices from that of the orientations.

The ridginess increases monotonically with the degree of anisotropy, reaching a fraction
of 0.9 for an anisotropy 0.760 (see Figure 18). The ellipticity falls monotonically with the
anisotropy: It is down to 10% of its initial value for anisotropy of 0.712. Thus, (near) umbilicals
become really scarce, and most of the surface is ridge or rut, the remainder being mainly
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Figure 16. Polar histograms for the quadric ridge orientation of the two images (Figure 12). Notice that
local anisotropy has a strong influence on the shape index distribution but is not necessarily evident in the
overall orientations (see Figure 17).

Figure 17. Here the twigs image was cut in eight-by-eight pieces and an orientation histogram made for
each piece. Notice that there is very strong local anisotropy, which averages out over the whole picture. This
explains why the shape index histogram (Figure 15) corresponds to significant anisotropy, whereas the orientation
histogram (Figure 16 right) appears to suggest otherwise (it “should” look much like Figure 15, right).

hyperbolic. (Figure 18.) All these predictions are perfectly reflected in simulations using
random Gaussian image samples.

The average density of umbilical points has been derived by Berry [3]. It is M6/(4πM4).
It varies only very slightly with the anisotropy (less than 8% over the full anisotropy range).
Thus, although almost all of the area becomes eventually occupied by parabolic points, the
number of umbilics is not really affected by that.

6. Distribution of power over the orders. A major distinction between single scale,
isotropic Gaussian random noise and “natural images” appears when comparing the distribu-
tion of power over the orders. For the noise image, the distribution of powers (Γ(2), Γ(3), Γ(4);
(10), (12), (14)) is

(46) quadric : cubic : quartic = 50 (33, 63) : 31 (16, 51) : 16 (10, 23),
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Figure 18. The distribution of surface type (elliptic (E), parabolic (P), or hyperbolic (H)) as a function of
the anisotropy index. As the anisotropy grows, the proportion of parabolic points grows, and the ratio of elliptic
to hyperbolic points diminishes.

where the interquartile ranges are given in brackets.
Another way to look at this is to count pixels where either the quadric, cubic, or quartic

power dominates. One finds

(47) quadric : cubic : quartic = 63 : 35 : 2;

thus, almost two-thirds of the area is dominated by the quadric terms and one-third by the
cubic terms, whereas only about 2% is dominated by the quartic order.

This is very different for the twigs image, where one finds

(48) quadric : cubic : quartic = 27 (15, 43) : 30 (13, 53) : 34 (19, 49)

and

(49) quadric : cubic : quartic = 25 : 38 : 37,

the quartic contribution being increased by more than an order of magnitude (see Figure 19).

7. Remarkable landmarks. “Remarkable landmarks” are various singularities, points, or
curves as the case may be [56, 11, 52, 8, 25, 12, 54, 3, 35]. We consider the lowest-order cases,
but, of course, one may extend the analysis arbitrarily.

Singularities of the first order are the points where the gradient magnitude vanishes. These
are nodes or saddles, their nature being decided by the sign of the quadric discriminant, that
is, K = a20a02 − a2

11, which is the intrinsic (often called “Gaussian”) curvature in the singly
isotropic (graph) space. Notice that K is the magnification of the map to gradient space.
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Figure 19. In each frame, one has at left the distribution of the powers Γ(2) (yellow), Γ(3) (brown), and Γ(4)

(blue) and at right the distribution of the most significant order (quadric yellow, cubic brown, quartic blue) over
all pixels. The distributions are very different for an isotropic Gaussian random field (frame at left, the “noise
image,” Figure 12, left) as compared to a natural image (frame at right, the “twigs image,” Figure 12, right).
The result for the latter image is typical for that of many “natural images.”

The familiar “gradient space” is the plane {zx, zy}. The surface z(x, y) is mapped in
gradient space with as generic singularities folds and cusps. The folds are the loci K = 0; on
the surface, these are the parabolic curves.

The cusps are singular points [2] on the folds where the gradient of K is tangent to the
parabolic curve. Their nature is determined by the cubic and quartic terms.

The singular points of the quadrics are umbilical points [3]. These are generically isolated
points on the surface; they occur in three topologically distinct kinds, their nature being
determined by the cubic terms.

The surface may also be mapped into the space of quadrics. The generic singularities are
Whitney umbrellas, which are points where the surface starts to intersect itself, often called
“cross-caps.” At such points, one needs to draw on the quartic terms.

In all cases generic local models are readily available.

8. Geometrical meaning of mixed order differential invariants. In most cases, the lowest
orders (first and second) carry most of the interesting structure. The generic case can always
be brought into the canonical form

z(x, y) = x+
1

2
(Px2 + 2Qxy +Ry2) + . . .(50)

with a movement in the singly isotropic (graph) space. As expected, the mixed differential
invariants {P,Q,R} have immediate geometrical significance [54, 35], namely (Figures 20, 21,
and 22), the following:

◦ P is proportional to the isotropic curvature of a section y = 0 at the origin;
◦ Q is proportional to the Euclidean curvature of the slope line (in the x-direction) at

the origin;
◦ R is proportional to the Euclidean curvature of the isohypse z = 0 at the origin,

as will be illustrated below.
Indeed, the mixed invariant R (Figure 22) is commonly used as a “curvature detector”

[34] or even a “corner detector,” whereas the mixed invariant P (Figure 20) has been used as
a “cliff detector” or a “subcontour detector.” So far, the mixed invariant Q (Figure 21) seems
to have found little application.
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Figure 20. The effect of the mixed first- and second-order differential invariant P is well illustrated by the
relief z(x, y) = x+x2/2. Shown are the isohypses of the relief (left) and the slope lines (center) in the XY-plane
as well as the surface section in the XZ-plane (right). Notice that the isohypses are straight but unevenly spaced
and that the flow of slope lines is rectilinear and uniform but that the section in the y = 0 plane is curved.

��������� ����� ����� ��-�����

Figure 21. The effect of the mixed first- and second-order differential invariant Q is well illustrated by the
relief z(x, y) = x+ xy. Shown are the isohypses of the relief (left) and the slope lines (center) in the XY-plane
as well as the surface section in the XZ-plane (right). Notice that both the isohypse z = 0 and the section in
the plane y = 0 are straight but that the slope line through the origin is curved.

��������� ����� ����� ��-�����

Figure 22. The effect of the mixed first- and second-order differential invariant R is well illustrated by
the relief z(x, y) = x + y2/2. Shown are the isohypses of the relief (left) and the slope lines (center) in the
XY–plane as well as the surface section in the XZ–plane (right). Notice that both the slope line through the
origin and the section in the plane y = 0 are straight but that the isohypse z = 0 is curved.
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The isohypses are integral curves of the equation zxdx+zydy, which is exact since (zx)y =
(zy)x. Thus, the isohypses can be naturally labeled by some monotonic function of z.

The slope lines are integral curves of the equation zydx − zxdy, which is not exact since
generically zxx 6= −zyy. Using an integrating divisor, say, ϑ(x, y), one may seek for a func-
tion w(x, y) that labels the slope lines up to a monotonic transformation. However, the
labeling cannot bridge the zero loci of the integrating factor(s).

An example is the case shown in Figure 22, illustrating z(x, y) = x+ y2/2. Here the slope
equation is ydx − dy, which allows an integrating divisor ϑ(x, y) = y. The line y = 0 is a
common asymptote of the areas sign(y) = ±1; the consistent labeling of slope lines w(x, y) =
x − log |y| cannot cross the asymptote y = 0. This is important in the proper definition of
the “water divides” and “river courses” of a relief. (Indeed, the line y = 0 in Figure 22 is
evidently a “divide” since all slope lines originate from it. Inverting the flow it becomes a
“course” since any element of the flow eventually joins it.)

Notice that partial derivatives of different orders on a Gaussian random surface are often
correlated [48]. Whereas even and odd orders are mutually uncorrelated, the first order is
correlated with the third,

(51)
M4

8

(
3 0 1 0
0 1 0 3

)
,

and the second with the fourth,

(52) − M6

16

5 0 1 0 1
0 1 0 1 0
1 0 1 0 5

 ,

where the partial derivatives occur in their natural order, as in (41), (42), (43). This is a
necessary constraint to take into account when computing marginal statistics for landmarks
of mixed orders.

The correlations for the orders 1 through 4 for the images (Figure 12) can be determined
numerically. (We state them as percentages.) They are (the “noise image” at the left, the
“twigs image” at the right)

2 3 4

1 -1 66 -2
2 -1 75
3 -1

,

2 3 4

1 -4 57 2
2 0 71
3 6

.

Notice that the twigs image yields correlations that are very similar to those of the noise
image.

The above constraints have remarkable consequences. For instance, using these correla-
tions, one easily verifies that the edge contributions of the linear and cubic orders line up in
the average, and so do the ridge contributions of the quadric and quartic orders (see (34),
(35)). On the other hand, a similar computation involving averages of products of partial
derivatives reveals that there is no average relation between the orientations of the higher-
order saddles and those of the linear and quadric orders. This regularity has been empirically
found in natural images. It is hardly a specific property of natural images, though, since it can
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Figure 23. Lineups computed from the two images (left: “noise image”; right: “twigs image”). In the top
row are the deviations between the gradient and cubic edge directions, and in the bottom row are the deviations
between the quadric and quartic ridge orientations. Results obtained for “natural images” are similar to that
for the noise. A useful measure of angular spread is the semi-interquartile width. For the noise image, we find
24◦ for the edge and 10◦ for the ridge spreads; for the twigs image, the values are 27◦ and 11◦.

be proven to apply to random Gaussian images. It is due to the correlation between partial
derivatives for smooth random surfaces (see Figure 23).

This is also of importance in the correlation of derivatives of a single scale at (slightly)
different locations. For instance, an order 1 derivative at a slightly different location can be
expressed as a local Taylor expansion involving the higher orders. Thus, the correlation over
space translates into a correlation over orders. The methods discussed here readily allow one
to investigate such important relations.

In neurophysiological investigations, the system is typically stimulated through retinal
activation. Many of the correlations detected in the visual cortex will then be due to the
structures discussed here; in many cases, there will be no immediate need to invoke hypothet-
ical neural connections.

9. Very local structure. So far, much of the emphasis has been on the overall statistics of
local structures. This is of interest for brain science since much of the available data are exactly
of that nature. Because of that, there has been much interest in the statistical structure of
natural images as opposed to such simple cases as isotropic, single-scale, Gaussian images.
However, in any case, involving image interpretation, statistics is only of limited interest. The
statistics is useful to characterize the “texture” of (usually large) image regions that surround
a main center of interest. The center of interest tends to be a singular location, and the ROI
is such that the number of relevant DOF is very limited. Such centers of interest are the local
images that focal vision deals with at any moment.D
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Figure 24. This is an example of a “local structure,” in this case a distant face. At this scale (left figure),
one can just make out the characteristic “bar code” structure of a face. At the center is the image in gradient
space. Even for a simple image like this one has various folds and cusps in a complicated pattern. The red
curve is the image of the (square) boundary of the image at left. The axes are centered at the origin. At the
right is the image in quadric shape space. The axes are again centered at the origin. The horizontal plane is
the locus of symmetrical saddles. Notice that the map roams through all octants. There are several Whitney
umbrellas, although they cannot be distinguished from cusps due to the projection here.

The term “local” should be understood relative to the current scale. What is meant is an
image extent (or ROI) that offers just a very limited number of DOF for the current scale.
Such images look like very low resolution icons. Figure 24 shows an example.

For such cases, the overall statistics are not relevant at all. One looks at singular structures
instead of statistical measures.

For the case of the (very typical) example of Figure 24, one notices that the image in
gradient space is dominated by singularities, both folds and cusps, and that the same obser-
vation holds for the image in quadric shape space. It is very evident that even such extremely
blurred pictures offer geometrical complexities that are beyond the reach of simple analysis,
whereas they reveal insufficient articulation for a statistic description to make much sense.

This is the type of structure the visual cortex is working with at a white spectrum of
nested scales.

10. Local differential geometry and image processing. The simple, local differential
geometry discussed in this paper can immediately be applied to local operations in image
processing. The reason is that spatial derivatives can be implemented exactly, except for the
discretization implied by pixelation. The one factor to consider is that any derivation implies
a scale. No actual object can be considered “differentiable,” but the mode of observing them
(or addressing them) can. This is the use of the familiar “scale-space” [33, 44, 47, 14, 58]
representation.

Confronted with a twofold extended distribution of intensity I, say, the radiance at the eye
due to scattering of sunlight by the scene in front of you, one considers its representation at
finite scale σ. The representation R is obtained through a physical sampling that is formally
modeled by a convolution with a Gaussian kernel gσ as R = gσ ◦ I. The point here is that
the representation R is an observation of an ideal object I that can only be known through
its representations. The object I cannot even be known; thus, it can hardly be considered
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Figure 25. This is the jet of partial derivatives up to (and including) order 4, shown as a complete basis.
(In the leftmost column, one has ∂x, ∂xx, ∂xxx and ∂xxxx.) It involves four RF-profiles that occur in a number of
directions or orientations (the cortex uses overcomplete, continuous bases). All relations discussed in this paper
can be explored using this basis of image operators. Notice that these operators involve a scale. In applications,
one would use a range of scales.

differentiable! But the observation is known (indeed, all that is initially known about I), but
its derivatives can also be known—in the sense of being observed—because (at least formally)

∂R = ∂(gσ ◦ I) = (∂gσ) ◦ I = gσ ◦ (∂I),(53)

where gσ is differentiable because it is an analytic function.15 Neither ∂I nor ∂R exists: the
former because I is not known and the latter because it is an observation and thus necessarily
only approximately known. Only (∂gσ) ◦ I makes sense as yet another observation.

In the same vein, all derivatives of I are observable at some finite scale. Collecting all par-
tial derivatives up to some maximum order lets one observe a jet bundle as the representation
of I (see Figure 25).

15The partial derivative of order n in the coordinate x for the scale σ has the one-dimensional receptive field
profile

gn(x, σ) =
∂n

∂xn

e
− x2

2σ2

σ
√

2π

 =

(
−1

σ
√

2

)n

Hn(
x

σ
√

2
)
e
− x2

2σ2

σ
√

2π
,

where Hn denote the Hermite polynomial of order n. The two-dimensional receptive fields gnm(x, y, σ) corre-
sponding to mixed derivatives of order nm are simply products gn(x.σ)gm(y, σ) of these because the Gaussian
is (uniquely!) separable in Cartesian coordinates. In practice, such operators are implemented in the Fourier
domain because one invariably needs the convolution with an image. In the brain, the receptive fields are
implemented spatially though, there is no global Fourier transform in the cortex.D
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Images are given as brute facts. All their derivatives can be observed and thus represented
at scales coarser than their pixelation. The kernels ∂ngσ are best considered as implementa-
tions of derivative operators. They satisfy all properties of the derivatives in the infinitesimal
domain [33, 44, 14, 58], but their use does not require assumptions about the smoothness of an
image. Thus, scale-space theory allows all relations discussed in the text to be implemented
exactly at some finite scale σ.

10.1. Local differential geometry and the brain. The model of local differential geometry
discussed above may immediately double for a model of signal processing in the primary visual
cortex V1. The well-known principal receptive field types [22] may readily be interpreted in
terms of derivative operators [29, 30]. For instance, the well-known “line finder” discovered by
Hubel and Wiesel [21] may naturally be interpreted as a second-order directional derivative
operator.

The various differential invariants discussed in this paper are algebraic combinations of
derivatives of various orders (for instance, see section 8). Any expression can immediately be
compiled into a small neural network [34, 30, 31], probably largely on the dendritic level. This
yields a principled model of local cortical processing. It is a formal, conceptual model, similar
to objects like the “ideal gas” in physics [13]. There is no such a thing as an ideal gas. Yet
any specific gas is first and for all understood as an instance of the ideal gas.

We propose that a productive way to deal with the complexity of the brain is in terms
of conceptual models of the ideal gas type. The local differential geometry discussed here is
meant as a likely candidate for such a model.

11. Conclusions. Numerous applications—image processing being a key example—involve
differential geometry in graph spaces, that are singly isotropic spaces of the kind E2×I, where
the line I is isotropic. This involves formalisms that are quite distinct from the familiar
differential geometry of curves and surfaces immersed in Euclidean three-space E3.

Almost without exception, the resulting formalism will be much less involved in the graph
spaces than in Euclidean spaces. The reason is that the distance metric in Euclidean space
is parabolic, whereas the angle metric is elliptic. In contradistinction, in graph spaces, both
the distance and angle metrics are parabolic, leading to a full symmetry between planes and
points in three-dimensional space. Many of the annoying exceptions that plague Euclidean
geometry [63] simply fail to occur.16

The notion of graph spaces is not generally taught, with the unfortunate result that it is not
at all uncommon to see Euclidean differential geometry being applied to images considered as
surfaces. Although this often “works” in applications—no doubt the reason why the problem
remains unidentified—this involves comparison of apples and oranges that is the mixing of
incommensurate dimensions.

The notions of “curvedness” and “shape index” were originally introduced independently
and essentially in an ad hoc manner [32]. Curvedness can be identified with the Casorati
curvature in Euclidean differential geometry, but it was never accepted as a valid curvature
measure because Casorati [10] used mainly informal arguments that left considerable room

16For this very reason, Strubecker [39] proposed that the teaching of geometry in primary schools should be
based on singly isotropic rather than Euclidean geometry. Although he had a valid point, this proposition—as
was to be expected—was never taken up, no doubt to the detriment of the kids.
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for ambiguity. In the differential geometry of graph spaces, it can be shown that curvedness,
shape index, and orientation occur as different partial aspects of a single entity. It is the
notion of the Procrustes measure [27] RMS deviation from planarity that leads to this insight.
This is interesting because of a statistical rather than differential geometric nature. This
perspective effectively lifts the arbitrariness of the original definitions.

Curvedness and shape index, are widely used in applications in various fields of endeavor.
Research as to the statistical structure of natural images has led to an interest in the marginal
probability densities of curvedness, shape index, and orientation. The distributions are quite
different for a natural distribution in shape space—say, an isotropic normal distribution cen-
tered at its origin (the planar point)—and distributions of shape over a Gaussian random
surface. Moreover, it has been noticed that the empirical distributions often deviate from the
theoretical ones [36, 43]. As it turns out, this is at least to some extent due to the constraint
of isotropy. If the Gaussian random image is only slightly anisotropic, the shapes become con-
centrated on the ridges and ruts, most points become hyperbolic, and approximately umbilical
points become very rare.

In natural images, the statistics are often anisotropic on local but approximately isotropic
on global scales. Lack of appreciation of this fact has led to doubts as to the relevance
of geometrical predictions, as empirical estimates of, for instance, the shape index marginal
differed greatly from the formal expectations. The scale dependence of the degree of anisotropy
is apparently an important property of “natural images.”

Another interesting point that arises from the present discussion is the importance of the
global structure of the relief. This implies that the statistics of features at a certain order may
depend upon the fact that they occur in the context of an image (a planar distribution) [48, 3].
The shape index is an obvious example. Its statistics cannot be derived from the structure
of the quadric shape space alone. It depends crucially on the fact that partial derivatives in
an image are mutually correlated. This immediately leads to the peaking of the shape index
probability density at the ridges and ruts. The present discussion generalizes that to the case
of anisotropic Gaussian images.

Another implication of this are the mutual alignments of edge directions in the linear and
cubic orders, the mutual alignments of ridge orientations in the quadric and quartic orders,
and the very small contribution to the Procrustes metric of the cubic and quartic saddles.
Such correlations are not specific to natural images as is sometimes suggested; they also occur
for isotropic random Gaussian surfaces and are due to the correlation of partial derivatives in
such fields, having nothing to do with image content as such.
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