
53

Network Sparsification for Steiner Problems on Planar

and Bounded-Genus Graphs

MARCIN PILIPCZUK, MICHAŁ PILIPCZUK, and PIOTR SANKOWSKI,

Institute of Informatics, University of Warsaw, Poland

ERIK JAN VAN LEEUWEN, Department of Information and Computing Sciences,

Utrecht University, The Netherlands

We propose polynomial-time algorithms that sparsify planar and bounded-genus graphs while preserving

optimal or near-optimal solutions to Steiner problems. Our main contribution is a polynomial-time algorithm

that, given an unweighted undirected graph G embedded on a surface of genus д and a designated face f
bounded by a simple cycle of length k , uncovers a set F ⊆ E (G) of size polynomial in д and k that contains

an optimal Steiner tree for any set of terminals that is a subset of the vertices of f .

We apply this general theorem to prove that:

—Given an unweighted graph G embedded on a surface of genus д and a terminal set S ⊆ V (G), one

can in polynomial time find a set F ⊆ E (G) that contains an optimal Steiner tree T for S and that has

size polynomial in д and |E (T) |.
—An analogous result holds for an optimal Steiner forest for a set S of terminal pairs.

—Given an unweighted planar graph G and a terminal set S ⊆ V (G), one can in polynomial time find a

set F ⊆ E (G) that contains an optimal (edge) multiway cutC separating S (i.e., a cutset that intersects

any path with endpoints in different terminals from S) and that has size polynomial in |C |.

We would like also to acknowledge the support and extremely productive atmosphere at Dagstuhl

Seminars 13121, 13421, and 14071. At the first one, major technical ideas of the proof of Theorem 1.1

were developed. At the second one, the fundaments of the weighted variant (Theorem 1.7) were

laid, whereas many important details were discussed and straightened during the third one. The

work leading to this article spanned across many years. The work, including the research leading

to these results, received funding from the European Research Council under the European Union’s

Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 267959 (Marcin Pilipczuk,

Michał Pilipczuk), ERC Grant Agreement No. 259515 (Marcin Pilipczuk, Piotr Sankowski), from

the European Research Council under the European Union’s Horizon 2020 research and innovation

program under Grant Agreements No. 714704 (Marcin Pilipczuk) and No. 677651 (Piotr Sankowski),

Foundation for Polish Science (Marcin Pilipczuk, Piotr Sankowski), and Polish funds for years

2011-2014 for co-financed international projects.

Part of the research was done while Marcin and Michał Pilipczuk were at University of Bergen, Norway and Erik Jan

van Leeuwen was at Sapienza University of Rome, Italy and at Max-Planck Institut für Informatik, Saarland Informatics

Campus, Saarbrücken, Germany.

An extended abstract of this work appeared at FOCS 2014 [67].

Authors’ addresses: M. Pilipczuk, M. Pilipczuk, P. Sankowski, Institute of Informatics, University of Warsaw, Banacha 2,

Warsaw, 02-010, Poland; emails: {marcin.pilipczuk, michal.pilipczuk, sank}@mimuw.edu.pl; E. J. van Leeuwen, Department

of Information and Computing Sciences, Utrecht University, PO Box 80.089, Utrecht, 3508 TB, The Netherlands; email:

e.j.vanleeuwen@uu.nl.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

1549-6325/2018/09-ART53 $15.00

https://doi.org/10.1145/3239560

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

mailto:permissions@acm.org
https://doi.org/10.1145/3239560

53:2 M. Pilipczuk et al.

In the language of parameterized complexity, these results imply the first polynomial kernels for Steiner

Tree and Steiner Forest on planar and bounded-genus graphs (parameterized by the size of the tree and

forest, respectively) and for (Edge) Multiway Cut on planar graphs (parameterized by the size of the cutset).

Additionally, we obtain a weighted variant of our main contribution: a polynomial-time algorithm that,

given an undirected plane graph G with positive edge weights, a designated face f bounded by a simple

cycle of weight w (f), and an accuracy parameter ε > 0, uncovers a set F ⊆ E (G) of total weight at most

poly(ε−1)w (f) that, for any set of terminal pairs that lie on f , contains a Steiner forest within additive error

εw (f) from the optimal Steiner forest.

CCS Concepts: • Theory of computation → Sparsification and spanners; Fixed parameter

tractability;

Additional Key Words and Phrases: Steiner tree, sparsification, kernelization, polynomial kernel, planar

graphs

ACM Reference format:

Marcin Pilipczuk, Michał Pilipczuk, Piotr Sankowski, and Erik Jan van Leeuwen. 2018. Network Sparsifica-

tion for Steiner Problems on Planar and Bounded-Genus Graphs. ACM Trans. Algorithms 14, 4, Article 53

(September 2018), 73 pages.

https://doi.org/10.1145/3239560

1 INTRODUCTION

Preprocessing algorithms seek out and remove chunks of instances of hard problems that are ir-
relevant or easy to resolve. The strongest preprocessing algorithms reduce instances to the point
that even an exponential-time brute-force algorithm can solve the remaining instance within lim-
ited time. The power of many preprocessing algorithms can be explained through the relatively
recent framework of kernelization [29, 64]. In this framework, each problem instance I has an
associated parameter k (I), often the desired or optimal size of a solution to the instance. Then a
kernel is a polynomial-time algorithm that preprocesses the instance so that its size shrinks to at
most д(k (I)), for some computable function д. If д is a polynomial, then we call it a polynomial

kernel.
The ability to measure the strength of a kernel through the function д has led to a concerted

research effort to determine, for each problem, the function д of smallest order that can be attained
by a kernel for it. Initial insight into this function, in particular a proof of its existence, is usually

given by a parameterized algorithm: an algorithm that solves an instance I in time д(k (I)) · |I |O (1) .
Such an algorithm implies a kernel with the same function д, while, if the considered problem is
decidable, then any kernel immediately gives a parameterized algorithm as well [29, 64]. However,
if the problem is NP-hard, then this approach can only yield a kernel of superpolynomial size,
unless P = NP. Therefore, different insights are needed to find the function д of smallest order
and, in particular, to find a polynomial kernel. This fact, combined with the discovery that, for
many problems, the existence of a polynomial kernel would imply a collapse in the polynomial
hierarchy [9, 30, 40] has recently led to a spike in research on polynomial kernels.

A focal point of research into polynomial kernels are problems on planar graphs. Many problems
that on general graphs have no polynomial kernel or even no kernel at all, possess a polynomial
kernel on planar graphs. The existence of almost all of these polynomial kernels can be explained
from the theory of bidimensionality [10, 21, 39]. The core assumption behind this theory is that
the considered problem is bidimensional: informally speaking, the solution to an instance must be
dense in the input graph. However, this assumption clearly fails for a lot of problems, which has
led to gaps in our understanding of the power of preprocessing algorithms for planar graphs. In

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

https://doi.org/10.1145/3239560

Network Sparsification for Steiner Problems 53:3

their survey, Demaine and Hajiaghayi [22, 23] pointed out “subset” problems, in particular Steiner
Tree, as an important research goal in the quest to generalize the theory of bidimensionality.

In this article, we pick up this line of research and positively resolve the question to the existence
of a polynomial kernel on planar graphs for three well-known subset problems: Steiner Tree,
Steiner Forest, and Multiway Cut. We remark that the theory of bidimensionality does not
apply to any of these three problems and that, for the first two problems, a polynomial kernel on
general graphs is unlikely to exist [27] and, for the third, the existence of a polynomial kernel on
general graphs is a major open problem [19, 37, 55]. All kernelization results in this article are a
consequence of a single, generic sparsification algorithm for Steiner trees in planar graphs, which
is of independent interest. This sparsification algorithm extends to edge-weighted planar graphs
and we demonstrate its impact on approximation algorithms for problems on planar graphs, in
particular on the EPTAS for Steiner Tree on planar graphs [12].

1.1 Results

We present an overview of the three major results that make up this article. First, we describe the
generic sparsification algorithm for Steiner trees in undirected planar graphs. Second, we show
how this sparsification algorithm powers the kernelization results in this article. Third, we exhibit
the extension of the sparsification algorithm to edge-weighted planar graphs and its implications
for approximation algorithms on planar graphs.

The Main Theorem. In our main contribution, we characterize the behavior of Steiner trees in
bricks. In our work, a brick is simply a connected plane graph B with one designated face formed by
a simple cycle ∂B, which w.l.o.g. is the outer (infinite) face of the plane drawing of B and called the
perimeter of B. Recall that a Steiner tree of a graphG is a tree inG that contains a given set S ⊆ V (G)
(called terminals). We also say that the Steiner tree connects S . In the unweighted setting, a Steiner
tree T that connects S is optimal if every Steiner tree that connects S has at least as many edges
asT . We apply our characterization of Steiner trees in bricks to obtain the following sparsification
algorithm:

Theorem 1.1 (Main Theorem). Let B be a brick. Then one can find in O (|∂B |142 · |V (B) |) time a

subgraph H of B such that

(i) ∂B ⊆ H ,

(ii) |E (H) | = O (|∂B |142), and

(iii) for every set S ⊆ V (∂B), H contains some optimal Steiner tree in B that connects S .

The result of Theorem 1.1 is stronger than just a polynomial kernel, because the graph H con-
tains an optimal Steiner tree for any terminal set that is a subset of the brick’s perimeter. The result
fits in a line of sparsification algorithms that reduce an instance and enable fast queries or compu-
tations (unknown at the current time) on the original instance, such as sparsification algorithms
that approximately preserve vertex distances (so-called graph spanners) [2, 65], that preserve con-
nectivity [62] or that conserve flows and cuts [6, 7, 44, 57]. Such sparsification algorithms are a
common tool in, among others, dynamic graph algorithms [33], especially for planar graphs [26,
34, 35, 54, 70].

We also emphasize that the purely combinatorial (non-algorithmic) statement of Theorem 1.1,
which asserts the existence of a subgraphH that has property (iii) and polynomial size, is nontrivial
and, in our opinion, interesting on its own. A naive construction of a subgraphH that has property
(iii) would mark an optimal Steiner tree for each set S ⊆ V (∂B). Combined with the observation
that any optimal Steiner tree of a set S ⊆ V (∂B) has size at most |∂B | (as ∂B is a Steiner tree

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

53:4 M. Pilipczuk et al.

that connects S), we obtain a bound on the size of H of |∂B | · 2 |∂B | . The polynomial bound of
Theorem 1.1 presents a significant improvement over this naive bound.

The full proof is contained in Sections 3–8. We also prove an analogue of Theorem 1.1 for graphs
of bounded genus, with a polynomial dependence on the genus in the size bound. This analogue
is presented in Section 11.

The approach that we take to prove Theorem 1.1 is very different from previous approaches
to tackle problems on planar graphs or on bricks. In particular, our ideas are disjoint from those
developed in both an EPTAS [12] and a subexponential-time parameterized algorithm [66] for
Planar Steiner Tree. In those works, a brick was cut into so-called strips and then each strip
was cut with a “perpendicular column.” On the other hand, our main partitioning idea is to use an
optimal Steiner tree to decompose the brick. Furthermore, to the best of our knowledge, there is no
work that aims to understand the behavior of a Steiner tree in a brick when no such partitioning is
possible; in our case, this happens when all optimal Steiner trees leave one or two large subbricks.
Most of our article is devoted to developing the tools and techniques to understand this case. We
also stress that we do not employ any techniques used in the theory of bidimensionality. In partic-
ular, we do not use any tools from Graph Minors theory, such as the Excluded Grid Theorem [24,
69]—the engine of the theory of bidimensionality.

Applications of Theorem 1.1. We give three applications of Theorem 1.1. For details, we refer
to Section 10.

For the first application of Theorem 1.1, we consider Steiner Tree. For this problem, a poly-
nomial kernel on general graphs would imply a collapse of the polynomial hierarchy [27]. At the
same time, the core assumption of bidimensionality theory fails and whether a polynomial ker-
nel exists for Steiner Tree on planar graphs was hitherto unknown. Using Theorem 1.1, we can
resolve the existence of a polynomial kernel for Steiner Tree on planar graphs.

Theorem 1.2. Given a Planar Steiner Tree instance (G, S), one can in O (k142
OPT |G |) time find a

set F ⊆ E (G) of O (k142
OPT) edges that contains an optimal Steiner tree connecting S in G, where kOPT

is the size of an optimal Steiner tree.

In fact, Theorem 1.2 easily follows from Theorem 1.1 using the trick of cutting the graph open
along an approximate solution, used often in approximation schemes (e.g., Reference [12]).

We emphasize two aspects of Theorem 1.2. First, the proposed algorithm does not need to be
given an optimal solution nor its size, even though the running time and output size of the algo-
rithm are polynomial in the size of an optimal solution. Second, the running time of the algorithm
can be bounded by O (|G |2): if |G | is smaller than the promised kernel bound, then the algorithm
may simply return the input graph without any modification. Similar remarks hold also for the
second and third applications of Theorem 1.1 that we present later.

For the second application of Theorem 1.1, we modify the approach of Theorem 1.2 for the
closely related Steiner Forest problem on planar graphs. Recall that a Steiner forest that connects

a family S ⊆ V (G) ×V (G) of terminal pairs in a graphG is a forest inG such that both vertices of
each pair in S are contained in the same connected component of the forest.

Theorem 1.3. Given a Planar Steiner Forest instance (G,S), one can in O (k710
OPT
|G |) time find

a set F ⊆ E (G) of O (k710
OPT

) edges that contains an optimal Steiner forest connecting S in G, where

kOPT is the size of an optimal Steiner forest.

Using the analogue of Theorem 1.1 for bounded-genus graphs, we extend Theorems 1.2 and 1.3
to obtain a polynomial kernel for Steiner Tree and even Steiner Forest on such graphs (see
Section 11). Here, we assume that we are given an embedding of the input graph into a surface of

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

Network Sparsification for Steiner Problems 53:5

genus д such that the interior of each face is homeomorphic to an open disc. Extending to graphs
of bounded genus follows the framework of Borradaile et al. [11].

For the third application of Theorem 1.1, we consider Edge Multiway Cut on planar graphs.
Recall that an edge multiway cut1 in a graph G is a set X ⊆ E (G) such that no two vertices of a
given set S ⊆ V (G) are in the same component ofG \ X . A recent breakthrough in the application
of matroid theory to kernelization problems [55, 56] led to the discovery of a polynomial kernel
for Multiway Cut on general graphs with a constant number of terminals. It is a major open
question whether this problem has a polynomial kernel for an arbitrary number of terminals [19,
37, 55]. Here, we show that such a polynomial kernel does exist for Edge Multiway Cut on planar
graphs.

Theorem 1.4. Given a Planar Edge Multiway Cut instance (G, S), one can in polynomial time

find a set F ⊆ E (G) of O (k568
OPT

) edges that contains an optimal solution to (G, S), where kOPT is the

size of this optimal solution.

We note that in contrast to the work on polynomial kernels for Multiway Cut mentioned
before [55, 56], we do not rely on matroid theory.

As an immediate consequence of Theorem 1.2 and Theorem 1.4, we observe that by plugging the
kernels promised by these theorems into the algorithms of Tazari [72] for Planar Steiner Tree
or its modification for Planar Edge Multiway Cut (provided for completeness in Section 12) or
the algorithm of Klein and Marx [53] for Planar Edge Multiway Cut, respectively, we obtain
faster parameterized algorithms for both problems.

Corollary 1.5. Given a planar graph G, a terminal set S ⊆ V (G), and an integer k , one can

(1) in 2O (
√

k log k) + O (k142 |V (G) |) time, decide whether the Planar Steiner Tree instance

(G, S) has a solution with at most k edges;

(2) in 2O (
√

k log k) + poly(|V (G) |) time, decide whether the Planar Edge Multiway Cut instance

(G, S) has a solution with at most k edges;

(3) in 2O (|S |+
√
|S | log k) + poly(|V (G) |) time, decide whether the Planar Edge Multiway Cut

instance (G, S) has a solution with at most k edges.

This corollary improves on the subexponential-time algorithm for Planar Steiner Tree pre-
viously proposed by the authors [66] and on the algorithm for Planar Edge Multiway Cut by
Klein and Marx [53] ifk = o(log |V (G) |). As Tazari’s algorithm extends to graphs of bounded genus,
combining it with our kernelization algorithm, we obtain the first subexponential-time algorithm
for Steiner Tree on graphs of bounded genus. The running time is a computable function of the
genus times the running time of the planar case—see Corollary 11.5.

We also remark that a similar corollary is unlikely to exist for the case of Planar Steiner For-
est. In Section 13, we observe that the lower bound for Steiner Forest on graphs of bounded
treewidth of Bateni et al. [5], with minor modifications, shows also that Planar Steiner For-
est does not admit a subexponential-time algorithm unless the Exponential Time Hypothesis of
Impagliazzo, Paturi, and Zane [46] fails.

1In the approximation algorithms literature, the term multiway cut usually refers to an edge cut, i.e., a subset of edges

of the graph and the node-deletion variants of the problem are often much harder. However, from the point of view of

parameterized complexity, there is usually little or no difference between edge- and node-deletion variants of cut problems,

and hence one often considers the (more general) node-deletion variant as the “default one.” To avoid confusion, in this

article we always explicitly state that we consider the edge-deletion variant.

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

53:6 M. Pilipczuk et al.

Theorem 1.6. Unless the Exponential Time Hypothesis fails, no algorithm can decide in

2o (k)poly(|G |) time whether Planar Steiner Forest instances (G,S) have a solution with at most k
edges.

Edge-Weighted Planar Graphs. Although the decomposition methods in the proof of Theorem 1.1
were developed with applications in unweighted graphs in mind, they can be modified for undi-
rected graphs with positive edge weights (henceforth called edge-weighted graphs). That is, we
show the following weighted and approximate variant of Theorem 1.1:

Theorem 1.7. Let ε > 0 be a fixed accuracy parameter and let B be an edge-weighted brick with

weight function w . Then one can find in poly(ε−1) |B | log |B | time a subgraph H of B such that2

(i) ∂B ⊆ H ,

(ii) w (H) ≤ poly(ε−1)w (∂B), and

(iii) for every set S ⊆ V (∂B) ×V (∂B), there exists a Steiner forest FH that connects S in H such

that w (FH) ≤ w (FB) + εw (∂B) for any Steiner forest FB that connects S in B.

Notice that, contrary to Theorem 1.1, we state Theorem 1.7 in the language of Steiner forest,
not Steiner tree. The reason is that the allowed error in Theorem 1.7 is additive and therefore the
forest statement seems significantly stronger than the tree one. Observe that for Theorem 1.1, it
would be of no consequence to state it in the language of Steiner forest instead of in the language
of Steiner tree.

The proof of Theorem 1.7 extends the techniques developed for Theorem 1.1 to edge-weighted
planar graphs and then wraps this extension into the mortar graph framework developed by
Borradaille, Klein, and Mathieu [12]. Therefore, the main leap to prove Theorem 1.7 turns out
to be a slight variant of Theorem 1.7, where S is allowed to contain at most θ terminal pairs and
the obtained bound for w (H) depends polynomially both on ε−1 and θ . We call this the θ -variant
of Theorem 1.7. As a base case of the proof, we use the case of θ = 1 that reduces to the case of the
spanner construction of Klein for Subset TSP [52]. A proof is presented in Section 9.

Theorem 1.7 influences the known polynomial-time approximation schemes for network design
as follows. The mortar graph framework of Borradaile, Klein, and Mathieu [12] may be understood
as a method to decompose a brick into cells, such that each cell is equipped with θ evenly spaced
portal vertices, and there is an approximate Steiner tree that for each cell uses a subset of the
portal vertices to enter and leave the cell. Then it suffices to preserve an approximate or optimal
Steiner tree for any subset of portal vertices. Previously, only a bound that is exponential in θ on
the preserved subgraph of each cell was known [12]. The impact of our work and particularly of
the θ -variant of Theorem 1.7, is that the dependency on θ can be reduced to a polynomial. This
observation is not only used to prove Theorem 1.7, but also leads to deeper understanding of the
mortar graph framework.

Observe that one can directly derive an EPTAS for Planar Steiner Tree from Theorem 1.7:
cut the input graphG open along a 2-approximate Steiner tree, apply Theorem 1.7 to the resulting
brick B, and project the obtained graph H back onto the original graph. An optimal Steiner tree in
G becomes an optimal Steiner forest in B and thus the projection of H preserves an approximate
Steiner tree for the input instance. Since the total weight of H is within a multiplicative factor
poly(ε−1) of the weight of the optimal solution for the input instance, an application of Baker’s

shifting technique [3] can find an approximate solution in H in 2poly(ε−1) |H | log |H | time. However,
we note that the polynomial dependency on ε in the exponent is worse than the one obtained by
the currently known EPTAS [12], despite our substantially improved reduction of the cells. This is

2In this article, we denote by w (H) the total weight of all the edges of a graph H .

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

Network Sparsification for Steiner Problems 53:7

because that EPTAS utilizes Baker’s technique in a more clever way that is aware of the properties
of the mortar graph and is indifferent to the actual replacement within each cell.

1.2 Discussion

A drawback of our methods is that the exponents in the kernel bounds and the polynomial depen-
dency on ε−1 in the weighted variant are currently large, making the results theoretical. However,
we see the strength of our results in that we prove that a polynomial kernel actually exists—thus
proving that Planar Steiner Tree, Planar Steiner Forest, and Planar Edge Multiway Cut
belong to the class of problems that have a polynomial kernel—rather than in the actual size bound.
Encouraged by the recent progress in understanding distance sparsifiers in planar graphs [43, 58],
we conjecture that the correct dependency in Theorem 1.1 is quadratic, with a grid being the
worst-case scenario.

Another limitation of our methods is that we need to parameterize by the number of edges of
the Steiner tree. A subsequent work of Suchy [71] extended the result to the parameter number

of non-terminal vertices of the tree. Very recently, Marx and the first two authors [61] proved that
Planar Steiner Tree does not admit a subexponential algorithm in planar graphs for the pa-
rameter number of terminals (under the standard assumption of the Exponential Time Hypothesis)
and showed that this refutes an existence of a polynomial kernel (with this parameter) that does
not increase the value of the parameter in the reduction. This shows that probably the number of
edges or non-terminal vertices are the most general parameterizations for which we can obtain a
polynomial kernel in planar graphs.

Similarly, one may consider graph-separation problems with vertex-based parameters, such as
Odd Cycle Transversal or the node-deletion variant of Multiway Cut. On planar graphs, both
of these problems are some sort of Steiner problem on the dual graph. Very recently, the first
and the last author, together with Bart Jansen, adopted this framework to the aforementioned
problems [48].

To generalize our methods, it would be interesting to lift our results to more general graph
classes, such as graphs with a fixed excluded minor. For Edge Multiway Cut, even the bounded-
genus case remains open. Further work is also needed to improve the allowed error in Theorem 1.7.
Currently, this error is an additive error of εw (∂B). In other words, a near-optimal Steiner forest
is preserved only for “large” optimal forests, that is, for ones of size comparable to the perimeter
of B. Is it possible to improve Theorem 1.7 to ensure a (1 + ε) multiplicative error? That is, to
obtain a variant of Theorem 1.7 where the graph H satisfies w (FH) ≤ (1 + ε)w (FB) and thus to
preserve near-optimal Steiner forests at all scales? Finally, since our methods handle problems
that are beyond the reach of the theory of bidimensionality, our contribution might open the door
to a more general framework that is capable of addressing a broader range of problems.

1.3 Related Work

The three problems considered in this article (Steiner Tree, Steiner Forest, and Edge Multiway
Cut) are all NP-hard [20, 50] and unlikely to have a PTAS [8, 20] on general graphs. However, they
do admit constant-factor approximation algorithms [1, 15, 49].

Steiner Tree has a 2 |S | · poly(|G |)-time, polynomial-space algorithm on general graphs [63];
the exponential factor is believed to be optimal [18], but an improvement has not yet been ruled
out under the Strong Exponential Time Hypothesis. The algorithm for Steiner Tree implies a
(2|S|) |S | · poly(|G |)-time, polynomial-space algorithm for Steiner Forest. On the other hand,
Edge Multiway Cut remains NP-hard on general graphs even when |S | = 3 [20], while for the
parameterization by the size of the cut k , a 1.84k · poly(|G |)-time algorithm is known [16].

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

53:8 M. Pilipczuk et al.

Neither Steiner Tree nor Steiner Forest admits a polynomial kernel on general graphs [27],
unless the polynomial hierarchy collapses. Recently, a polynomial kernel was given for Edge and
Node Multiway cut for a constant number of terminals or deletable terminals [55]; nevertheless,
the question for a polynomial kernel in the general case remains open.

Steiner Tree, Steiner Forest, and Edge Multiway Cut all remain NP-hard on planar
graphs [20, 41], even in restricted cases. All three problems do admit an EPTAS on planar graphs [4,
12, 32] and Steiner Tree admits an EPTAS on bounded-genus graphs [11]. As mentioned before,
for many graph problems on planar graphs, both polynomial kernels and subexponential-time al-
gorithms follow from the theory of bidimensionality [21, 39]. However, the theory neither applies
to Steiner Tree, Steiner Forest, nor Edge Multiway Cut.

We are not aware of any previous kernelization results for Steiner Tree, Steiner Forest, or
Edge Multiway Cut on planar graphs. The question of the existence of a subexponential-time
algorithm for Planar Steiner Tree was first explicitly pursued by Tazari [72]. He showed that
such a result would be implied by a subexponential or polynomial kernel. The current authors
adapted the main ideas of the EPTAS for Planar Steiner Tree [12] to show a subexponential-
time algorithm [66], without actually giving a kernel beforehand. The algorithm of Reference [66],
in fact, finds subexponentially many subgraphs of subexponential size, one of which is a subexpo-
nential kernel if the instance is a YES-instance. Finally, for Edge Multiway Cut on planar graphs,

a 2O (|S |) · |G |O (
√
|S |)-time algorithm is known [53] and believed to be optimal [60].

2 PRELIMINARIES

We use standard graph notation, see, e.g., Reference [25]. All our graphs are undirected and, unless
otherwise stated, simple. For a graph G, by V (G) and E (G) we denote its vertex- and edge-set,
respectively. For v ∈ V (G), the neighborhood of v is defined as NG (v) = {u : uv ∈ E (G)} and the
closed neighborhood of v as NG [v] = NG (v) ∪ {v}. We extend these notions to sets X ⊆ V (G) as
NG [X] =

⋃
v ∈X NG [v] and NG (X) = NG [X] \ X . We omit the subscript if the graph is clear from

the context.
For a subgraphH ofG, we silently identifyH with the edge set ofH ; that is, all our subgraphs are

edge-induced. In particular, this applies to all paths, walks, and cycles; we treat them as sequences
of edges.

In this article, we work with both unweighted and edge-weighted graphs. An edge-weighted

graph is a graph G equipped with a weight function w : E (G) → (0,+∞). We explicitly disallow
zero-cost edges in the input graph. For any edge e ∈ E (G), the valuew (e) is the length or weight of
the edge e . For any subgraph H ofG (in particular, for any cycle or path inG), the length or weight

ofH is defined asw (H) =
∑

e ∈H w (e). An unweighted graph is an edge-weighted graph with weight
function w (e) = 1 for each edge e , i.e., w (H) = |H | for any subgraph H .

The distance between two vertices is the length of a shortest path between them. The distance
between two vertex sets is the minimum distance between pairs of vertices in the sets. The distance
between two (sets of) edges is the minimum distance between the endpoints of the edges. By
distG (X ,Y) we denote the distance between objects (vertices, vertex sets, edge sets)X andY in the
graph G.

By Π, we denote the standard euclidean plane. Let G be a plane graph, that is, a graph embed-
ded on plane Π. Let γ be a closed curve on the plane, that is, a continuous image of a circle. We
say that γ strictly encloses a point c on the plane if c does not lie on γ and γ is not the neutral
element of the fundamental group of Π \ {c} (note that this fundamental group is isomorphic to
Z) or, equivalently, c does not lie on γ and γ is not continuously retractable to a single point in
Π \ {c}. We say that γ encloses c if γ strictly encloses c or c lies on γ . We often identify closed

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

Network Sparsification for Steiner Problems 53:9

walks in the graph G with the closed curves that they induce in the planar embedding; thus, we
can say that a closed walk in the graph (strictly) encloses c . We extend these notions to vertices,
edges, and faces of a graph G: a vertex is (strictly) enclosed if its drawing on the plane is (strictly)
enclosed, an edge is (strictly) enclosed if all interior points of its drawing are (strictly) enclosed,
and a face is (strictly) enclosed if all points of its interior are (strictly) enclosed. We also say that
a closed walk in G (strictly) encloses some object if the drawing of this closed walk (strictly) en-
closes the object. Note that if C is a simple cycle in G, then its drawing is a closed curve without
self-intersections and the notion of (strict) enclosure coincides with the intuitive meaning of these
terms.

Definition 2.1. A connected plane graph B is called a brick if the boundary of the infinite face
of B is a simple cycle. This cycle is then called the perimeter of the brick and denoted by ∂B. The
interior of the brick, denoted intB, is the graph induced by all the edges not lying on the perimeter,
that is, intB := B \ ∂B.

Note that for a brick B, all the edges of intB as well as all the vertices of intB not lying on ∂B,
are strictly enclosed by ∂B. For a brick B, every face of B enclosed by ∂B is called an inner face.

For a path P , we denote by P[a,b] the subpath of P starting in vertex a and ending in vertex b.
This definition is extended to the perimeter ∂B of a brick B in the following way. We denote by
∂B[a,b] the subpath of ∂B obtained by traversing ∂B in a counter-clockwise direction from a to
b. On the other hand, for a tree T we denote by T [a,b] the unique path in T between vertices a
and b.

We also need the following notation. Let T be a tree embedded in the plane and let uv be
an edge of T . The subtree of T , rooted at v , with parent edge uv is the connected component of
T \ {uv} that contains v , rooted in v , equipped with the following order on the children of each
node w : order the children of w in counter-clockwise order starting from the parent of w if w � v
and with the edge uv if w = v . We say that a and b are the leftmost and rightmost elements of

V (Tv) ∩V (∂B), respectively, if a,b ∈ V (Tv) ∩V (∂B), V (Tv) ∩V (∂B) ⊆ V (∂B[a,b]), and the face
of ∂B ∪V (Tv) that contains the edge uv is incident to the edges of ∂B[b,a].

2.1 Problem Definitions

For completeness, we formally state the problems considered in this article.

Planar Steiner Tree
Input: An edge-weighted planar graph G, a set of terminals S ⊆ V (G).
Task: Find a connected subgraph T of G of minimum possible length such that S ⊆ V (T) (i.e.,
T connects S).

Planar Steiner Forest
Input: An edge-weighted planar graph G, a family of pairs of terminals S ⊆ V (G) ×V (G).
Task: Find a subgraph H of G of minimum possible length such that for each (s, t) ∈ S, the
terminals s and t lie in the same connected component of H.

Observe that Planar Steiner Tree reduces to Planar Steiner Forest by taking the family S
to be S × S .

As we study Planar Edge Multiway Cut only in unweighted graphs, we state this problem in
the unweighted setting only.

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

53:10 M. Pilipczuk et al.

Fig. 1. An optimal Steiner tree T and how it partitions the brick B into smaller bricks B1, . . . ,Br .

Planar Edge Multiway Cut (PEMwC)
Input: A planar graph G, a set of terminals S ⊆ V (G).
Task: Find a minimum set of edges X such that no two terminals lie in the same connected
component of G \ X .

In the bounded-genus case, we assume that the input graph is given together with an embedding
into a surface of genus д such that the interior of each face is homeomorphic to an open disc.

3 THE CASE OF A NICELY DECOMPOSABLE BRICK

Sections 3–8 are devoted to the proof of Theorem 1.1. However, in most places we take a more
general view and argue about edge-weighted graphs, as we would like to re-use the obtained
structural results in the weighted variant, discussed in Section 9. Hence, unless otherwise stated,
all graphs are equipped with a weight function w .

The idea behind the proof of Theorem 1.1 is to apply it recursively on subbricks (subgraphs
enclosed by a simple cycle) of the given brick B. The main challenge is to devise an appropriate
way to decompose B into subbricks, so that their “measure” decreases. Here we use the perimeter

of a brick as a potential that measures the progress of the algorithm.
Intuitively, we would want to do the following. LetT be a tree in B that connects a subset of the

vertices on the perimeter of B. Then T splits B into a number of smaller bricks B1, . . . ,Br , formed
by the finite faces of ∂B ∪T (see Figure 1). We recurse on bricks Bi , obtaining graphs Hi ⊆ Bi , and
return H :=

⋃r
i=1 Hi . We can prove that this decomposition yields a polynomial bound on |H | if (i)

all bricks Bi have multiplicatively smaller perimeter than B and (ii) the sum of the perimeters of
the subbricks is linear in the perimeter of B.

In this section, we formalize this approach. We first give formal definitions of the brick decom-
position and related notions and then proceed to define what it means for a brick to be nicely
decomposable. Then we explain how Theorem 1.1 can be applied recursively.

Definition 3.1. We say that a brick B′ is a subbrick of a brick B if B′ is a subgraph of B consisting
of all edges enclosed by ∂B′.

Definition 3.2. For a brick B, a brick covering of B is a family B = {B1,B2, . . . ,Bp } of bricks, such
that (i) each Bi , 1 ≤ i ≤ p, is a subbrick of B and (ii) each face of B is contained in at least one brick

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

Network Sparsification for Steiner Problems 53:11

Bi , 1 ≤ i ≤ p. A brick covering is called a brick partition if each face of B is contained in exactly

one brick Bi .

Let us now discuss the notion of brick partition. If B = {B1,B2, . . . ,Bp } is a brick partition of B,
then it follows that every edge of ∂B belongs to the perimeter of exactly one brick Bi , while every
edge of intB either is in the interior of exactly one brick Bi or lies on perimeters of exactly two
bricks Bi , Bj for i � j.

Any connected set F ⊆ B will be called a connector. Let S be the set of vertices of ∂B adjacent to
at least one edge of F ; the elements of the set S will be called the anchors of the connector F . We
then say that F connects S . For a connector F , we say that F is optimal if there is no connector F ′

with w (F ′) < w (F) that connects a superset of the anchors of F . Clearly, each optimal connector
F induces a tree, whose every leaf is an anchor of F . For a connector F , every part of ∂B between
two consecutive anchors of F will be called an interval of F .

We say that a connector F ⊆ B is brickable if the boundary of every inner face of ∂B ∪ F is a
simple cycle, i.e., these boundaries form subbricks of B. Let B be the corresponding brick partition
of B; observe that then

∑
B′ ∈Bw (∂B′) ≤ w (∂B) + 2w (F). Note that a tree is brickable if and only

if all its leaves lie on ∂B and, consequently, every optimal connector is brickable. We now move
to the definition of one of the crucial notions that explains which partitions and coverings can be
used for the recursive step.

Definition 3.3. The total perimeter of a brick coveringB = {B1, . . . ,Bp } is defined as
∑p

i=1w (∂Bi).
For a constant c > 0, B is c-short if the total perimeter of B is at most c ·w (∂B). For a constant
τ > 0, B is τ -nice if w (∂Bi) ≤ (1 − τ) ·w (∂B) for each 1 ≤ i ≤ p.

Similarly, a brickable connector F ⊆ B, withB = {B1, . . . ,Bp } the corresponding brick partition,
is c-short if B is c-short, simply short if it is 3-short and F is τ -nice if B is τ -nice.

Observe that for a brickable connector F ⊆ B, ifw (F) ≤ w (∂B) · (c − 1)/2, then F is c-short and,
in particular, if w (F) ≤ w (∂B), then F is 3-short. Moreover, if F is a tree with leaves on ∂B and of
length at most w (∂B), then F is a short brickable connector. Such a tree is called a 3-short tree (or
just short instead of 3-short, for simplicity). The following theorem is needed to make our proof
algorithmic.

Theorem 3.4. Let τ > 0 be a fixed constant. Given an unweighted brick B, in O (|∂B |8 |B |) time one

can either correctly conclude that no short τ -nice tree exists in B or find a short τ -nice brick covering

of B.

A slightly more technical variant of Theorem 3.4, in the edge-weighted setting, is stated in
Section 8. The proofs of Theorem 3.4 and its edge-weighted counterpart, given in Section 8, are a
technical modification of the classical algorithm of Erickson et al. [36] that computes an optimal
Steiner tree in a planar graph assuming that all the terminals lie on the boundary of the infinite face.
It uses the Dreyfus-Wagner dynamic-programming approach, where a state consists of a subset of
already connected terminals and the current “interface” vertex; the main observation is that only
states with consecutive terminals on the boundary are relevant, yielding a polynomial bound on
the number of them. In our case, we can proceed similarly: our state consists of the leftmost and
rightmost chosen terminal, the “interface” vertex inside the brick, the total length of the tree, and
the length of the leftmost and rightmost path in the constructed tree. Consequently, the terminals
are chosen on-the-fly.

For technical reasons, we cannot ensure that if some short τ -nice tree exists, then the output of
the algorithm of Theorem 3.4 will actually be a brick partition corresponding to some short τ -nice
tree. Instead, the algorithm may output a brick covering, but one that is guaranteed to be short
and nice for some choice of constants. Fortunately, this property is sufficient for our needs.

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

53:12 M. Pilipczuk et al.

Armed with Theorem 3.4 and the notion of brick partition and covering, we may now describe
the recursive step in the algorithm of Theorem 1.1. Thus, in the rest of this section we work with
unweighted bricks only and w (H) = |H | for any subgraph H . The following lemma is the main
technical contribution of this section.

Lemma 3.5. Let c,τ > 0 be constants. Let B be an unweighted brick and let B = {B1, . . . ,Bp } be a

c-short τ -nice brick covering of B. Assume that the algorithm of Theorem 1.1 was applied recursively

to bricks B1, . . . ,Bp and let H1, . . . ,Hp be the subgraphs output by this algorithm for B1, . . . ,Bp ,

respectively, where |Hi | ≤ C · |∂Bi |α for some constants C > 0 and α ≥ 1 such that (1 − τ)α−1 ≤ 1
c

.

Let H =
⋃p

i=1 Hi . Then H satisfies conditions (i)-(iii) of Theorem 1.1, with |H | ≤ C · |∂B |α .

Proof. To see that H satisfies condition (i), note that every edge of ∂B is in the perimeter of
some brick Bi and that ∂Bi ⊆ Hi for every i = 1, 2, . . . ,p. Therefore, ∂B ⊆ H .

To see that H satisfies condition (ii), recall that B is c-short and that |∂Bi | ≤ (1 − τ) · |∂B | for
each i = 1, 2, . . . ,p. Therefore, |∂Bi |α ≤ |∂Bi | · (1 − τ)α−1 |∂B |α−1 and

|H | ≤
p∑

i=1

|Hi |

≤ C ·
p∑

i=1

|∂Bi |α

≤ C · (1 − τ)α−1 |∂B |α−1 ·
p∑

i=1

|∂Bi |

≤ c · (1 − τ)α−1 ·C · |∂B |α

≤ C · |∂B |α .
Finally, to see that H satisfies condition (iii), let S ⊆ V (∂B) be a set of terminals lying on the

perimeter of B and let T be an optimal Steiner tree connecting S in B that contains a minimum
number of edges that are not in H . We claim that T ⊆ H . Assume the contrary and let e ∈ T \ H .
Since each face of B is contained in some brick of B, there exists a brick Bi such that ∂Bi encloses
e . As ∂Bi ⊆ Hi ⊆ H , we infer e � ∂Bi . Consider the subgraph T ∩ intBi (i.e., the part of T strictly
enclosed by ∂Bi) and let X be the connected component of this subgraph that contains e . Clearly,
X is a connector inside Bi . Since Hi is obtained by a recursive application of Theorem 1.1, there
exists a connected subgraph D ⊆ Hi that connects the anchors of X and that satisfies |D | ≤ |X |.
Let T ′ = (T \ X) ∪ D. Observe that |T ′ | ≤ |T | and |T ′ \ H | < |T \ H |.

Since D connects the anchors of X in Hi , T
′ still connects the anchors of T in B, that is, T ′

connects S . Indeed, if t1, t2 ∈ S and P is a path from t1 to t2 in T , then for every maximal subpath
Q of P contained in X , we observe that the endpoints of Q are anchors of X in Bi and replace
Q with the path Q ′ connecting the endpoints of Q in D. After performing such replacemend for
every such path Q , we obtain a path P ′ connecting t1 and t2 in T ′. Since the choice of t1 and t2 is
arbitrary, T ′ connects S .

Consequently, if T ′′ is a spanning tree of the connected component of T ′ containing S , then
T ′′ is a tree connecting S with |T ′′ | ≤ |T | and |T ′′ \ H | < |T \ H |. This contradicts the choice ofT .
Hence, T ⊆ H . �

We may now sketch the first step of our kernelization algorithm of Theorem 1.1; a formal ar-
gument is provided in Section 7. We run the algorithm of Theorem 3.4 for the brick B and some
fixed small constant τ > 0 (to be chosen later). If the algorithm returns a short τ -nice brick cover-
ing B = {B1,B2, . . . ,Bp }, then we recurse on each brick Bi , obtaining a graph Hi of size bounded

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

Network Sparsification for Steiner Problems 53:13

polynomially in |∂Bi |. By Lemma 3.5, the assumptions of shortness and τ -niceness yield a poly-

nomial bound on |⋃p
i=1 Hi | in terms of |∂B |, where the exponent α is chosen large enough so that

(1 − τ)α−1 < 1
3 . If the algorithm of Theorem 3.4 concluded that brick B does not contain any short

τ -nice tree, then we proceed to the arguments in the next sections with this assumption.

4 CARVES AND THE CORE

Let B be a possibly edge-weighted brick. We are now working with the assumption that B does
not contain any short τ -nice tree for some τ > 0. In this section, we define the notion of carving a
small portion of the brick, which will be a crucial technical ingredient in our further reasonings.
In particular, we formalize the intuition that if no short τ -nice tree can be found, then B contains a
well-defined middle region and each attempt of carving out some part of B using a limited budget
cannot affect this middle region. In the following, we use a constant δ ∈ (0, 1

2) to be determined
later.

We start by formalizing what we mean by “carving.”

Definition 4.1. A δ -carve L from a brick B is a pair (P , I), where P (called the carvemark) is a path
in B between two distinct vertices a,b ∈ V (∂B) of length at most (1

2 − δ) ·w (∂B) and I (called the
carvebase) is a shortest of the two paths ∂B[a,b], ∂B[b,a]. If P has only two common vertices with
∂B, i.e.,V (P) ∩V (∂B) = {a,b}, then the δ -carve is strict. The subgraph enclosed by the closed walk
P ∪ I is called the interior of a δ -carve.

Observe that if a δ -carve (P , I) is strict, then P ∪ I is a simple cycle and thus the interior of (P , I)
is a brick. We often identify a strict δ -carve with this brick.

In the following lemma, we observe that if a brick does not admit any short τ -nice trees, then
the carvebases cannot be much longer than the carvemarks.

Lemma 4.2. For any τ ,δ ∈ (0, 1
2), δ > τ , if B admits no short τ -nice tree, then the base I of any

δ -carve (P , I) in B has length at most w (P) + τw (∂B).

Proof. Consider a δ -carve L = (P , I) with the carvemark P between vertices a,b, such that
I = ∂B[a,b]. Let I ′ = ∂B[b,a]. Sincew (P) ≤ w (∂B), P is short. Since B admits no short τ -nice tree,
then P is not τ -nice. This, in particular, implies that w (P) +w (I) or w (P) +w (I ′) is larger than
(1 − τ)w (∂B). Since, w (I) ≤ w (I ′), we have

w (P) +w (I ′) > (1 − τ)w (∂B).

As w (I) +w (I ′) = w (∂B), we obtain

w (P) + τw (∂B) > w (I).

This finishes the proof. �

By applying Lemma 4.2 to the maximum length of a carvemark, that is, (1
2 − δ) ·w (∂B), we

obtain the following corollary.

Corollary 4.3. For any τ ∈ (0, 1
4) and any δ ∈ [2τ , 1

2), if B admits no short τ -nice tree, then the

base of any δ -carve L = (P , I) in B has length at most (1
2 −

δ
2) ·w (∂B). In particular, w (P) +w (I) ≤

(1 − 3
2δ)w (∂B) < (1 − τ)w (∂B).

Note that Corollary 4.3 implies that, under its assumptions, the base of a carve is unique. More-
over, we can make the following observation. Recall that a treeT in B is brickable if and only if all
its leaves lie on ∂B.

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

53:14 M. Pilipczuk et al.

Lemma 4.4. For any τ ∈ (0, 1
4) and any δ ∈ [2τ , 1

2), if B admits no short τ -nice tree, then for any

brickable short treeT with diameter not bigger than (1
2 − δ) ·w (∂B) there exists an interval IT of ∂B

of length at most (1
2 −

δ
2)w (∂B) such that all anchors of T are in IT .

Proof. Observe that T is short, but not τ -nice. Hence, there exists a brick B′ induced by T of
perimeter bigger than (1 − τ)w (∂B). The intersection of ∂B′ with T cannot be longer than the
diameter of T , so ∂B′ \T , which is an interval I on ∂B, has length at least

(1 − τ)w (∂B) −
(

1

2
− δ

)
w (∂B) =

(
1

2
− τ + δ

)
w (∂B) ≥

(
1

2
+
δ

2

)
w (∂B).

All other anchors of T need to be contained in the interval IT = ∂B \ I , which is of length at most

(1
2 −

δ
2)w (∂B). �

We now proceed to defining the region that can be carved out by some δ -carve.

Definition 4.5. A subgraph F of B can be δ -carved if there is a δ -carve L of B such that F is also
a subgraph of the interior of L.

In particular, a vertex, edge, or face of B can be δ -carved if there is a δ -carve L of B that encloses
this vertex, edge, or face. One can also define a similar notion for strict δ -carves. The following
lemma shows that, in the case that is of our interest, the two notions coincide.

Lemma 4.6. For any τ ∈ (0, 1
4) and any δ ∈ [2τ , 1

2), if a brick B admits no short τ -nice tree, then a

face f of B can be δ -carved if and only if it can be strictly δ -carved.

Proof. By definition, a face that can be strictly δ -carved can also be δ -carved. Therefore, we
proceed to prove the converse. Let f be a face enclosed by a δ -carve L = (P , I), where I = ∂B[a,b]
for two vertices a,b ∈ V (∂B). We may assume that |P ∩V (∂B) | is minimum among all δ -carves
that δ -carve f .

We prove that |P ∩V (∂B) | = 2 and thus L is strict. Suppose for sake of contradiction that |P ∩
V (∂B) | > 2 and let c be any internal vertex of P that lies on ∂B. We consider two cases.

In the first case, suppose that c ∈ V (I). Observe that L1 = (P[a, c], ∂B[a, c]) and L2 = (P[c,b],
∂B[c,b]) are both δ -carves, because w (∂B[a, c]),w (∂B[c,b]) < w (∂B[a,b]) ≤ 1

2w (∂B) and also

w (P[a, c]),w (P[c,b]) ≤ w (P) ≤ (1
2 − δ) ·w (∂B). Moreover, at least one of these δ -carves encloses

f . Since the carvemarks of L1 and L2 contain less vertices of ∂B than L does, this contradicts the
choice of L.

In the second case, suppose that c � V (I). Observe that P is a brickable tree of diameter and size
at most (1

2 − δ) ·w (∂B) that connects three anchors a, b, and c . Consequently, let IP be the interval
whose existence is asserted by Lemma 4.4 for P . As a,b ∈ V (IP) and w (∂B[b,a]) > w (∂B)/2 by
Corollary 4.3, we have that ∂B[a,b] ⊆ IP . Therefore, either ∂B[a, c] or ∂B[c,b] is contained in IP
and thus has length at most (1

2 −
δ
2)w (∂B). Without loss of generality, assume that it is ∂B[a, c].

In this case, L′ = (P[a, c], ∂B[a, c]) is a δ -carve that encloses f , because it encloses a superset of
the faces enclosed by (P , I). Since the carvemark of L′ contains less vertices of ∂B than L does, we
contradict the choice of L. �

We now present the main result of this section: there is a middle region of B that cannot be
carved out of B using a limited budget, i.e., by a δ -carve for some appropriate choice of δ .

Theorem 4.7 (Core Theorem). For any τ ∈ (0, 1
4) and any δ ∈ [2τ , 1

2), if B has no short τ -nice

tree, then there exists a face of B that cannot be δ -carved. Moreover, such a face can be found inO (|B |)
time.

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

Network Sparsification for Steiner Problems 53:15

Fig. 2. Panel (a) illustrates the proof of Lemma 4.4, whereas panel (b) refers to Claim 4.1.

Proof. We first prove the existential statement and then show how the proof can be made
algorithmic.

Define maps v → π (v) and v → ξ (v) for v ∈ V (B), such that π (v) is a vertex of ∂B closest to v
and ξ (v) is a shortest path between v and π (v). We can assume for any two vertices v1,v2 ∈ V (B)
that ξ (v1) and ξ (v2), when traversed from v1 and v2 respectively, are either disjoint or when they
meet they continue together towards the same vertex of ∂B (implying that π (v1) = π (v2)). Such
a property can be ensured by constructing maps π , ξ in the following manner: attach a super-
terminal s0 adjacent to every vertex of ∂B with unit-weight edges and apply a linear-time shortest-
path algorithm [45] from s0. In the obtained shortest-path tree, vertices of ∂B are children of the
root s0. For each subtree Tv ′ rooted in a child v ′ of s0, we set π (v) = v ′ for every vertex v ∈ Tv ′

and we set ξ (v) as the path from v to v ′ in Tv ′ . By the definition of maps π , ξ , π (v) = v and ξ (v)
consists of vertex v only for every v ∈ V (∂B).

Now fix some strict δ -carve L = (P , ∂B[a,b]), where a,b ∈ V (∂B) are the endpoints of the carve-
mark P of L. Let B′ be the subbrick enclosed by L.

Claim 4.1. There is an interval IL on ∂B of length at most (1
2 −

δ
2) ·w (∂B) that (i) contains the

carvebase of L and (ii) contains π (v) for any v ∈ V (B′).

Proof. Let D := π (V (B′)) \V (∂B[a,b]). If D = ∅, then IL := ∂B[a,b] satisfies the desired con-
ditions by Corollary 4.3, so assume otherwise. Let σ : D → V (B′) be any mapping such that
π (σ (c)) = c for any c ∈ D. Note that ξ (σ (c)) intersects P ; let σ ′(c) be the vertex of V (ξ (σ (c))) ∩
V (P) that is closest to c on ξ (σ (c)) and let Pc := ξ (σ (c))[c,σ ′(c)]. Observe that, by the construction
of the paths ξ (·), for distinct c,d ∈ D, the paths ξ (σ (c)) and ξ (σ (d)) are vertex-disjoint.

We now show that, for any c,d ∈ D (where possibly c = d), there exists an interval Ic,d ⊆ ∂B such

thatw (Ic,d) ≤ (1
2 −

δ
2)w (∂B), c,d ∈ V (Ic,d) and ∂B[a,b] ⊆ Ic,d . Consider the subgraphTc,d := P ∪

Pc ∪ Pd (see Figure 2(b)). Observe thatTc,d is a brickable tree in B with anchors a, b, c , and d . With-
out loss of generality, assume that a, σ ′(c), σ ′(d), andb lie on P in this order (possibly σ ′(c) = σ ′(d)
if c = d). Denote P1 = P[a,σ ′(c)], P2 = P[σ ′(c),σ ′(d)], and P3 = P[σ ′(d),b]. As ξ (σ (c)) is a shortest
path between σ (c) and V (∂B), w (Pc) ≤ w (P1) and, symmetrically, w (Pd) ≤ w (P3). Consequently,
the diameter of Tc,d is bounded by w (P), which is at most (1

2 − δ)w (∂B) by definition and thus

w (Tc,d) ≤ w (P) +w (Pc) +w (Pd) ≤ w (P) +w (P1) +w (P3) ≤ 2w (P) < w (∂B).

Hence, Lemma 4.4 applies to Tc,d and we obtain an interval of length at most (1
2 −

δ
2)w (∂B) that

contains a, b, c , and d . For any c,d ∈ D, let us denote the interval obtained this way by Ic,d . As
w (∂B[b,a]) > w (∂B)/2, we have ∂B[a,b] ⊆ Ic,d . Hence, Ic,d has the claimed properties.

We now find the interval IL . Traverse ∂B in a counter-clockwise direction from a and let b ′ be
the last vertex for which w (∂B[a,b ′]) ≤ (1

2 −
δ
2)w (∂B). Symmetrically, traverse ∂B in a clockwise

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

53:16 M. Pilipczuk et al.

direction from b and let a′ be the last vertex for which w (∂B[a′,b]) ≤ (1
2 −

δ
2)w (∂B). Observe

that a′,a,b,b ′ lie on ∂B in this counter-clockwise order and a′ � b ′. Moreover, note that for any
c,d ∈ D, it follows from the properties of Ic,d that Ic,d ⊆ ∂B[a′,b ′] and thus D ⊆ ∂B[a′,b ′]. Let c0

and d0 be the vertices of D that are closest to a′ and b ′ on ∂B[a′,b ′], respectively (possibly c0 = d0

if |D | = 1). We claim that IL := Ic0,d0
satisfies the conditions of the claim. By the properties of

Ic0,d0
proven above, the length of IL is at most (1

2 −
δ
2)w (∂B) and ∂B[a,b] ⊆ Ic0,d0

. Hence, property
(i) is satisfied. If c0 = d0, then |D | = 1 and property (ii) is satisfied by the construction of Ic0,d0

.
If c0 � d0, then ∂B[d0, c0] � ∂B[a′,b ′] and, consequently, ∂B[c0,d0] ⊆ Ic0,d0

. Since ∂B[a,b] ⊆ Ic0,d0

andD ⊆ ∂B[c0,d0], we infer that π (V (B′)) ⊆ V (Ic0,d0
). Hence, property (ii) is satisfied. This finishes

the proof of the claim. �

Armed with Claim 4.1, we can proceed to the proof of the existential statement of Theorem 4.7.
The proof strategy is as follows: given the map π : V (B) → V (∂B), we extend π to a map π̃ such
that:

(i) π̃ is a continuous map from the closed disk enclosed by ∂B to its boundary;
(ii) π̃ is the identity when restricted to the boundary of this disk, i.e., to ∂B.

We will define the extension π̃ using Claim 4.1 and the assumption that every face of B can be
δ -carved. Such a mapping π̃ , however, would be a retraction of a closed disc onto its boundary.
This contradicts Borsuk’s non-retraction theorem [13], which states that such a retraction cannot
exist.

We proceed with the construction of π̃ . We first extend the map π to the edges of B. Consider
any edge vw of B. Since vw lies on the perimeter of some face of B, there exists a δ -carve L that
encloses vw . By Lemma 4.6, we can assume that L is strict. By Claim 4.1, π (v) and π (w) both lie

on IL , which is of length at most (1
2 −

δ
2) ·w (∂B). Hence, among the two intervals ∂B[π (v),π (w)]

and ∂B[π (w),π (v)], one is of length at most (1
2 −

δ
2) ·w (∂B) and one is of length at least (1

2 +
δ
2) ·w (∂B). Therefore, we map the edge vw in a continuous manner onto the shorter of these
two intervals in such a way that the distance between any two points on the embedding of vw is
proportional to the distance of their images on this shorter interval. Note that the image ofvw is a
subinterval of IL for every L that strictly δ -carves vw . By Claim 4.1, IL and IL′ for strict δ -carves L
and L′ can share only a subinterval. Moreover, observe that if vw ∈ ∂B, then π (v) = v , π (w) = w
and π̃ is the identity on vw . Hence, property (ii) of π̃ is already satisfied.

It remains to define π̃ on faces of B. Let f be any face of B. Since we assumed that every face of B
can be δ -carved, there exists some δ -carve L that encloses f . Again, by Lemma 4.6, we can assume
that L is strict. As we have observed, π (u) ∈ IL for every u on the boundary of f and π̃ (e) ⊆ IL
for every edge e on the boundary of f . Since IL is an interval, which is a simply connected metric
space, we can extend π̃ from the boundary of face f to its interior in a continuous manner such
that the whole face f is mapped into IL .

By construction, π̃ is continuous and maps the closed disc enclosed by ∂B onto its boundary such
that ∂B is fixed in this mapping. Hence, π̃ is a retraction of a disc onto its boundary, contradicting
Borsuk’s non-retraction theorem. Hence, there must be an inner face of B that cannot be δ -carved
and the existential statement is proved.

Finally, we present how to find such a face in timeO (|B |). As discussed earlier, we construct the
mapping π by first placing a super-terminal s0 on the outer face of B, attaching it to each vertex of
V (∂B) with a unit-weight edge, and then constructing a shortest-path tree from s0 in the obtained
plane graph in linear time [45]. Observe now that we have in fact proven not only that some face f0
cannot be δ -carved, but also that for some face f0, the images of the vertices of f0 are not contained

in an interval of length at most (1
2 −

δ
2) ·w (∂B) on ∂B — otherwise, the extended mapping π̃ could

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

Network Sparsification for Steiner Problems 53:17

Fig. 3. (a) shows an optimal Steiner tree that connects a set of vertices on the perimeter of B and that consists

of two small trees T1,T2 that are connected by a long path P . (b) shows a cycle C that (in particular) keeps

the small trees T1,T2 in the ring between C and ∂B (i.e., no edge of T1,T2 is strictly enclosed by C) and a

subsequent decomposition of B into smaller bricks.

be constructed, leading to a contradiction. Clearly, given the mapping π we can identify such a
face f0 in O (|B |) time by performing a linear-time check on the boundary of each face of B. By
Claim 4.1, any face for which this check fails cannot be δ -carved. �

5 MOUNTAINS

Recall that we are working with a brick B that does not admit a short τ -nice tree. Our goal in
the next two sections is to show that in such a brick, optimal Steiner trees, which are a natural
candidate for such partitioning treesT , behave in a specific way. For example, consider the tree of
Figure 3(a), which consists of two small trees T1, T2 that lie on opposite sides of the brick B and
that are connected through a shortest path P (of length slightly less than |∂B |/2). Then both faces
of ∂B ∪T that neighbor P may have perimeter almost equal to |∂B |, thus blocking our default
decomposition approach.

To address this case, we propose a completely different decomposition. Intuitively, we find a
cycle C of length linear in |∂B | that lies close to ∂B, such that all vertices of degree three or more
of any optimal Steiner tree are hidden in the ring between C and ∂B (see Figure 3(b)). We then
decompose the ring between ∂B and C into a number of smaller bricks. We recursively apply
Theorem 1.1 to these bricks and return the result of these recursive calls together with a set of
shortest paths inside C between any pair of vertices on C .

In this section, we develop the tools that we need to find a cycleC of length O (w (∂B)) that lies
close to the perimeter of B and that separates the core from all vertices of degree at least three of
some optimal solution for any set of terminals on ∂B. To this end, we need a deep and rigorous
understanding of the brick. Then, in Section 6, we exploit this understanding to actually find the
cycle C .

Before we start, we need the following notion. For a path P in a brick B connecting a and b and
a real 0 ≤ κ ≤ w (P), we define the vertex at distance κ from a on P , denoted v (P ,a,κ) as follows. If
there exists v ∈ V (P) such that w (P[a,v]) = κ, then v (P ,a,κ) = v . Otherwise, we find the unique
edge xy ∈ P such that w (P[a,x]) < κ < w (P[a,y]), subdivide it by inserting a new vertex v such

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

53:18 M. Pilipczuk et al.

that w (xy) = w (xv) +w (vy) and w (P[a,x]) +w (xv) = κ and set v (P ,a,κ) = v . If we speak about
a vertex at distance κ from a on P in B and an edge xy needs to be subdivided to obtain v (P ,a,κ),
then we abuse notation and identify the original brick B and path P with the brick B and the path P
with the edge xy subdivided. Observe that this subdivision does not change any metric properties
of the brick B.

The main notion in this section are δ -carves of a special form which are defined as follows.

Definition 5.1. For a constant δ ∈ (0, 1/2) and fixed l , r ∈ V (∂B), a δ -mountain of B for l , r is a
δ -carve M in B such that

(1) l and r are the endpoints of the carvemark and carvebase of M ;
(2) there exists a real κM , 0 ≤ κM ≤ w (M), such that if we define vM = v (M, l ,κM), PL =

M[l ,vM] and PR = M[vM , r], then PL is a shortest l–PR path in the subgraph enclosed
by M and PR is a shortest r–PL path in the subgraph enclosed by M .

We denote a mountain either by M to refer to the subgraph of B enclosed by the carve or, if we
want to exhibit the choice of κM and the partition of the carvemark into paths PL and PR , we write
(PL ∧ PR). By abusing notation, we may write M = (PL ∧ PR). We call the vertex vM the summit

of the mountain. We also say that a mountain M connects the vertices l and r .
We want to stress that mountains are discrete objects. Observe that, formally, a mountain is a

carve M only and the definition speaks about the existence of a real κM and a vertexvM (that may
not exist in B, if we need to subdivide some edge to obtain it). Hence, a mountain is a discrete
object in B and there are only a finite number of mountains in a fixed brick B.

Throughout this section, when we discuss a (finite) family of mountains in B and prove some
structural properties of them, we will assume that the summits vM exist in B. In particular, if we
use notation M = (PL ∧ PR), then we implicitly assume that the summit vM is (already) present
in B. In the unweighted setting, one may observe that κM can always be taken to be integral and
thenvM always exists in the brick B. In the edge-weighted setting, we can ensure thatvM exists by
subdividing some edges. Observe that subdividing some edges of B does not change the family of
mountains with fixed endpoints l and r . However, when we move to the algorithmic part—where
we discuss how to find some specific mountains in a brick B—we will need to be careful not to
assume that vM is present in the brick B.

Before we move on to the properties of δ -mountains, we give an intuition why we study this
notion. Assume that among the terminals S lying on the boundary of the brick, one can distinguish
a small set Y ⊆ S that are “close enough” to each other and considerably “far away” from S \ Y .
Intuitively, an optimal Steiner tree connecting S should gather all of Y in one subtreeTv such that
the leftmost and rightmost elements of Y on the interval of ∂B containing Y , denote them by l
and r , correspond to the leftmost and the rightmost anchors of Tv . Consider the δ -carve induced
by the path in Tv joining l and r , with carvebase ∂B[l , r]. Observe that if this δ -carve was not a
δ -mountain with summitv , then there would exist a shorter path inside this δ -carve that could be
used as a shortcut to decrease the cost of T . This is formalized in the following lemma.

Lemma 5.2. Let B be a brick and T be an optimal Steiner tree that connects S := V (T) ∩V (∂B) in

B. Let uv ∈ T be an edge ofT where v is of degree at least 3 inT and letTv be the subtree ofT rooted

at v with parent edge uv . Let a and b be the leftmost and rightmost elements of V (Tv) ∩V (∂B) and

let l , r ∈ ∂B[b,a] be two vertices such that l � r and a,b ∈ ∂B[l , r]. Let PL = T [v,a] ∪ ∂B[l ,a] and

PR = T [v,b] ∪ ∂B[b, r]. Ifw (∂B[l , r]) < w (∂B)/2, then M := (PL ∧ PR) is a δ -mountain, connecting

l and r , for any δ < 1/2 − (w (PL) +w (PR))/w (∂B).

Proof. Recall that, by the definition of the leftmost and rightmost elements ofV (Tv) ∩V (∂B),
we have thatV (Tv) ∩V (∂B) ⊆ V (∂B[a,b]). As v is of degree at least 3 inT , it is of degree at least

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

Network Sparsification for Steiner Problems 53:19

2 inTv and PL ∩ PR = {v}. Therefore, PL ∪ PR is a path and it induces a δ -carve M with carvebase
∂B[l , r], as w (∂B[l , r]) < w (∂B)/2.

Suppose that M is not a mountain. Without loss of generality, there exists a path P enclosed
by M that connects l with w ∈ V (PR) such that V (PR) ∩V (P) = {w } and w (P) < w (PL). By
construction, P passes through a and P[l ,a] = ∂B[l ,a]. Let D be the subgraph of T enclosed
by the closed walk PL[a,v] ∪ P[a,w] ∪ PR[v,w]. Define T ′ := (T \ D) ∪ PR[v,w] ∪ P[a,w]. As
PR[v,w] ∪ PL[a,v] ⊆ D, w (T ′) < w (T). By the definition of a and b, PL \ P does not contain any
vertex of ∂B. Therefore,T ′ is a connected subgraph of B connectingV (T) ∩V (∂B), a contradiction
to the minimality of T . �

The goal of this section is essentially to prove that if we take the union of all maximal δ -
mountains with fixed l and r , then the perimeter of the resulting subgraph has length bounded
linearly in the length of the carvebase. This intuition is captured by the following theorem.

Theorem 5.3 (Mountain Range Theorem). Fix τ ∈ [0, 1/4) and δ ∈ [2τ , 1/2) and assume B does

not admit any τ -nice 3-short tree. Then for any fixed l , r ∈ V (∂B) withw (∂B[l , r]) < w (∂B)/2, there

exists a closed walk Wl,r in B of length at most 3w (∂B[l , r]) such that, for each face f of B, f is

enclosed byWl,r if and only if f belongs to some δ -mountain connecting l and r . Moreover, the set of

the faces enclosed byWl,r can be computed in O (|B |) time.

The set of the faces enclosed byWl,r is called the δ -mountain range of l , r .
Observe that in Lemma 5.2, the discussed mountain has summit v that belongs to B (i.e., we

do not need to subdivide any edge). However, in the edge-weighted setting we need to allow the
mountains to have summits in the middle of some edges to obtain the statement of Theorem 5.3.

The rest of this section is devoted to the proof of Theorem 5.3. Henceforth, we assume that
τ ∈ [0, 1/4), δ ∈ [2τ , 1/2), l , r ∈ V (∂B) are fixed. Whenever we speak about a mountain, we mean
a δ -mountain connecting l and r .

5.1 Preliminary Simplification Steps

We start the proof of Theorem 5.3 with the following simplification step. We attach to B two paths
P,P′ connecting l and r , being copies of ∂B[l , r] and ∂B[r , l], respectively, drawn in the outer face
of B in such a manner that P ∪P′ is the infinite face and P ∪ ∂B[l , r] and P′ ∪ ∂B[r , l] are two
finite faces of the constructed graph B′. Note that B′ is also a brick of perimeterw (∂B) and that all
δ -mountains connecting l and r in B are also δ -mountains in B′ (with carvebase ∂B[l , r] replaced
by P) with the additional property that the δ -carves of these mountains are strict. Moreover, as
w (P′) > w (∂B)/2, any mountain that is present in B′ but not in B is induced by the δ -carve (P,P)
and any choice of the summit; note that this δ -carve is enclosed by any other δ -mountain in B′ and
does not influence the output graph of Theorem 5.3. Hence, by somewhat abusing the notation and
denoting the modified brick B′ by B again, we may assume that all δ -mountains connecting l and r
are induced by strict δ -carves, possibly with the exception of the trivial δ -carve (∂B[l , r], ∂B[l , r]).
We silently ignore the existence of the latter in the upcoming arguments and assume that whenever
we pick a mountain, it is induced by a strict δ -carve.

Hence, for any δ -mountain M = (PL ∧ PR), the closed walk PL ∪ PR ∪ ∂B[l , r] is actually a sim-
ple cycle in B, denoted ∂M .

5.2 Maximal Mountains

In this subsection, we describe two properties of mountains that will be crucial in the remainder
of the proof of Theorem 5.3. The first property is the following easy consequence of the definition
of a mountain.

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

53:20 M. Pilipczuk et al.

Lemma 5.4. Let M = (PL ∧ PR) be a mountain and let a,b ∈ V (∂M) be such that ∂M[a,b] is con-

tained entirely in PL or entirely in PR . If there exists a pathQ with endpoints in a andb that is enclosed

by ∂M , then w (Q) ≥ w (∂M[a,b]).

Proof. By symmetry, without loss of generality assume ∂M[a,b] is a subpath of PL . Note that
Q ′ := ∂M[vM ,a] ∪Q ∪ ∂M[b, l] is a path connecting l and PR , enclosed by ∂M . Hence, w (Q ′) ≥
w (PL) and the lemma follows. �

We now define what it means for a mountain to be maximal. Observe that since ∂M is a simple
cycle for each mountain M in B, the subgraph enclosed by ∂M is defined by the set of faces of B
enclosed by ∂M . A mountain M is called maximal if this set of faces is inclusion-wise maximal,
among the set of all δ -mountains connecting l and r . Note that in the proof of Theorem 5.3 we
may actually look for the union of all faces enclosed by maximal mountains.

The second property is actually a condition under which a mountain cannot be maximal.

Lemma 5.5. Let M = (PL ∧ PR) be a mountain. Let u,w ∈ V (∂M) and let P be a path between u
and w such that:

(1) P does not contain any edge strictly enclosed by ∂M and, moreover, the closed walk

∂M[u,w] ∪ P encloses M ;

(2) P � ∂M[w,u];
(3) w (P) ≤ w (∂M[w,u]).

Then M is not a maximal mountain.

Proof. First note that if P is a path satisfying the assumptions of the lemma, then there exists
a subpath of P also satisfying the assumptions for which no internal vertex lies on ∂M (recall that
all edge weights are positive). Hence, u,w lie on the carvemark of M . Let M∗ denote the carve
obtained by replacing ∂M[w,u] with P in the carve M . We assume that P and u,w ∈ V (∂M) have
been chosen such that the number of faces contained in M∗ is minimum (satisfying the previous
assumption that P does not contain any internal vertices on ∂M). As ∂B[l , r] ⊆ ∂M and ∂M[u,w] ∪
P encloses M , we have that u is closer to l on PL ∪ PR than w is. Since w (P) ≤ w (∂M[w,u]), M∗ is
also a δ -carve.

We now consider two cases. First, suppose that u and w both lie on PL or both lie on PR ; by
symmetry, assume that they both lie on PL . Partition the carvemark of M∗ into P∗L and P∗R by
taking P∗L equal to PL with ∂M[w,u] substituted by P and taking P∗R equal to PR . Note that thus
w (P∗L) ≤ w (PL). We claim that M∗ treated as (P∗L ∧ P

∗
R) is also a δ -mountain. Together with the

observation that M∗ encloses a proper superset of the faces enclosed by M (since no edge of P is
enclosed by M), this contradicts that M is maximal.

For sake of contradiction, assume that M∗ is not a δ -mountain. Suppose that there exists a
shortest path Q in M∗ between r and some x ∈ P∗L that is shorter than P∗R = PR—see Figure 4(a).
Observe that thenQ must meet PL and let x ′ be the first point of intersection ofQ and PL , counting
from r . We infer that Q[r ,x ′] is entirely contained in M and that w (Q[r ,x ′]) ≤ w (Q) < w (PR).
Since x ′ ∈ V (PL), this contradicts that M is a mountain. Therefore, there exists a shortest
path Q in M∗ between l and some x ∈ P∗R = PR that is shorter than P∗L—see Figure 4(b). Since
w (Q) < w (P∗L) ≤ w (PL), Q must contain an edge that is not enclosed by M , since otherwise
existence of Q would contradict the fact that M is a mountain. Then Q contains some subpath
Q[a,b], where a,b ∈ V (∂M) but no internal vertex of Q[a,b] lies on ∂M . By choosing a and b so
that the number of faces enclosed by Q[a,b] ∪ ∂M[b,a] is minimized, we can moreover assume
that no edge of Q is strictly enclosed by Q[a,b] ∪ ∂M[b,a]. As Q is a shortest path, we have that
w (Q[a,b]) ≤ w (∂M[b,a]). By the choice of P as the path that minimizes the number of faces

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

Network Sparsification for Steiner Problems 53:21

Fig. 4. The cases considered in the proof of Lemma 5.5.

enclosed by M∗, we infer that Q would be a better candidate for P unless Q[a,b] = P (and thus,
(a,b) = (u,w)). By the definition ofQ[a,b], all edges ofQ not onQ[a,b] are enclosed by M . We in-
fer thatw (PL[l ,u]) = w (Q[l ,u]), since PL[l ,u] is a shortest path in M between l andu andQ[l ,u] is
enclosed byM . Similarly,w (PL[w,vM]) = w (Q[w,x]), since PL[w,vM] is a shortest path betweenw
and PR andQ[w,x] is enclosed byM . Thus we have thatw (Q) = w (Q[l ,u]) +w (P) +w (Q[w,x]) =
w (PL[l ,u]) +w (P) +w (PL[w,vM]) = w (P∗L), a contradiction with the choice of Q .

Now we consider the case when u lies on PL and w lies on PR . As w (∂M∗) ≤ w (∂M), ob-
serve that it is possible to find a vertex vM∗ on P (possibly by subdividing some edge of P)
such that w (∂M∗[vM∗ , l]) ≤ w (PL) and w (∂M∗[r ,vM∗]) ≤ w (PR).3 Let P∗L = ∂M

∗[vM∗ , l] and P∗R =
∂M∗[r ,vM∗]. We again claim that M∗ treated as (P∗L ∧ P

∗
R) is a δ -mountain, which in the same

manner brings a contradiction.
Assume that this is not the case and without loss of generality suppose that there is a shortest

path Q in M∗ between l and x ∈ P∗R that is shorter than P∗L . The case that there is a path between r
and P∗L shorter than P∗R is symmetric. If Q does not contain any edge not enclosed by ∂M , then x
must in fact lie on PR and Q is also a shorter path than PL in M between l and PR , a contradiction.
Assume now that Q contains a subpath Q[a,b] where a,b ∈ V (∂M) but every internal vertex of
Q[a,b] is not enclosed by ∂M—see Figure 4(c). We now employ a very similar reasoning as in
the previous case. Again, by choosing a and b that minimize the number of faces enclosed by
Q[a,b] ∪ ∂M[b,a], we may assume that no edge of Q is strictly enclosed by Q[a,b] ∪ ∂M[b,a].
Since Q is a shortest path, we have that w (Q[a,b]) ≤ w (∂M[b,a]). By the choice of P as the path
that minimizes the number of faces enclosed by M∗, we infer that Q would be a better candidate
for P unless Q[a,b] = P (and hence (a,b) = (u,w)). By the definition of Q[a,b], all edges of Q not
on Q[a,b] are enclosed by M . Since vM∗ lies on P = Q[a,b], we infer that x = vM∗ = w . Moreover,
again we have that w (PL[l ,u]) = w (Q[l ,u]), since PL[l ,u] is a shortest path in M between l and u
and Q[l ,u] is enclosed by M . Therefore, w (Q) = w (Q[l ,u]) +w (P) = w (PL[l ,u]) +w (P) = w (P∗L),
a contradiction with the choice of Q .

3We remark here that this is the sole point in the argumentation that forces us to allow mountains with summits in the

middle of some edge.

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

53:22 M. Pilipczuk et al.

We are left with the case when x is not enclosed by ∂M and Q can be partitioned into Q[l , z]
and Q[z,x], where z ∈ V (∂M), z � x , Q[l , z] is enclosed by ∂M , and no edge of Q[z,x] is enclosed
by ∂M—see Figure 4(d). Since w (Q) < w (P∗L) ≤ w (PL) and M is a mountain, z ∈ V (PL) \ {vM }.
We note that w (Q[l , z]) = w (PL[l , z]), since M is a mountain and both Q[l , z] and PL[l , z] are
shortest paths in M . As w (Q) < w (P∗L), we have w (Q[z,x]) +w (PL[u, z]) < |P∗L[u,vM∗]. Define

P := Q[z,x] ∪ P∗R[x ,w] and observe that

w (P) −w (∂M[w, z]) = w (Q[z,x]) +w (P∗R[x ,w]) −w (∂M[w, z])

< w (P∗R[x ,w]) +w (P∗L[u,vM∗]) −w (∂M[w, z]) −w (PL[u, z])

≤ w (P) −w (∂M[w,u]).

Since w (P) ≤ w (∂M[w,u]) by assumption, w (P) < w (∂M[w, z]). We infer that P , instead of P ,
would define a carve with a strictly smaller number of faces than M∗, a contradiction; note here

that P � P , since then the left-hand side and the right-hand side of the inequality above would
need to be equal. This contradicts the choice of Q . �

Corollary 5.6. LetM = (PL ∧ PR) be a maximal mountain with summitvM . Then distB (vM , l) =
distB (PR , l) and distB (vM , r) = distB (PL, r).

Proof. We prove distB (vM , l) = distB (PR , l); the other case is symmetric. Clearly, distB (vM , l) ≥
distB (PR , l), so it remains to prove an inequality in the other direction. Let P be a shortest path
between PR and l . We claim that P is actually enclosed byM ; if this is the case then, by the definition
of mountain, w (P) ≥ w (PL) ≥ distB (vM , l) and the lemma is proven.

Assume the contrary and let Q be a subpath of P with endpoints u,w ∈ V (∂M), such that all
edges of Q are not enclosed by M and, moreover, the closed walk ∂M[u,w] ∪Q encloses M . By
Lemma 5.5, w (Q) > w (∂M[w,u]), a contradiction to the fact that P is a shortest path in B. �

5.3 Untangling Maximal Mountains

We now show a result that implies that the boundaries of two distinct maximal mountains
M1 = (P1

L ∧ P
1
R) and M2 = (P2

L ∧ P
2
R) cannot cross each other (in a topological sense) more than

twice, because then we can find a shortcut either inside one of the mountains (which contradicts
Lemma 5.4) or outside one of the mountains (which contradicts Lemma 5.5). We assume that both
summits of M1 and M2 are present in B, that is, the corresponding edges have already been subdi-
vided if needed.

5.3.1 From Mountains to Curves. To build a topological understanding of how the two moun-
tains interact, we build a representation of them as Jordan curves.

First, we duplicate each edge of B to obtain a brick B2; the copies of the edges are drawn in
parallel in the plane, without any other part of B2 in between. Second, we project ∂M1 and ∂M2

onto B2 in the following manner. For each e ∈ ∂M1 (e ∈ ∂M2) we choose one copy of e to belong
to ∂M1 (∂M2) in B2. If e ∈ ∂M1 ∩ ∂M2, then one copy of e belongs to ∂M1 and the second one to
∂M2 in B2, so that ∂M1 and ∂M2 are edge-disjoint in B2. By abuse of notation, we often consider
∂M1 and ∂M2 both as walks in B and in B2.

A vertexv is a traversal vertex if both ∂M1 and ∂M2 pass thoughv and they cross inv in the graph
B2; that is, among the four edges of ∂M1 ∪ ∂M2 incident to v considered in counter-clockwise
order around v , the odd-numbered edges belong to one mountain and the even-numbered to the
second mountain. In the process of choosing copies of an edge e ∈ ∂M1 ∪ ∂M2, we minimize the
number of traversal vertices of B2 and, minimizing this number, we secondly minimize the number
of traversal vertices of B2 that are not equal to l or r . Clearly, if e ∈ ∂M1�∂M2, the choice of the

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

Network Sparsification for Steiner Problems 53:23

copy of e does not influence the set of transversal vertices, but the aforementioned minimization
criterium regularizes the choice whenever e ∈ ∂M1 ∩ ∂M2. In particular, we note the following.

Lemma 5.7. No internal vertex of ∂B[l , r] is a traversal vertex.

Proof. Assume otherwise, let x ∈ V (∂B[l , r]), x � l , r be a traversal vertex. Consider the fol-
lowing change: for each edge e ∈ ∂B[x , r], swap the copies of e that belong to ∂M1 and ∂M2. In
this manner, x stops to be a traversal vertex, all internal vertices of ∂B[x , r] are traversal vertices
if and only if they were traversal vertices before the change and r may become a traversal vertex.
Thus, we either decrease the number of traversal vertices or do not change it while decreasing the
number of traversal vertices not equal to l and r . This contradicts the minimization criterium for
the choice of ∂M1 and ∂M2 in B2. �

Now, for eachv ∈ V (B2) = V (B) we pick a small closed discDv in the plane, with the drawing of
v at its centre and with radius small enough so that Dv contains v and small starting segments of
a drawing of each edge of B2 incident to v . For α = 1, 2, we associate the following closed Jordan
curve γ α with the cycle ∂Mα in B2: we take the drawing of ∂Mα and for each v ∈ V (∂Mα) we
replace Dv ∩ ∂Mα with the straight line segment Sα

v connecting the two points of ∂Dv ∩ ∂Mα . We
note that ∂Dv ∩ ∂Mα consists of exactly two points since ∂Mα is a simple cycle. Moreover, Sα

v ⊆
Dv . Consequently,γ α is a closed Jordan curve without self-intersections. The important properties
of this construction are summarized in the following lemmata.

Lemma 5.8. γ 1 ∩ γ 2 consists of exactly one point in each disc Dv where v is a traversal vertex and

nothing more. Moreover, for eachp ∈ γ 1 ∩ γ 2, the curvesγ 1 andγ 2 traverse each other in the following

sense: there exists an open neighborhoodOp of p in the plane such that γ α ∩Op splits γ 3−α ∩Op into

two connected sets for α = 1, 2. In particular, |γ 1 ∩ γ 2 | is finite and even.

Proof. The first claim follows from the fact that ∂M1 and ∂M2 are edge-disjoint in B2, so the
points of ∂Dv ∩ ∂M1 and ∂Dv ∩ ∂M2 are pairwise distinct and the segments S1

v and S2
v intersect if

and only ifv is a traversal vertex. For any traversal vertexv , if we take a small open discOp centred

in S1
v ∩ S2

v and contained in Dv , then Op ∩ γ 1 and Op ∩ γ 2 are two straight segments intersecting
in the centre of Op , which proves the second claim. �

Lemma 5.9. γ 1 ∩ γ 2 � ∅.

Proof. Note that all finite faces incident to ∂B[l , r] are enclosed by ∂M1 and ∂M2. Consequently,
if γ 1 ∩ γ 2 = ∅, then γ 1 encloses γ 2 or vice versa. Therefore, M1 ⊆ M2 or vice versa, which contra-
dicts that M1 and M2 are two distinct maximal mountains. �

5.3.2 Regions, Elementary Regions, and Their Properties. Observe that since γ 1 ∩ γ 2 � ∅ by
Lemma 5.9, the curves γ 1 and γ 2 induce a set of Jordan regions in the plane; denote this set by
R. The goal of this section is to analyze R.

Lemma 5.8 immediately implies the following.

Lemma 5.10. For each region R ∈ R, the border of R can be partitioned into an even number of

subcurves γ1,γ2, . . . ,γ2s of positive length, appearing on the border in counter-clockwise order, where

γ1,γ3, . . . ,γ2s−1 ⊆ γ 1 and γ2,γ4, . . . ,γ2s ⊆ γ 2. The number s and the choice of the curves is unique up

to a cyclic shift of the indices.

Moreover, note that, since ∂M1 and ∂M2 are simple cycles, a face incident to ∂M1 is enclosed
by ∂M1 (∂M2) if and only if it lies to the left, if we walk along ∂M1 (∂M2) in a counter-clockwise
direction. By this observation and by the construction of the curves γ 1 and γ 2, the following is
immediate.

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

53:24 M. Pilipczuk et al.

Lemma 5.11. For each α = 1, 2 and for each region R ∈ R, the set R \⋃v ∈V (B2) Dv is either com-

pletely enclosed by ∂Mα or no point of this set is strictly enclosed by ∂Mα .

Lemmata 5.10 and 5.11 motivate the following definitions.

Definition 5.12 (Elementary Region). We say that a region R ∈ R is elementary if its border can
be partitioned into two curves γ1,γ2 with γ1 ⊆ γ 1 and γ2 ⊆ γ 2. That is, s = 1 in the statement of
Lemma 5.10 for the region R.

Definition 5.13. We partition R = R++ ∪ R+− ∪ R−+ ∪ R−− as follows: R ∈ R belongs to R++ ∪
R+− if and only if R \⋃v ∈V (B2) Dv is enclosed by ∂M1 and to R−+ ∪ R−− otherwise. Similarly,

R belongs to R++ ∪ R−+ if and only if R \⋃v ∈V (B2) Dv is enclosed by ∂M2 and to R+− ∪ R−−
otherwise.

We also define a curve-arc, which is a subcurve of γ 1 or γ 2 that connects two points of γ 1 ∩ γ 2,
but does not contain any point of this intersection as an interior point. The following property of
curve-arcs is immediate from Lemma 5.8.

Lemma 5.14. If γ is a curve-arc, then exactly two regions are incident to γ : one of these regions

belongs to R++ ∪ R−− and the other to R+− ∪ R−+.

We now show that there, in fact, exist elementary regions.

Lemma 5.15. There exist at least two elementary regions in R−+ ∪ R−−.

Proof. Consider the infinite regionR∞ inR. The border of this region cannot be fully contained
in one of the curves γ 1 and γ 2, because they intersect. Take any curve-arc γ1 ⊆ γ 1 incident to R∞
and cut open γ 1 by removing γ1 to obtain a Jordan arc γ 1

×. Order the intersection points of γ 1 with
γ 2 along Jordan arc γ 1

×. Consider now the set C2 of curve-arcs of γ 2 that are not enclosed by γ 1. For
each Jordan arcγ ∈ C2 tie a pair parenthesis to its endpoints. We associate the opening parenthesis
with the first endpoint ofγ alongγ 1

× , whereas we associate the closing parenthesis with the second
one. Observe that Jordan arcs in C2 cannot intersect, hence, when we list the parenthesis along γ 1

×
we obtain a valid parenthesis expression E. We have to consider two cases.

First, suppose that the first and the last parenthesis in E belong to the same pair given by arc γ .
We observe that the infinite region in R is elementary, as its boundary is formed by γ1 and γ . To
obtain the second elementary region, observe that there has to be a pair of innermost matching
parenthesis in E corresponding to some arc γ ′. The Jordan region enclosed by γ ′ and the part of
γ 1 between the endpoints of γ ′ is the second elementary region not enclosed by γ 1.

Second, suppose that the first and the last parenthesis in E do not form a matching pair. Then
E can be decomposed into the concatenation of two valid parenthesis expressions E1 and E2. Both
of them need to contain a pair of innermost matching parenthesis, which induce two elementary
regions. �

Note that the arguments of Lemma 5.15 can be modified to exhibit two elementary regions in
R+− ∪ R−−.

We introduce some more notation with respect to regions. For a region R ∈ R, we associate a
closed walkW2 (R) in B2 that corresponds to the border of R in the obvious manner. Note that the
walkW2 (R) contains each edge of B2 at most once (since ∂M1 and ∂M2 are edge-disjoint). It may
visit a vertex v ∈ V (B2) more than once, but it never traverses itself in such a vertex: if we walk
along W2 (R) in a counter-clockwise direction (defined by the border of R) and we enter a vertex
v along an edge e ∈ E (B2), then we leave the vertex v with the edge ofW2 (R) incident to v being
the first such edge in counter-clockwise order after e . We also define a walk W (R) in B as the
projection of the walkW2 (R) onto B.

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

Network Sparsification for Steiner Problems 53:25

We say that a vertex v belongs to ∂R for some region R ∈ R (written v ∈ ∂R) if and only if the
border of R intersectsDv ; equivalently, ifW (R) visitsv . Similarly, we say that a region R is incident
to an edge e ∈ E (B) or e ∈ E (B2) if and only ifW (R) orW2 (R) contains e .

Consider now an elementary region R ∈ R. According to the definition, its border splits into
curves γ1 and γ2, where γα ⊆ γ α for α = 1, 2. Consequently, since ∂M1 and ∂M2 are simple cycles
in B and B2, the walkW2 (R) splits into paths P1

2 (R) and P2
2 (R) in B2 and the walkW (R) splits into

paths P1 (R) and P2 (R) in B, where Pα
2 (R) and Pα (R) are a subpath of ∂Mα in B2 and B, respectively.

Using this notation, we can present the following implication of the minimization criterium
assumed in the projection of ∂M1 and ∂M2 onto B2.

Lemma 5.16. For any elementary region R ∈ R, there exists a face f2 of B2 enclosed byW2 (R) that

is not a face between two copies of an edge of B and thus, there exists a face f of B enclosed byW (R).

Proof. If such faces f2 and f do not exist, then P1 (R) = P2 (R), as P1 (R) and P2 (R) are sim-
ple paths. Let v0, e1,v1, e2, . . . , es ,vs be the vertices and edges of P1 (R) = P2 (R) and let Pα

2 (R) =
v0, e1,α ,v1, e2,α , . . . , es,α ,vs for α = 1, 2; the edges ei,1 and ei,2 are the two copies of ei in B2. As R
is a region, γ 1 and γ 2 intersect in Dv0 and Dvs

, hencev0 andvs are traversal vertices. Consider the
following modification to ∂M1 and ∂M2 in B2: for each 1 ≤ i ≤ s , we swap ei,1 with ei,2, so that
ei,1 now belongs to ∂M2 and ei,2 belongs to ∂M1. After this operation, for any 1 ≤ i < s , the vertex
vi is a traversal vertex if and only if it was a traversal vertex before the operation, while v0 and vs

discontinue to be traversal vertices. This contradicts the minimization criterium for the choice of
∂M1 and ∂M2 in B2. �

5.3.3 Two Maximal Mountains form a Range. Intuitively, elementary regions that are finite and
do not belong to R++ often give grounds to applying Lemma 5.5 and to the conclusion that M1

or M2 is not maximal. In this argumentation, we need to watch out for the following special case.
Informally speaking, the cushion is the artificial face created between the two copies of ∂B[l , r]
when we duplicated the edges of B; however, it can contain some other faces if l or r is not a
traversal vertex of the mountains M1 and M2.

Definition 5.17 (Cushion). An elementary region R ∈ R is called a cushion ifW (R) contains two
copies of ∂B[l , r] (one from ∂M1 and one from ∂M2) andW2 (R) contains all edges of ∂M1 ∪ ∂M2

incident to l or r .

We are now ready for a crucial definition that is necessary to prove Theorem 5.3.

Definition 5.18 (rRange). We say that M1 and M2 form a range when the following conditions
hold:

—there is exactly one region R+− in R+− and one region R−+ in R−+;
—R+− and R−+ are elementary and neither of them is a cushion;
—vM2 ∈ V (W (R−+)) \V (P1 (R−+)) and vM1 ∈ V (W (R+−)) \V (P2 (R+−)).

The main step of the proof of Theorem 5.3, which we take in this section, is to show that every
pair of maximal δ -mountains forms a range. Observe that a necessary condition for M1 and M2 to
form a range is that γ 1 and γ 2 cross only in two points. The following lemma is used to establish
this condition.

Lemma 5.19. If there exist two elementary regions R1,R2 ∈ R that have a common incident curve-

arc, then |γ 1 ∩ γ 2 | = 2.

Proof. Let γ be the common incident curve-arc between R1 and R2 and let a and b be its
endpoints. Without loss of generality, we assume that γ ⊆ γ 1. We have that ∂R1 \ γ ⊆ γ 2 and
∂R2 \ γ ⊆ γ 2, so γ 2 = (∂R1 ∪ ∂R2) \ γ . Hence, γ 1 and γ 2 cross only in a and b. �

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

53:26 M. Pilipczuk et al.

We can now split the possible configurations of M1 and M2 into the following cases.

Lemma 5.20. One of the following holds:

(i) there exists a finite elementary region R ∈ R−−;

(ii) there exists an elementary region R ∈ R+− ∪ R−+, such that vM1 � V (W (R)) \V (P2 (R))
and vM2 � V (W (R)) \V (P1 (R));

(iii) the infinite region R∞ ∈ R is elementary and is not incident to vM1 nor vM2 ;

(iv) there exists a finite elementary region that is a cushion;

(v) M1 and M2 form a range.

Proof. From Lemma 5.15, we know that there exist two elementary regionsR1
1,R

1
2 ∈ R−− ∪ R−+

and two elementary regions R2
1,R

2
2 ∈ R−− ∪ R+−. Regions R1

i and R2
j may be sometimes equal. Up

to symmetry, we have the following cases:
Case R1

1 = R2
1 and R1

2 = R2
2: In this case, both R1

1 = R2
1 and R1

2 = R2
2 belong to R−−. Hence, one of

these two elementary regions is not infinite and Case (i) holds.
Case R1

1 = R2
1 and R1

2 � R2
2: If R1

1 = R2
1 is not infinite, then Case (i) holds. Hence, assume the

contrary, which implies that the infinite region is elementary. Now, neither R1
2 nor R2

2 can be in-
finite. On the other hand, if one of them belongs to R−− then Case (i) holds. We are left with the
case R1

2 ∈ R−+ and R2
2 ∈ R+−. By Lemma 5.14, R1

2 and R2
2 are not incident to a common curve-arc.

We note that, as ∂M1 and ∂M2 are simple cycles, only one region R ∈ {R1
2,R

2
2} may satisfy vM1 ∈

V (W (R)) \V (P2 (R)) and only one region R ∈ {R1
2,R

2
2} may satisfy vM2 ∈ V (W (R)) \V (P1 (R)).

Hence, if Case (ii) does not hold for both R1
2 and R2

2, we need to have that vM1 ∈ V (W (R1
2)) \

V (P2 (R1
2)) andvM2 ∈ V (W (R2

2)) \V (P1 (R2
2)) or vice versa (i.e., with the roles ofR1

2 andR2
2 swapped).

In particular, neither vM1 nor vM2 is a traversal vertex. If Case (iii) does not hold, then since the
infinite region R1

1 = R2
1 is elementary, either vM1 or vM2 has to be on the border of the infinite

region R1
1 = R2

1. This implies that either R1
2 or R2

2 shares a curve-arc with R1
1 = R2

1. By applying

Lemma 5.19 to these two incident elementary regions we know that γ 1 and γ 2 cross exactly twice.
Consequently, each set R++, R+−, R−+ and R−− has size exactly one and all regions in R are el-
ementary. Moreover, as vM1 or vM2 is on the border of the infinite region R1

1 = R2
1, we infer that

in fact vM1 ∈ V (W (R2
2)) \V (P2 (R2

2)) and vM2 ∈ V (W (R1
2)) \V (P1 (R1

2)). If R1
2 or R2

2 is a cushion, we

have Case (iv). Otherwise, R+− = R2
2 and R−+ = R1

2 fulfills Definition 5.18.

Case All four R1
1,R

2
1,R

1
2,R

2
2 are different: If at least two of these regions belong to R−−, then

one is finite and we have Case (i). Therefore, at least three of the regions belong to R+− ∪ R−+.
Lemma 5.14 implies that at most one of them has vM1 ∈ V (W (R)) \V (P2 (R)) and at most one has
vM2 ∈ V (W (R)) \V (P1 (R)). Therefore, at least one of the regions satisfies Case (ii). �

In the next lemmata, we show that when one of the Cases i–iv of Lemma 5.20 holds, then either
M1 or M2 is not maximal. Our main tools in the upcoming arguments are Lemmata 5.4 and 5.5.

Lemma 5.21. If Case (i) in Lemma 5.20 holds, then M1 or M2 is not maximal.

Proof. Let R be the elementary region R promised by Case (i). By Lemma 5.16,W (R) encloses at
least one finite face of B and P1 (R) � P2 (R). Ifw (P1 (R)) ≤ w (P2 (R)), then we can apply Lemma 5.5
to P1 (R) and M2, implying that there exists a mountain that strictly contains M2. Otherwise, i.e.,
ifw (P1 (R)) > w (P2 (R)), then we can apply Lemma 5.5 to P2 (R) and M1, implying that there exists
a mountain that strictly contains M1. �

Lemma 5.22. If Case (ii) in Lemma 5.20 holds, then M1 or M2 is not maximal.

Proof. Let R be the elementary region R promised by Case (ii). By Lemma 5.16,W (R) encloses
at least one finite face of B and P1 (R) � P2 (R). Without loss of generality, assume that R ∈ R−+. If

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

Network Sparsification for Steiner Problems 53:27

w (P1 (R)) ≥ w (P2 (R)), then we can apply Lemma 5.5 to P2 (R) and M1, implying that there exists a
mountain that strictly contains M1. Hence, we are left with the case w (P1 (R)) < w (P2 (R)).

Note that P1 (R) is enclosed by ∂M2. Let v1,v2, . . . ,vs be the vertices of V (P1 (R)) ∩V (P2 (R)),
in the order of their appearance on P2 (R). Note that s ≥ 2, as v1,vs are the endpoints of P1 (R)
and P2 (R). Moreover, v1,v2, . . . ,vs is also the order of the appearance of vertices of V (P1 (R)) ∩
V (P2 (R)) on P1 (R), as P1 (R) is a simple path and is enclosed by ∂M2. As w (P1 (R)) < w (P2 (R)),
there exists an index 1 < i ≤ s such that w (P1 (R)[vi−1,vi]) < w (P2 (R)[vi−1,vi]).

By the properties of Case (ii), vM2 is not in V (P2 (R)) \V (P1 (R)); in particular, vM2 is not an
internal vertex of P2 (R)[vi−1,vi]. As R ∈ R−+, that is, R \⋃v ∈V (B2) Dv is not enclosed by ∂M1

and since W (R) encloses C := P1 (R)[vi−1,vi] ∪ P2 (R)[vi−1,vi], C cannot enclose any face inci-
dent to an edge of ∂B[l , r]. Consequently, P2 (R)[vi−1,vi] is a subpath of P2

L or P2
R . However, as

w (P1 (R)[vi−1,vi]) < w (P2 (R)[vi−1,vi]) and P1 (R)[vi−1,vi] is enclosed by ∂M2, this contradicts
Lemma 5.4 and finishes the proof of the lemma. �

Lemma 5.23. If Case (iii) in Lemma 5.20 holds, then M1 or M2 is not maximal.

Proof. Let R = R∞ be the elementary infinite region promised by Case (iii). Let a and b be the
endpoints of P1 (R) and P2 (R) and let Qα = ∂Mα \ Pα (R) for α = 1, 2. Note that Q1 � P2 (R) (and,
symmetrically, Q2 � P1 (R)), as otherwise ∂M1 encloses M2; however, in this case γ 1 and γ 2 would
be disjoint, due to the minimization criterium used in the construction of ∂M1 and ∂M2 in B2.
Consequently, if w (Q1) ≥ w (P2 (R)) or w (Q2) ≥ w (P1 (R)), then we may apply Lemma 5.5 either
to the pair (P2 (R),M1) or to the pair (P1 (R),M2), finishing the proof of the lemma. Hence, we are
left with the case w (Q1) < w (P2 (R)) and w (Q2) < w (P1 (R)).

By Lemma 5.7, for exactly oneα ∈ {1, 2} all edges of the path ∂Mα [l , r] are incident to the infinite
face in B2 and all edges of ∂M3−α [l , r] are not incident to the infinite face in B2. Moreover, neither
a nor b is an internal vertex of ∂B[l , r]. Consequently, at least one of the paths P1 (R) and P2 (R)
does not contain any edge of ∂B[l , r]. Without loss of generality, assume it is P1 (R). Moreover,
by the properties of Case (iii), P1 (R) does not contain vM1 . Hence, P1 (R) is a subpath of P1

L or P2
R .

However, w (Q2) < w (P1 (R)) and Q2 is enclosed by ∂M1. This contradicts Lemma 5.4. �

Lemma 5.24. If Case (iv) in Lemma 5.20 holds, then M1 or M2 is not maximal.

Proof. Let R be the cushion promised by Case (iv). By the definition of a cushion, ∂B[l , r] is
a subpath of both P1 (R) and P2 (R). As W2 (R) encloses all faces of B2 between the copies of the
edges of ∂B[l , r], R ∈ R+− ∪ R−+. Without loss of generality assume that P1

2 (R)[l , r] is incident to

the infinite face of B2 and thus R ∈ R+−. Let a be the endpoint of P1 (R) that lies closer to l than to
r and let b be the other endpoint; note that also on P2 (R) the endpoint a is closer to l than to r .

Assume that P1 (R)[a, l] = P2 (R)[a, l]. Consider the following operation: for each edge e of
P1 (R)[a, l], we swap which copy of e in B2 belongs to ∂M1 and which to ∂M2. In this manner,
an internal vertex of P1 (R)[a, l] is a traversal vertex if and only if it was traversal vertex prior to
the operation, whereas a discontinues to be a traversal vertex and l becomes a traversal vertex.
Consequently, the operation does not change the total number of traversal vertices while strictly
decreasing the number of traversal vertices that are not equal to l or r , a contradiction to the choice
of ∂M1 and ∂M2 in B2.

We infer that the closed walks P1 (R)[a, l] ∪ P2 (R)[a, l] and P1 (R)[r ,b] ∪ P2 (R)[r ,b] enclose
each at least one face of B. The vertex vM1 cannot lie both on P1 (R)[a, l] and P1 (R)[r ,b]; with-
out loss of generality assume it does not lie on P1 (R)[a, l] and P1 (R)[a, l] is a subpath of P1

L . If

w (P1 (R)[a, l]) ≤ w (P2 (R)[a, l]) then we may apply Lemma 5.5 to the pair (P1 (R)[a, l],M2). Other-
wise, w (P2 (R)[a, l]) < w (P1 (R)[a, l]). However, P2 (R)[a, l] is enclosed by ∂M1 and P1 (R)[a, l] is a
subpath of P1

L . This contradicts Lemma 5.4. �

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

53:28 M. Pilipczuk et al.

As a consequence of the above lemmata, we infer the following.

Corollary 5.25. Any two distinct maximal mountains form a range.

5.4 The Range of All Maximal Mountains

We now analyze the structure of all maximal mountains, using the crucial property established
in Corollary 5.25 that any two distinct maximal mountains form a range. Recall that, formally, a
mountain is only a carve in B and, therefore, there is only a finite number of mountains. Hence,
we may assume that some edges of B have been subdivided, so that each mountain with endpoints
l and r can choose its summit among the vertices of B.

We start with the following observation that the mountain range relation implies an order on
the set of maximal mountains.

Lemma 5.26. Let two mountainsM1 = (P1
L ∧ P

1
R) andM2 = (P2

L ∧ P
2
R) form a range. Thenw (P1

L) <

w (P2
L) or w (P2

L) < w (P1
L). Moreover, if w (P1

L) < w (P2
L), then P1 (R−+) is a subpath of ∂B[l , r] ∪ P1

R ,

where R−+ is the elementary region in R−+.

Proof. Consider the unique regions R−+ ∈ R−+ and R+− ∈ R+−. Note that, by Lemma 5.14, they
do not share any curve-arc that makes up their borders and, consequently, for α = 1, 2, Pα (R+−)
and Pα (R−+) are edge-disjoint. Moreover, by definition of forming a range, vM2 does not lie on
P2 (R+−) and vM1 does not lie on P1 (R−+).

We also infer from Lemma 5.14 that, since |R−+ | = |R+−| = 1, there are only four curve-arcs,
all incident to R−+ or R+− and, consequently, R−− consist only of the infinite region R∞ and R++
consists only of one region R++.

Consider the faces of B2 between the copies of the edges of ∂B[l , r]. By Lemma 5.7, they are all
enclosed by W2 (R) for a single region R. Moreover, as they are enclosed by only one of ∂M1 and
∂M2 inB2,R = R+− orR = R−+. As neitherR+− norR−+ is a cushion, exactly one of the vertices l and
r is a traversal vertex, and an endpoint of all four paths P1 (R+−), P2 (R+−), P1 (R−+) and P2 (R−+). We
note that we may assume r to be the traversal vertex, as the other case can be reduced to this one by
swapping the copies of the edges of ∂B[l , r] in B2 between ∂M1 and ∂M2. Moreover, by symmetry
between M1 and M2, without loss of generality we may assume that the faces of B2 between the
copies of the edges of ∂B[l , r] are enclosed by W2 (R+−); this implies that ∂M1[l , r] is incident to
the infinite face of B2. Hence, l lies on P2 (R+−), that is, P1 (R+−)[l , r] = P2 (R+−)[l , r] = ∂B[l , r].
Let a be the intersection of γ 1 and γ 2 different than r and, at the same time, the endpoint of the
paths P1 (R+−), P2 (R+−), P1 (R−+) and P2 (R−+). As vM1 lies on P1 (R+−), the path P2 (R+−)[l ,a] is
a path connecting l with P1

R that is enclosed by ∂M1. Consequently, w (P1
L) ≤ w (P2 (R+−)[l ,a]) <

w (P2
L), where the last inequality follows from the fact that vM2 lies on P2 (R−+) and vM2 � a, thus

P2 (R+−)[l ,a] is a proper subpath of P2
L . The second part of the lemma is immediate from the above

discussion.
Note that if we would assume that the faces of B2 between the copies of the edges of ∂B[l , r] are

enclosed byW2 (R−+), the roles of M1 and M2 would change in the above reasoning and we would
obtain w (P2

L) < w (P1
L). This concludes the proof of the lemma. �

Now we proceed to analyze the union of all maximal mountains.

Lemma 5.27. There exists a closed walk W of length at most 3w (∂B[l , r]) such thatW encloses a

face f if and only if f is contained in some maximal mountain.

Proof. Let {M i = (P i
L
, P i

R
)}si=1 be the set of all maximal mountains such that w (P i

L
) < w (P j

L
)

for 1 ≤ i < j ≤ s . By induction, we show closed walks W 1,W 2, . . . ,W s such that for each i =
1, 2, . . . , s , the following holds:

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

Network Sparsification for Steiner Problems 53:29

Fig. 5. Illustration of the inductive proof in Lemma 5.27.

(1) W i contains P i
R
∪ ∂B[l , r] as a subpath.

(2) If we define γ̂ i to be the closed curve in the plane Π obtained by traversing W i in the
direction so that the P i

R
∪ ∂B[l , r] is traversed from l to vM i , then, for any face f of B and

any point c in the interior of f :
—if f belongs to one of the mountains M1,M2, . . . ,M i then γ̂ i is a positive element of the

fundamental group Γc � Z of Π \ {c};
—otherwise, γ̂ i is the neutral element of this group.

In particular, W i encloses f if and only if f is contained in one of the mountains
M1,M2, . . . ,M i .

(3) w (W i) ≤ w (P1
R) +w (P i

L
) +w (∂B[l , r]).

Here, property 2 formalizes the intuition that maximal mountains look as they do in Figure 5. In
reality, the boundaries of the mountains may actually intersect often (but not cross more than
twice), which is why we need this formal property.

For i = 1, the induction hypothesis holds by takingW 1 := ∂M1. Now assume that the induction
hypothesis holds for W i . Consider mountains M i and M i+1 and apply Lemma 5.26 to them; by
abuse of notation, we denote the appropriate paths as P i and P i+1 instead of P1 and P2.

From Corollary 5.25 and Definition 5.18, we know that there exists a unique region R ∈ R−+.
Recall that P i

R
∪ ∂B[l , r] is a subpath ofW i and that w (P i

L
) < w (P i+1

L
) by the chosen order. Hence,

by Lemma 5.26, P i (R) is a subpath ofW i . We defineW i+1 asW i with P i (R) replaced with P i+1 (R).
Moreover, as vM i+1 lies on P i+1 (R), it follows that P i+1

R
∪ ∂B[l , r] is a subpath ofW i+1.

Let γ i+1
W

be the closed curve obtained by traversingW (R) in a counter-clockwise direction, that

is in γ i+1
W

the path P i (R) is traversed from the endpoint closer to vM i to the endpoint closer to or
on the carvebase ∂B[l , r]. Consider any face f of B and any point c in its interior. Note that, in
the fundamental group Γc � Z of Π \ {c}, we have γ̂ i + γ i+1

W
= γ̂ i+1. If f is enclosed by γ i+1

W
, that

is, byW (R), then γ i+1
W

is a positive element of Γc and otherwise it is the neutral element. We infer

that the second condition is satisfied for the curve γ̂ i+1, due to the induction hypothesis and since
W (R) encloses a face f if and only if f is contained in M i+1, but not in M i .

Thus, to finish the proof of the induction step we need to show the bound on the length ofW i+1.
Define b = w (P i+1

R
) and e = w (P i

L
). Letv be the first point on P i+1

L
that lies on P i

R
. We denote the

distance (along P i+1
L

) from l to v as d and the distance from v to vM i+1 as a. Finally, we denote by

c the distance (along P i
R

) from r to v . These definitions are illustrated in Figure 5.

Observe that d ≥ e because M i is a mountain. Similarly, observe that c ≥ b because M i+1 is a
mountain. Hence, we have

w (W i+1) −w (W i) = a + b − c ≤ a ≤ a + d − e = w (P i+1
L) −w (P i

L).

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

53:30 M. Pilipczuk et al.

Using the induction hypothesis with the above inequality we obtain

w (W i+1) = w (W i+1) −w (W i) +w (W i)

≤ w (P1
R) +w (P i

L) +w (∂B[l , r]) +w (P i+1
L) −w (P i

L)

= w (P1
R) +w (P i+1

L) +w (∂B[l , r]).

This proves the induction. Hence,W :=W s satisfies the conditions of the lemma as

w (W s) ≤ w (P1
R) +w (Ps

L) +w (∂B[l , r])

≤ w (∂B[l , r]) +w (∂B[l , r]) +w (∂B[l , r])

= 3w (∂B[l , r]). �

We remark here that, although formally the reasoning of Lemma 5.27 has been done in the
presence of all summits of mountains, the obtained walkW projects back to the original brick B,
where edges have not been subdivided.

5.5 Finding the Mountain Range

Finally, we show the algorithm to compute the δ -mountain range. We need the following technical
observation. Consider a plane drawing of B in which the segment ∂B[l , r] is drawn as a horizontal
segment and l is the left end of it. The leftmost shortest path from l to v is the shortest path that
lies as much as possible to the left in the drawing of B. Symmetrically, we define the rightmost

shortest path from r to v . Note that these notions are well defined, as they correspond to taking
furthest counter-clockwise and clockwise objects around l and r , respectively, in the semi-plane
above segment ∂B[l , r] that contains brick B.

Observe the following connection between left- and rightmost shortest paths and maximal
mountains.

Lemma 5.28. For fixed xy ∈ B, there exists at most one maximal δ -mountain Mx,y of B that can

choose the summit on the edge xy (possibly in x or y) and has x closer to l on the carvemark Mx,y

than y. Moreover, the carvemark of Mx,y consists of the leftmost shortest path from l to x in B, the

edge xy and the rightmost shortest path from r to y in B.

Proof. Let M be a maximal mountain that contains xy on the carvemark M , such that there
exists a witness κM with w (M[l ,x]) ≤ κM ≤ w (M[l ,y]). Let P be any shortest path between l and
x in B. We claim that P is enclosed by M and a symmetrical claim holds for any shortest path
between r and y in B. Note that this statement would conclude the proof of the lemma.

Assume the contrary and let Q = P[a,b] be any subpath of P whose all edges and internal ver-
tices are not enclosed by M , but both endpoints a,b of Q lie on the carvemark M . By Lemma 5.5,
w (Q) > w (M[a,b]) or w (Q) > w (M[b,a]), a contradiction to the assumption that P is a shortest
path. The arguments for paths connecting y and r are symmetric. �

Observe that for a fixed vertexu ∈ V (∂B), the union of all leftmost shortest paths fromu to every
v ∈ V (B) is a shortest-path tree rooted atu; we call it the leftmost shortest-path tree rooted atu. An
analogous claim holds for rightmost shortest paths by symmetry. We show that this shortest-path
tree can be found efficiently for fixed u.

Lemma 5.29. For any fixed u ∈ V (∂B), the leftmost shortest-path tree rooted at u (and, symmetri-

cally, the rightmost one) can be found in O (|B |) time.

Proof. The approach is the same as one proposed by Klein [51]. First, we find a shortest path
tree from u in linear time [45]. Let d (v) denote the distance from u to v for any v ∈ V (B). Let H
be the following directed graph. The vertex set of H isV (B). Then H contains the arc (v,w) if and

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

Network Sparsification for Steiner Problems 53:31

only if vw is an edge of B and d (w) = d (v) +w (wv). Observe that H is acyclic, as all edge weights
are positive. Now it suffices to find a leftmost search tree (see, e.g., Reference [68]) in H . This can
be done in linear time using a simple depth-first search, which visits the neighbors of a vertex in
left-to-right order. By the construction of H , this immediately translates into a leftmost shortest
path tree in B. A rightmost shortest-path tree can be found symmetrically. �

In the next lemma, we make use of the left- and rightmost shortest-path trees and conclude the
proof of Theorem 5.3.

Lemma 5.30. The union of all finite faces of δ -mountains for fixed l , r can be computed in O (|B |)
time.

Proof. Using Lemma 5.29 we compute the leftmost shortest-path tree rooted at l and the right-
most shortest-path tree rooted at r . Denote these trees Tl and Tr , respectively.

By traversing the tree Tl from the root to its leaves, we compute for each v ∈ V (B) the value

dl (v) = min{distB (v ′, r) : v ′ is an ancestor of v in the tree Tl }.

Symmetrically, we compute values dr (v) in the tree Tr (taking into account distances to l). This
takes O (|B |) time.

Let Z be the set of pairs (x ,y) ∈ V (B) ×V (B) such that xy ∈ B, distB (x , l) ≤ dr (y), distB (y, r) ≤
dl (x) and dr (y) + dl (x) ≥ distB (x , l) +w (xy) + distB (y, r). For every (x ,y) ∈ Z , consider a walk
Mx,y in B that consists of the leftmost shortest path from l to x (i.e., the path from x to the root l
inTl), the edge xy and the rightmost shortest path from r to y (i.e., the path from y to the root r in
Tr). We observe the following equivalence, captured in the next two claims.

Claim 5.1. For every (x ,y) ∈ Z , Mx,y is a mountain.

Proof. First observe that Mx,y[l ,x] and Mx,y[y, r] cannot share a vertex, as otherwise dr (y) +
dl (x) ≤ w (Mx,y[l ,x]) +w (Mx,y[y, r]) = distB (x , l) + distB (y, r), a contradiction to the properties
of the pairs in Z and the fact that w (xy) > 0. Hence, Mx,y is a path.

We claim that Mx,y is a mountain for κ = dr (y). By the properties of pairs in Z we have
w (Mx,y[l ,x]) ≤ κ ≤ w (Mx,y[l ,y]) and, consequently, the candidate summit v := v (Mx,y , l ,κ) is
located on the edge xy (possibly at one of the endpoints). If needed, subdivide the edge xy with
the vertexv . As distB (x , l) ≤ dr (y), by the definition of dr (y), we have distB (l ,Mx,y[v, r]) ≥ dr (y).
Regarding the distances from r , first observe that w (vy) + distB (y, r) = w (Mx,y[v, r]) and, hence,
any path in B connecting r and v that passes through y is of length at leastw (Mx,y[v, r]). Second,
note that

distB (V (Mx,y[l ,x]), r) = dl (x) ≥ distB (x , l) +w (xy) + distB (y, r) − dr (y)

= w (Mx,y) − κ = w (Mx,y[v, r]). �

Claim 5.2. Let M be a maximal mountain. Then M = Mx,y for some (x ,y) ∈ Z .

Proof. Let κM be a real that witnesses that M is a mountain and let xy ∈ M be such that
w (M[l ,x]) ≤ κM ≤ w (M[y, r]) (i.e., the summit of M is on the edge xy, possibly in one of the end-
points). Let v = v (M, l ,κ). If needed, subdivide the edge xy with the vertex v . By Lemma 5.28, we
have thatM[l ,x] is the leftmost shortest-path between l andx andM[y, r] is the rightmost shortest-
path between y and r . By Corollary 5.6, dl (x) = distB (V (M[l ,x]), r) ≥ w (M) − κM = w (M[y, r]) +
w (vy) = distB (y, r) +w (vy) and symmetrically dr (y) ≥ distB (x , l) +w (xv). By adding up these
two inequalities we obtaindr (y) + dl (x) ≥ distB (x , l) +w (xy) + distB (y, r). Consequently, (x ,y) ∈
Z and Mx,y = M by the construction of Mx,y . �

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

53:32 M. Pilipczuk et al.

By Claims 5.1 and 5.2, our goal is to compute the set of all finite faces that are enclosed by some
mountain Mx,y for (x ,y) ∈ Z .

To achieve this goal, we first construct the directed dual B∗→ of B, that is, we take the undirected
dual B∗ and replace each edge with two arcs in both directions. Then, we would like to assign
integer weights to the arcs of B∗→ in the following manner. First, set all weights to zero. Second, for
each (x ,y) ∈ Z , add +1 to the weight of each arc that corresponds to an edge of ∂Mx,y that ends in
the face enclosed by Mx,y and add −1 to the weight of the arc in the opposite direction. It is easy to
observe that the weighted graph B∗→ defined in this manner has no non-null cycles and for any face
f , the sum of weights on any path from the outer face to f in B∗→ equals the number of mountains
Mx,y , (x ,y) ∈ Z that enclose f . Consequently, given B∗→ it is straightforward to compute the union
of all finite faces of δ -mountains for fixed l and r .

However, inspecting the perimeters of all mountains Mx,y for (x ,y) ∈ Z may take quadratic
time. Luckily, one can compute the weights of B∗→ in O (|B |) time as follows. Start with all weights
of B∗→ set to zero. Then, traverseTl from the leaves to its root and for each edge e ∈ E (Tl), compute
ζl (e): the number of pairs (x ,y) ∈ Z such that x lies in the tree of Tl \ {e} that does not contain l .
Similarly, compute the values ζr (e) for each e ∈ E (Tr) that count the number of pairs (x ,y) ∈ Z
such that y lies in the tree ofTr \ {e} that does not contain r . Observe that for each e ∈ E (Tl), there
are exactly ζl (e) mountains Mx,y for which e lies on the left slope of Mx,y . Moreover, in all of these
mountains, if we orient e towards the root l ofTl , the face that lies on the left-hand side of e is not
enclosed by Mx,y and the one that lies on the right-hand side is enclosed by Mx,y . Hence, we may
proceed as follows: for each e ∈ E (Tl), add weight ζl (e) to the arc of B∗→ that traverses the edge e
keeping the closer-to-root endpoint of e to the right hand side and add weight −ζl (e) to the other
arc of B∗→ corresponding to the edge e . Similarly, for each e ∈ E (Tr), add weight ζr (e) to the arc
of B∗→ that traverses the edge e keeping the closer-to-root endpoint of e to the left hand side and
add weight −ζr (e) to the other arc of B∗→ corresponding to the edge e . Finally, observe that each
mountain Mx,y contains the baseline ∂B[l , r] and there are exactly |Z | such mountains. To support
this, for each e ∈ ∂B[l , r], add weight |Z | to all arcs that traverse an edge of ∂B[l , r] and start in
the outer face and add weight −|Z | to such arcs that end in the outer face. In this manner, we have
constructed the graph B∗→ in O (|B |) time and concluded the proof of Lemma 5.30. �

6 TAMING SLIDING TREES

In the previous section, we took a major step towards finding a cycleC of length O (w (∂B)) that lies
close to the perimeter of B and that separates the core from all vertices of degree at least three of
some optimal solution for any set of terminals on ∂B. In fact, Lemma 5.2 shows that short subtrees
of optimal Steiner trees in B are hidden in δ -mountains. Here, “short” means that the leftmost
and rightmost path in the subtree have total length at most (1/2 − δ)w (∂B). Note that an optimal
Steiner tree in B has total size smaller than w (∂B), as ∂B without an arbitrary edge connects any
subset of V (∂B). Therefore, for small δ , there exists at most two δ -mountains such that almost
every edge of an optimal Steiner tree T is enclosed by one of these mountains. In this section, we
study what is left outside (not enclosed).

Informally speaking, our methodology in this section is as follows. We designate O (τ−1) vertices
on ∂B and construct the unionM of all δ -mountain ranges for each pair of designated vertices,
for δ := 4τ . Theorem 4.7 ensures thatM is not the entire brick, as no mountain encloses a chosen
core face fcore. Hence, the union of the perimeters of the δ -mountain ranges that make up M
contains a cycleC0 that separates fcore from the mountain ranges. Moreover, as we construct only
O (τ−2) mountain ranges, each of perimeter O (|∂B |) by Theorem 5.3, we have that |C0 | = O (|∂B |);
see Figure 6(a).

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

Network Sparsification for Steiner Problems 53:33

Fig. 6. (a) shows the cycleC0 formed by the union of the perimeters of the mountain ranges; example moun-

tain ranges are drawn solid. (b) shows how to shortcut the tree T (solid) with a shortest xy-path Q (gray).

However, certain optimal Steiner trees in B may behave nontrivially in the subgraph enclosed
by C0 and, in particular, may still have a vertex of degree three or more that is enclosed by C0.
Luckily, this behavior is easily dealt with as follows. Consider the situation in Figure 6(b). If Q is
a shortest path between x and y, then we may replace the part of the tree to the left of Q by Q .
Hence, we shortcut C0 whenever possible while keeping fcore enclosed by C0.

Before we describe formally the main result of this section, we need an additional notion. Let
B be an edge-weighted brick. For an edge uv ∈ E (B), we say that each point of uv is at distance

at most d from V (∂B) if uv ∈ ∂B or distB (u,V (∂B)) ≤ d , distB (v,V (∂B)) ≤ d and, additionally,
distB (u,V (∂B)) + distB (v,V (∂B)) +w (uv) ≤ 2d . Equivalently, we may require that uv ∈ ∂B or
whenever we subdivide the edge uv , replacing it with a new vertex x and edges ux , vx with posi-
tive lengths satisfyingw (ux) +w (vx) = w (uv), we have distB (x ,V (∂B)) ≤ d . For a subgraph H of
B, we say that each point of H is at distance at most d from V (∂B) if each vertex and each point of
each edge of H is at distance at most d from V (∂B).

With this definition, we are ready to state the main theorem of this section.

Theorem 6.1. Let τ ∈ (0, 1/36] be a fixed constant. Assume that B does not admit a short τ -nice

tree. Then one can compute a simple cycle C in B with the following properties:

(i) the length of C is at most 16
τ 2w (∂B);

(ii) each point of C is within distance at most (1
4 − 2τ)w (∂B) from V (∂B);

(iii) for each vertex x ∈ V (C) there exists a shortest path from x to V (∂B) such that no edge of

the path is strictly enclosed by C ;

(iv) C encloses fcore, where fcore is any arbitrarily chosen face of B promised by Theorem 4.7

that is not carved by any 2τ -carve;

(v) for any S ⊆ V (∂B) there exists an optimal Steiner tree TS connecting S in B such that no

vertex of degree at least 3 in TS is strictly enclosed by C .

The computation takes O (|B | log log |B |) time in the edge-weighted setting and O (|B |) time in the

unweighted setting.

We begin the proof of Theorem 6.1 with a construction. Then we show how it interacts with
optimal Steiner trees in B.

Let P ⊆ V (∂B) be a set of pegs on ∂B, such that for any v ∈ V (∂B), there exist pegs p← (v) and
p→ (v) with v ∈ V (∂B[p← (v),p→ (v)]) and w (∂B[p← (v),v]),w (∂B[v,p→ (v)]) ≤ τw (∂B)/2. Here,
possibly p← (v) = v or p→ (v) = v . We choose the set of pegs P in the following greedy manner. We

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

53:34 M. Pilipczuk et al.

take an arbitrary vertex v0 ∈ V (∂B) as a first peg and then we traverse ∂B starting from v0 twice,
once clockwise and once counter-clockwise. In each pass, we take as a next peg the first vertex
that is of distance larger than τw (∂B)/2 from the previously placed peg. As each pass chooses at
most 2/τ pegs, |P| ≤ 4/τ .

Let δ = 4τ . For any l , r ∈ P, l � r , w (∂B[l , r]) < w (∂B)/2, apply Theorem 5.3 to find the moun-
tain range MRl,r for δ -mountains with endpoints l and r . Recall that MRl,r is a set of faces of B. Let
MR =

⋃
l,r ∈P,l�r MRl,r . As |P| is a constant, by Theorem 5.3 MR is computable within the desired

time bound.
Since each δ -mountain is a δ -carve, fcore � MR. Let �fcore be the connected component ofB∗ \MR

containing fcore, where B∗ is the dual of B without the outer face. Since in the definition of a
mountain (P , I) we require P to be a simple path, for every face f of MR there exists a path Qf

in B∗ that connects f with a face incident with an edge of ∂B and with all faces contained in MR.

Consequently, �fcore is surrounded by B by a simple cycle, which we henceforth denote byC (fcore).
Clearly, each edge of C (fcore) belongs either to some MRl,r \ ∂B or to ∂B. Therefore, by Theo-

rem 5.3,

w (C (fcore)) ≤
(
|P|
2

)
· 3 ·w (∂B)/2 +w (∂B) ≤ 16

τ 2
w (∂B).

Now let Bclose be the set of edges of B of which each point is at distance at most (1
4 −

δ
2)w (∂B) =

(1
4 − 2τ)w (∂B) from V (∂B); note that Bclose can be computed in O (|B |) time by creating a super-

terminal vertex t in the outer face of B, connecting it by unit-length edges to all vertices ofV (∂B),
and running a shortest-path algorithm from t in the obtained plane graph in linear time [45].
Observe that each edge of C (fcore) belongs to Bclose, since in the definition of MRl,r we consider
4τ -mountains and τ ≤ 1

36 .
Consider now the subgraph H of B that contains all edges of Bclose that are enclosed byC (fcore).

Let f H
core be the face of H that contains fcore. AsC (fcore) is a subgraph of H , f H

core is a finite face of
H . Define C to be some shortest cycle in H separating the outer face of H from f H

core; such a cycle
exists as f H

core is finite. Observe thatC corresponds to a minimum cut between f H
core and the outer

face of H in the dual of H . Hence, C can be found in O (|B | log log |B |) time in the edge-weighted
setting [47] and in O (|B |) time in the unweighted setting [31].

We claim that the cycle C satisfies all the requirements of Theorem 6.1. Since C (fcore) is a can-
didate for C , w (C) ≤ w (C (fcore)) ≤ 16

τ 2w (∂B) and property (i) is satisfied. Properties (ii) and (iv)
follow directly from the construction of C .

Regarding property (iii), consider any x ∈ V (C) and let Px be a shortest path between x and
V (∂B) that uses the minimum number of edges strictly enclosed by C . Since x ∈ V (Bclose), in
particular distB (x ,V (∂B)) ≤ (1

4 − 2τ)w (∂B), it is clear that also all edges of Px are in Bclose. As-
sume now that Px contains some edge strictly enclosed by C . Then Px contains a subpath P ′x
between two vertices y, z ∈ V (C) that is strictly enclosed by C . By the choice of Px , we infer that
w (C[y, z]),w (C[z,y]) > w (P ′x). Since every edge of P ′x is in Bclose, we infer that eitherC[y, z] ∪ P ′x
or C[z,y] ∪ P ′x is a cycle that separates f H

core from the outer face in H of length strictly shorter
than w (C), a contradiction to the choice of C . Hence, no edge of Px is strictly enclosed by C and
property (iii) follows.

The following lemma proves that C satisfies the remaining condition (property (v)) and thus
finishes the proof of Theorem 6.1.

Lemma 6.2. Let S ⊆ V (∂B) and let T be a Steiner tree connecting S in B that minimizes w (T)
and, subject to that, minimizes the number of edges of T strictly enclosed by C and, subject to that,

minimizes the number of edges of T . Then no vertex of T of degree at least 3 in T is strictly enclosed

by C .

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

Network Sparsification for Steiner Problems 53:35

Proof. We prove the statement by induction over the number of edges of T . The base case
|T | ≤ 2 is trivial.

We say that a tree T is better than a tree T ′ if either w (T) < w (T ′) or w (T) = w (T ′) while T
contains less edges strictly enclosed by C than T ′, or w (T) = w (T ′), T contains the same number
of edges strictly enclosed by C as T ′ and |T | < |T ′ |.

Assume first that there existsv ∈ V (∂B) ∩V (T) that is not a leaf ofT . ThenT can be partitioned
into two edge-disjoint trees T1 and T2 with V (T1) ∩V (T2) = {v}. Let Si = (S ∩V (Ti)) ∪ {v} for i =
1, 2. Then, it is easy to see thatTi is a Steiner tree connecting Si such that no tree connecting Si is
better thanTi : if for some i = 1, 2, there would be a better treeT ′i , then a spanning tree ofT ′i ∪T3−i

would be a tree in B connecting S that is better than T . This would contradict the choice of T .
Consequently, by induction hypothesis, no vertex of degree at least three in T1 or in T2 is strictly
enclosed by C . Since v ∈ V (∂B), v is not strictly enclosed by C . This finishes the inductive step in
the case when such v exists.

We are left with the case when every vertex of V (T) ∩V (∂B) is a leaf of T . From the last tie-
breaking criterium in the choice ofT , we infer thatV (T) ∩V (∂B) = S and this is exactly the set of
leaves of T .

Note that T is a brickable connector and let B = {B1,B2, . . . ,Bs } the corresponding brick par-
tition, i.e., B1,B2, . . . ,Bs are the bricks induced by the faces of T ∪ ∂B. Recall that

∑s
i=1w (∂Bi) ≤

w (∂B) + 2w (T). Since V (T) ∩V (∂B) = S is the set of leaves of T , we infer that for every brick Bi

there exist ai ,bi ∈ V (∂B) such that ∂B[ai ,bi] = ∂Bi ∩T .
Since T is an optimal Steiner tree for some choice of terminals on ∂B, we have that T is short.

By assumption we have thatT is not τ -nice, so there exists a brick Bi withw (∂Bi) > (1 − τ)w (∂B).
Let Bi be such a large brick. Note that ∂B[bi ,ai] connects S , sow (T) ≤ w (∂B[bi ,ai]). We infer that

τw (∂B) > w (∂B) −w (∂Bi) = w (∂B[bi ,ai]) −w (∂Bi ∩T) ≥ w (T) −w (∂Bi ∩T) = w (T \ ∂Bi).
(1)

Note that ∂Bi = ∂B[ai ,bi] ∪T [ai ,bi], where byT [x ,y] we define the unique path inT between
x and y. Let va and vb be vertices on T [ai ,bi] such that

w (T [ai ,va]),w (T [bi ,vb]) ≤ min
(
w (T [ai ,bi])/2,

(
1

2
− 6τ

)
w (∂B)

)

and, moreover, bothT [ai ,va] andT [bi ,vb] are as long as possible. Note that possibly va = vb , but
vertices ai ,va ,vb ,bi appear on T [ai ,bi] in this order. In particular, va � bi and vb � ai .

Let Z be the union of {ai ,bi } with the set of vertices ofT [ai ,bi] of degree at least 3 inT . Let wa

be the vertex of Z and T [ai ,va] that is closest to va and let ea be the edge that precedes T [wa ,ai]
onT [bi ,ai]. LetTa be the subtree ofT rooted atwa with the parent edge ea . Note that the rightmost
element of V (Ta) ∩V (∂B) is ai ; let c be the leftmost element of V (Ta) ∩V (∂B). By Equation (1),
w (T [wa , c]) ≤ τw (∂B). Therefore, w (T [wa , c]) +w (T [wa ,ai]) ≤ (1

2 − 5τ)w (∂B).

Assume that c � ai and w (∂B[ai , c]) ≤ w (∂B)/2. As w (T [ai , c]) ≤ (1
2 − 5τ)w (∂B), we infer

that (T [ai , c], ∂B[ai , c]) is a δ -carve and, by Lemma 4.2, w (∂B[ai , c]) ≤ (1
2 − 4τ)w (∂B). Let C :=

∂B[ai , c] ∪T [ai , c], which is a closed walk, and let Q = T [ai , c] ∪ ∂B[bi , c] = C \ ∂B[ai ,bi]. Con-
sider the subgraphT ′ created fromT by first deleting any edge enclosed byC and then adding the
Q instead. Note that ∂Bi is enclosed by C and w (∂Bi) > (1 − τ)w (∂B), thus

w (T ′) ≤ w (T) −w (T [ai ,bi]) +w (Q) = w (T) −w (∂Bi) +w (C)

≤ w (T) − (1 − τ)w (∂B) + (1 − 9τ)w (∂B) ≤ w (T) − 8τw (∂B).

However, as T ′ includes Q = C \ ∂B[ai ,bi], T
′ also connects S , a contradiction to the choice of T .

Therefore c = ai = wa orw (∂B[c,ai]) < w (∂B)/2. Consider the second case. Again, we observe
that (T [ai , c], ∂B[c,ai]) is a δ -carve and, by Lemma 4.2,w (∂B[c,ai]) < (1

2 − 4τ)w (∂B). We now use

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

53:36 M. Pilipczuk et al.

the pegs p→ (ai),p← (c) ∈ P. By the choice of P, w (∂B[ai ,p→ (ai)]) +w (∂B[p← (c), c]) ≤ τw (∂B).
By Lemma 5.2, ((∂B[p← (c), c] ∪T [wa , c]) ∧ (T [wa ,ai] ∪ ∂B[ai ,p→ (ai)])) is a δ -mountain and, by
Theorem 5.3 and the construction ofC (fcore), no edge of the subtree ofT rooted atwa with parent
edge ea is strictly enclosed byC (fcore) and, hence, byC as well. Clearly, this last claim is also true
in the case c = ai = wa .

Symmetrically, the same argumentation can be made for wb being the first vertex of Z on
T [vb ,bi], with its preceding edge eb .

Now, if T [wa ,wb] does not contain any internal vertex from Z , then every vertex of de-
gree at least 3 in T is contained either in Ta or in Tb and hence the lemma is proven.
Therefore, assume otherwise. In particular, by the choice of wa and wb , va � vb , vavb � T
and w (T [ai ,bi]) > (1 − 12τ)w (∂B). As ∂B[bi ,ai] connects S , w (∂B[bi ,ai]) ≥ w (T [ai ,bi]) > (1 −
12τ)w (∂B) and w (∂B[ai ,bi]) < 12τw (∂B).

Consider two consecutive vertices w1,w2 from Z on T [ai ,bi]. Note that (T \T [w1,w2]) ∪
∂B[ai ,bi] connects S . Therefore, by the minimality of T , w (T [w1,w2]) < 12τw (∂B). Recall that
w (T \ ∂Bi) ≤ τw (∂B) and, in particular, any vertex of Z is connected with ∂B with a path in T
of length at most τw (∂B). We infer that any edge of T [ai ,bi] lies on some path of length at most
14τw (∂B) with endpoints in V (∂B) and thus, belongs to Bclose since τ ≤ 1/36.

Let us now take any brick Bj � Bi . Observe that w (∂Bj ∩T) ≤ 13τw (∂B), since ∂Bj ∩ ∂Bi is
either empty or an interval of length at most 12τw (∂B) and w (T \ ∂Bi) ≤ τw (∂B). Recall that
∂B[aj ,bj] = ∂Bj \T . Assume first thatw (∂B[aj ,bj]) > 1

2w (∂B). Observe that thenw (∂B[bj ,aj]) ≤
1
2w (∂B) and, since ∂B[bj ,aj] connects S , we would obtain that w (T) ≤ 1

2w (∂B) by the optimality

of T . On the other hand, w (T) ≥ w (Bi \ ∂B[ai ,bi]) ≥ (1 − 12τ)w (∂B). Since τ ≤ 1
36 , we obtain a

contradiction.
Therefore, w (∂B[aj ,bj]) ≤ 1

2w (∂B). Since w (T [aj ,bj]) = w (∂Bj ∩T) ≤ 13τw (∂B), δ = 4τ and

τ ≤ 1
36 , we obtain that (T [aj ,bj], ∂B[aj ,bj]) is a δ -carve. As a result, we infer that fcore is not

inside Bj . Since Bj was chosen arbitrarily, fcore belongs to Bi .

We claim that no edge ofT is strictly enclosed byC . Assume the contrary. Let �fcore be the face of

C ∪T that contains fcore. Since C encloses fcore, �fcore is finite. Furthermore, since no edge of T is

strictly enclosed by ∂Bi , �fcore is enclosed by ∂Bi , that is, lies inside the brick Bi . By the assumption

of the existence of an edge ofT strictly enclosed byC , there exists an edge ofT incident with �fcore.

Clearly, since T is a tree, three exists an edge of C \T incident with �fcore. Since �fcore is enclosed
by ∂Bi and ∂Bi ∩T = T [ai ,bi], there exists a subpath T [x ,y] of T [ai ,bi] with x ,y ∈ V (C) that is

strictly enclosed by C and whose edges are incident with �fcore. Without loss of generality we can
assume that T [x ,y] ∪C[x ,y] encloses fcore. Consequently, any edge of T incident to an internal
vertex ofT [x ,y] is enclosed byT [x ,y] ∪C[y,x]. As each edge ofT [ai ,bi] belongs to Bclose, by the
construction of C we obtain w (T [x ,y]) ≥ w (C[y,x]). Construct T ′ from T by removing any edge
enclosed byC[y,x] ∪T [x ,y] and addingC[y,x] instead. Clearly,w (T ′) ≤ w (T),T ′ connects S and
T ′ contains strictly less edges strictly enclosed byC . Hence,T ′ is better thanT , which contradicts
the choice of T . This finishes the proof of the lemma. �

This concludes the proof of Theorem 6.1.

7 A POLYNOMIAL KERNEL: CONCLUDING THE PROOF OF THEOREM 1.1

In this section, we conclude the proof of Theorem 1.1. That is, we assume that the brick B is
unweighted.

Fix τ = 1/36 and choose α such that

(1 − τ)α−1 < 1
3

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

Network Sparsification for Steiner Problems 53:37

and

(1 − 3τ)α−1 < 1/202177.

(In particular, α > 141.) We show an algorithm that runs in O (|∂B |α |B |) time and returns a sub-
graph H of size bounded by β |∂B |α for sufficiently large β such that

202177(1 − 3τ)α−1 + 108838883520/β ≤ 1.

For example, α = 142 and β = 2 159 872 407 596 suffices.
First, consider the base case |∂B | ≤ 2/τ = 72. For each subset S ⊆ V (∂B), we compute in O (|B |)

time an optimal Steiner tree using the algorithm of Erickson et al. [36] for the set S and add it to
graph H . Note that the size of the computed tree is at most 71, as ∂B without an arbitrary edge
connectsV (∂B). Therefore, in O (|B |) time we obtain a graph H of size at most 71 · 272, which is at
most β |∂B |α for any β ≥ 1, as α > 141 and |∂B | ≥ 3.

Now, consider the recursive case. Using the algorithm of Theorem 3.4, we test in c1 |∂B |8 · |B |
time whether B admits a short τ -nice tree, for some constant c1. If the algorithm returns a short
τ -nice brick covering B = {B1,B2, . . . ,Bp }, then we recurse on each brick Bi separately, obtaining

a subgraph Hi . By Lemma 3.5 and the choice of α , we may return the subgraph H :=
⋃p

i=1 Hi . As
for the time complexity, assume that the ith recursive call took at most c |∂Bi |α |Bi | time. Then, as
the brick covering B is short and τ -nice, we obtain that the total time spent is bounded by

�
�
c1 |∂B |8 + c

p∑
i=1

|∂Bi |α �
�
|B | ≤ |∂B |α |B |

(
c1 + 3c (1 − τ)α−1

)
,

which is at most c |∂B |α |B | for sufficiently large c , by the choice of α .
Assume then that the algorithm of Theorem 3.4 decided that no short τ -nice tree exists in B.

First, we find some core face fcore, using Theorem 4.7, that cannot be 2τ -carved. Then we employ
Theorem 6.1 to find a cycle C of length at most 16

τ 2 |∂B | = 20736|∂B | that encloses fcore. Mark a
set X ⊆ V (C) such that the distance between any two consecutive vertices of X on C is at most

2τ |∂B | = |∂B |/18. As |∂B | > 72, we may greedily mark such setX of size at most 5
4
|C |

2τ |∂B | ≤ 466560.

For each x ∈ X , we compute a shortest path Px from x to V (∂B) that does not contain any edge
strictly enclosed by C . Note that this computation can be done by a simple breadth-first search
fromV (∂B) in the graph obtained from B by removing all edges strictly enclosed byC . Moreover,
in this manner, for any x ,y ∈ X , the intersection of Px and Py is a common (possibly empty) suffix.

By condition (ii) of Theorem 6.1, each path Px is of length at most (1
4 − 2τ) |∂B | = 7

36 |∂B |. For x ∈ X ,
let π (x) be the second endpoint of Px .

Let x ,y ∈ X be two vertices that are consecutive (in a counter-clockwise direction) onC and con-
sider the walk P := Px ∪C[x ,y] ∪ Py . Note that |P | ≤ 4

9 |∂B |, as |Px |, |Py | ≤ 7
36 |∂B | and C[x ,y] ≤

1
18 |∂B |. We claim that

|∂B[π (x),π (y)] ∪ P | ≤ (1 − 3τ) |∂B |. (2)

If π (x) = π (y), then |∂B[π (x),π (y)] ∪ P | ≤ |P | ≤ 4
9 |∂B | and Equation (2) follows from the choice

of τ . Therefore, suppose that π (x) � π (y). Then Px and Py do not intersect. Let x ′ be the vertex
of V (Px) ∩V (C[x ,y]) that lies closest to π (x) on Py and define y ′ similarly with respect to Py .
Observe that x ′ lies closer to x on C[x ,y] than y ′, as otherwise Px [x ,x ′] and Py[y,y ′] would in-
tersect (recall that neither Px nor Py contains an edge strictly enclosed by C). Hence, C[x ′,y ′] is
a subpath of C[x ,y]. Define P ′ = Px [π (x),x ′] ∪C[x ′,y ′] ∪ Py[y ′,π (y)]. Observe that P ′ is simple

path of length at most |P | ≤ 4
9 |∂B |. Then, either (P ′, ∂B[π (x),π (y)]) or (P ′, ∂B[π (y),π (x)]) is a

(2τ)-carve. Note that P ′ ∪ ∂B[π (y),π (x)] encloses C and thus, in particular, fcore. Hence, it must
be (P , ∂B[π (x),π (y)]) that is a (2τ)-carve. By Lemma 4.2, we infer that |∂B[π (x),π (y)]| ≤ 17

36 |∂B |
and thus |∂B[π (x),π (y)] ∪ P | ≤ 33

36 |∂B |. Then Equation (2) follows from the choice of τ .

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

53:38 M. Pilipczuk et al.

Consider now the closed walk Wx = ∂B[π (x),π (y)] ∪ P . Let Hx be the graph consisting of all
edges ofWx that neighbor the outer face ofWx treated as a planar graph; note thatWx and Hx are
computable in linear time for fixed x . By definition, each doubly connected component of Hx is a
cycle or a bridge. For each doubly connected component that is a cycle, we create a brick consisting
of all edges of B that are enclosed by this cycle. Let Bx be the family of obtained bricks. Observe
that Bx is computable in linear time and a face of B is enclosed by some brick of Bx if and only if
it is enclosed byWx . Moreover, by Equation (2),∑

B′ ∈Bx

|∂B′ | ≤ |Wx | ≤ (1 − 3τ) |∂B |.

Therefore, ∑
x ∈X

∑
B′ ∈Bx

|∂B′| ≤ |C | + |∂B | + 2|X | 7

36
|∂B | ≤ 202177|∂B |. (3)

We recurse on each brick B′ ∈ Bx , obtaining a graph H (B′). Furthermore, for each x ,y ∈ V (C), we
mark one shortest path Qx,y between x and y in B, if its length is at most |∂B |. We define

H :=
�	
�

⋃
x ∈X

⋃
B′ ∈Bx

H (B′)�

�
∪ �	
�

⋃
x,y∈X

Qx,y
�

�
.

By Theorem 6.1, for any choice of terminals on V (∂B), there exists an optimal Steiner tree con-
tained inH . Note here that by Theorem 6.1 we may assume that every connection strictly enclosed
by C is realized by some marked shortest path Qx,y .

We now bound the size ofH . For each x ∈ X and B′ ∈ Bx we have |H (B′) | ≤ β |∂B′ |α . Moreover,
each Qx,y is of length at most |∂B |. Hence,

|H | ≤ β
∑
x ∈X

∑
B′ ∈Bx

|∂B′|α +
(
|X |
2

)
|∂B |

≤ β202177|∂B |α (1 − 3τ)α−1 + 108838883520|∂B |
≤ β |∂B |α .

(The last inequality follows from the choice of α and β .)
Regarding time bound, note that all computations, except for the recursive calls, can be done in

c2 |∂B |3 |B | time, for some constant c2. Therefore the total time spent is

�
�
c2 |∂B |3 + c

∑
x ∈X
|∂Bx |α �

�
|B | ≤ |∂B |α |B |

(
c2 + 202177c (1 − 3τ)α−1

)
,

which is at most c |∂B |α |B | for sufficiently large c , by the choice of α .

8 DYNAMIC PROGRAMMING TO FIND NICE SUBGRAPHS

Our goal in this section is to prove the two algorithmic statements mentioned Section 3.

Theorem 8.1 (Theorem 3.4 Recalled). Let τ > 0 be a fixed constant. Given an unweighted brick

B, in O (|∂B |8 |B |) time one can either correctly conclude that no short τ -nice tree exists in B or find a

short τ -nice brick covering of B.

Theorem 8.2. Let 0 < τ ≤ 1
4 be a fixed constant. Given an edge-weighted brick B, in

O (τ−14 |B | log |B |) time one can either correctly conclude that no 3-short τ -nice tree exists in B or

find a (3 + 2τ)-short (τ/2)-nice brick covering B of B with the following additional properties:

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

Network Sparsification for Steiner Problems 53:39

(1) each finite face of B is enclosed by at most seven bricks B′ ∈ B;

(2)
⋃

B′ ∈B ∂B
′ is connected.

The idea of the proofs of Theorems 3.4 and 8.2 is to perform a dynamic-programming algorithm
similar to the algorithm of Erickson et al. [36] for finding an optimal Steiner tree for a given set of
terminals on the outer face. However, as we impose some restrictions on the faces that the tree cuts
out of the brick B, the outcome of the algorithm may no longer be a tree. We start by formalizing
what we can actually find.

Construct the extended brick B̂ as follows: take B and for every a ∈ V (∂B) add a degree-1 vertex
â attached to a with an edge of zero weight, drawn outside the cycle ∂B. (We remark here that the

weight of the edge aâ does not have any real significance in the sequel.) We denote ∂̂B = {â : a ∈
V (∂B)}.

We define an ordered tree T as a rooted tree where every vertex has imposed some linear order on
its children. This naturally induces a linear order on the set of leaves of T. The following definition
captures the objects found by our dynamic-programming algorithms.

Definition 8.3 (Embedded Tree). An embedded tree is a pair (T,π) where T is an edge-weighted

ordered tree with at least one edge, rooted at vertex r (T) and π is a homomorphism from T into B̂

such that π (v) ∈ V (B) for any non-leaf vertex of T and π assigns the leaves of T to vertices of ∂̂B.
We require that the order of the leaves of T coincides with the counter-clockwise order of their

images on ∂̂B under the homomorphism π .
We say that an embedded tree is leaf-injective if π is injective on the set of leaves of T.

Here, by a homomorphism π from a graph G to a graph H we mean a function π : E (G) ∪
V (G) → E (H) ∪V (H) that matches edges to edges and vertices to vertices and, if π (uv) = u ′v ′,

then {π (u),π (v)} = {u ′,v ′} and w (u ′v ′) = w (uv). As all edges aâ are of weight zero in B̂ and all
edges of B have positive weight, we may restrict ourselves to embedded trees where an edge has
weight zero if and only if it is adjacent to a leaf.

We measure the length of an embedded tree as in all weighted graphs. Note that the edges
incident to leaves of an embedded tree do not contribute to the length of the tree. In the unweighted
case, we will mostly be working with leaf-injective embedded trees, while in the weighted case it
will be more convenient to drop this assumption.

Recall that for two vertices a,b ∈ ∂B, by ∂B[a,b] we denote the subpath of ∂B between a and b,
obtained by traversing ∂B in a counter-clockwise direction. If a = b, then ∂B[a,b] = ∅. We define
∂↑B[a,b] to be equal ∂B[a,b] unless a = b; in this case ∂↑B[a,b] = ∂B.

An embedded tree (T,π) is τ -nice if for any two consecutive leaves l̂a , l̂b in T the following

holds. Let π (l̂a) = â and π (l̂b) = b̂ and let la , lb be the parents of l̂a , l̂b in T, respectively; note that

π (la) = a and π (lb) = b, and possibly a = b. Let u be the lowest common ancestor of l̂a and l̂b in
T. Then, for (T,π) to be τ -nice, we require that

w (∂B[a,b]) +w (T[u, la]) +w (T[u, lb]) ≤ (1 − τ)w (∂B). (4)

An embedded tree is fully τ -nice if, additionally, Equation (4) holds for l̂a being the last leaf of T,

l̂b being the first leaf of T, u = r (T) and ∂B[a,b] replaced by ∂↑B[a,b].
The intuition behind this notion is that the image of T[w, la] ∪ T[w, lb] under π , together with
∂B[a,b] (or ∂↑B[a,b] in the case of the last and the first leaf of T), is likely to yield a perimeter of
an output brick Bi in our algorithm.

We now formalize how to find a set of bricks promised by Theorems 3.4 and 8.2, given a fully
τ -nice embedded tree.

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

53:40 M. Pilipczuk et al.

Lemma 8.4. Given a fully τ -nice embedded tree (T,π) with r leaves, one can inO (r (|T| + |B |)) time

compute a τ -nice brick covering B of B of total perimeter at most w (∂B) + 2w (T) with the following

additional properties:

(1) each finite face of B is enclosed by at most r bricks of B;

(2)
⋃

B′ ∈B ∂B
′ is connected.

Proof. Let F be a family of pairs of two consecutive leaves of T and the pair p◦ consist-

ing of the last and the first leaf of T. For any p = (l̂a , l̂b) ∈ F , define la , lb ,a,b,w as in the
definition of a fully τ -nice tree. Define C (p) := π (T[la ,w] ∪ T[w, lb]) ∪ ∂B[a,b] if p � p◦ and
C (p) := π (T[la ,w] ∪ T[w, lb]) ∪ ∂↑B[a,b] if p = p◦. Observe that C (p) is a closed walk in B. Note
that the fact that T is fully τ -nice tree implies that the length ofC (p) is bounded by (1 − τ)w (∂B).
Moreover, as edges of T not incident to a leaf contribute to exactly two cyclesC (p) and each edge
of ∂B contributes to exactly one such cycle, we have∑

p∈F
w (C (p)) = w (∂B) + 2w (T). (5)

Let H0 (p) be the subgraph of B consisting of all edges that lie onC (p). Clearly, H0 (p) is connected.
Let H (p) be the subgraph of H0 (p) consisting of all edges of H0 (p) that are adjacent to the outer
face of H0 (p). Note that H (p) is connected, ∂B[a,b] ⊆ H (p) (∂↑B[a,b] ⊆ H (p) if p � p◦) and the
outer faces ofH (p) andH0 (p) are equal. Moreover, by the definition ofH (p), any doubly connected
component of H (p) is either a simple cycle or a bridge.

We construct a preliminary brick covering B0 as follows: for each p ∈ F and for each doubly
connected component D of H (p) that is a cycle, we insert into B0 a brick Bi consisting of all
edges of B that are enclosed by D; clearly ∂Bi = D and Bi is a subbrick of B. Note that B0 can
be computed within the desired running time. Indeed, H (p) can be computed in O (|T| + |B |) time
and the corresponding bricks can be computed in O (|B |) time. It remains to observe that |F | = r ,
where r is the number of leaves of T.

We can now make several observations about B0. First, as w (C (p)) ≤ (1 − τ)w (∂B), each brick
in B0 has perimeter at most (1 − τ)w (∂B). Second, for a fixed p, the total perimeter of the bricks
inserted into B0 is at mostw (H (p)) ≤ w (C (p)). Therefore, by Equation (5), the sum of the perime-
ters of all bricks in B0 is bounded by w (∂B) + 2w (T), as desired. Third, for a fixed cycle C (p), the
constructed bricks do not share an enclosed finite face of B. Hence, each finite face of B is enclosed
by at most r bricks of B0.

We now show that B0 is a brick covering of B, that is, we prove that each face of B is contained
in some brick ofB0. Let f be any face of B and let c be an arbitrary point of the plane in the interior
of f . Let Γ � Z be the fundamental group of Π \ {c} and let ι be the mapping that assigns to each
closed curve in Π \ {c} the corresponding element of Γ. For each p ∈ F , orient the walk C (p) in
the direction such that the part ∂B[a,b] or ∂↑B[a,b] is traversed from a to b (note that if p = p◦,
then a � b and ∂↑B[a,b] = ∂B[a,b], as (T,π) is fully τ -nice). If c belongs to the outer face of the
graph H (p), then C (p) is continuously retractable to a single point in Π \ {c} and thus ι (C (p)) is
the neutral element of Γ. On the other hand, ι (∂B) is not the neutral element of this fundamental
group, since it winds around c exactly one time. Observe that in this fundamental group we have
equation ∑

p∈F
ι (C (p)) = ι (∂B),

since for each e ∈ E (T) we have that π (e) is traversed by two different walks C (p1), C (p2), in
different directions. Therefore, for at least one p0 ∈ F it must hold that ι (C (p0)) is not the neutral

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

Network Sparsification for Steiner Problems 53:41

element of Γ. Consequently, c belongs to some bounded face of one of the constructed graphsH (p)
and one of the bricks of B0 contains f .

Observe that B0 has all the required properties, except possibly the property that
⋃

B′ ∈B0
∂B′

is connected. To ensure this property as well, we select a subfamily of B0 as follows. For each
connected component D of

⋃
B′ ∈B0

∂B′, let BD be the family of all bricks B′ ∈ B0 with ∂B′ ⊆ D.
Let D0 be the component of

⋃
B′ ∈B0

∂B′ that contains ∂B.
We claim that if D � D0 is a component of

⋃
B′ ∈B0

∂B′, then B0 \ BD is a brick covering of B as
well. Let f be a face of B that is incident to one of the edges of D, but is contained in the outer
face of D. As D does not contain any edge of ∂B, f is finite. Let B′ ∈ B0 be a brick such that ∂B′

encloses f . Clearly, B′ � BD and hence ∂B′ does not share any vertex with D. As f is incident with
an edge of D, we infer that ∂B′ strictly encloses all edges of D; in particular, ∂B′ encloses all faces
that are enclosed by the bricks of BD . Consequently, B0 \ BD is a brick covering of B.

We now remove all bricks BD from B0 for any component D � D0 of
⋃

B′ ∈B0
∂B′. By the above

claim, we infer that the remainder, BD0 , is a brick covering of B. As BD0 ⊆ B0, BD0 inherited all
other required properties: in particular, it is τ -nice and of total perimeter at most w (∂B) + 2w (T).
Hence, the algorithm may output BD0 . Observe that it can be computed from B0 in time linear in
|B | and the total size of B0. �

In the other direction, it is easy to see that a short τ -nice tree in B yields a fully τ -nice embedded
tree of small length.

Lemma 8.5. If B admits a τ -nice tree T , then B admits a fully τ -nice, leaf-injective embedded tree

(T,π) of length w (T).

Proof. We construct T as follows: root T at an arbitrary vertex r ∈ V (T), for each a ∈ V (T) ∩
V (∂B), add the edge aâ and for each internal vertex p of T, order its children in the counter-
clockwise order in which they appear on the plane (starting from the parent of p or at arbitrary

point for r = p). As each leaf ofT lies onV (∂B), in this manner each leaf of T lies in ∂̂B. Therefore,
if we take π to be the identity mapping, (T,π) is an embedded tree. By construction,w (T) = w (T)

and (T,π) is leaf-injective. Moreover, for any two consecutive leaves â and b̂ of T, ifw is the lowest

common ancestor of â and b̂, then the value T[w,a] ∪ T[w,b] ∪ ∂B[a,b] is the perimeter of the
face of B[T ∪ ∂B] that neighbors ∂B[a,b]. As T is τ -nice, we infer that (T,π) is τ -nice as well.

Finally, if â is the last leaf of T and b̂ is the first leaf of T, then since r has degree at least two in

T, r is the lowest common ancestor of â and b̂ in T and T[r ,a] ∪ T[r ,b] ∪ ∂↑B[a,b] is again the
perimeter of the face of B[T ∪ ∂B] that neighbors ∂↑B[a,b]. We infer that (T,π) is fully τ -nice and
the lemma is proven. �

By Lemmata 8.4 and 8.5, it remains to find a fully τ -nice embedded tree of small length. Here
the argumentation for the unweighted and the edge-weighted cases diverge. In both cases, we use
a dynamic-programming algorithm. However, in the unweighted case we are able to obtain the
exact statement of Theorem 3.4; in the edge-weighted case, we need to perform some rounding to
fit into the O (|B | log |B |) time frame and therefore we may lose some “niceness” of the constructed
tree.

8.1 Finding a Nice Embedded Tree in the Unweighted Setting

For brevity, we denote n = |B | and k = |∂B |.

Lemma 8.6. Assume B is unweighted. Given an integer �, in O (nk4�4) time one can find a fully

τ -nice leaf-injective embedded tree of length at most � or correctly conclude that no such tree exists.

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

53:42 M. Pilipczuk et al.

Proof. For eachv ∈ V (B), a,b ∈ V (∂B), 0 ≤ ka ,kb ≤ �, we define F [v,a,b,ka ,kb] to be the set
of all leaf-injective embedded trees (T,π) that:

(1) have length at most �;
(2) are τ -nice;
(3) satisfy π (r (T)) = v ;

(4) map the first leaf of T, l̂a , to â under π , and the last leaf of T, l̂b , to b̂ under π ;

(5) satisfy |T[r (T), la]| ≤ ka and |T[r (T), lb]| ≤ kb , where la , lb are parents of l̂a , l̂b in T, re-
spectively.

Let M[v,a,b,ka ,kb] = min{w (T) : (T,π) ∈ F [v,a,b,ka ,kb]}.
Assume that B admits a fully τ -nice leaf-injective embedded tree (T,π) of length at most

�. Let l̂a , l̂b be the first and the last leaf of T, let la , lb be the parents of l̂a , l̂b in T, respec-
tively, and let a = π (la), b = π (lb). Note that (T,π) ∈ F [r (T),a,b, |T[r (T), la]|, |T[r (T), lb]|] and
|T[r (T), la]| + |T[r (T), lb]| + |∂↑B[b,a]| ≤ (1 − τ)k , as (T,π) is fully τ -nice. In the other direc-
tion, if (T,π) ∈ F [v,a,b,ka ,kb] and ka + kb + |∂↑B[b,a]| ≤ (1 − τ)k , then (T,π) is fully τ -nice.
Therefore, it suffices to compute, for each choice of the parameters v,a,b,ka ,kb , the value
M[v,a,b,ka ,kb] and one representative element T [v,a,b,ka ,kb] ∈ F [v,a,b,ka ,kb] of length
M[v,a,b,ka ,kb], if F [v,a,b,ka ,kb] � ∅.

Clearly, for v = a = b, M[v,a,b,ka ,kb] = 0 and T [v,a,b,ka ,kb] can be defined as a two-vertex

tree with root r , mapped to v = a = b and a single leaf mapped to â = b̂. These are the only em-
bedded trees of zero length.

Consider a τ -nice leaf-injective embedded tree (T,π) with 0 < w (T) ≤ �. Let l̂a , l̂b be the first

and the last leaf of T, let la , lb be the parents of l̂a , l̂b in T and let a = π (la), b = π (lb), v = π (r (T)).
Let ka ,kb be such that |T[r (T), la]| ≤ ka and |T[r (T), lb]| ≤ kb . Consider two cases: either r (T) is
of degree one in T or larger.

In the first case, let p be the only child of r (T); note that p is not a leaf as w (T) > 0. Let T1 =

T \ r (T) rooted at p and let π1 be the mapping π restricted to T1. Clearly, (T1,π1) is a τ -nice
embedded tree that belongs to F [π (p),a,b,ka − 1,kb − 1].

In the other direction, consider the cell F [v,a,b,ka ,kb]. We note that for any w ∈ NB (v) and
(T1,π1) ∈ F [w,a,b,ka − 1,kb − 1], if we extend T1 with a new root vertex r mapped to v , with
one child r (T1), then the extended tree belongs to F [v,a,b,ka ,kb].

In the second case, split T into two trees T1 and T2, rooted at r (T): T1 contains the subtree
of T rooted in the first child of r (T), together with the edge connecting it to r (T) and T2 con-
tains the remaining edges of T (i.e., all but the first children of r (T), together with the edges
connecting them to r (T)). Define π1 and π2 as restrictions of π to T1 and T2, respectively. Let

l̂c be the last leaf of T1 and l̂d be the first leaf of T2. Define lc , ld , c,d analogously to la , lb ,a,b.
Observe that lc � ld since (T,π) is leaf-injective, but it may be that la = lc or ld = lb in case a = c
or b = d . Note that (T1,π1) ∈ F [v,a, c,ka , |T[r (T), lc]|] and (T2,π2) ∈ F [v,d,b, |T[r (T), ld]|,kb].
Moreover, |T[r (T), lc]| + |T[r (T), ld]| + |∂B[c,d]| ≤ (1 − τ)k , as T is τ -nice and r (T) is the lowest
common ancestor of lc and ld in T.

In the other direction, assume that for some c,d ∈ ∂B[a,b] such that c lies strictly closer
to a than d on ∂B[a,b] (i.e., ∂B[a, c] � ∂B[a,d] ⊆ ∂B[a,b]) and for some kc ,kd ≤ � such that
kc + kd + |∂B[c,d]| ≤ (1 − τ)k , we have embedded trees (T1,π1) ∈ F [v,a, c,ka ,kc] and (T2,π2) ∈
F [v,d,b,kd ,kb] such that w (T1) +w (T2) ≤ �. Define T as T1 ∪ T2 with identified roots rooted
at r (T) = r (T1) = r (T2) and order of the children of r (T) by first placing the children in T1 and
then the children in T2, in the corresponding orders. Moreover, define π = π1 ∪ π2. Then in the

embedded tree (T,π) the first leaf is l̂a with π (l̂a) = â and the last leaf is l̂b with π (l̂b) = b̂. The

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

Network Sparsification for Steiner Problems 53:43

assumption that c is strictly closer to a than d implies that (T,π) is leaf-injective. Furthermore,
w (T) = w (T1) +w (T2) ≤ �. Finally, the requirement kc + kd + |∂B[c,d]| ≤ (1 − τ)k implies that
(T,π) is τ -nice. Hence, (T,π) ∈ F [v,a,b,ka ,kb].

From the previous discussion, we infer that M[v,a,b,ka ,kb] = 0 if v = a = b and otherwise
M[v,a,b,ka ,kb] equals the minimum over the following candidates:

—if ka ,kb > 0, for eachw ∈ NB (v), we take 1 +M[w,a,b,ka − 1,kb − 1] as a candidate value;
—for each c,d ∈ ∂B[a,b] such that c lies strictly closer to a than d on ∂B[a,b], and for each

integers 0 ≤ kc ,kd ≤ � such that kc + kd + |∂B[c,d]| ≤ (1 − τ)k , we take M[v,a, c,ka ,kc] +
M[v,d,b,kd ,kb] as a candidate value, provided that this value does not exceed �.

We note that, in the aforementioned recursive formula, to computeM[v,a,b,ka ,kb] we take into
account at most |NB (v) | + k2 (1 + �)2 other candidates, in each computation taking into account
values M[v ′,a′,b ′,k ′a ,k

′
b
] with |∂B[a′,b ′]| strictly smaller than |∂B[a,b]|. We infer that the values

M[v,a,b,ka ,kb] for all valid choice of the parameters v,a,b,ka ,kb can be computed in O (nk4�4)
time. If we additionally store for each cell M[v,a,b,ka ,kb] which candidate attained the minimum
value, we can read an optimal embedded treeT [v,a,b,ka ,kb] in linear time with respect to its size.
This concludes the proof of the lemma. �

We may now conclude the proof of Theorem 3.4. Using Lemma 8.6 we look for a fully τ -nice
embedded tree of length at most k . If one is found, we apply Lemma 8.4 to obtain the desired family
of bricks. If the algorithm of Lemma 8.6 does not find any embedded tree, Lemma 8.5 allows us to
conclude that no short τ -nice tree exists in B.

8.2 Finding a Nice Embedded Tree in the Edge-Weighted Setting

We start with the following observation that extends Lemma 8.5.

Lemma 8.7. Let B be an edge-weighted brick and let 0 < τ ≤ 1
4 be a constant. If there exists a short

τ -nice tree T in B, then there exists an embedded fully τ -nice tree (T,π) in B of length at most w (T)
and with at most seven leaves.

Proof. Let T be as in the lemma statement and construct (T,π) as in the proof of Lemma 8.5.
That is, we construct T as follows: we root T at an arbitrary vertex r ∈ V (T), for each a ∈ V (T) ∩
V (∂B), add the edge aâ and for each internal vertex p of T, order its children in the counter-
clockwise order in which they appear on the plane (starting from the parent of p or at arbitrary
point for r = p). The mapping π is the identity mapping. Clearly,w (T) = w (T). Our goal is to trim
T so that it is still fully τ -nice, but has at most seven leaves.

Assume T has at leasteight leaves, as otherwise we are done. Pick any four pairwise distinct

leaves l̂1, l̂2, l̂3, l̂4 of T with the following properties: they lie in T in this order, no two of them are

two consecutive leaves of T and l̂4 is not the last leaf of T. As T has at least eight leaves, this is
always possible (e.g., we may take the first, third, fifth, and seventh leaf of T). Let li be the unique

neighbor of l̂i in T. Moreover, let âi = π (l̂i) and ai = π (li); note that ai is the unique neighbor of

âi in the extended brick B̂. We use a cyclic ordering for the index i , that is, l5 = l1, a5 = a1, and so
on. Observe that all ai are pairwise distinct, as we have started from a short τ -nice treeT (in other
words, (T,π) is leaf-injective).

For i = 1, 2, 3, 4, by Li we denote the set of leaves of T that lie between l̂i and ̂li+1 (exclusive), in

the circular order of the leaves ofT. By the assumption on the leaves l̂i , all sets Li are nonempty. For

i = 1, 2, 3, 4, let Ti be a subtree of T defined as follows: for each l̂ ∈ Li , we remove from T the path

from l̂ to the closest vertex of T[l̂i , ̂li+1] (recall that l̂5 = l̂1). Define πi = π |Ti
. As we preserve the

path T[l̂i , ̂li+1] in Ti , no new leaf has been introduced into Ti and (Ti ,πi) is an embedded tree in B.

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

53:44 M. Pilipczuk et al.

We claim that for at least one index i , the embedded tree (Ti ,πi) is fully τ -nice. Assume the
contrary. Since (T,π) is fully τ -nice, we infer that for each i = 1, 2, 3, 4:

w (T[li , li+1]) +w (∂B[ai ,ai+1]) > (1 − τ)w (∂B).

Summing up, we infer that

w (∂B) +
4∑

i=1

w (T[li , li+1]) > 4(1 − τ)w (∂B) ≥ 3w (∂B),

where the last inequality follows from the assumption τ ≤ 1
4 . However, note that

4∑
i=1

w (T[li , li+1]) ≤ 2w (T) ≤ 2w (T) ≤ 2w (∂B),

since T is short. We have reached a contradiction.
Consequently, we may replace (T,π) with (Ti ,πi) for some i ∈ {1, 2, 3, 4}, keeping the fully τ -

niceness and decreasing the number of leaves. If we proceed with this procedure exhaustively, we
finally arrive at an embedded tree that is fully τ -nice and has at most seven leaves. �

A branching vertex is a vertex of an embedded tree (T,π) with at least two children. By
Lemma 8.7, in the case τ ≤ 1

4 we may look for embedded trees with at most seven leaves and,
consequently, at most six branching vertices. If we are satisfied with any polynomial running time
of the algorithm that finds a fully τ -nice embedded tree, observe that it suffices to guess the images
of all leaves and branching vertices of the tree in question and compute a shortest path between
any pair of them. However, if we aim for aO (τ−14 |B | log |B |) running time, then we need to proceed
more carefully. We will essentially follow the dynamic-programming algorithm of the unweighted
case (i.e., Lemma 8.6) but due to the existence of arbitrary real weights, we cannot directly use ka

and kb , the lengths of the leftmost and rightmost paths in the constructed tree, as dimensions in
the dynamic programming table. Instead, we need to round them. The idea is to round indepen-
dently the length of each maximal path consisting of vertices of degree two of the embedded tree
in question; as there are at most 13 such paths, we control the error introduced by the rounding.

Lemma 8.8. In O (τ−14 |B | log |B |) time one can either correctly conclude that no fully τ -nice embed-

ded tree with at most seven leaves and of length at most w (∂B) exists in B or find a fully (τ/2)-nice

embedded tree in B of length at most (1 + τ)w (∂B).

Proof. Greedily, we find a set P ⊆ V (B) of at most 16/τ pegs, such that for anyv ∈ V (∂B), if we
traverse ∂B fromv in a clockwise direction, then we encounter a peg at distance at most τw (∂B)/8
(possibly, the peg is on v). Observe the following:

Claim 8.1. If there exists in B a fully τ -nice embedded tree with at most seven leaves and of length

at most w (∂B), then there exists a fully (3τ/4)-nice embedded tree with at most seven leaves and of

length at most (1 + 7τ/8)w (∂B), whose leaves are mapped to vertices of ∂̂B adjacent to pegs.

Proof. Let (T,π) be an embedded tree as in the statement. For each leaf l̂a of T, proceed as

follows. Let la be the unique neighbor of l̂a in T and let π (l̂a) = â and π (la) = a. Traverse ∂B
from a in a clockwise direction and let p (a) be the first peg encountered (possibly, p (a) = a).

Replace the edge l̂ala in T with a copy of the path ∂B[p (a),a] and the edge p̂ (a)p (a), embed-

ded by π into ∂B[p (a),a] ∪ {p̂ (a)p (a)}. Note that the constructed tree is an embedded tree. As
w (∂B[p (a),a]) ≤ τw (∂B)/8, the constructed tree is fully (τ − τ/4)-nice and we have enlarged the
length of T by at most 7τw (∂B)/8. �

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

Network Sparsification for Steiner Problems 53:45

Hence, we restrict ourselves to embedded trees whose leaves are mapped to the neighbors of
pegs. We branch into O (|P|7) = O (τ−7) cases, guessing the number of leaves and their images in
the tree in question. That is, we are now given an integer r ≤ 7 and a sequence a1,a2, . . . ,ar of
pegs that appear on ∂B in this counter-clockwise order (possibly ai = ai+1 for some i) and we look
for a fully (3τ/4)-nice embedded tree of length at most (1 + 7τ/8)w (∂B) with r leaves that maps
consecutive leaves to vertices â1, â2, . . . , âr .

Denote λ = τ
104w (∂B). As discussed earlier, to achieve the promised running time, we need to

round the distances in the dynamic programming algorithm. We will use λ as one unit of distance
for rounding. For a real x , by rnd(x) we denote the smallest integer k for which kλ ≥ x , that is,
rnd(x) = �x/λ�. For an embedded tree (T,π) with ρ leaves, by I(T) we denote the set consisting of
the root, all branching vertices, and all neighbors of leaves in the tree T. Observe that |I(T) | ≤ 2ρ.
Let T′ ⊆ T be any subtree of T. The set I(T) partitions the edge set of T′ into a family of paths,
with at most |I(T) | − 1 ≤ 2ρ − 1 paths of positive length; let P (T′) be the family of all these paths.
The rounded length of T′, denoted rnd(T′), equals

∑
P ∈P (T′) rnd(w (P)). Observe that

w (T′) ≤ λrnd(T′) ≤ w (T′) + (2ρ − 1)λ. (6)

We remark that this bound on rnd(T′) applies in particular to a T′ that is a path between some
branching vertex of T and a leaf of T.

We now adjust the definition of niceness to the rounded distances. An embedded tree (T,π)

is rnd-τ ′-nice if, for any two consecutive leaves l̂a , l̂b in T the following holds. Let π (l̂a) = â and

π (l̂b) = b̂ and let la , lb be the parents of l̂a , l̂b in T, respectively; note that π (la) = a and π (lb) = b,

possibly a = b. Let w be the lowest common ancestor of l̂a and l̂b in T. Then the requirement for
rnd-τ ′-niceness is that

w (∂B[a,b]) + λrnd(T[w, la]) + λrnd(T[w, lb]) ≤ (1 − τ ′)w (∂B). (7)

An embedded tree is fully rnd-τ ′-nice if, additionally, Equation (7) holds for l̂a being the last leaf of

T, l̂b being the first leaf of T, w = r (T) and ∂B[a,b] replaced by ∂↑B[a,b]. Observe the following.

Claim 8.2. If an embedded tree is (fully) rnd-τ ′-nice, then it is also (fully) τ ′-nice. If an embedded

tree with at most seven leaves is (fully) τ ′-nice and τ ′ > τ/4, then it is also (fully) rnd-(τ ′ − τ/4)-nice.

Proof. The claim follows by applying inequality Equation (6) to rnd(T[w, la]) and rnd(T[w, lb])
in condition Equation (7). �

By Claims 8.1 and 8.2, we may restrict ourselves to searching for a fully rnd-(τ/2)-nice embedded
tree: in each of these claims we lose only τ/4 on the niceness of the tree.

We are now ready to describe the main table for the dynamic-programming algorithm. Define L
to be the largest integer such that λL ≤ (1 + τ)w (∂B); observe that L = O (τ−1). For eachv ∈ V (B),
indices 1 ≤ ia ≤ ib ≤ r , and integers 0 ≤ ka ,kb , � ≤ L, we define the value F [v, ia , ib , �,ka ,kb] to
be any embedded tree (T,π) that satisfies the following:

(1) (T,π) is rnd-(τ/2)-nice;
(2) π (r (T)) = v ;
(3) T has ib − ia + 1 leaves, mapped by π onto âia

,�aia+1, . . . , âib
in this order;

(4) T has rounded length at most �;

(5) if l̂a is the first leaf of T and l̂b is the last leaf, then rnd(T[l̂a , r (T)]) ≤ ka and

rnd(T[l̂b , r (T)]) ≤ kb .

We require that F [v, ia , ib , �,ka ,kb] = ⊥ if no such embedded tree exists.

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

53:46 M. Pilipczuk et al.

The next two claims verify that computing all values F [v, ia , ib , �,ka ,kb] is sufficient for our
needs.

Claim 8.3. Assume that F [v, 1, r ,L,ka ,kb] = (T,π) � ⊥ for somev,ka ,kb . Moreover, assume that

w (∂↑B[ar ,a1]) + λka + λkb ≤ (1 − τ/2)w (∂B). (8)

Then (T,π) is fully (τ/2)-nice and has length at most (1 + τ)w (∂B).

Proof. First, observe that (T,π) is rnd-(τ/2)-nice by the properties of the cell F [v, 1, r ,
L,ka ,kb]. Moreover, we have that the first leaf of T is mapped onto â1 and the last leaf is mapped
onto âr . Hence, inequality Equation (8) implies that (T,π) is fully rnd-(τ/2)-nice. By Claim 8.2,
(T,π) is fully (τ/2)-nice. Finally, note that since T has rounded length at most L, by Equation (6)
the length of T is bounded by Lλ ≤ (1 + τ)w (∂B). �

Claim 8.4. Assume that there exists in B a fully (3τ/4)-nice embedded tree (T,π) of length at

most (1 + 7τ/8)w (∂B), such that the leaves of T are mapped onto a1,a2, . . . ,ar in this order. Then

F [v, 1, r ,L,ka ,kb] � ⊥ for some v and ka ,kb satisfying Equation (8).

Proof. First, observe that by Equation (6), we have

λrnd(T) ≤ w (T) + 13λ ≤ (1 + 7τ/8)w (∂B) + 13λ = (1 + 7τ/8)w (∂B) +
13τ

104
w (∂B) = (1 + τ)w (∂B).

By the definition of L, this means that rnd(T) ≤ L. Let l̂a and l̂b be the first and the last leaf of T,

respectively. Let ka = rnd(T[l̂a , r (T)]) and kb = rnd(T[l̂b , r (T)]). Note that ka ,kb ≤ rnd(T) ≤ L.
Hence, (T,π) is a valid candidate for F [v, 1, r ,L,ka ,kb] wherev = π (r (T)). Moreover, by Claim 8.2,
(T,π) is fully rnd-(τ/2)-nice and hence inequality Equation (8) is satisfied for ka and kb . �

We now describe how to compute the values F [v, ia , ib , �,ka ,kb]. Initially, we set
F [ai , i, i, 0,ka ,kb] to be a tree consisting of the edge âiai with the identity mapping, for each 1 ≤
i ≤ r and 0 ≤ ka ,kb ≤ L. Moreover, we set F [v, i, i, 0,ka ,kb] = ⊥ for anyv � ai and 0 ≤ ka ,kb ≤ L.
It is straightforward to verify that these are correct values of the entries F [v, ia , ib , �,ka ,kb] for
ia = ib and � = 0.

Then, we compute the values F [v, ia , ib , �,ka ,kb] in order of increasing values (ib − ia) and �.
That is, for fixed ia , ib , �,ka , kb , we want to compute the entries F [v, ia , ib , �,ka ,kb] for allv ∈ V (B)
in O (τ−4 |B | log |B |) time, assuming that all entries F [v ′, i ′a , i

′
b
, �′,k ′a ,k

′
b
] were already computed

whenever i ′
b
− i ′a ≤ ib − ia , �′ ≤ � and at least one of this inequality is strict.

Consider now a cell F [v, ia , ib , �,ka ,kb] for (ib − ia) + � > 0. If F [v, ia , ib , �
′,k ′a ,k

′
b
] � ⊥ for

some �′ ≤ �, k ′a ≤ ka , k ′
b
≤ kb and (�,ka ,kb) � (�′,k ′a ,k

′
b

), then we may copy the value of
F [v, ia , ib , �

′,k ′a ,k
′
b
] and conclude. Hence, assume otherwise.

Consider an embedded tree (T,π) that satisfies all requirements for the cell F [v, ia , ib , �,ka ,kb].
There are two cases, depending on the degree of r (T).

If r (T) has at least two children in T, let T1 be the subtree of T rooted at the first child of T
(together with the edge towards the root r (T)) and let T2 = T \ T1. Denote πj = π |Tj

for j = 1, 2.

Let i be such that T1 has i − ia leaves, that is, the last leaf of T1, denoted l̂c , is mapped onto âi−1 and

the first leaf of T2, denoted l̂d , is mapped onto âi . Observe that ia < i ≤ ic . Denote �1 = rnd(T1),

�2 = rnd(T2), kc = rnd(T1[r (T), l̂c]), and kd = rnd(T2[r (T), l̂d). Observe that (T1,π1) is a feasible
entry for F [v, ia , i − 1, �1,ka ,kc] and (T2,π2) is a feasible entry for F [v, i, ib , �2,kd ,kb]. Moreover,
�1, �2 ≤ �, �1 + �2 = � and, since (T,π) is rnd-(τ/2)-nice we have that

w (∂B[ai−1,ai]) + λkc + λkd ≤ (1 − τ/2)w (∂B). (9)

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

Network Sparsification for Steiner Problems 53:47

In the other direction, assume that for some choice of 0 ≤ �1, �2 ≤ � with �1 + �2 = �, ia < i ≤
ib and 0 ≤ kc ,kd ≤ L satisfying Equation (9) we have F [v, ia , i − 1, �1,ka ,kc] = (T1,π1) � ⊥ and
F [v, i, ib , �2,kd ,kb] = (T2,π2) � ⊥. Define T to be T1 ∪ T2 with identified roots of T1 and T2 and
π = π1 ∪ π2. It is straightforward to verify that (T,π) is a feasible entry for F [v, ia , ib , �,ka ,kb].
Here observe that Equation (9) ensures that condition Equation (7) is satisfied for leaves mapped
to âi−1 and âi . Moreover, in the dynamic programming the values F [v, ia , i − 1, �1,ka ,kc] and
F [v, i, ib , �2,kd ,kb] are already computed when we consider the cell F [v, ia , ib , �,ka ,kb], since
i − 1 − ia < ib − ia , ib − i < ib − ia and �1, �2 ≤ �. Hence, we look for a feasible candidate for
F [v, ia , ib , �,ka ,kb] among all values �1, �2, i,kc ,kd as above and merge (T1,π1) with (T2,π2)
whenever possible. By the argumentation so far, whenever there exists a feasible candidate for
F [v, ia , ib , �,ka ,kb] with root of degree at least two, we find at least one such candidate.

In the remaining case, r (T) has exactly one child. Observe that T has more than one edge,
as otherwise ia = ib , v = aia

, (T,π) is a feasible candidate for F [v, ia , ib , 0, 0, 0], and we would
have found (T,π) in the first step. Hence, I(T) contains at least two vertices. Let x be the vertex
of I(T) \ r (T) that is closest to r (T). Denote u = π (x) and k = rnd(w (T[r (T),x])); note that k >
0. Define T′ to be the tree T \ T[r (T),x] rooted at x and π ′ = π |T′ . Observe that (T′,π ′) is an
embedded tree and it is a feasible candidate for F [u, ia , ib , � − k,ka − k,kb − k].

In the other direction, assume that F [u, ia , ib , � − k,ka − k,kb − k] = (T′,π ′) for someu ∈ V (B),
where k ≥ rnd(distB (u,v)). To obtain an embedded tree (T,π), extend (T′,π ′) with a copy of a
shortest path between u and v in B, mapped by π to its original, connecting r (T′) with a new
root r (T) (mapped by π to v). It is straightforward to verify that (T,π) is a feasible candidate for
F [v, ia , ib , �,ka ,kb]. We remark here that the rounded length of T may be strictly smaller than
rnd(T′) + rnd(distB (u,v)) in the case when r (T′) has degree one.

Hence, to verify whether there exists a feasible candidate for F [v, ia , ib , �,ka ,kb], we need to
inspect all entries F [u, ia , ib , � − k,ka − k,kb − k] where u ∈ V (B) \ {v} and k ≥ rnd(distB (u,v)).
However, a naive implementation would take time quadratic in |B |. We now show how to check
all pairs (v,u) using at most L runs of Dijkstra’s shortest-path algorithm in B, which yields a
O (L|B | log |B |)-time algorithm. Iterate through all integers k such that 1 ≤ k ≤ min(�,ka ,kb) ≤ L.
DefineU to be the set of these verticesu for which F [u, ia , ib , � − k,ka − k,kb − k] � ⊥. By a single
run of Dijkstra’s algorithm in B starting fromU , we may compute distB (v,U) for every v ∈ V (B).
Moreover, for each v ∈ V (B) we can compute the closest vertex u (v) ∈ U and a shortest path
between v and u (v). Then we inspect all v ∈ V (B) and whenever rnd(distB (v,U)) ≤ k , we may
use the entry F [u (v), ia , ib , � − k,ka − k,kb − k] to find a feasible candidate for F [v, ia , ib , �,ka ,kb].

We remark here that we do not need to explicitly keep the embedded trees as values of
F [v, ia , ib , �,ka ,kb]. It suffices to keep only a boolean that signals whether a feasible candidate
has been found and, if this is the case, how it was obtained. Then, the actual tree for a fixed cell
F [v, ia , ib , �,ka ,kb] can be computed in O (|B |) time: we need to reproduce at most 13 shortest
paths in the tree, each of which can be computed in linear time [45].

We now analyze the running time. There is an O (τ−7) overhead from guessing r and the se-
quence a1,a2, . . . ,ar . In the dynamic-programming algorithm, in each step we need to keep track
of at most 7 integer variables ranging from 0 to L (namely, �,ka ,kb , �1, �2,kc ,kd). Recall that r ≤ 7.
Hence, we obtain a running time of O (τ−14 |B | log |B |).

We may now conclude the proof of Theorem 8.2. By Lemma 8.7, if a short τ -nice tree exists
in B, then there exists a fully τ -nice embedded tree with at most seven leaves and not larger
length. Using Lemma 8.8, we look for such a tree; if it indeed exists in B, we obtain a fully (τ/2)-
nice embedded tree of length at most (1 + τ)w (∂B). In this case, we apply Lemma 8.4 to obtain
the desired family of bricks. If the algorithm of Lemma 8.8 does not find any embedded tree,
Lemma 8.7 allows us to conclude that no short τ -nice tree exists in B.

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

53:48 M. Pilipczuk et al.

9 WEIGHTED VARIANT

We now focus on the weighted variant and prove Theorem 1.7.
We start with a base case, where S consists of a single terminal pair and H must contain a

Steiner forest FH that connects S such that w (FH) ≤ (1 + ε)w (FB) for any Steiner forest FB in
B that connects S. This base case has been already resolved by Klein [52] in the context of an
approximation scheme for Subset TSP; see the spanner construction of [52, Theorem 7.1].

Theorem 9.1. Let ε > 0 be a fixed accuracy parameter and let B be an edge-weighted brick. Then

one can find in O (ε−1 |B | log |B |) time a graph H ⊆ B such that

(1) ∂B ⊆ H ,

(2) w (H) = O (ε−4w (∂B)), and

(3) for any pair of vertices s, t ∈ V (∂B), there exists a path connecting s and t in H of weight at

most (1 + ε)distB (s, t).

With the base case of a single terminal pair in mind, we move to the θ -variant of Theorem 1.7,
where S is allowed to contain only θ terminal pairs and the obtained bound for w (H) depends
polynomially both on ε−1 and θ . In this proof, we use the entire power of the structural results and
decomposition methods developed for the proof of Theorem 1.1, adjusted to the edge-weighted
case. In short, we show that if we decompose each brick recursively into smaller bricks, stopping
when the perimeter of the brick drops below some threshold poly(ε/θ)w (∂B), then we can take
the single-pair graph H developed previously in each such small brick and the union of all such
graphs has the desired properties. The crux of the analysis is that the bound θ ensures that we can
“buy” the entire perimeter of each small brick in which some vertex of degree at least three of an
optimal Steiner forest of B is present. This part of the proof is presented in Section 9.1.

Finally, we use the partitioning methods from the EPTAS [12], the so-called mortar graph frame-
work, to derive Theorem 1.7 from the θ -variant. The mortar graph constructed by [12] is essen-
tially a brickable connector. We call the bricks induced by this connector cells. The mortar graph
has the property that there exists a near-optimal Steiner forest in B that crosses each cell at most
α (ε) = o(ε−5.5) times. Therefore, we construct the mortar graph of the input brick and then apply
θ -variant to each cell independently, for an appropriate choice of θ = poly(ε−1). This then yields
the desired graph H . This part of the proof is presented in Section 9.2.

9.1 Bounded Number of Terminal Pairs

We now prove a θ -variant of Theorem 1.7. To be precise, we show:

Theorem 9.2. Let ε > 0 be a fixed accuracy parameter, let θ be a positive integer, and let B be an

edge-weighted brick. Then one can find in poly(ε−1,θ) |B | log |B | time a graph H ⊆ B such that

(i) ∂B ⊆ H ,

(ii) w (H) ≤ poly(ε−1,θ)w (∂B), and

(iii) for every set S ⊆ V (∂B) ×V (∂B) of size at most θ , there exists a Steiner forest FH that

connects S in H such thatw (FH) ≤ w (FB) + εw (∂B) for any Steiner forest FB that connects

S in B.

From a high-level perspective, we proceed similarly as in Section 7. The algorithm has two
phases. In the first phase, we recursively use the decomposition tools developed in the previous
sections to compute a brick coveringA of B, where each B′ ∈ A has the following property: either
w (∂B′) is small or for every setS ⊆ V (∂B) ×V (∂B) of size at most θ , there exist an optimal Steiner
forest connectingS that does not contain any vertex of degree larger than 2 that is strictly enclosed
by ∂B′.

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

Network Sparsification for Steiner Problems 53:49

9.1.1 Phase One: Decomposing B. We first initialize a family A = ∅. During the course of the
algorithm, all elements of this family will be subbricks of B. Then we call a procedure partition
on the input brick B. The description of the procedure partition, when called on a subbrick B′

of B, is as follows.
Call B′ tiny if w (∂B′) ≤ ε

θ
w (∂B) and large otherwise. If B′ is tiny, then put B′ into A. If B′

is large, then invoke the algorithm of Theorem 8.2 for the brick B′ and parameter τ = 1
36 . If the

algorithm finds a (3 + 2τ)-short (τ/2)-nice brick covering B (B′) of B′, then recursively invoke
partition on all bricks of B (B′).

If the algorithm of Theorem 8.2 finds that no short τ -nice tree exists in B, then invoke the
algorithm of Theorem 4.7 for τ = 1

36 and δ = 2τ to find the core face fcore and then invoke the

algorithm of Theorem 6.1 for τ = 1
36 and the brick B′. Let C be the cycle found by Theorem 6.1.

We find a sequence p1,p2, . . . ,ps of pegs on C such that for any 1 ≤ i ≤ s either pi ,pi+1 are two
consecutive vertices of C or w (C[pi ,pi+1]) ≤ 2τw (∂B′) (here we assume ps+1 = p1). In a greedy
manner (as in Section 6), we can find in linear time a sequence of such pegs with

s ≤ 1

τ
· w (C)

w (∂B′)
≤ 16

τ 3
= O (1). (10)

Then we find, for each peg pi , a shortest path Pi between pi andV (∂B′) that does not contain any
edge strictly enclosed byC . Let xi be the second endpoint of Pi . Observe that we may assume that
the paths Pi obtained in this manner are non-crossing in the following sense: whenever Pi and
Pj meet at some vertex, they continue together towards a common endpoint xi = x j on V (∂B).
Indeed, we can find the vertices xi by removing all edges and vertices that are strictly enclosed by
C , adding a super-terminal s0 in the outer face, and connecting s0 to the vertices of ∂B using edges
of weight zero. The graph we just constructed is planar and by constructing a shortest-path treeT
for s0 in this graph (which takes linear time [45]), we can find the vertices xi in linear time. Then
the paths Pi are simply thepixi -paths inT . By construction, these paths have the required property.

Now consider any i such that 1 ≤ i ≤ s andC[pi ,pi+1] � ∂B′[xi ,xi+1]. LetWi denote the closed
walk Pi ∪C[pi ,pi+1] ∪ Pi+1 ∪ ∂B′[xi ,xi+1] in B′. Let Hi be the graph consisting of all edges ofWi

that neighbor the outer face ofWi treated as a planar graph. By definition, each doubly connected
component of Hi is a cycle or a bridge. For each doubly connected component that is a cycle, we
create a brick consisting of all the edges of B that are enclosed by this cycle. Let Bi be the family
of obtained bricks. Observe that Bi can be computed in linear time for fixed i and a face of B′ is
enclosed by some brick of Bi if and only if it is enclosed byWi . For each 1 ≤ i ≤ s , we recursively
call partition on all bricks of Bi .

Finally, we put a brick BC consisting of all edges of B enclosed by C into A.
This concludes the description of the procedure partition and hence the description of the

first phase of the algorithm. We now analyze the familyA and the running time of the algorithm.
First, we establish some more notation that will be useful in the analysis. For a fixed call

partition(B′), by A (B′) we denote all bricks that are inserted into A during this call and by
A↓(B′) we denote all bricks that are inserted intoA in any call in the subtree of the recursion tree
rooted at the call partition(B′), including A (B′).

In the case when Theorem 6.1 has been invoked, we denote Br (B′) =
⋃s

i=1 Bi and B (B′) =
{BC } ∪ Br (B′). In the case when Theorem 8.2 returned a brick covering B (B′), we denote also
Br (B′) = B (B′). Observe that, regardless of whether Theorem 6.1 has been invoked or not,

—Br (B′) is the family of subbricks of B′ for which a recursive call has been made;
—B (B′) = A (B′) ∪ Br (B′);
—B (B′) is a brick covering of B′with the additional property that

⋃
B∗ ∈B (B′) ∂B

∗ is connected.

Using these properties, we analyze the family A.

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

53:50 M. Pilipczuk et al.

Lemma 9.3. A is a brick covering of B and, moreover,
⋃

B1∈A ∂B1 is connected.

Proof. By induction on the recursion tree of procedure partition, we prove that for any
call partition(B′), the family A↓(B′) is a brick covering of B′ and, moreover,

⋃
B1∈A↓ (B′) ∂B1

is connected. This is clearly true in the leaves of the recursion tree when A↓(B′) = {B′}. In an
induction step, observe that the fact that A↓(B′) is a brick covering of B′ follows from the fact
that B (B′) is a brick covering of B′ and the induction hypothesis for all elements of Br (B′).
The fact that

⋃
B1∈A↓ (B′) ∂B1 is connected follows from the fact that

⋃
B∗ ∈B (B′) ∂B

∗ is connected,
B (B′) = A (B′) ∪ Br (B′) and the induction hypothesis for all elements of Br (B′). �

Lemma 9.4. For every set S ⊆ V (∂B) ×V (∂B) there exists a Steiner forest F connecting S in B of

minimum possible length with the following additional property: for every vertex v of degree at least

three in F , there exists some B1 ∈ A such that either

(1) v ∈ V (∂B1) or

(2) v is strictly enclosed by ∂B1 and B1 is tiny.

Proof. For any call partition(B′) in the recursion tree and for any forest F in B′, we say
that a vertex v is lame if (a) the degree of v in F is at least three, (b) for any B1 ∈ A↓(B′) we
have v � V (∂B1), and (c) if v is strictly enclosed by ∂B1, then B1 is large. By induction on the
recursion tree of the procedure partition, we prove that for any call partition(B′) and any
S ⊆ V (∂B′) ×V (∂B′) there exists a Steiner forest F connecting S of minimum possible length
that does not contain lame vertices. In the leaves of the recursion tree, the statement is clearly true
as A↓(B′) = {B′} and B′ is tiny.

Consider now a call partition(B′) and let S ⊆ V (∂B′) ×V (∂B′). By Theorem 6.1, there exists
a Steiner forest F connecting S in B′ of minimum possible length that additionally satisfies the
following: if Theorem 6.1 has been invoked to obtain B (B′), then no vertex of degree at least three
in F is strictly enclosed by ∂BC . Pick such F that minimizes the number of lame vertices. We claim
that there are in fact no lame vertices; note that such a claim proves the induction step and finishes
the proof of the lemma. Assume the contrary and let v be any lame vertex for F .

As v is not strictly enclosed by ∂BC in the case when Theorem 6.1 has been invoked, we in-
fer that there exists B∗ ∈ Br (B′) such that ∂B∗ encloses v . As v � V (∂B1) for any B1 ∈ A↓(B′),
∂B∗ strictly encloses v . Consider F1 := F ∩ B∗ and let S1 be the set of pairs (x ,y) such that
x ,y ∈ V (F1) ∩V (∂B∗), x � y, and x ,y belong to the same connected component of F1. By the in-
duction hypothesis, there exists a forest F2, connecting S1 in B∗ of length at most w (F1) that does
not contain any lame vertices in B∗. Hence, F ′ := (F \ F1) ∪ F2 is a Steiner forest connectingS in B′

of length at mostw (F) that contains a strict subset of the set of lame vertices of F , a contradiction
to the choice of F . This finishes the induction step and concludes the proof of the lemma. �

We now move to the analysis of the efficiency of the algorithm. Our goal is to prove upper
bounds on the size of A, on the total length of the perimeters of the bricks in A, and on the
running time of phase one.

Lemma 9.5. Let i ∈ {1, . . . , s} be such thatC[pi ,pi+1] � ∂B′[xi ,xi+1]. Then
∑

B1∈Bi
w (∂B1) ≤ (1 −

2τ)w (∂B′).

Proof. Consider the walkQi := Pi ∪C[pi ,pi+1] ∪ Pi+1 that connects xi and xi+1. We claim that

w (Qi) ≤
(

1
2 − 2τ

)
w (∂B′). (11)

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

Network Sparsification for Steiner Problems 53:51

Indeed, if w (C[pi ,pi+1]) ≤ 2τw (∂B′), then as each vertex of C is at distance at most (1
4 − 2τ) ·

w (∂B′) from V (∂B′) by the construction of C and Theorem 6.1, the paths Pi and Pi+1 have length
at most (1

4 − 2τ)w (∂B′) and the claim follows. Otherwise, by the construction of the pegs, pipi+1

is an edge ofC . Now, the claim follows from the fact that each point ofC (and, in particular, every
point of the edgepipi+1) is within distance at most (1

4 − 2τ)w (∂B′) fromV (∂B′) and the assumption
that C[pi ,pi+1] � ∂B′[xi ,xi+1].

Observe thatWi = Qi ∪ ∂B′[xi ,xi+1]. We claim that

w (Wi) ≤ (1 − 2τ)w (∂B′). (12)

If the paths Pi and Pi+1 intersect, then xi = xi+1 by the construction of Pi and Pi+1 and Equation (12)
is immediate from Equation (11) and the choice of τ . So assume that the paths Pi and Pi+1 do not
intersect. In particular, xi � xi+1. Let zi be the vertex of V (Pi) ∩V (C[pi ,pi+1]) that lies closest to
xi on Pi ; define zi+1 similarly with respect to Pi+1. Observe that zi lies closer to pi on C[pi ,pi+1]
than zi+1, as otherwise Pi [pi , zi] and Pi+1[pi+1, zi+1] would intersect (recall that none of these
paths contain an edge strictly enclosed by C). Hence, C[zi , zi+1] is a subpath of C[pi ,pi+1]. Let
Q ′i = Pi [xi , zi] ∪C[zi , zi+1] ∪ Pi+1[zi+1,xi+1]. Observe that Q ′i is a simple path of length at most

w (Qi) ≤ (1
2 − 2τ)w (∂B′) by Equation (11). Moreover, the closed walk W ′

i := Q ′i ∪ ∂B′[xi ,xi+1]
does not enclose any point strictly enclosed by C . Hence, Q ′i ∪ ∂B′[xi+1,xi] encloses the whole
of C and thus, in particular, the core face fcore. Thus, (Q ′i , ∂B

′[xi+1,xi]) is not a (2τ)-carve, de-

spite thatw (Q ′i) ≤ (1
2 − 2τ)w (∂B′). Therefore, it must be thatw (∂B′[xi+1,xi]) > 1

2w (∂B′) and thus

w (∂B′[xi ,xi+1]) ≤ 1
2w (∂B′). Then Equation (12) follows from Equation (11).

It remains to observe that
∑

B1∈Bi
w (∂B1) ≤ w (Wi) ≤ (1 − 2τ)w (∂B′). �

Lemma 9.6. If partition(B′) recursively calls partition(B∗), then w (∂B∗) ≤ (1 − τ/2) ·
w (∂B′).

Proof. If a (3 + 2τ)-short τ/2-nice brick coveringB has been found in B′, then the claim follows
from the niceness of B. In the second case, when Theorem 6.1 is invoked, the claim follows by
Lemma 9.5. �

Lemma 9.7. There exists a universal constant C such that the following holds: for any call

partition(B′), we have
∑

B∗ ∈Br (B′) w (∂B∗) ≤ Cw (∂B′).

Proof. The claim is immediate for any C ≥ 3 + 2τ in the case when a (3 + 2τ)-short τ/2-nice
brick partition B has been found in B′. In the second case, when Theorem 6.1 is invoked, note
that the claim follows for sufficiently large C by Lemma 9.5 and the bound of Equation (10) that
s = O (1). �

Lemma 9.8. There exists a universal constant c such that the following holds: for any call

partition(B′), in the subtree of the recursion tree rooted at this call there are at most

c

(
θ

ε
· w (∂B′)

w (∂B)

)c

calls to partition(B∗) where B∗ is large (i.e., the call partition(B∗) does not finish after the first

step).

Proof. We prove the claim by induction, proceeding from the leaves to the root of the recursion
tree. The claim is clearly true for any positive c if B′ is tiny, as no recursive call is made.

Consider now a call partition(B′) where B′ is large. We use Lemmata 9.6 and 9.7; letC be the
constant given by the latter. By the induction hypothesis, for sufficiently large c that depends on

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

53:52 M. Pilipczuk et al.

τ = 1
36 and C , the number of calls in question is bounded by

1 +
∑

B∗ ∈Br (B′)

c

(
θ

ε
· w (∂B∗)

w (∂B)

)c

≤ 1 + c
θc

εc

∑
B∗ ∈Br (B′)

w (∂B∗)

w (∂B)
(1 − τ)c−1

(
w (∂B′)

w (∂B)

)c−1

≤ 1 + c

(
θ

ε
· w (∂B′)

w (∂B)

)c

(1 − τ)c−1 ·C

≤ c

(
θ

ε
· w (∂B′)

w (∂B)

)c

.

The last inequality follows for sufficiently large c as(
θ

ε
· w (∂B′)

w (∂B)

)
> 1.

�

By applying Lemma 9.8 to the root call partition(B) we obtain the following:

Corollary 9.9. In the entire run of the algorithm there are at most poly(ε−1,θ) calls to

partition(B′) where B′ is large

As a single call to partition(B′) takes O (|V (B′) | log |V (B′) |) time, we have also that:

Corollary 9.10. Phase one takes poly(ε−1,θ) |B | log |B | time.

We now bound the size and the length of the bricks in A.

Lemma 9.11. The sum of the lengths of the perimeters of all bricks in A is bounded by

poly(ε−1,θ)w (∂B).

Proof. By Lemma 9.6, in each call partition(B′) we have w (∂B′) ≤ w (∂B). Consider a call
partition(B′) where B′ is large. By Lemma 9.7, the sum of lengths of all perimeters of bricks
B∗ ∈ Br (B′) that are tiny (and hence will be inserted intoA) is bounded byCw (∂B′). Moreover, if
Theorem 6.1 has been invoked, we have w (∂BC) ≤ 16

τ 2w (∂B′). Finally, by Corollary 9.9, there are

at most poly(ε−1,θ) calls partition(B′) where B′ is large. The lemma follows. �

Lemma 9.12. The total number of edges and vertices in all bricks ofA is bounded by poly(ε−1,θ) |B |.

Proof. Consider a call to partition(B′) where B′ is large. First, observe that in this call at
most one brick is put into A. Moreover, observe that the total number of edges and vertices in
all recursive calls partition(B∗) for B∗ ∈ Br (B′) is O (|B′|). Here we rely on the fact that in the
algorithm of Theorem 8.2, each face of B′ is contained in at most seven bricks of B (B′), and, if the
algorithm of Theorem 6.1 has been invoked, thenB (B′) is a brick partition of B′. Finally, recall that
if B′ is tiny, then we simply put B′ intoA. The bound of the lemma follows from Corollary 9.9. �

9.1.2 Phase Two: Constructing H from the Decomposition. In the second phase we derive the
output graph H from the brick covering A.

Consider first a graph H0 :=
⋃

B1∈A ∂B1. By Lemma 9.3, H0 is connected and contains ∂B. Pick
any finite face f of H0. As H0 is connected, the interior of f is homeomorphic to an open disc.
Moreover, since H0 is a union of simple cycles, there is no bridge in H0 and, hence, each edge of H0

appears on the boundary of f at most once (but H0 may have articulation points and one vertex
may appear multiple times on the boundary of f).

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

Network Sparsification for Steiner Problems 53:53

Let C f be the walk in B around the boundary of f and let Gf be the subgraph of B consisting
of all edges of B that lie in f or on the boundary of f (i.e., all edges of B that are enclosed by
C f). Moreover, construct a brick Bf from Gf by ‘straightening’ the boundary C f , that is, for each
appearance of a vertexv onC f , make a separate copy ofv adjacent to all edges that were adjacent to
this appearance. Observe that there is a natural homomorphism π f from Bf toGf that is bijective
on the edge set of Bf and surjective on the vertex set.

For each brick Bf , apply Theorem 9.1 to obtain a graph H f . Output H :=
⋃

f π
f (H f), where the

union ranges over all finite faces of H0. It remains to show that H has the properties desired by
Theorem 9.2 and can be computed in the desired time.

As ∂Bf ⊆ H f for each face f , we have that C f ⊆ H for each f and, consequently, ∂B ⊆ H . By
Theorems 9.1 and 9.11, there is a universal constant γ such that

w (H) ≤
∑

f

w (H f)

≤
∑

f

γε−4w (∂Bf)

=
∑

f

γε−4w (C f)

≤ γε−42w (H0)

≤ 2γε−4
∑

B1∈A
w (∂B1)

≤ 2γε−4 · poly(ε−1,θ)w (∂B)

≤ poly(ε−1,θ)w (∂B).

Therefore, w (H) satisfies the desired bound.
The following lemma shows that H preserves approximate Steiner forests for any choice of

terminal pairs on the perimeter of B.

Lemma 9.13. For every set S ⊆ V (∂B) ×V (∂B) of size at most θ , there exists a Steiner forest FH

that connects S in H such that w (FH) ≤ w (FB) + 2εw (∂B) for any Steiner forest FB that connects S
in B.

Proof. Let FB be a Steiner forest connecting S in B of minimum possible length that addition-
ally satisfies the properties promised by Lemma 9.4. We construct a subgraph FH ⊆ H connecting
S of length at most (1 + ε)w (FB) + εw (∂B). Since w (FB) ≤ w (∂B) (as ∂B connects S), this would
conclude the proof of the lemma.

First, construct a subgraph F as follows. Start with F = FB . As long as there exists a vertex v
that is of degree at least three in F and does not belong to V (∂B1) for any B1 ∈ A, find any tiny
B2 ∈ A such that ∂B2 strictly encloses v , delete from F all edges strictly enclosed by ∂B2, add ∂B2

instead, and take any spanning forest of the obtained graph. In this procedure we never introduce
a vertex of degree at least three into F that does not belong to V (H0) =

⋃
B1∈A V (∂B1) and hence

such a tiny B2 always exists by the properties of FB promised by Lemma 9.4. Moreover, as |S| ≤ θ ,
FB contains at most θ vertices of degree at least three and in the construction of F we made at
most θ replacements. Consequently,

w (F) ≤ w (FB) + θ · ε
θ
w (∂B) = w (FB) + εw (∂B).

Consider the graph F \ H0. Recall that FB is a forest, F \ FB ⊆ H0 (in the process of constructing
F we have only added edges of H0 to F), and each vertex of degree at least three in F belongs to

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

53:54 M. Pilipczuk et al.

V (H0). Consider the following relation on the edge set of F \ H0: two edges e1, e2 are in relation if
and only if there exists a path in F \ H0 that contains e1 and e2 and no internal vertex of this path
belongs toV (H0). Observe that this is an equivalence relation. Moreover, as each vertex of degree
at least three in F belongs toV (H0), each equivalence class in this relation is a path P that connects
two vertices of V (H0), but all internal vertices of P do not belong to V (H0).

Let P be the family of equivalence classes of the aforementioned relation in F \ H0. For each
path P ∈ P, proceed as follows. As no edge and no internal vertex of P belongs to H0, there exists
a finite face f of H0 that contains P . Moreover, (π f)−1 (P) is a path in Bf , connecting two vertices
of ∂Bf . By the properties of H f (and, in particular, by Theorem 9.1), there exists a path Q in H f

connecting the same endpoints and of length at most (1 + ε)w ((π f)−1 (P)) = (1 + ε)w (P). Hence,
π f (Q) is a walk in Gf connecting the endpoints of P of length at most (1 + ε)w (P). To obtain a
graph FH , replace each P with π f (Q) in the graph F .

By construction, FH ⊆ H and FH connectsS. Moreover, as each path P ∈ P has been replaced by
a path of length at most (1 + ε)w (P), we have thatw (FH) ≤ (1 + ε)w (FB) + εw (∂B). This concludes
the proof of the lemma. �

Observe that the lemma obtains an additive error 2εw (∂B) instead of εw (∂B). The error of The-
orem 9.2 can be obtained by appropriately rescaling ε at the beginning of the algorithm.

Finally, observe that Lemma 9.12 ensures that H0 can be computed in poly(ε−1,θ) |B | time and,
consequently, the graph H can be computed in in poly(ε−1,θ) |B | log |B | time. This completes the
proof of Theorem 9.2.

9.2 Wrap Up

We now pipeline the mortar graph construction of Borradaile et al. [12] with Theorem 9.2 to con-
clude the proof of Theorem 1.7. In the language of brick coverings, the mortar graph construction
of [12] can be summarized as follows.

Theorem 9.14 (Reference[12], in particular, Theorem 10.7). Given a brick B and an accu-

racy parameter ε > 0, one can in poly(ε−1) |B | log |B | time compute a brick partition B of B of total

perimeter (1 + 18ε−1)w (∂B) such that the perimeter ∂B′ of each brick B′ ∈ B can be partitioned into

four paths NB′ ∪WB′ ∪ SB′ ∪ EB′ (the so-called north, west, south, and east boundaries, appearing in

this counter-clockwise order), such that:

(1) the total length of all parts WB′ and EB′ in all bricks of B is bounded by εw (∂B); and

(2) for any subgraph F ⊆ B′ of a brick B′ ∈ B, there exists a subgraph F ′ ⊆ B′ with the following

properties:

(a) w (F ′) ≤ (1 + c1ε)w (F) for some universal constant c1;

(b) there are at most α (ε−1) = o(ε−5.5) vertices of V (NB′) ∪V (SB′) that are incident to an

edge of F ′ that does not belong to NB′ ∪ SB′ ;

(c) if two vertices of V (NB′) ∪V (SB′) are connected by F , then they are also connected by

F ′.

The algorithm of Theorem 1.7 for a given brick B′ and accuracy parameter ε > 0 can now be
described as follows. First, we compute the brick partition B of Theorem 9.14 for the parameter ε
and brick B. Second, for each B′ ∈ B, we invoke Theorem 9.2 for the brick B′, accuracy parameter
ε ′ := ε/(1 + 18ε−1) and bound θ = (α (ε−1) + 4)2. Let H (B′) be the obtained subgraph for the brick
B′. We output H =

⋃
B′ ∈B H (B′).

It remains to prove that H has the properties desired by Theorem 1.7 and can be computed in
the desired time. Clearly, ∂B ⊆ H . By the bounds of Theorem 9.2 and the fact that α (ε−1) = o(ε−5.5)
we have that w (H) ≤ poly(ε−1)w (B). Moreover, as B is a brick partition, all calls to the algorithm

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

Network Sparsification for Steiner Problems 53:55

of Theorem 9.2 run in total in poly(ε−1) |B | log |B | time and the time bound of Theorem 1.7 follows.
It remains to argue that H preserves approximate Steiner forests for terminals on the perimeter of
B.

To this end, consider any S ⊆ V (∂B) ×V (∂B) and let F be a Steiner forest connecting S in B
of minimum possible length. First, define F1 := F ∪⋃

B′ ∈B WB′ ∪ EB′ and observe that w (F1) ≤
w (F) + εw (∂B) by point 1 of Theorem 9.14. Then, for each B′ ∈ B proceed as follows. Let F1 (B′)
be the subgraph of F1 consisting of all edges strictly enclosed by ∂B′. Let F2 (B′) be the subgraph
promised by point 2 of Theorem 9.14 for the subgraph F1 (B′) ∪WB′ ∪ EB′ of B′. Define

F2 = �
�
F1 \

⋃
B′ ∈B

F1 (B′)�
�
∪

⋃
B′ ∈B

F2 (B′).

By Theorem 9.14, we have

w (F2 (B′)) ≤ (1 + c1ε) (w (F1 (B′)) +w (WB′) +w (EB′)).

Hence, for some universal constant c2,

w (F2) ≤ (1 + c1ε)w (F1) + (1 + c1ε)εw (∂B) ≤ w (F1) + c2εw (∂B).

Observe that WB′,EB′ ⊆ F2 for any B′ ∈ B. For each B′ ∈ B, we now proceed as follows. Define
F ′2 (B′) to be the subgraph of F2 consisting of all edges strictly enclosed by ∂B′; observe that F ′2 (B′) ⊆
F2 (B′). Define S (B′) to be the set of pairs (x ,y) for which x ,y ∈ V (NB) ∪V (SB), x � y, and x ,y
are in the same connected component of F ′2 (B′) ∪WB′ ∪ EB′ . Observe that if (x ,y) ∈ S (B′), then
x (and similarly y) is an endpoint of NB′ , an endpoint of SB′ or an endpoint of an edge of F ′2 (B′) ⊆
F2 (B′) that is strictly enclosed by ∂B′. By Theorem 9.14 and our choice of θ , |S (B′) | ≤ θ . Hence,
by Theorem 9.2, there exists a subgraph F3 (B′) that connects S (B′) in B′, is contained in H (B′)
and is of length

w (F3 (B′)) ≤ w (F ′2 (B′)) +w (WB′) +w (EB′) +
ε

1 + 18ε−1
w (∂B′).

Define

F3 = �
�
F2 \

⋃
B′ ∈B

F ′2 (B′)�
�
∪

⋃
B′ ∈B

F3 (B′).

As
∑

B′ ∈Bw (∂B′) ≤ (1 + 18ε−1)w (∂B) and
∑

B′ ∈Bw (WB′) +w (EB′) ≤ εw (∂B), we have that
w (F3) ≤ w (F) + c3εw (∂B) for some universal constant c3. Moreover, by construction F3 ⊆ H .

We now argue that F3 connectsS. As F connectsS, so does F1. To analyze F2 and F3, we introduce
the following notion: for any B′ ∈ B and x ∈ V (∂B′), we set x̂ to be the common endpoint of NB′

and WB′ if x ∈ V (WB′), the common endpoint of NB′ and EB′ if x ∈ V (EB′), and x̂ = x otherwise.
Observe that if x ,y ∈ V (∂B′) are connected by F1 (B′), then x̂ and ŷ are connected by F1 (B′) ∪
WB′ ∪ EB′ and, consequently, x̂ and ŷ are also connected by F2 (B′). Moreover, an identical claim is
true for F1 (B′) replaced by F ′2 (B′) and F2 (B′) replaced by F3 (B′). As all west and east boundaries of
all bricks of B belong to F1, F2 and F3, we infer that F3 indeed connects S. By taking ε/c3 instead
of ε at the beginning of the algorithm, Theorem 1.7 follows.

10 APPLICATIONS: PLANAR STEINER TREE, PLANAR STEINER FOREST,

AND PLANAR EDGE MULTIWAY CUT

In this section, we apply Theorem 1.1 to obtain polynomial kernels for Planar Steiner Tree,
Planar Steiner Forest (parameterized by the number of edges in the tree or forest), and Pla-
nar Edge Multiway Cut (parameterized by the size of the cutset). The applications to Planar
Steiner Tree and Planar Steiner Forest are rather straightforward and rely on the trick from

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

53:56 M. Pilipczuk et al.

Fig. 7. The process of cutting open the graph G along the tree Tapx .

the EPTAS [12] to cut the graph open along an approximate solution. For Planar Edge Multiway
Cut we need some more involved arguments to bound the diameter of the dual of the input graph
before we apply Theorem 1.1.

In all aforementioned problems, we consider the—maybe more practical or natural—optimi-
zation variants of the problem, instead of the decision ones. That is, we assume that the algorithm
does not get the bound on the required tree, forest, or cut, but instead is required to kernelize the
instance with respect to the (unknown) optimum value. However, note that in all three considered
problems an easy approximation algorithm is known and the output of such an algorithm will be
sufficient for our needs.

We also note that we do not care much about optimality of the exponents in the sizes of the
kernels, as any application Theorem 1.1 immediately raises the exponents to the magnitude of
hundreds. The main result of our work is the existence of polynomial kernels, not the actual sizes.

10.1 Planar Steiner Tree and Planar Steiner Forest

For both problems, we can apply the known trick of cutting open the graph along an approximate
solution [12], which when combined with Theorem 1.1 gives the kernel.

Theorem 10.1 (Theorem 1.2 Repeated). Given a Planar Steiner Tree instance (G, S), one can

in O (k142
OPT |G |) time find a set F ⊆ E (G) of O (k142

OPT) edges that contains an optimal Steiner tree

connecting S in G, where kOPT is the size of an optimal Steiner tree.

Proof. We first manipulate the graph such that all terminals lie on the outer face. To do this,
we find a 2-approximate Steiner tree Tapx for S in G in the following way. We run a breadth-first
search inG from each terminal in S to determine a shortest path between each pair of the terminals.
This takes O (|S | |G |) = O (kOPT |G |) time. Define an auxiliary complete graphG ′ over S , where the
length of an edge between two terminals is the length of the shortest path between these two
terminals that we computed earlier. We then compute a minimum spanning tree in G ′. This tree
induces a Steiner tree in G, which is 2-approximate. Note that kOPT ≤ |Tapx | ≤ 2kOPT .

We now cut the plane open along tree Tapx , cf. Reference [12] (see Figure 7). That is, we create
an Euler tour of Tapx that traverses each edge twice in different directions and respects the plane
embedding ofTapx . Then we duplicate every edge ofTapx , replace each vertexv ofTapx with d − 1
copies of v , where d is the degree of v in Tapx and distribute the copies in the plane embedding
so that we obtain a new face F whose boundary corresponding to the aforementioned Euler tour.

Then fix an embedding of the resulting graph Ĝ that has F as its outer face. Observe that there

exists a natural mapping π from E (Ĝ) to E (G), i.e., edges in Ĝ are mapped to edges from which

they where obtained. Moreover, note that the terminals S lie only on the outer face of Ĝ and that

|∂Ĝ | ≤ 4kOPT .
Finally, we obtain the kernel. Apply Theorem 1.1 to Ĝ to obtain a subgraph Ĥ , which has size

O (|∂Ĝ |142) = O (k142
OPT). Let F = π (Ĥ). We show that F is a kernel for (G, S). Clearly, |π (Ĥ) | ≤ |Ĥ | ≤

O (k142
OPT). LetT be an optimal Steiner tree inG for S and consider π−1 (T). If π−1 (T) contains edges

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

Network Sparsification for Steiner Problems 53:57

e ′ and e ′′ for which there exists an edge e ∈ G such that π (e ′) = π (e ′′) = e , then arbitrarily remove

either e ′ or e ′′. Let T̂ denote the resulting graph. By construction, |T | = |T̂ |. Observe that any con-

nected componentC of T̂ is a connector forV (C) ∩V (∂Ĝ). Hence, there exists an optimal Steiner

treeTC in Ĥ that connectsV (C) ∩V (∂Ĝ). Let T̂H be the graph that is obtained from T̂ by replacing

C withTC for each connected component of T̂ . Observe that during each such replacement, π (T̂H)
remains connected, because T was connected. Again, by construction, |T̂H | ≤ |T̂ |. Now observe

that π (T̂H) is a subgraph of π (Ĥ) connecting S in G, of not higher cost than T . �

For Planar Steiner Forest, we need to slightly preprocess the input instance, removing some
obviously unnecessary parts, to bound the diameter of each connected component.

Theorem 10.2 (Theorem 1.3 repeated). Given a Planar Steiner Forest instance (G,S), one

can in O (k710
OPT
|G |) time find a set F ⊆ E (G) of O (k710

OPT
) edges that contains an optimal Steiner forest

connecting S in G, where kOPT is the size of an optimal Steiner forest.

Proof. Let (G,S) be a Planar Steiner Forest instance. A forest with kOPT edges has at most
2kOPT vertices and thus |S| = O (k2

OPT). We construct an approximate solution T1, by taking a

union of shortest s1s2-paths for all (s1, s2) ∈ S. Clearly, kOPT ≤ |T1 | ≤ |S|kOPT = O (k3
OPT

). Let
k1 = |T1 |.

We remove from G all vertices (and incident edges) that are at distance more than k1 from all
terminals of S. Clearly, no such vertices or edges are used in a minimal solution for (G,S) with at
most k1 edges.

Consider each connected component of G separately. Let G0 be a component of G and let S0 be
the family of terminals of S inG0. In O (|S0 | · |G0 |) time, we construct a 2-approximate Steiner tree

T0 connecting S0 in G0. Note that, as each vertex of G0 is within a distance at most k1 from S0, we
have |T0 | = O (|S0 |k1). As in the proof of Theorem 10.1, cut the graphG0 open alongT0, obtaining a

brick Ĝ0 of perimeter |∂Ĝ0 | = O (|S0 |k1). Then apply the algorithm of Theorem 1.1 to Ĝ0, obtaining

a subgraph Ĥ . Finally, put the edges of G0 that correspond to Ĥ into the constructed subgraph F .
By similar arguments as in the proof of Theorem 10.1, F contains a minimum Steiner forest for
(G,S). The time bound and the bound on |F | follows from the bound k1 = O (k3

OPT
) and the fact

that the union of all sets S0 has size 2|S| = O (k2
OPT). �

We observe that the size of the kernel can be improved to O (k426
OPT

) by running a constant-factor
approximation algorithm for Planar Steiner Forest to construct the forest T1. However, when
using the EPTAS for Planar Steiner Forest [32], this makes the algorithm run in O (k426

OPT
|G | +

|G | log3 |G |) time, which is no longer linear in |G |.
Another observation is that the size of the kernel can be improved if we consider a ‘classic’

kernel. That is, a kernel for the decision variant of the problem: does the planar graph G have a
Steiner forest of size at most k? Then we can use k instead of k1 in the above proof and return a
kernel of size O (k426) in O (k426 |G |) time.

10.2 Planar Edge Multiway Cut

We are left with the case of Planar Edge Multiway Cut.

Theorem 10.3 (Theorem 1.4 repeated). Given a Planar Edge Multiway Cut instance (G, S),
one can in polynomial time find a set F ⊆ E (G) of O (k568

OPT
) edges that contains an optimal solution

to (G, S), where kOPT is the size of this optimal solution.

The idea behind the proof of Theorem 1.4 is that the Edge Multiway Cut problem becomes
a Steiner Forest-like problem in the dual graph. Hence, we cut open the dual of G similarly as

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

53:58 M. Pilipczuk et al.

we cut open G in Theorem 1.2: for each terminal t of G, we take the cycle Ct in the dual of G that
consists of all edges incident to t and cut the dual along a short connected subgraph containing all
cyclesCt for all terminals ofG. We show that to preserve an optimal solution for Edge Multiway
Cut in G it suffices to preserve an optimal Steiner tree for any choice of the terminals on the
perimeter of the obtained brick. Hence, to apply Theorem 1.1, we need to bound the length of
the perimeter, that is, the length of the subgraph of the dual of G that we cut along. By standard
reductions, the total length of the cycles Ct (i.e., the total number of edges incident to terminals)
is bounded by 2kOPT , where kOPT is the optimal solution size. Hence, it suffices to bound the
diameter of the dual of G.

To this end, we fix a terminal t and choose an inclusion-wise maximal laminar family of minimal
separators that separate t from the remaining terminals and that are maximally “pushed away”
from t (that is, they are important separators in the sense of Reference [59]). By the “pushed away”
property of the chosen family, each chosen separator is of different size and as there are at most
2kOPT edges incident to the terminals, the largest chosen separator is of size at most 2kOPT . Hence,
there are O (k2

OPT) edges in this chosen laminar family of minimal separators.
The essence of the proof is to show that an edge that is “far” from the chosen family of separators

is irrelevant for the problem and may be safely contracted. Here, “far” means ckOPT for some
universal constant c . Intuitively, if such an edge e is chosen in an optimal solution X , then the
connected component of X of the dual of G that contains e lives between two separators from the
chosen family and we can show that it can be replaced by (a part of) one of these two separators.

Hence, after this reduction is performed exhaustively, the diameter of the dual of G is bounded
byO (k3

OPT
). Consequently, cutting the graph open and applying Theorem 1.1 leads to a polynomial

kernel.
Note that, contrary to the case of Planar Steiner Tree and Planar Steiner Forest, the pre-

processing for PEMwC takes superlinear time, in terms of |G |.
In the rest of this section, we assume that (G, S) is an input to PEMwC that we aim to kernelize.

Note that, contrary to the previous sections,G may contain multiple edges. We fix some planar em-
bedding of G, where multiple edges are drawn in parallel in the plane, without any other element
of G between them.

In the course of the kernelization algorithm, we may perform two types of operations onG. First,
if we deduce for some e ∈ E (G) that there exists a minimum solution X not containing e , then we
may contract e in G. During this contraction, any self-loops are removed, but multiple edges are
kept. This operation is safe, because if F is a subgraph of G/e that has the properties promised by
Theorem 10.3, then the projection of F intoG satisfies those same properties. Second, if we deduce
for some edge e that some minimum solution X to PEMwC on (G, S) contains e , we may delete e
from G, analyze G \ {e} obtaining a set F , and return F ∪ {e}. As the size of the minimum solution
to PEMwC decreases inG \ e , the size of F satisfies the bound promised in Theorem 1.1. Note that
both edge contractions and edge deletions preserve planarity of G.

In the course of the arguments, we provide a number of reduction rules. At each step, the lowest-
numbered applicable rule is used.

10.2.1 Preliminary Reductions. In this section, we provide a few reduction rules to clean up the
instance.

Reduction Rule 10.1. If there is an edge e that connects two terminals, then delete e and include

it into the constructed set F .

Reduction Rule 10.2. If |S | ≤ 1, then return F = ∅.

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

Network Sparsification for Steiner Problems 53:59

Now, we take care of the situation when the input instance (G, S) is in fact a union of a few
PEMwC instances.

Reduction Rule 10.3. If G \ S is not a connected graph, then consider each of its connected com-

ponent separately. That is, ifC1,C2, . . . ,Cs are connected components ofG \ S , separately run the al-

gorithm on instances Ii = (G[Ci ∪ NG (Ci)],NG (Ci)) for i = 1, 2, . . . , s , obtaining sets F1, F2, . . . , Fs .

Return F =
⋃s

i=1 Fi .

To see that Rule 10.3 is safe, first note that sinceG[S] is edgeless (as Rule 10.1 has been performed
exhaustively), the instances (Ii)s

i=1 partition the edge set ofG. Consequently, any path connecting
two terminals in G, without any internal vertex being a terminal, is completely contained in one
instance Ii . Hence, a minimum solution to (G, S) is the union of minimum solutions to the instances
(Ii)s

i=1 and thus if kOPT is the size of an minimum solution to (G, S) and ki,OPT is the size of an

minimum solution to Ii , then kOPT =
∑s

i=1 ki,OPT . Moreover, if |Fi | ≤ ck568
i,OPT

for some constant

c > 0, then |F | ≤ ck568
OPT

, as the function x �→ cx568 is convex.
Therefore, in the rest of this section we may assume that G \ S is connected.
We now introduce some notation with regards to cuts in a graph. For two disjoint subsetsA,B ⊆

V (G) we say that X ⊆ E (G) is a (A,B)-cut if no connected component of G \ X contains both a
vertex of A and a vertex of B. For A = {a} or B = {b} we shorten this notion to (a,b)-cut, (a,B)-cut
and (A,b)-cut. An (A,B)-cut X is minimal if no proper subset of X is an (A,B)-cut and minimum

if |X | is minimum possible. For X ⊆ E (G) and A ⊆ V (G),we define reach(A,X) as the set of those
vertices v ∈ V (G) that are contained in a connected component of G \ X with at least one vertex
of A. Note that X is a (A,B)-cut if and only if reach(A,X) ∩ reach(B,X) = ∅ and X is a minimal
(A,B)-cut if, additionally, each edge of X has one endpoint in reach(A,X) and second endpoint
in reach(B,X). For a vertex t , we write reach(t ,X) instead of reach({t },X). For any Q ⊆ V (G),
we define δ (Q) as the set of edges of G with exactly one endpoint in Q . Note that if A ⊆ Q and
B ∩Q = ∅, then δ (Q) is a (A,B)-cut. Moreover, if X is a (A,B)-cut then δ (reach(A,X)) ⊆ X and if
X is a minimal (A,B)-cut then δ (reach(A,X)) = X .

This section relies on the submodularity of the cut function δ ():

Lemma 10.4 (Submodularity of Cuts [42]). For any P ,Q ⊆ V (G), it holds that

|δ (P) | + |δ (Q) | ≥ |δ (P ∪Q) | + |δ (P ∩Q) |.

From the submodularity of cuts we infer that if X and Y are minimum (A,B)-cuts, then
δ (reach(A,X) ∪ reach(A,Y)) and δ (reach(A,X) ∩ reach(A,Y)) are minimum (A,B)-cuts as well.
Therefore, there exists a unique minimum (A,B)-cut K with inclusion-wise maximal reach(A,K).
We call this cut the minimum (A,B)-cut furthest from A. Moreover, this cut can be computed in
polynomial time (see, for example, Reference [59]).

The submodularity of cuts also yields the following known reduction rule (cf. Reference [17]).

Reduction Rule 10.4. For all t ∈ S , let Kt be the minimum (t , S \ {t })-cut furthest from t . If

Kt � δ (t) for some t ∈ S , then contract all edges with both endpoints in reach(t ,Kt) (i.e., contract

reach(t ,Kt) onto t).

Clearly, Reduction 10.4 can be applied in polynomial time. Note that if this rule is not applicable,
then δ (t̂) is the unique minimum (t̂ , S \ {t̂ })-cut. For completeness, we provide the proof of its
safeness.

Lemma 10.5. Let Kt be the minimum (t , S \ {t })-cut furthest from t . Then there exists a minimum

solution to (G, S) that does not contain any edge with both endpoints in reach(t ,Kt).

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

53:60 M. Pilipczuk et al.

Proof. Let X be a minimum solution of (G, S). Let P = reach(t ,X) andQ = reach(t ,Kt). Note
that P ∩ S = {t } and, consequently, δ (P) is a (t , S \ {t })-cut. By submodularity of the cuts, |δ (P ∪
Q) | + |δ (P ∩Q) | ≤ |δ (P) | + |δ (Q) |. As Kt is a minimum (t , S \ {t })-cut, |δ (P ∩Q) | ≥ |δ (Q) | and,
consequently, |δ (P ∪Q) | ≤ |δ (P) |. We infer that, if we define

Y := (X \ (E (G[Q]) ∪ δ (P))) ∪ δ (P ∪Q),

we have |Y | ≤ |X |, as δ (P) ⊆ X .
We claim that Y is a solution to (G, S); as |Y | ≤ |X | and Q ⊆ reach(t ,Y), this would finish the

proof of the lemma. Assume otherwise and let R be a path between two terminals in G \ Y . As X
is a solution to (G, S), R contains an edge of δ (P) or a vertex of Q , and, consequently, contains a
vertex of P ∪Q . Note that at least one endpoint of R is different than t ; hence, R contains an edge
of δ (P ∪Q), a contradiction, as δ (P ∪Q) ⊆ Y . �

We now recall that the set of all minimum t − (S \ {t }) cuts is a 2-approximation for PEMwC
(cf. Reference [20]).

Lemma 10.6. If Rule 10.4 is not applicable to (G, S), then
⋃

t ∈S δ (t) is a solution to (G, S) of size at

most 2kOPT .

Proof. Observe that
⋃

t ∈S δ (t) is indeed a solution. It remains to prove the bound. Let X be a
solution to (G, S). Note that for each t ∈ S , the set δ (reach(t ,X)) is a (t , S \ {t })-cut in G. Conse-
quently, |δ (reach(t ,X)) | ≥ |δ (t) |. On the other hand, each edge e ∈ X belongs to δ (reach(t ,X))
for at most two terminals t ∈ S . Hence,

2kOPT = 2|X | ≥
∑
t ∈S
|δ (reach(t ,X)) | ≥

∑
t ∈S
|δ (t) | ≥

⋃
t ∈S

δ (t)

,

and the lemma follows. �

We infer that, once Rule 10.4 is exhaustively applied, k := |⋃t ∈S δ (t) | satisfies kOPT ≤ k ≤
2kOPT .

We now state the last clean-up rule.

Reduction Rule 10.5. If there is an edge e of multiplicity larger than k , then contract e .

10.2.2 Bounding the Diameter of the Dual. We are now ready to present a reduction rule that
bounds the diameter of the dual of G. Recall that we assume that G is connected.

Arbitrarily, pick one terminal t̂ ∈ S . We construct a sequence of (t̂ , S \ {t̂ })-cuts K1,K2, . . . ,Kr

as follows. We start with K1 = δ (t̂); recall that, once Rule 10.4 is not applicable, δ (t̂) is the unique
minimum (t̂ , S \ {t̂ })-cut. Having constructed Ki , we proceed as follows. If there exists an edge in
Ki that is not incident to a terminal in S \ {t̂ }, we pick one such edgeuv arbitrarily and takeKi+1 to
be the minimum (reach(t̂ ,Ki) ∪ {u,v}, S \ {t̂ })-cut furthest from reach(t̂ ,Ki) ∪ {u,v}. Otherwise,
we terminate the process. Note that the sequence K1,K2, . . . ,Kr can be computed in polynomial
time.

We note the following properties of the sequence K1,K2, . . . ,Kr .

Lemma 10.7. If Rules 10.1–10.5 are not applicable, then the following holds:

(1) Kr =
⋃

t ∈S\{t̂ } δ (t);

(2) 1 ≤ |δ (t̂) | = |K1 | < |K2 | < · · · < |Kr | < 2kOPT ;

(3) r < 2kOPT ;

(4) for each 1 ≤ i < r , reach(t̂ ,Ki) � reach(t̂ ,Ki+1).

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

Network Sparsification for Steiner Problems 53:61

Proof. We first show that whenKi �
⋃

t ∈S\{t̂ } δ (t), for some i , thenKi+1 � Ki . As
⋃

t ∈S\{t̂ } δ (t)

is a (t̂ , S \ {t̂ })-cut and Ki is a minimal (t̂ , S \ {t̂ })-cut, we infer that there exists an edge vt � Ki

incident to a terminal t � t̂ . As Rule 10.3 is not applicable,G \ S is connected and thus there exists
a t̂v-path Q , such that only the first edge of Q is incident to a terminal. We infer that Q intersects
Ki and Ki contains an edge not incident to S \ {t̂ }. Consequently, Ki+1 can be constructed. This
concludes the proof of the first claim.

For the second claim, note that Ki is the unique minimum (reach(t̂ ,Ki), S \ {t̂ })-cut, thus
|Ki+1 | > |Ki | for all 1 ≤ i < r . By Lemma 10.6, |⋃t ∈S δ (t) | ≤ 2kOPT . As Rule 10.1 is not applicable,
the sets δ (t) are pairwise disjoint. As Rules 10.2 and 10.3 are not applicable, δ (t̂) � ∅. We infer that

|Kr | =

⋃
t ∈S\{t̂ }

δ (t)

<

⋃
t ∈S

δ (t)

≤ 2kOPT .

The third claim follows directly from the second one and the last claim is straightforward from
the construction. �

The main claim of this section is the following.

Lemma 10.8. Assume Rules 10.1–10.5 are not applicable to the PEMwC instance (G, S). Moreover,

assume there exists an edge e ∈ G such that the distance, in the dual of G, between e and
⋃r

i=1 Ki is

greater than k . Then there exists a minimum solution to (G, S) that does not contain e .

Proof. Let X be a minimum solution to (G, S). If e � X , there is nothing to prove, so assume
otherwise. As e is distant from

⋃r
i=1 Ki , in particular e �

⋃r
i=1 Ki . Recall that, since we assume G

is connected,

{t̂ } = reach(t̂ ,K1) � reach(t̂ ,K2) � · · · � reach(t̂ ,Kr) = V (G) \ (S \ {t̂ }).
Hence, there exists a unique index ι, 1 ≤ ι < r , such that both endpoints of e belong to
reach(t̂ ,Kι+1) \ reach(t̂ ,Kι).

Consider now X as an edge subset of the dual of G and let Y be the connected component of X
that contains e . Let SY = S \ reach(t̂ ,Y), i.e., SY is the set of terminals separated in G from t̂ by Y .

Finally, we define Y to be the set of edges ofG that are incident to a face ofG that is incident to at
least one edge of Y , i.e., the set of edges that are incident to the endpoints of Y in the dual of G.

We first claim the following.

Claim 10.1. Y is a connected subgraph of G, disjoint from
⋃r

i=1 Ki and the endpoints of Y in G lie

in reach(t̂ ,Kι+1) \ reach(t̂ ,Kι).

Proof. Since G is connected, the edges incident to a face of G form a closed walk and, conse-

quently,Y is a connected subgraph ofG. AsY ⊆ X , |Y | ≤ |X | = kOPT ≤ k . Hence, any face incident
to an edge of Y is, in the dual of G, within distance less than k from a face incident to e . Conse-

quently, by the definition of Y and the choice of e , Y cannot contain any edge of
⋃r

i=1 Ki . By the

connectivity ofY , for any 1 ≤ i ≤ r ,Y is either fully contained inG[reach(t̂ ,Ki)] or fully contained
in G \ reach(t̂ ,Ki). Hence, the last claim follows from the definition of ι. �

Intuitively, Claim 10.1 asserts that Y is a connected part of the solution that lives entirely be-
tween Kι and Kι+1. The role of Y in the solution X is to separate SY from t̂ (and/or other terminals
of S \ SY) and, possibly, separate some subsets of SY from each other. DefineZ to be the set of those
edges of Kι+1 whose endpoints are separated from t̂ by Y , i.e., both do not belong to reach(t̂ ,Y).

Note that, as Y ∩ Kι+1 = ∅, for any e ′ ∈ Kι+1, either both endpoints of e ′ belong or both endpoints
do not belong to reach(t̂ ,Y).

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

53:62 M. Pilipczuk et al.

Claim 10.2. K := (Kι+1 \ Z) ∪ Y is a (t̂ , S \ {t̂ })-cut. Moreover, reach(t̂ ,Kι) ∪V (Kι \ Kι+1) ⊆
reach(t̂ ,K).

Proof. The second claim of the lemma is straightforward, as, by Claim 10.1, no edge of Y be-
longs to Kι \ Kι+1 nor does it have both endpoints in reach(t̂ ,Kι). For the first claim, assume the
contrary and let P be a t̂t-path inG \ K for some t ∈ S \ {t̂ }. AsKι+1 is a (t̂ , t)-cut, P contains an edge
of Z . However, by the definition of Z , P contains an edge of Y and P intersects K , a contradiction.�

Recall now that Kι+1 is a minimum (reach(t̂ ,Kι) ∪ {u,v}, S \ t̂)-cut for some uv ∈ Kι . By
Claim 10.2, K is also a (reach(t̂ ,Kι) ∪ {u,v}, S \ t̂)-cut. Hence, |K | ≥ |Kι+1 | and, consequently,
|Y | ≥ |Z |.

We are now ready to make the crucial observation.

Claim 10.3. The set X ′ := (X \ Y) ∪ Z is a solution to PEMwC on (G, S).

Proof. Assume the contrary and let P be a path connecting two terminals in G \ X ′. We con-
sider two cases, depending on whether there exists an endpoint of P that belongs to SY . If there
exists such an endpoint, Z should substitute Y as a separator and should intersect P . Otherwise,
Y does not play any substantial role in intersecting P as a part of the solution X and X \ Y should
already intersect P . We now proceed with formal argumentation.

In the first case, assume that t ∈ SY is an endpoint of P . As X is a solution to (G, S), P contains
an edge of Y . Let uv be such an edge on P that is closest to t , where u lies before v on P . Note that
P[t ,u] does not contain any edge ofKι+1: as t � reach(t̂ ,Y) and P[t ,u] ∩ Y = ∅, P[t ,u] is contained
inG \ reach(t̂ ,Y) but Z = Kι+1 ∩ (G \ reach(t̂ ,Y)) and P avoids Z . Recall that all endpoints of the
edges of Y lie in reach(t̂ ,Kι+1); hence, there exists a path Q connecting t̂ with u that avoids Kι+1.
Hence, Q ∪ P[u, t] is a t̂t-path avoiding Kι+1, a contradiction to the definition of Kι+1.

In the second case, both endpoints of P belong to reach(t̂ ,Y). Denote them t1 and t2. As X is a
solution to (G, S), P contains at least one edge of Y . Let e1 be the first such edge and let e2 be the
last one. Moreover, let v1 be the endpoint of e1 closer to t1 on P and v2 be the endpoint of e2 closer
to t2 on P . Note that v1,v2 ∈ reach(t̂ ,Y), as both P[t1,v1] and P[t2,v2] do not contain any edge of
Y . We also note that it may happen that e1 = e2 = v1v2, but v1 � v2 and v1 is closer to t1 on P than
t2. Observe that since P[t1,v1] and P[t2,v2] avoid both X ′ and Y , they also avoid X .

As Y is connected in the dual of G, there exists a unique face fY of (G \ Y)[reach(t̂ ,Y)], that
contains Y . As reach(t̂ ,Y) is connected by definition and the interior of each face of a connected
graph is isomorphic to an open disc (since we are working on the euclidean plane), the closed walk
around fY in reach(t̂ ,Y) connects all vertices incident to Y that belong to reach(t̂ ,Y) and, by the

definition of Y , all edges of this closed walk belong to Y \ Y . We infer thatv1 andv2 lie in the same

connected component of Y \ Y .4

By the definition of Y and Y , we have X ∩ Y = Y . Hence, v1 and v2 lie in the same connected
component ofG \ X and the same holds for t1 and t2 (via paths P[t1,v1] and P[t2,v2]), a contradic-
tion to the fact that X is a solution to (G, S). This finishes the proof of Claim 10.3. �

Clearly, as |Y | ≥ |Z | and Y ⊆ X , we have |X ′ | ≤ |X |. As Z ⊆ Kι+1, we have e � X ′. Thus, by
Claim 10.3, X ′ is a minimum solution to PEMwC on (G, S) that does not contain e . This concludes
the proof of the lemma. �

Lemma 10.8 allows us to state the following reduction rule.

4Note that the argument of this paragraph fails if we assume only that G is embedded on, say, a torus, instead of a plane.

We do not know how to fix it for graphs of higher genera.

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

Network Sparsification for Steiner Problems 53:63

Reduction Rule 10.6. Compute a choice of cuts K1,K2, . . . ,Kr for some arbitrarily chosen t̂ ∈
S . If there exists an edge e in G whose distance from

⋃r
i=1 Ki in the dual of G is greater than k ,

contract e .

Note that Rule 10.6 may be applied in polynomial time. Moreover, it bounds the diameter of the
dual of G. To prove this claim, we need the following easy fact.

Lemma 10.9. Let H be a connected graph and let D ⊆ V (H) be a subset of vertices such that every

vertex of H is in distance at most r from some element of X . Then the diameter of H is bounded by

(2r + 1) |D | − 1.

Proof. For a vertex w ∈ V (H), let π (w) be a vertex of D closest to v , breaking ties arbitrarily.
For sake of contradiction assume that there exist two vertices u,v ∈ V (H) such that the shortest
path P in H between u and v is of length at least (2r + 1) |D |. Then |V (P) | ≥ (2r + 1) |D | + 1 and
by the pigeon-hole principle there must exist a vertex x ∈ D such that x = π (w) for at least 2r + 2
vertices of V (P). Let w1 be the first of these vertices and w2 be the last; note that the distance
between w1 and w2 on P is at least 2r + 1, since there are at least 2r vertices on P between them.
Now obtain a walk P ′ by removing P[w1,w2] from P and inserting first a shortest path fromw1 to
x and then a shortest path from x to w2. By assumption, both these paths are of length at most r ,
so P ′ is shorter than P . This contradicts the minimality of P . �

We are ready to give a bound on the diameter of the dual of G.

Lemma 10.10. If Rules 10.1–10.6 are not applicable, then the diameter of the dual ofG is O (k3
OPT

).

Proof. By Lemma 10.9, since the dual ofG is connected, it suffices to identify a setD ofO (k2
OPT)

vertices of G such that every vertex of G is in distance at most k + 1 from D. We claim that D =
V (

⋃r
i=1 Ki) is such a set. By Lemma 10.7, we have that |D | ≤ O (k2

OPT). Take now any vertex v ∈
V (G) and, since Rules 10.2 and 10.3 are not applicable, let e be an arbitrary edge incident to v .
Since Rule 10.6 is not applicable, e is in distance at most k from D, so also v is in distance at most
k + 1 from D. �

10.2.3 Cutting the Dual Open and Applying Theorem 1.1. We now proceed to the application of
Theorem 1.1. We start with the following observation.

Lemma 10.11. If Rules 10.3 and 10.1 are not applicable, then each 2-connected component of⋃
t ∈S δ (t) in the dual of G is a cycle. That is,

⋃
t ∈S δ (t) is a set of cacti in the dual of G.

Proof. Let H0 =
⋃

t ∈S δ (t) be a subgraph of the dual of G. First, note that if Rule 10.1 is not
applicable, then δ (t), for t ∈ S , are edge-disjoint cycles in G∗. We claim that these cycles are pre-
cisely 2-connected components of H0. For the sake of contradiction, assume that there exists a
simple cycle C in H0 that contains edges from cycles δ (t1),δ (t2), . . . ,δ (tp), where p ≥ 2. Since C
is simple, we can assume that for each i , there exists an edge of δ (ti) not contained in C . Let γ be
the curve on the plane corresponding to cycle C . Observe that edges of G crossing γ are precisely
the primal edges of C . Take t1 and observe that in G there is an edge incident to t1 crossing γ
and there is an edge incident to t1 not crossing γ . Since Rule 10.1 is not applicable, we conclude
that there exist nonterminal vertices on both sides of the curve γ . As each edge of H0 is incident
to a terminal, removing S from G disconnects nonterminal vertices on different sides of γ and
Rule 10.3 would be applicable. This is a contradiction. �

We now construct two subgraphs H0 and Hs of the dual ofG. Let H0 =
⋃

t ∈S δ (t). We note that,
by Lemma 10.11, for each connected componentC of H0, the closed walk around the outer face of
C is an Eulerian tour of C—as shown in Figure 8(a).

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

53:64 M. Pilipczuk et al.

Fig. 8. Panel (a) shows the set of cacti together with their Eulerian tours, i.e., the graph H0. Panel (b) shows

the construction of graph Hs , where the three Eulerian tours are jointed together using two copies of paths

P and P ′.

We now construct a connected subgraph Hs of the dual that contains as subgraph H0. We
first contract all connected components of H0 to vertices and find a minimum spanning tree
TH over these vertices (i.e., a 2-approximate Steiner tree). We set Hs = H0 ∪TH . Observe that
|H0 | =

∑
t ∈S |δ (t) | = k ≤ 2kOPT . Moreover, by Lemma 10.10 the distance between any two ter-

minals in the dual is bounded by O (k3
OPT

), so the cost of the MSTTH is bounded by O (k4
OPT). We

infer that |Hs | = O (k4
OPT).

Now consider a multigraph H2s obtained by taking a union of H0 and two copies of TH . We
observe that H2s is Eulerian and let W be its Eulerian tour. Note that W is a closed walk around
the outer face ofHs and each edge of H0 appears exactly once onW and each edge of Hs \ H0 = TH

appears exactly twice onW . Hence, |W | = O (k4
OPT). We cut the dual of G open alongW . That is,

we start with G∗, the dual of G, we duplicate each edge of Hs \ H0 and, for each vertex v ∈ V (Hs),
we create a of copies of v equal to the number of appearances of v on W . Let Ĝ∗ be the graph

obtained in this way. In Ĝ∗ the walk W becomes a simple cycle, enclosing a face fW . We fix an

embedding of Ĝ∗ where fW is the outer face. In this way Ĝ∗ is a brick with perimeter of length

O (k4
OPT). Let π be a mapping that assigns to each edge of Ĝ∗ its corresponding edge of G and G∗.

We apply Theorem 1.1 to the brick Ĝ∗, obtaining a set F ′ of size O (k568
OPT

). The set F ′ natu-
rally projects to a set F ⊆ E (G) via the mapping π . We claim that we may return the set F in our
algorithm. That is, to finish the proof of Theorem 10.3 we prove the following lemma.

Lemma 10.12. There exists a minimum solution X to PEMwC on (G, S) that is contained in F .

Proof. LetX be a solution to PEMwC on (G, S) that minimizes |X \ F |. By contradiction, assume
X \ F � ∅.

We define the following binary relation R on X : R (e, e ′) if and only if there exists a walk in
G∗ containing e and e ′, with all edges in X and all internal vertices not in V (Hs). Clearly, R is
symmetric and reflexive. We show that it is also transitive. Assume R (e, e ′) and R (e ′, e ′′), with
witnessing paths P and P ′. If e = e ′ or e ′ = e ′′, the claim is obvious, so assume otherwise. We may
assume that P starts with e and ends with e ′ and P ′ starts with e ′ and ends with e ′′. If P and P ′

traverse e ′ in the same direction then P ∪ P ′ is a witness to R (e, e ′′), as P and P ′ are of length at
least two. In the other case, (P \ e ′) ∪ (P ′ \ e ′) is a witness to R (e, e ′′). Thus, R is an equivalence
relation.

Note that any edge of X ∩ Hs is in a singleton equivalence class of R. Let Y be the equivalence
class ofR that contains an element ofX \ F . AsHs ⊆ F , we infer thatY ∩ Hs = ∅ and, consequently,

Y is also a subgraph (subset of edges) of Ĝ∗. Let Ŝ = V (∂Ĝ∗) ∩V (Y) in Ĝ∗. We note that Y is a

connected subgraph of Ĝ∗ that connects Ŝ—see Figure 9.

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

Network Sparsification for Steiner Problems 53:65

Fig. 9. The figure shows the solution X to PEMwC and set Y in (a) the dual graph G∗ and (b) the cut open

dual graph Ĝ∗.

Fig. 10. The path P in G can be seen as a sequence of faces in the dual. On panel (a), the last and the first

edge of Q2 lie in different arcs, whereas, on (b), these edge belong to the same arc.

By the properties of F ′, there exists a set Z ′ ⊆ F ′ that connects Ŝ in Ĝ∗ and |Z ′ | ≤ |Y |. Let Z =
π (Z ′) ⊆ F . We claim that X ′ := (X \ Y) ∪ Z is a solution to (G, S) as well. This would contradict
the choice of X , as |X ′ | ≤ |X | and |X ′ \ F | < |X \ F |.

So assume the contrary and let P be a path connecting two terminals t1 and t2 inG \ X ′. We may
assume that P does not contain any terminal as an internal vertex. Note that P starts and ends with
an edge of H0 ⊆ Hs . As Rule 10.1 is not applicable, P is of length at least two. Let e0, e1, e2, . . . , ed

be the edges of P ∩ Hs , in the order of their appearance on P , let ei = uivi , where ui lies closer on

P to t1 than vi does. Note that e0, ed ∈ H0 but ei ∈ Hs \ H0 for 1 ≤ i < d . Let Ĝ∗∗ be the dual of Ĝ∗.
For each i = 1, 2, . . . ,d , we define a cycle Qi in Ĝ∗∗ as follows. Consider first path P[ui−1,vi] and

observe that every edge of this path apart from the first and the last is present in Ĝ∗∗. Therefore,

in P[ui−1,vi] replace the edge ei−1 (belonging to Hs) with the copy of ei−1 in Ĝ∗∗ that leads from

the outer face of Ĝ∗ to the facevi−1 and replace the edge ei with a copy of ei in Ĝ∗∗ that leads from

ui to the outer face of Ĝ∗. Although Qi is a cycle in Ĝ∗∗, we call the aforementioned copy of ei−1

the first arc of Qi and the copy of ei the last arc.

The set Ŝ splits ∂Ĝ∗ into a number of arcs A1,A2, . . . ,Amax(1, |Ŝ |) . If, for some 1 ≤ i ≤ d , the

first and the last edge of the cycle Qi lies in different arcs Aα and Aβ , then Qi intersects Z ′ and,
consequently, P intersects Z , a contradiction to the choice of P—see Figure 10(a). Hence, for all
1 ≤ i ≤ d , the first and the last arc of Qi lies in the same arc Aα (i) . We now reach a contradiction

by showing that t1 and t2 lie in the same connected component of G \ X .
As P avoids X ′ and Y ∩ Hs = ∅, P avoids X ∩ Hs and e0, e1, . . . , ed � X . Let i be the smallest

integer such that ei does not lie in the same connected component of G \ X as t1. If such i does
not exist, the claim is proven as t2 is an endpoint of ed . Consider P[vi−1,ui]; note that this is
also a subpath of Qi , as it does not contain any edge of Hs . Recall that P avoids X \ Y . Hence,

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

53:66 M. Pilipczuk et al.

P[vi−1,ui] intersects Y . Moreover, the first and the last edge of P[vi−1,ui] lies on the same arc
Aα (i) , so P[vi−1,ui] intersects Y at least twice. We treat now P[vi−1,ui] as a subpath of Qi , i.e., a

path in Ĝ∗∗. Let f1 be the first face of Ĝ∗ on P[vi−1,ui] that is incident to an edge of Y and let f2 be
the last such face. Observe that the prefix of P[vi−1,ui] up to f1 and the suffix of P[vi−1,ui] from
f2 avoid both X ′ and Y , so they also avoid X .

Let us now show that there exists a path R in Ĝ∗∗ connecting f1 and f2 that uses only edges that

in Ĝ∗ are incident to the endpoints of Y , but do not belong to Y nor ∂Ĝ∗. Existence of path R can

be inferred as follows. Take the set of faces Fα (i) of Ĝ∗ that are reachable in Ĝ∗∗ from edges of the

arc Aα (i) without passing through the infinite face of Ĝ∗ or traversing edges of Y . Consider also
Fα (i) as a subset of plane obtained by gluing these faces together along all the edges between them
that are not contained in Y . By the definition of Y as an equivalence class of R, the boundary of
Fα (i) is a closed walk that consists of arc Aα (i) and edges of Y that are incident to faces of Fα (i) . By
the definition, both of f1 and f2 are incident to the part of boundary of Fα (i) that is contained in Y .
Path R can be then obtained by traversing faces of Fα (i) along its boundary, choosing the direction
of the traversal so that part of the boundary of Fα (i) that is the arc Aα (i) is not traversed—see
Figure 10(b).

Since Y is an equivalence class of R, edges of R do not belong to X (as otherwise they would be
in relation with the edges ofY). Let R′ be P[vi−1,ui] with subpath between faces f1 and f2 replaced
with R. If we now project R′ toG∗ andG using π , we infer thatvi−1 andui lie in the same connected
component of G \ X , a contradiction to the choice of i . This finishes the proof of the lemma and
concludes the proof of Theorem 10.3. �

11 EXTENDING TO BOUNDED-GENUS GRAPHS

In this section, we extend the results from planar graphs to bounded genus graphs, using the
framework of Borradaile et al. [11]. The idea is to reduce the bounded genus case to the planar
case by cutting the graph embedded on a surface of bounded genus into a planar graph, using
only a cutset of small size. That is, as in Reference [11], given a brick embedded on a surface of
genus д (i.e., a graph with a designated face), we may cut along a number of “short” cutpaths to
make the brick planar, at the cost of extending the perimeter and the diameter of the brick by an
additive factor of O (дd), where d is the diameter of G. However, in our case, d can be bounded by
the perimeter of the brick, as vertices further from the perimeter may be safely discarded.

As in Reference [11], we assume that we are given a combinatorial embedding of genus д of an
input graph G, where the interior of each face is homeomorphic to an open disc. We proceed as
in Sections 4.1 and 4.2 of Reference [11]: given a brick embedded on a surface of genus д (i.e., a
graph with a designated face), we may cut along a number of “short” cutpaths to make the brick
planar. More precisely, the following theorem summarizes the results of Reference [11] in our
terminology, in particular the proved guarantees about the behaviour of procedures Preprocess
and Planarize in Reference [11].

Theorem 11.1 (Reference [11], with Adjusted Terminology and Parameter μ Set to
1). Let G be a connected graph embedded into a surface of genus д and let S ⊆ V (G) be a set of

terminals inG. Let OPT be the weight of an optimum Steiner tree connecting S in G. Then one can in

O (|G |) time find subgraphs CG and G ′ of G such that the following holds:

—CG ⊆ G ′ ⊆ G, CG and G ′ are connected, and CG contains all the terminals of S ;

—all the vertices and edges of G ′ are at distance at most 4OPT from S in G ′ and G ′ contains all

the vertices and edges of G that are at distance at most 2OPT from S in G;

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

Network Sparsification for Steiner Problems 53:67

—cutting G ′ along CG results in a planar graph Gp with the infinite face (corresponding to cut-

open CG) being a simple cycle of length at most 8(2д + 2)OPT .

Let us remark that a combinatorial embedding ofG ′ can be easily derived from a combinatorial
embedding of G by removing all the vertices and edges not present in G ′ and replacing each new
face whose interior ceased to be homeomorphic to an open disc with a number of disc faces.

By combining Theorem 11.1 with Theorem 1.1 we obtain the following.

Theorem 11.2 (Main Theorem for Graphs of Bounded Genus). Let B be a connected graph,

with a combinatorial embedding into a surface of genus д. Let f be a simple face of B. Then one can

find in O (|∂ f |142 · (д + 1)142 · |B |) time a subgraph H ⊆ B such that

(i) ∂ f ⊆ H ,

(ii) |E (H) | = O (|∂ f |142 · (д + 1)142), and

(iii) for every set S ⊆ V (∂ f), H contains some optimal Steiner tree in B connecting S .

Proof. Let S0 = V (∂ f). Observe that ifOPT is the optimum weight of a Steiner tree connecting
S0 in B, then OPT ≤ |∂ f |. We apply the algorithm of Theorem 11.1 to B, obtaining graphs B′

and CB with the promised guarantees. Note that if Bp is the planar brick obtained from B′ by
cutting open alongCB, then |∂Bp | ≤ 8(2д + 2) |∂ f |. The theorem now follows from an application
of Theorem 1.1 to the brick Bp and projecting the obtained subgraphHp ⊆ Bp back to B′. Note here
that no edge of B that is not present in B′ can participate in any optimum Steiner tree connecting
any subset of S0. �

Using Theorem 11.2 instead of Theorem 1.1, we immediately obtain bounded-genus variants of
Theorems 10.1 and 10.2.

Theorem 11.3. Given a Steiner Tree instance (G, S) together with an embedding of G into a

surface of genus д where the interior of each face is homeomorphic to an open disc, one can in

O (k142
OPT (д + 1)142 |G |) time find a set F ⊆ E (G) of O (k142

OPT (д + 1)142) edges that contains an opti-

mal Steiner tree connecting S in G, where kOPT is the size of an optimal Steiner tree.

Theorem 11.4. Given a Steiner Forest instance (G,S) together with an embedding of G into

a surface of genus д where the interior of each face is homeomorphic to an open disc, one can in

O (k710
OPT

(д + 1)710 |G |) time find a set F ⊆ E (G) of O (k710
OPT

(д + 1)710) edges that contains an optimal

Steiner forest connecting S in G, where kOPT is the size of an optimal Steiner forest.

We note that the arguments of Section 10.2 for Planar Edge Multiway Cut heavily rely on
the planarity of the input graph and the question of a polynomial kernel for Multiway Cut on
graphs of bounded genus remains open.

We can plug the kernel given by Theorem 11.3 directly into the algorithm of Tazari [72] for
Steiner Tree on graphs of bounded genus to obtain the following result:

Corollary 11.5. Given a graphG with an embedding into a surface of genus д where the interior

of each face is homeomorphic to an open disc, a terminal set S ⊆ V (G), and an integer k , one can in

2Oд (
√

k log k) + O (k142
OPT (д + 1)142 |G |) time decide whether the Planar Steiner Tree instance (G, S)

has a solution with at most k edges.

In this corollary, the hidden constant in Oд (·) is some computable function of д.

12 PLANAR EDGE MULTIWAY CUT: SUBEXPONENTIAL-TIME ALGORITHM

In this section, we show that the approach of Tazari for Steiner Tree [72] can be extended to
Edge Multiway Cut.

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

53:68 M. Pilipczuk et al.

Theorem 12.1. Given a planar graph G, a terminal set S ⊆ V (G), and an integer k , one can in

|G |O (
√

k) time decide whether the Planar Edge Multiway Cut instance (G, S) has a solution with at

most k edges.

Proof. First, assume that (G, S,k) is a YES-instance and let X be an arbitrary minimum solu-
tion. We follow Baker’s approach in G∗, the dual of G. Let f be an arbitrary vertex of G∗. Perform
breadth-first search in G∗, starting from f , and let Ej , j = 0, 1, 2, . . . be the set of edges of G∗ that
connect the vertices of distance j from f with vertices of distance (j + 1). Note that the sets Ej are

pairwise disjoint, but
⋃

j Ej may be a proper subset of E (G∗). Denote � = �
√
k�. For 0 ≤ i < �, let

Li =
⋃

j≥0 Ei+j� . Branch into � subcases, guessing an index 0 ≤ i < � where |X ∩ Li | ≤
√
k . Fur-

thermore, branch into (�
√
k� + 1) subcases guessing |X ∩ Li | and branch into at most |V (G) | �

√
k �

subcases guessing the set X ∩ Li itself. Label each branch with a pair (i,Y): the index of the layer
Li and the set Y ⊆ Li guessed (that is supposed to be X ∩ Li). Contract the edges of Li \ Y in the
graph G (keeping multiple edges). Let H be the obtained graph.

We claim that after this operation the treewidth ofH is bounded by O (
√
k). By Reference [14], it

suffices to bound the treewidth ofH ∗, the dual ofH . Recall that a contraction of an edge in a planar
graph corresponds to a deletion of this edge in the dual. Hence, H ∗ is isomorphic to G∗ \ (Li \ Y).

However, each connected component of G∗ \ Li is �-outerplanar and |Y | ≤
√
k . This finishes the

proof of the treewidth bound of H ∗ and, consequently, of H .
To finish the proof of the theorem, it suffices to note that a given Multiway Cut instance (G, S),

equipped with a tree decomposition of G of width t , one can decide whether this instance has a

solution of size at most k in (|S |t)O (t)poly(|G |) time by a straightforward dynamic-programing
routine.5 Indeed, suppose we consider a bag B in the tree decomposition and we define A ⊆ V (G)
to be union of bags in the subtree rooted at B (including B itself). Then, in a state of the dynamic-
programing algorithm, we need to remember the following information (F is a solution that con-
forms to the state): for each vertex z ∈ B, which terminal lies in the same connected component of
G[A] \ F as the vertex z and how the vertices of B are partitioned by the connected components

of G[A] \ F . Since |S | ≤ |G | and t ≤ |G |, this implies a |G |O (t) algorithm. In our case t is O (
√
k),

which implies the theorem. �

By pipelining the kernelization algorithm of Theorem 1.4 with Theorem 12.1, we obtain the
second claim of Corollary 1.5.

13 PLANAR STEINER FOREST: NO SUBEXPONENTIAL-TIME ALGORITHM

In this section, we prove Theorem 1.6, which states that no algorithm can decide in 2o (k)poly(|G |)
time whether Planar Steiner Forest instances (G,S) have a solution with at most k edges,
unless the Exponential Time Hypothesis fails. The Exponential Time Hypothesis was proposed by
Impagliazzo et al. [46]. Using the formulation by Fomin and Kratsch [38], it hypothesizes that no

algorithm can decide instances of 3-SAT in 2o (n) time, where n is the number of variables in the
formula of the instance. Using the Sparsification Lemma [46], this is equivalent (see Reference [38])

to the hypothesis that no algorithm can decide instances of 3-SAT in 2o (m) time, where m is the
number of clauses in the formula of the instance. It is this formulation of the Exponential Time
Hypothesis that we rely on here.

5We observe that this straightforward algorithm can be easily improved to a tO (t)poly(|G |)-time algorithm, since for a

connected component intersecting the bag, we do not need to remember precisely which terminal is contained in it, but

only whether such a terminal exists or not. This running time can be further refined to 2O (t)poly(|G |), using the framework

of sphere-cut decompositions and Catalan structures [28].

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

Network Sparsification for Steiner Problems 53:69

To prove Theorem 1.6, we need a reduction from 3-SAT to Planar Steiner Forest. We use
the following intermediate problem, which was also considered by Bateni et al. [5] in their NP-
hardness reduction of Planar Steiner Forest on planar graphs of treewidth 3. Let the boolean
relation R (f ,д,h) be equal to (f = h) ∨ (д = h). Then an R-formula is a conjunction of relations
R (f ,д,h), where each of f ,д,h can be a boolean variable, true (1) or false (0). For example,
R (x1,x2,x3) ∧ R (x1, 0,x2) ∧ R (0, 1,x3) is a valid R-formula. We explicitly mention here that it is
critical that in R (f ,д,h) none of f ,д,h can be the negation of a boolean variable. Then one can
define the following problem:

R-SAT
Input: An R-formula ϕ.
Task: Decide whether ϕ is satisfiable.

Bateni et al. [5] essentially show the following result as part of their Theorem 8.2:

Lemma 13.1 (Reference [5]). Let ϕ be an R-formula on n variables andm clauses. Then, in poly-

nomial time, one can construct an instance (Gϕ ,Sϕ) of Planar Steiner Forest such that Gϕ is a

planar graph of treewidth 3 and (Gϕ ,Sϕ) has a solution with at most n + 3m edges if and only if ϕ is

satisfiable.

We can use this lemma to prove the following result, which is stronger than Theorem 1.6 and
thus implies it.

Theorem 13.2. If there is an algorithm that can decide in time 2o (k)poly(|G |) whether Planar

Steiner Forest instances (G,S), whereG has treewidth 3, have a solution with at most k edges, then

the Exponential Time Hypothesis fails.

Proof. Consider an instance of 3-SAT and let ψ be the CNF-formula of this instance. Let n
denote the number of variables that appear in ψ and let m denote the number of clauses of ψ .
Since each clause contains at most three variables,m ≥ n/3 and thus n ≤ 3m.

We first construct an R-formula ϕ that is equivalent to ψ . For each variable xi (i ∈ {1, . . . ,n})
that appears in ψ , add the variable relations R (x+i ,x

−
i , 1) and R (x+i ,x

−
i , 0) to ϕ. Here x+i and x−i are

new variables, which indicate whether xi will be true or false respectively. Note that the relations
ensure thatT ′(x+i) � T ′(x−i) for any truth assignmentT ′ that satisfies both relations. Now consider
a clauseCj = (a ∨ b ∨ c) ofψ (j ∈ {1, . . . ,m}) — ifCj actually contains at most two literals, then we
pretend that c = 0; ifCj contains one literal, then we also pretend that b = 0. Define a′ as follows.
If a is a variable xi , then let a′ = x+i . If a is the negation of a variable xi , then let a′ = x−i . Otherwise,
i.e. , if a = 0 or a = 1, then let a′ = a. Define b ′ and c ′ similarly. Then, add to ϕ two new variables
y+j and y−j and the following clause relations: R (a′,b ′,y+j), R (0, c ′,y−j), and R (y+j ,y

−
j , 1). We claim

thatψ is satisfiable if and only if ϕ is satisfiable.
Suppose that ψ is satisfiable and let T be a satisfying truth assignment for ψ . We extend T to

also cover negations of variables, i.e.,T (¬xi) = ¬T (xi). We construct a satisfying truth assignment
T ′ for ϕ as follows. If T (xi) = 1, then let T ′(x+i) = 1 and T ′(x−i) = 0; otherwise, let T ′(x+i) = 0 and
T ′(x−i) = 1. This satisfies all variable relations. Consider any clauseCj = (a ∨ b ∨ c) ofψ . IfT (a) =
1 or ifT (b) = 1, then set T ′(y+j) = 1 and T ′(y−j) = 0. Otherwise, i.e., if T (a) = 0 and T (b) = 0, then

T (c) = 1 and set T ′(y+j) = 0 and T ′(y−j) = 1. This satisfies all clause relations of ϕ. Hence, T ′ is a

satisfying truth assignment for ϕ.
Suppose that ϕ is satisfiable and let T ′ be a satisfying truth assignment for ϕ. We construct a

satisfying truth assignment T for ψ as follows: set T (xi) = T ′(x+i) for each variable in ψ . Again,
we extend T to also cover negations of variables, i.e., T (¬xi) = ¬T (xi). Consider any clause

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

53:70 M. Pilipczuk et al.

Cj = (a ∨ b ∨ c) of ψ . If T ′(y−j) = 1, then it follows from the clause relations that T (c) = 1. Other-

wise, i.e., ifT ′(y−j) = 0, then it follows from the clause relations thatT ′(y+j) = 1 and thusT (a) = 1

orT (b) = 1. Therefore, the clause is satisfied. Hence,T is a satisfying truth assignment forψ . This
proves the claim.

Observe that ϕ has 2n + 2m variables and 2n + 3m relations. Moreover, ϕ can be constructed in
polynomial time. Now apply the construction of Lemma 13.1 to ϕ in polynomial time. This yields
an instance (Gϕ ,Sϕ) of Planar Steiner Forest such thatGϕ is a planar graph of treewidth 3 and
(Gϕ ,Sϕ) has a solution with at most 8n + 11m edges if and only if ϕ is satisfiable. Using the above
claim, (Gϕ ,Sϕ) has a solution with at most 8n + 11m edges if and only if ψ is satisfiable. Note
that 8n + 11m ≤ 35m. Therefore, the existence of an algorithm as in the theorem statement would

imply an algorithm that decides instances of 3-SAT in 2o (m) time. This proves the theorem. �

ACKNOWLEDGMENTS

We thank Daniel Lokshtanov and Saket Saurabh for showing us the application of Baker’s ap-
proach to Planar Multiway Cut (Theorem 12.1) and for allowing us to include the proof in this
article. Moreover, we acknowledge the discussions with Daniel Lokshtanov that lead to the dis-
covery that the NP-hardness proof for Steiner Forest on planar graphs of treewidth 3 of Bateni
et al. [5] can be strengthened to also refute a subexponential-time algorithm.

REFERENCES

[1] Ajit Agrawal, Philip N. Klein, and R. Ravi. 1995. When trees collide: An approximation algorithm for the generalized

Steiner problem on networks. SIAM J. Comput. 24, 3 (1995), 440–456.

[2] Ingo Althöfer, Gautam Das, David P. Dobkin, Deborah Joseph, and José Soares. 1993. On sparse spanners of weighted

graphs. Discrete Comput. Geom. 9 (1993), 81–100.

[3] Brenda S. Baker. 1994. Approximation algorithms for NP-complete problems on planar graphs. J. ACM 41, 1 (1994),

153–180.

[4] Mohammad Hossein Bateni, Mohammad Taghi Hajiaghayi, Philip N. Klein, and Claire Mathieu. 2012. A polynomial-

time approximation scheme for planar multiway cut. In Proceedings of the Twenty-Third Annual ACM-SIAM Sympo-

sium on Discrete Algorithms (SODA’12), Yuval Rabani (Ed.). SIAM, 639–655.

[5] Mohammad Hossein Bateni, Mohammad Taghi Hajiaghayi, and Dániel Marx. 2011. Approximation schemes for

Steiner forest on planar graphs and graphs of bounded treewidth. J. ACM 58, 5 (2011), 21.

[6] Joshua D. Batson, Daniel A. Spielman, and Nikhil Srivastava. 2012. Twice-ramanujan sparsifiers. SIAM J. Comput. 41,

6 (2012), 1704–1721.

[7] András A. Benczúr and David R. Karger. 1996. Approximating s-t minimum cuts in Õ (n2) time. In Proceedings of the

28th Annual ACM Symposium on the Theory of Computing (STOC’96), Gary L. Miller (Ed.). ACM, 47–55.

[8] Marshall W. Bern and Paul E. Plassmann. 1989. The Steiner problem with edge lengths 1 and 2. Inf. Process. Lett. 32,

4 (1989), 171–176.

[9] Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Hermelin. 2009. On problems without poly-

nomial kernels. J. Comput. Syst. Sci. 75, 8 (2009), 423–434.

[10] Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket Saurabh, and Dimitrios M. Thilikos.

2016. (Meta) kernelization. J. ACM 63, 5 (2016), 44:1–44:69. http://dl.acm.org/citation.cfm?id=2973749

[11] Glencora Borradaile, Erik D. Demaine, and Siamak Tazari. 2014. Polynomial-time approximation schemes for subset-

connectivity problems in bounded-genus graphs. Algorithmica 68, 2 (2014), 287–311.

[12] Glencora Borradaile, Philip N. Klein, and Claire Mathieu. 2009. An O (n log n) approximation scheme for Steiner tree

in planar graphs. ACM Trans. Algorithms 5, 3 (2009).

[13] Karol Borsuk. 1931. Sur les rétractes. Fundamenta Mathematicae 17 (1931), 2–20.

[14] Vincent Bouchitté, Frédéric Mazoit, and Ioan Todinca. 2001. Treewidth of planar graphs: Connections with duality.

Electron. Notes Discrete Math. 10 (2001), 34–38.

[15] Jaroslaw Byrka, Fabrizio Grandoni, Thomas Rothvoß, and Laura Sanità. 2013. Steiner tree approximation via iterative

randomized rounding. J. ACM 60, 1 (2013), 6:1–6:33. DOI:http://dx.doi.org/10.1145/2432622.2432628

[16] Yixin Cao, Jianer Chen, and Jia-Hao Fan. 2013. An O∗ (1.84k) parameterized algorithm for the multiterminal cut

problem. Inf. Process. Lett. 114, 4 (2013), 167–173. http://dblp.org/rec/bibtex/journals/ipl/CaoCF14.

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

http://dl.acm.org/citation.cfm?id=2973749
http://dx.doi.org/10.1145/2432622.2432628
http://dblp.org/rec/bibtex/journals/ipl/CaoCF14

Network Sparsification for Steiner Problems 53:71

[17] Jianer Chen, Yang Liu, and Songjian Lu. 2009. An improved parameterized algorithm for the minimum node multiway

cut problem. Algorithmica 55, 1 (2009), 1–13.

[18] Marek Cygan, Holger Dell, Daniel Lokshtanov, Dániel Marx, Jesper Nederlof, Yoshio Okamoto, Ramamohan Paturi,

Saket Saurabh, and Magnus Wahlström. 2016. On problems as hard as CNF-SAT. ACM Trans. Algorithms 12, 3 (2016),

41:1–41:24. DOI:http://dx.doi.org/10.1145/2925416

[19] Marek Cygan, Łukasz Kowalik, and Marcin Pilipczuk. 2013. Open problems from Workshop on Kernels. Retrieved on

September 3, 2018 from http://worker2013.mimuw.edu.pl/slides/worker-opl.pdf.

[20] Elias Dahlhaus, David S. Johnson, Christos H. Papadimitriou, Paul D. Seymour, and Mihalis Yannakakis. 1994. The

complexity of multiterminal cuts. SIAM J. Comput. 23, 4 (1994), 864–894.

[21] Erik D. Demaine, Fedor V. Fomin, MohammadTaghi Hajiaghayi, and Dimitrios M. Thilikos. 2005. Subexponential

parameterized algorithms on bounded-genus graphs and H -minor-free graphs. J. ACM 52, 6 (2005), 866–893.

[22] Erik D. Demaine and MohammadTaghi Hajiaghayi. 2008. Bidimensionality. In Encyclopedia of Algorithms, Ming-Yang

Kao (Ed.). Springer.

[23] Erik D. Demaine and MohammadTaghi Hajiaghayi. 2008. The bidimensionality theory and its algorithmic applica-

tions. Comput. J. 51, 3 (2008), 292–302.

[24] Erik D. Demaine and Mohammad Taghi Hajiaghayi. 2008. Linearity of grid minors in treewidth with applications

through bidimensionality. Combinatorica 28, 1 (2008), 19–36.

[25] Reinhard Diestel. 2005. Graph Theory. Springer.

[26] Krzysztof Diks and Piotr Sankowski. 2007. Dynamic plane transitive closure. In Proceedings of the 15th Annual Euro-

pean Symposium on Algorithms (ESA’07). Lecture Notes in Computer Science, Vol. 4698, Lars Arge, Michael Hoffmann,

and Emo Welzl (Eds.). Springer, 594–604.

[27] Michael Dom, Daniel Lokshtanov, and Saket Saurabh. 2014. Kernelization lower bounds through colors and IDs. ACM

Trans. Algorithms 11, 2 (2014), 13:1–13:20. DOI:http://dx.doi.org/10.1145/2650261

[28] Frederic Dorn, Fedor V. Fomin, and Dimitrios M. Thilikos. 2012. Catalan structures and dynamic programming in

H -minor-free graphs. J. Comput. Syst. Sci. 78, 5 (2012), 1606–1622.

[29] Rodney G. Downey and Michael R. Fellows. 1999. Parameterized Complexity. Springer.

[30] Andrew Drucker. 2015. New limits to classical and quantum instance compression. SIAM J. Comput. 44, 5 (2015),

1443–1479. DOI:http://dx.doi.org/10.1137/130927115

[31] David Eisenstat and Philip N. Klein. 2013. Linear-time algorithms for max flow and multiple-source shortest paths

in unit-weight planar graphs. In Proceedings of the 45th ACM Symposium on Theory of Computing (STOC’13), Dan

Boneh, Tim Roughgarden, and Joan Feigenbaum (Eds.). ACM, 735–744.

[32] David Eisenstat, Philip N. Klein, and Claire Mathieu. 2012. An efficient polynomial-time approximation scheme for

Steiner forest in planar graphs. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algo-

rithms (SODA’12), Yuval Rabani (Ed.). SIAM, 626–638.

[33] David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Amnon Nissenzweig. 1997. Sparsification — A technique for

speeding up dynamic graph algorithms. J. ACM 44, 5 (Sept. 1997), 669–696. DOI:http://dx.doi.org/10.1145/265910.

265914

[34] David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Thomas H. Spencer. 1996. Separator based sparsification: I. Pla-

narity testing and minimum spanning trees. J. Comput. System Sci. 52, 1 (1996), 3–27. DOI:http://dx.doi.org/10.1006/

jcss.1996.0002

[35] David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Thomas H. Spencer. 1998. Separator-based sparsification II: Edge

and vertex connectivity. SIAM J. Comput. 28, 1 (1998), 341–381.

[36] Ranel E. Erickson, Clyde L. Monma, and Arthur F. Jr. Veinott. 1987. Send-and-split method for minimum-concave-cost

network flows. Math. Op. Res. 12, 4 (1987), 634–664. http://www.jstor.org/stable/3689922

[37] Michael R. Fellows, Jiong Guo, Dániel Marx, and Saket Saurabh. 2012. Data reduction and problem kernels (Dagstuhl

Seminar 12241). Dagstuhl Reports 2, 6 (2012), 26–50.

[38] Fedor V. Fomin and Dieter Kratsch. 2010. Exact Exponential Algorithms. Springer.

[39] Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. 2010. Bidimensionality and kernels.

In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’10), Moses Charikar

(Ed.). SIAM, 503–510.

[40] Lance Fortnow and Rahul Santhanam. 2011. Infeasibility of instance compression and succinct PCPs for NP. J. Comput.

Syst. Sci. 77, 1 (2011), 91–106.

[41] Michael R. Garey and David S. Johnson. 1977. The rectilinear Steiner tree problem is NP complete. SIAM Journal of

Appl. Math. 32 (1977), 826–834.

[42] R. E. Gomory and T. C. Hu. 1961. Multi-terminal network flows. J. Soc. Indust. Appl. Math. 9, 4 (1961), 551–570.

[43] Gramoz Goranci, Monika Henzinger, and Pan Peng. 2017. Improved guarantees for vertex sparsification in planar

graphs. CoRR abs/1702.01136 (2017). http://arxiv.org/abs/1702.01136

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

http://dx.doi.org/10.1145/2925416
http://worker2013.mimuw.edu.pl/slides/worker-opl.pdf
http://dx.doi.org/10.1145/2650261
http://dx.doi.org/10.1137/130927115
http://dx.doi.org/10.1145/265910.265914
http://dx.doi.org/10.1145/265910.265914
http://dx.doi.org/10.1006/jcss.1996.0002
http://dx.doi.org/10.1006/jcss.1996.0002
http://www.jstor.org/stable/3689922
http://arxiv.org/abs/1702.01136

53:72 M. Pilipczuk et al.

[44] Torben Hagerup, Jyrki Katajainen, Naomi Nishimura, and Prabhakar Ragde. 1998. Characterizing multiterminal flow

networks and computing flows in networks of small treewidth. J. Comput. Syst. Sci. 57, 3 (1998), 366–375.

[45] Monika Rauch Henzinger, Philip N. Klein, Satish Rao, and Sairam Subramanian. 1997. Faster shortest-path algorithms

for planar graphs. J. Comput. Syst. Sci. 55, 1 (1997), 3–23.

[46] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. 2001. Which problems have strongly exponential com-

plexity? J. Comput. Syst. Sci. 63, 4 (2001), 512–530.

[47] Giuseppe F. Italiano, Yahav Nussbaum, Piotr Sankowski, and Christian Wulff-Nilsen. 2011. Improved algorithms for

min cut and max flow in undirected planar graphs. In Proceedings of the 43rd ACM Symposium on Theory of Computing

(STOC’11), Lance Fortnow and Salil P. Vadhan (Eds.). ACM, 313–322.

[48] Bart M. P. Jansen, Marcin Pilipczuk, and Erik Jan van Leeuwen. 2018. A deterministic polynomial kernel for Odd

Cycle Transversal and Vertex Multiway Cut in planar graphs, manuscript.

[49] David R. Karger, Philip N. Klein, Clifford Stein, Mikkel Thorup, and Neal E. Young. 2004. Rounding algorithms for a

geometric embedding of minimum multiway cut. Math. Oper. Res. 29, 3 (2004), 436–461.

[50] Richard Karp. 1975. On the computational complexity of combinatorial problems. Networks 5 (1975), 45–68.

[51] Philip N. Klein. 2005. Multiple-source shortest paths in planar graphs. In Proceedings of the Sixteenth Annual ACM-

SIAM Symposium on Discrete Algorithms (SODA’05). SIAM, 146–155.

[52] Philip N. Klein. 2006. A subset spanner for planar graphs, with application to subset TSP. In Proceedings of the 38th

Annual ACM Symposium on Theory of Computing, Seattle, WA, May 21-23, 2006, Jon M. Kleinberg (Ed.). ACM, 749–756.

DOI:http://dx.doi.org/10.1145/1132516.1132620

[53] Philip N. Klein and Dániel Marx. 2012. Solving planar k-terminal cut in O (nc
√

k) time. In Proceedings of the 39th

International Colloquium on Automata, Languages, and Programming (ICALP’12), Lecture Notes in Computer Science,

Vol. 7391, Artur Czumaj, Kurt Mehlhorn, Andrew M. Pitts, and Roger Wattenhofer (Eds.). Springer, 569–580.

[54] Philip N. Klein and Sairam Subramanian. 1998. A fully dynamic approximation scheme for shortest paths in planar

graphs. Algorithmica 22, 3 (1998), 235–249.

[55] Stefan Kratsch and Magnus Wahlström. 2012. Representative sets and irrelevant vertices: New tools for kernelization.

In Proceedings of the 53rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’12). IEEE Computer

Society, 450–459.

[56] Stefan Kratsch and Magnus Wahlström. 2014. Compression via matroids: A randomized polynomial kernel for odd

cycle transversal. ACM Trans. Algorithms 10, 4 (2014), 20:1–20:15. DOI:http://dx.doi.org/10.1145/2635810

[57] Robert Krauthgamer and Inbal Rika. 2013. Mimicking networks and succinct representations of terminal cuts. In

Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’13), Sanjeev Khanna

(Ed.). SIAM, 1789–1799.

[58] Robert Krauthgamer and Inbal Rika. 2017. Refined vertex sparsifiers of planar graphs. CoRR abs/1702.05951 (2017).

http://arxiv.org/abs/1702.05951

[59] Dániel Marx. 2006. Parameterized graph separation problems. Theor. Comput. Sci. 351, 3 (2006), 394–406.

[60] Dániel Marx. 2012. A tight lower bound for planar multiway cut with fixed number of terminals. In Proceedings of

the 39th International Colloquium on Automata, Languages, and Programming (ICALP’12), Lecture Notes in Computer

Science, Vol. 7391, Artur Czumaj, Kurt Mehlhorn, Andrew M. Pitts, and Roger Wattenhofer (Eds.), Vol. 7391. Springer,

677–688.

[61] Dániel Marx, Marcin Pilipczuk, and Michał Pilipczuk. 2017. On subexponential parameterized algorithms for Steiner

tree and directed subset TSP on planar graphs. CoRR abs/1707.02190 (2017). http://arxiv.org/abs/1707.02190

[62] Hiroshi Nagamochi and Toshihide Ibaraki. 1992. A linear-time algorithm for finding a sparse k-connected spanning

subgraph of a k-connected graph. Algorithmica 7, 5&6 (1992), 583–596.

[63] Jesper Nederlof. 2009. Fast polynomial-space algorithms using möbius inversion: Improving on Steiner tree and

related problems. In Proceedings of the 36th International Colloquium on Automata, Languages and Programming

(ICALP’09), Lecture Notes in Computer Science, Vol. 5555, Susanne Albers, Alberto Marchetti-Spaccamela, Yossi

Matias, Sotiris E. Nikoletseas, and Wolfgang Thomas (Eds.). Springer, 713–725.

[64] Rolf Niedermeier. 2006. Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and its Ap-

plications, Vol. 31. Oxford University Press.

[65] David Peleg and Alejandro A. Schäffer. 1989. Graph spanners. J. Graph Theor. 13, 1 (1989), 99–116.

[66] Marcin Pilipczuk, Michal Pilipczuk, Piotr Sankowski, and Erik Jan van Leeuwen. 2013. Subexponential-time parame-

terized algorithm for Steiner tree on planar graphs. In Proceedings of the 30th International Symposium on Theoretical

Aspects of Computer Science (STACS’13), vol. 20, Natacha Portier and Thomas Wilke (Eds.). Schloss Dagstuhl - Leibniz-

Zentrum fuer Informatik, 353–364.

[67] Marcin Pilipczuk, Michal Pilipczuk, Piotr Sankowski, and Erik Jan van Leeuwen. 2014. Network sparsification for

Steiner problems on planar and bounded-genus graphs. In 55th IEEE Annual Symposium on Foundations of Computer

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

http://dx.doi.org/10.1145/1132516.1132620
http://dx.doi.org/10.1145/2635810
http://arxiv.org/abs/1702.05951
http://arxiv.org/abs/1707.02190

Network Sparsification for Steiner Problems 53:73

Science (FOCS’14), Philadelphia, PA, October 18-21, 2014. IEEE Computer Society, 276–285. DOI:http://dx.doi.org/10.

1109/FOCS.2014.37

[68] Heike Ripphausen-Lipa, Dorothea Wagner, and Karsten Weihe. 1997. The vertex-disjoint menger problem in planar

graphs. SIAM J. Comput. 26, 2 (1997), 331–349.

[69] Neil Robertson, Paul D. Seymour, and Robin Thomas. 1994. Quickly excluding a planar graph. J. Comb. Theory, Ser. B

62, 2 (1994), 323–348.

[70] Sairam Subramanian. 1993. A fully dynamic data structure for reachability in planar digraphs. In ESA(), Lecture Notes

in Computer Science, Vol. 726, Thomas Lengauer (Ed.). Springer, 372–383.

[71] Ondrej Suchý. 2015. Extending the kernel for planar Steiner tree to the number of Steiner vertices. In 10th International

Symposium on Parameterized and Exact Computation (IPEC’15), September 16-18, 2015, Patras, Greece (LIPIcs), Vol. 43,

Thore Husfeldt and Iyad A. Kanj (Eds.). Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 151–162. DOI:http://

dx.doi.org/10.4230/LIPIcs.IPEC.2015.151

[72] Siamak Tazari. 2012. Faster approximation schemes and parameterized algorithms on (odd-)H -minor-free graphs.

Theor. Comput. Sci. 417 (2012), 95–107. DOI:http://dx.doi.org/10.1016/j.tcs.2011.09.014

Received July 2017; revised April 2018; accepted July 2018

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 53. Publication date: September 2018.

http://dx.doi.org/10.1109/FOCS.2014.37
http://dx.doi.org/10.1109/FOCS.2014.37
http://dx.doi.org/10.4230/LIPIcs.IPEC.2015.151
http://dx.doi.org/10.4230/LIPIcs.IPEC.2015.151
http://dx.doi.org/10.1016/j.tcs.2011.09.014

