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A B S T R A C T

Context: Software producing organizations have the ability to address the energy impact of their software
products through their source code and software architecture. In spite of that, the focus often remains on
hardware aspects, which limits the contribution of software towards energy efficient ICT solutions.
Objective: No methods exist to provide software architects information about the energy consumption of the
different components in their software product. The objective of this paper is to bring software producing or-
ganizations in control of this qualitative aspect of their software.
Method: To achieve the objective, we developed the StEP Method to systematically investigate the effects of
software units through the use of software stubs in relation to energy concerns. To evaluate the proposed
method, an experiment involving three different versions of a commercial software product has been conducted.
In the experiment, two versions of a software product were stubbed according to stakeholder concerns and
stressed according to a test case, whilst energy consumption measurements were performed. The method pro-
vided guidance for the experiment and all activities were documented for future purposes.
Results: Comparing energy consumption differences across versions unraveled the energy consumption related
to the products’ core functionality. Using the energy profile, stakeholders could identify the major energy
consuming elements and prioritize software engineering efforts to maximize impact.
Conclusions: We introduce the StEP Method and demonstrate its applicability in an industrial setting. The
method identified energy hotspots and thereby improved the control stakeholders have over the sustainability of
a software product. Despite promising results, several concerns are identified that require further attention to
improve the method. For instance, we recommend the investigation of software operation data to determine, and
possibly automatically create, stubs.

1. Introduction

Software is increasingly being acknowledged as the driver behind
the energy consumption of ICT solutions [1]. A striking example is the
impact a single app can have on a smart-phone. Poorly written software
can drain the battery, despite the increased energy efficiency of hard-
ware components in the device. This effect on energy consumption also
holds for larger applications, e.g., software products [2], where soft-
ware can eliminate any energy efficient features built into the hard-
ware [3]. As the software can account for 66% of the power consumed
by, e.g., servers [4], this has a significant impact on the energy costs of
the hardware. Unfortunately, where mobile apps are commonly en-
gineered with energy consumption in mind, with larger applications
hardware investments remain the preferred option to reduce energy
consumption. This limits the contribution of the software towards the

energy efficiency of a system.
On the other hand we find software qualities to increasingly become

a decisive factor with respect to software products [5]. If a software
product is not energy efficient, data center operating costs will increase
the total cost of ownership and thereby diminish the economic viability
of the product. Equally, if a software product does not perform as re-
quired, a functionally equivalent and better performing product is often
quickly found. In light of these examples, implying trade-offs have to be
made between qualities, we consider sustainability as a property of
software quality with a social, environmental, technical and economic
dimension [6]. Energy related concerns for the software, as discussed in
this paper, can be attributed to the environmental dimension of sus-
tainability.

Recent studies, e.g., [7–9], show the significant impact green soft-
ware can have on energy consumption. For a Software Producing
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Organization (SPO) [10], e.g., independent software vendors or open
source consortia, applying green software changes requires them to
measure the energy consumption of their software products: a relatively
unfamiliar terrain. In practice, performance is often used as a proxy
despite the fact that this aspect does not always have a direct relation
with energy consumption [11]. As a result, SPOs are unable to control
the contribution of software to the energy consumption of their ICT
solutions. One way to obtain insights in energy consumption would be
by performing measurements on the software in production. However,
applying adjustments to the software in this stage of the lifecycle is
often most expensive [12]. Consequently, energy efficiency of software
should be studied in the earlier stages of software development.

In this paper, we study energy consumption of software in more
detail. Based on the Energy Consumption Perspective (ECP) [13], we
propose the Stubbed Energy Profiling Method (StEP Method) that en-
ables SPOs to create an in-depth energy profile of their software pro-
ducts. The method builds upon substituting functional elements by
stubs, which can be done during development, to study the change in
energy consumption. The delta between the initial and stubbed version
explains the energy consumption of the stubbed functional element. In
this way, an SPO can investigate the software product in total, as well as
of individual important constituents like functional modules and in-
dividual services.

To validate our method, we applied the method in an experiment
using a commercial software product. Together with the software ar-
chitect and product owner, we determined the important architectural
elements in relation to the core functionality, and created an energy
profile that identified the most prominent energy consumers in the
software. Stakeholders of the product now know what software should
be targeted to maximize the impact of sustainability efforts.
Additionally, the energy profile of the software supports the architect to
make better informed trade-off analysis with respect to sustainability
and other qualitative aspects of the software.

The remainder of this paper is organized as follows. Section 2 pro-
vides background on the ECP and introduces our energy profiling
method. In Section 3 we describe the design of our experiment where
we apply the proposed method, followed by the experiment results in
Section 4. In Section 5 we discuss the results and reflect on the method
itself. Threats to validity and related work are presented in Sections 6
and 7. Section 8 concludes the paper.

2. Stubbed energy profiling method

In this section we present the StEP Method which stakeholders can
use to create an energy profile of their software. We first explain the
application of software stubs, followed by the activities comprising the
proposed method.

2.1. Relating software stubs to energy concerns

An essential step in enabling the ICT industry to reduce the energy
consumption of their software, is to address this qualitative aspect in
the Software Architecture (SA). For this purpose, we introduced a
quality perspective on energy consumption, i.e., the Energy
Consumption Perspective (ECP) [13]. The ECP provides a collection of
activities, tactics and guidelines stakeholders can use to ensure that a
system exhibits a particular set of related quality properties [14].
However, although the introduced perspective includes a method to
measure and relate energy consumption to the SA, we found that
creating a detailed energy profile of a software product remains chal-
lenging.

An energy profile portrays the energy consumption of software
elements related to an energy requirement; a condition or capability
needed to solve a problem or achieve an objective [5]. Stakeholders of a
software product, e.g., software architects and developers, use the en-
ergy profile to determine what changes can be applied to meet the

requirement and where they can be applied. Hence, an energy profile is
an essential instrument in addressing the energy consumption of soft-
ware.

In relation to software products, we found that energy consumption
is often investigated through differences between releases [7,15] or at
runtime [16–18]. Such approaches are used to determine energy con-
sumption changes in hindsight, e.g., after a development sprint has
finished and the software has been deployed. However, at this stage
there is often little room for addressing any remaining concerns com-
pared to, e.g., the design or development stage. From a practical point
of view, addressing concerns at a later stage in the development cycle
negatively affects the economic dimension of sustainability [6].

To address qualitative concerns during software design requires a
more predictive approach (e.g., [19]) and validated design decisions
(e.g., [20]). However, as the actual energy consumption differs per
configuration of both hardware and software [21], the end result of
sustainable design efforts still requires verification. With the StEP
Method we focus on analyzing a single version of a software product
during development, to pinpoint the energy consuming elements within
a single release. In this way, the proposed method can be seen as part of
the ‘create energy profile’ activity in the ECP [13]. The StEP Method
builds upon creating stubs for individual functional elements, for which
guidance is provided in, e.g., [22]. The stubs are configured such that
they return a standard response instead of executing the intended code,
while ensuring the runtime capabilities of the release.

The main idea of the StEP Method is depicted in Fig. 1: for each
architecturally important element, in this example A, B, and C, we
create stubs A′, B′ and C′, and perform tests on the resulting versions S1,
S2, and S3. Comparing these versions with the Benchmark (i.e., the
non-stubbed original) provides insights in the (the effects on) energy
consumption caused by the stubbed element. For example, the differ-
ence between the Benchmark and S1 provides insight in the energy
consumption effects of element A. Depending on the scope of the re-
quirement and the test to be performed, more detailed stubs can be
introduced, e.g., by individually stubbing sub-elements B1 and B2 or
even stubbing individual lines of code.

2.2. Step method activities

As applying the StEP Method requires additional investments in
terms of development and performing energy consumption measure-
ments, careful planning is required to ensure the costs do not outweigh
expected benefits. For example, depending on the elements under
study, stubs could become complex and costly to apply. To minimize
investments, the StEP Method approach could be incorporated in
planned software tests (e.g., module testing [22]), thereby checking
functional soundness and energy consumption in a combined effort. The
same holds for energy consumption measurements, where different
measurement approaches can be applied depending on the equipment
and resources available, e.g., [16,17,23]. Also, using a predictive
model, like GreenOracle [19], could potentially reduce the time re-
quired for energy consumption measurements and the associated costs.

Fig. 1. By stubbing elements A, B and C the energy effect of each individual element can
be determined.
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However, to accurately verify energy consumption changes, each pro-
duct still requires product-specific measurements to be performed.

To enable stakeholders to successfully create an energy profile of
their software product, we explicitly address these issues in the StEP
method (Fig. 2). In the remainder of this section, we present the ac-
tivities comprising the method.

Select functional elements.The first activity is to identify the
target functionality and functional software elements, in relation to an
energy requirement. Software operation data can be used to gain in-
sight in frequently used functions and prioritize the elements that
should be tested in relation to the requirement [24]. As the functional
viewpoint is the most commonly created architectural description, this
activity should be relatively easy to perform for many software pro-
ducts [14]. While the level of modularization of the software de-
termines the control stakeholders can exert over the software, this as-
pect does not affect the ability to apply the method.

Adapt architectural description.After identifying the functional
elements, the architectural description needs to be adapted to provide a
sufficient level of detail on the functions comprising the target func-
tionality. These details are used to identify where stubs are required
and determine what stubs can be created for the different functions. We
acknowledge that not all software elements can be stubbed in-
dividually, e.g., due to the inability to isolate the component or module
under test. In such a case, the adapted architectural description should
still identify the meaningful software units in relation to the require-
ment. In specific cases, like with software product lines, the software
architect can potentially also identify what measurement results can be
reused for each derived product.

Create test case.Based on the identified functional elements, a test
case should be designed that executes these functional elements. While
a stakeholder is free to design the test, realistic usage scenarios are
found to best fit practitioners information needs when discussing en-
ergy usage [25]. To minimize the effort for performing this activity,
readily available test cases (e.g., a regression test) can be expanded to
include energy consumption measurements or automatic test case
generation can be applied [26,27]. Stakeholders should ensure that the

correct functional elements are stressed and the test can be consistently
applied to profile each element.

Additionally, stakeholders should ensure the software is stressed
such that differences can be observed across varying usage scenarios.
The usage scenarios show the variation of resource utilization across
different levels of stress and could provide valuable insights for, e.g.,
resource provisioning settings. To determine the usage scenarios, sta-
keholder can utilize software operation data to determine re-
presentative usage scenarios for the product under study. For example,
tools like ‘Application Insights’ provide a range of monitoring and
analysis options that could serve this purpose. However, while creating
the test case, keep in mind that the load induced by the test case should
allow stakeholders to reliably exclude incidental findings.

Determine measurement approach.Based on the test case, the
appropriate metrics should be identified to quantify sustainability in
relation to the target functionality and allow for evaluating whether
requirements are met. In turn, the metrics, of which a solid list is
available in literature [28], determine the measurement approach that
a stakeholder should apply. Ideally, since different hardware could
show different energy consuming behavior [21], different configura-
tions are used to validate the energy profile. However, as this increases
the costs, the minimal requirement is to have one environment that is
representative for the production environment, where representative
means using hardware and a software stack that closely resemble the
target environment for the software. In Section 3 we provide a detailed
description on how energy measurements were performed in the ex-
periment comprising our research.

Profile benchmark.The next activity is creating the benchmark to
evaluate the stubbed versions of the software against. Hence, the test
case is performed on the non-stubbed version of the software. Since this
is the first time that the test case is performed, the results from this
activity could require that improvements are made to the test case and
measurement approach.

Introduce stub in software product.If the benchmark is profiled
and the test case and measurement approach are found suitable, the
first functional element can be stubbed. Inserting the stub in the ori-
ginal software results in a new software version, S′. Keep in mind that
the stubs themselves also consume energy, which depends on their
build quality. However, as stubs provide simplified standard responses,
an increase in energy consumption implies that either a bug is found or
the quality of the stub should be improved. Performance measurements
can be used to further verify the quality of the stubs and assure there is
minimal impact on other parts of the product.

Profile stubbed version.Once version S′ with the stub is obtained,
the test case can be performed on it, resulting in a new set of mea-
surements.

Annotate architectural descriptionThe final activity is to anno-
tate the architectural description with the energy consumption effects
caused by the stub. By comparing the newly obtained measurements
with the benchmark, the difference in energy consumption can be as-
signed to the stubbed element. Apart from summarizing the experiment
results, the resulting annotated description can be used to facilitate
sustainability discussions among stakeholders of a software product.
Keep in mind that the experiment results should be available to clarify
the annotated architectural description when required.

The final three activities of the StEP Method are repeated until all
required functional elements, as identified in the adapted architectural
description, are profiled.

3. Research design

To demonstrate the StEP Method, we performed an experiment
using a commercial software product. According to Wohlin et al. [29],
experiments are launched when control over a situation is desired and
behavior is subject to manipulation. In our study, control over the
measurement approach is required to validly determine the energy

Fig. 2. The Stubbed Energy Profiling Method extending the ‘Create energy profile’ ac-
tivity in the energy consumption perspective [13].
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effect of stubs, whereas the StEP Method guides systematic manipula-
tion of software behavior using stubs. To create the energy profile we
aim to determine ‘how’ stubs affect energy consumption, which po-
tentially helps understand ‘why’ specific code consumes a particular
amount of energy [30].

In this section we present the design of the experiment, which fol-
lows the guidelines presented in [29–31] and is structured according to
the activities comprising the StEP Method. Overall the experiment
follows the design science research cycle [32], where the StEP Method
is the central artifact that is field tested and adds to the existing
knowledge base.

3.1. Product under study: City explorer

City Explorer (CITEX)1 is a commercial software product that en-
ables visitors of a city to explore Points Of Interest (POIs), such as
historical buildings, through predefined routes. The routes are created
by route managers, which are the actual CITEX customers, and made
available to visitors via a smartphone app. Additional information is
provided through the app with each Point Of Interest (POI), as well as
an augmented reality experience using, e.g., historical pictures. The
product is used by seven route managers, mostly municipalities and
tourist information offices, and serves over 8000 visitors on an annual
basis with peaks of 500 daily visitors during special events. CITEX is
developed and maintained by a large Dutch SPO, with over 5000 em-
ployees and a portfolio containing approximately 80 commercial soft-
ware products.

The SA of CITEX is depicted in Fig. 3. The application consists of
three layers: Data Access, Business Logic and User Interface. The User
Interface Layer contains two major elements: the WebAPI and Portal,
that provide an interface for the app and a management portal for route
managers, respectively. A SQL Server instance is used to store route
information. The use of third party components is limited to (i) a
Routeplanner, that provides the routes to follow based on GPS loca-
tions, and (ii) multiple information hosts (e.g., websites) providing the
information concerning the POIs. All third party components are ac-
cessed directly by the app running on a visitors’ smartphone.

3.2. Select functional elements and adapt architectural description

Together with the software architect of CITEX, we formulated the
requirement for CITEX to increase the energy efficiency while executing
its core functionality: providing routes to visitors. For this requirement,
the focus was put on the back-end of the app (i.e., the ‘Test server’ in
Fig. 3) as this is main energy consuming hardware under control of the
SPO. Following the StEP Method, a second architectural description
was created with the architect to obtain detailed insight into the core
functionality (Fig. 4). This description allowed us to break down the
core functionality into three separate activities:

A obtaining a route including route information,
B obtaining the POIs,
C obtaining the information related to POIs.

Each activity was mapped on the corresponding functional element
in Fig. 4, which provided guidance for applying the stubs.

Ideally, individual stubs would have been applied for the ‘Route’,
‘POI’ and ‘INFO’ elements to determine their energy impact. However,
investigating the code learned that there is a dependency between the
elements that would not allow such an approach. Within CITEX it ap-
peared that the POIs, and corresponding information, are hard linked to
a route in the database. Hence, stubbing the ‘Route’ element also pre-
vents CITEX from validly obtaining POIs. Similarly, the dependency
between POIs and POI information prevented us from stubbing the ‘POI’
element individually without breaking the associated functionality of
the ‘INFO’ element. Consequently, we were only able to apply two stubs
to CITEX in our experiment: (1) stub the POI information (NoInfo) and
(2) stub both POIs and POI information (NoPOI_NoInfo).

As the ‘RouteController’, ‘GetRoutes’, ‘Entities’ and ‘Context’ ele-
ments do not contribute to our energy requirement, these were not
stubbed. The remaining elements, i.e., ‘POI Information Hosts’,
‘Routeplanner’ and ‘Portal’, were considered out of scope. A summary
of the CITEX versions included in the experiment is provided in Table 1.
In the remainder of this paper we will refer to each version through
their respective labels, which summarizes the adjustment made to that
specific version. To get an impression of the database impact of the
stubs, the SQL Server database will be monitored separately.

3.3. Creating a test case

For the experiment, in line with the requirement, we chose to stress
CITEX with its core task, i.e., providing routes to visitors. As no test case
was readily available, a test case was designed where all CITEX versions
were stressed by simulating three different usage scenarios: 1000, 3000
and 10,000 visitors that each follow three different routes for three
times. The varying number of visitors per scenario allowed us to in-
vestigate the software behavior with different levels of stress intensity,
whereas the number of routes per user corresponds to the average

number of routes walked by a visitor based on historical data.
Initial testing showed that our usage scenarios had a significant

impact on the software. This allowed us to allocate changes in resource
utilization to our test case and exclude incidental findings. Additionally,
our initial tests showed a limitation with respect to the number of si-
multaneous requests that could be processed. To prevent any errors
from occurring, the test case was adjusted to steadily increased the
number of simultaneously active users at a rate of three additional users
per second.

The actual test case was designed using Postman2 and Apache
JMeter3 to respectively obtain and simulate the calls made by a client.
Using batch scripts we were able to automate JMeter tests, thereby

Fig. 3. The software architecture of City Explorer (CITEX).

1 A sample of the CITEX content is available via http://www.xplregouda.nl after se-
lecting a language preference in the menu. Last accessed on 25-08-2017.

2 https://www.getpostman.com/.
3 http://jmeter.apache.org/.
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ensuring no human interference would pollute our measurements and
consistency across executions. To obtain a reliable data set, we set out
to obtain 30 valid test case executions per CITEX version. To ascertain
validity, all CITEX instructions were logged which allowed us to
monitor for errors.

3.4. Determining the measurement approach

For the experiment a setup was created resembling a commercial
setting (Fig. 5), which could be characterized as an off-line situation
[29]. The software was deployed on a test server 4 that included the
‘API’, ‘App Homepage’, ‘SQL server’ and ‘Database’ elements as por-
trayed in Fig. 3. A second server, the logging server, was included to
remotely collect measurement data (e.g., performance data) and mini-
mize the impact of logging activities on our measurements. In addition,
the logging server was used to perform the test case on the test server,
thereby functioning as the Client device. To ensure consistency with
regard to external factors, e.g., room temperature, the server was in-
stalled in an operational data center. All CITEX versions used the same

data set for the experiment, which was a copy of the production data-
base. The role of the power meter is explained in Section 3.4.1.

3.4.1. Power consumption and performance measurements
Following the methods described in [13] and [15], we applied a

software- and hardware-based approach to measure the energy con-
sumed by the software. For the software-based approach Microsoft
Joulemeter (JM) was used: a software tool that estimates the total
power (in Watt) consumed by a system and individual processes based
on the required computational resources [16]. After calibration using
WattsUp? Pro-(WUP), JM allows us to monitor energy consumption
changes on both system and process level. Process level measurements
were performed on the SQL Server, Homepage and API processes re-
spectively. The first represents the ‘SQL Server’ and ‘Database’, whereas
the latter two are related to Internet Information Services (IIS) and
provide insight in the ‘App Homepage’ and ‘API’ (Fig. 3).

The hardware-based approach was applied using a WUP device5,
i.e., the power meter in Fig. 5, to more accurately determine the power
consumption on system level [33]. By determining the average %-dif-
ference between JM and WUP, we are able to correct the JM estima-
tions [33], which positively contributes to the quality of our data set. As
WUP does not provide measurements at process level, the estimations at
process level are reported as provided by JM. Both JM and WUP operate
with a one second interval between measurements.

The performance of the test server was measured using Windows
Performance monitor, a standard tool that is part of the Windows op-
erating system. Following [21], the relevant performance metrics were
determined with the product owner:

• CPU: % processor time

• Memory: private working set

• Hard disk: % disk time, % disk idle time

• Network: bytes sent/sec, bytes received/sec

The performance measurements were collected remotely on the
logging server to minimize the overhead of the data collection process.
Similar to the power measurement tools, the performance measure-
ments are logged with measurement interval of one second. To ensure
accuracy across measurement tools, i.e., be able to link events across
sources on specific times, we synchronized the clocks across systems
and devices using the Network Time Protocol (NTP).

3.4.2. Software energy consumption
To determine the energy consumed by the product under study, i.e.,

the Software Energy Consumption (SEC) [13], we subtract the idle
power consumption from the power consumption as measured during
an execution. The difference is considered to be the power consumed by
CITEX, provided that no other applications were active during an ex-
ecution. The idle power consumption, i.e., the baseline, is determined
by performing power consumption measurements while the test server
is idle, i.e., running without any active software. To obtain the SEC,
power measurements need to be converted into energy consumption.
Hence, we multiply the average power between two consecutive mea-
surements with the time between measurements, i.e., one second, and
sum up the results for the duration of each separate execution. We re-
port our findings in Watt (W) or Joule (J) where applicable.

The SEC also forms the basis to determine the energy consumed by
the individual architectural elements using the stubs. We are able to
determine the SEC for each element as follows:

• ‘Route’: =SEC SECRoute NoPOI NoInfo

By stubbing the ‘POI’ element, and thereby disabling the ‘Info’

Fig. 4. The adapted architectural description of CITEX for applying the StEP Method.

Table 1
The CITEX releases included in the experiment.

Version Version label Description

1 Benchmark Production version of CITEX without any stubbed
elements.

2 NoInfo Version based on the Benchmark where the ‘Info’
element is stubbed. The code to obtain POI
information is not executed.

3 NoPOI_NoInfo Version based on the Benchmark where the ‘POI’ and
‘Info’ elements are stubbed. The code to obtain POIs
and associated information is not executed.

Fig. 5. Experiment environment.

4 HP Proliant DL380 G5, Intel Xeon E5335 CPU (4 cores @ 2 GHz), 8GB PC2-5300,
300GB hard disk (15.000 rpm), 64-bit MS Windows Server 2008R2, Service Pack 1, .Net
Framework 4.5, IIS7, SQL Server 2016. 5 https://www.wattsupmeters.com/ last visited 20th April 2017.
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element, the total SEC for the NoPOI_NoInfo version effectively mea-
sures the SEC of the element that is not stubbed, being ‘Route’.

• ‘INFO’: = −SEC SEC SECINFO Benchmark NoInfo

Deducting the SEC of the NoInfo version from the Benchmark results
in the SEC for the ‘INFO’ element.

• ‘POI’: = − −SEC SEC SEC SECPOI Benchmark Route INFO

Deducting the energy consumption associated with the Route and
INFO elements (i.e., SECRoute and SECINFO) provides the SEC of the POI
element.

In our approach, we assume that any increase in power consump-
tion is caused by the activities performed by the software. To minimize
overhead, we stopped services and processes not related to or required
for CITEX, such as the Windows update service. Additionally we de-
termined the cooldown time [15] for our test server; the time after
which uncontrolled services and processes become inactive after a re-
boot. In our case we could start an execution eight minutes after re-
booting.

3.4.3. Measurement protocol
To actually perform the measurements and ensure the validity of the

Energy Consumption (EC) measurements, a protocol was followed to
perform the test case:

1. Restart the test server.
2. Close unnecessary applications, services and processes.
3. Remain idle for the duration of the cooldown time.
4. Start WUP, performance and JM measurements.
5. Start test and wait for test to finish.
6. Collect data.

Each execution resulted in a data set containing a performance log,
three JM logs for the SQL Server, Homepage and API processes (in-
cluding measurements of the entire system), a WUP log, and CITEX log
files. To validate the protocol, multiple test executions were performed
which involved a mid-execution check for unexpected issues. In these
specific execution no issues occurred, leading us to conclude that the
test case was being performed as designed.

3.5. Introducing stubs in CITEX

The activity of introducing the required stubs in the software was
performed by a software developer in collaboration with the CITEX
team. The quality of every stub was verified before performing the test
case, which included deployment of the stubbed versions on the test
server.

4. Results

In this section we report on the execution and results of our ex-
periment for all three versions. This corresponds to the remaining ac-
tivities of the StEP Method, i.e., ‘Profile benchmark’, ‘Profile stubbed
version’ and ‘Annotate architectural description’, resulting in the energy
profile for CITEX.

4.1. Profiling software

By following the protocol as described in the previous section, we
managed to obtain the required number of valid executions for each
CITEX version. Despite consistency in performing the test case, twelve
executions across different versions were found to contain errors and
thus excluded from further processing. Further investigation into these
executions was performed to assure that the impact of the errors was

limited to the twelve single executions. We found the number of errors
to be small, e.g., 20 errors on a total of 90,000 activities, which were
caused by incidental time-outs of modules in the application or third
party components. Hence, we can assume our results to provide valid
insights into the energy consumption differences between CITEX ver-
sions.

The results are summarized in Tables 2, 3 and 4 according to each
usage scenario. The reported SEC is based on the total energy con-
sumption measurements provided by the WUP device, whereas the
measurements for the SQL Server and API processes are provided by
JM. On average, an execution lasted for 5 min. 45 s (SD = 1 s) with
1000 visitors, 17 min and 16 s (SD = 1 s) with 3000 visitors and 57 min
and 40 s (SD = 11 s) with 10,000 visitors.

4.1.1. Process level measurements
At process level, we noticed an unexpected lack of energy con-

sumption by the Homepage process. Investigating the issue more clo-
sely, learned that this specific process only shows activity when the
process itself is starting up. Additionally, it is very likely that the
webserver created separate processes for calls, which could not be
measured by JM. Hence, the Homepage process was excluded from
further processing. The remaining energy consumption figures show
clear differences between CITEX versions.

In addition to energy consumption estimates per process, JM also
provides estimates for the total energy consumed by a system. In line
with previous experience, i.e., [33], we found that JM overestimates the
idle energy consumption compared to WUP and underestimates the
energy consumed while processing a varying load, i.e., during an ex-
ecution. As a result, we found that JM estimations for total energy
consumption cannot cope with subtracting the baseline energy con-
sumption. This activity in some cases even resulted in a negative SEC.

In contrast to process level estimations, the JM total energy con-
sumption estimations can be corrected using WUP measurements. For
example, the baseline for the test server was determined to be 136.3W
using WUP and 136.95W using JM. After correction with the average
difference, i.e., -0.48%, a corrected JM baseline of 136.3W was found.
Similarly, a correction of 2.67% was applied to the total energy con-
sumption figures during an execution.

With these corrections, the corrected SEC based on JM estimations
was obtained as follows:

= − +SEC EC EC d EC( · )Total corrected baseline Total

First, the correction is applied to the compensate for underestimating
the energy consumed while processing a varying load [33]. This cor-
rection is found by multiplying d, i.e., the load correction, with the total
energy consumption for an execution. Second, the baseline energy
consumption is subtracted from the estimated energy consumed during
an execution. Finally, the correction is added resulting in the energy
consumption on behalf of the software being active. The results are
presented in Fig. 6, showing the differences between the SEC calculated
according to WUP (SEC WUP), the corrected JM estimations (SEC
corrected) and the uncorrected JM estimations (SEC JM).

Based on the large differences found between measurements
sources, in the remainder of this paper we will use WUP measurements
to report total energy consumption and JM estimations to report pro-
cess level energy consumption. Keep in mind that we were not able to
triangulate, and thus correct, process level estimations with the avail-
able equipment and tools.

4.1.2. Performance
The results of the performance measurements provide interesting

findings per usage scenario. In line with our expectations, we found a
decreasing CPU utilization with decreased software activity with all
scenarios. However, the opposite was found for hard disk utilization
with the 1000 and 3000 visitors scenarios. Even more noticeable is that
the average hard disk utilization percentage with these two scenarios, is
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greater compared to the 10,000 visitors scenario. We did not find any
discrepancies in our data that could explain this finding, although this
finding might be an indication of cashing performed by the database.

Notice that we report one metric in relation to hard disk utilization,
whereas two metrics were monitored. While the “% disk time” metric
seems a logical metric to indicate hard disk activity, this metric was
found to exaggerate the disk utilization6. Instead, we subtracted the “%
idle time” from the maximum 100% load, and proceeded to calculate
the average hard disk utilization.

With respect to the memory utilization and network throughput,
fairly consistent figures were obtained across versions and usage sce-
narios. Memory utilization averaged 1135MB, 1164MB and 1096MB,
whereas the variation with network throughput is found due to
rounding the measurements. More specifically, we obtained 0.0246MB,
0.0247MB and 0.0243MB for respectively the 1000, 3000 and 10,000
visitors scenarios. As we did expect larger network throughput differ-
ences between usage scenarios, our presumption is that the bulk of data

sent and received was in relation to the test case itself and not on behalf
of CITEX.

4.2. Annotate architectural description

The final activity of the StEP Method is to annotate the adapted
architectural description with the SEC for the elements under study. We
performed this activity separately for each usage scenario and excerpts
of the annotated architectural descriptions are depicted in Figs. 7, 8 and
9.

To calculate the SEC per element, we followed the procedure ex-
plained in Section 3.4.2. Taking the 10,000 visitors scenario as an ex-
ample (i.e., Table 4 and Fig. 9), the SEC for the “Route” element equals
the SEC found with the NoPOI_noInfo version of CITEX, i.e., 5983.41 J.
For the SEC of the “INFO” element we subtract the SEC of the NoInfo
version from the Benchmark, resulting in an energy consumption of
11076.46 J. Finally, to obtain the SEC for the “POI” element we subtract
the SEC of the “Route” and “Info” elements from the benchmark, pro-
viding a SEC of 2726.87 J.

Table 2
The results for each CITEX version with 1000 simulated visitors.

Version SEC (J) SQL Server (J) API (J) CPU (%) Memory (MB) HDD (%) Network received (MB) Network sent (MB)

Benchmark 1938.86 237.94 455.48 28.39 1066.93 3.78 0.05 0.55
NoInfo 887.32 51.81 191.75 11.26 1183.79 3.53 0.04 0.27
NoPOI_NoInfo 696.65 27.07 121.88 7.67 1156.04 5.36 0.04 0.25

Table 3
The results for each CITEX version with 3000 simulated visitors.

Version SEC (J) SQL Server (J) API (J) CPU (%) Memory (MB) HDD (%) Network received (MB) Network sent (MB)

Benchmark 5188.96 405.63 1323.38 24.14 1158.93 4.37 0.05 0.55
NoInfo 2978.89 255.43 576.51 12.67 1153.73 3.52 0.04 0.27
NoPOI_NoInfo 2016.30 96.19 378.67 8.21 1181.67 6.48 0.04 0.25

Table 4
The results for each CITEX version with 10,000 simulated visitors.

Version SEC (J) SQL Server (J) API (J) CPU (%) Memory (MB) HDD (%) Network received (MB) Network sent (MB)

Benchmark 19786.74 2428.28 4596.39 28.43 1090.55 3.85 0.05 0.55
NoInfo 8710.28 653.25 1979.10 11.71 1114.08 3.34 0.04 0.27
NoPOI_NoInfo 5983.41 297.12 1348.18 7.85 1096.14 2.85 0.04 0.24

Fig. 6. The SEC (in Joule) for each usage scenario and
version according to different measurement sources.

6 https://technet.microsoft.com/en-us/library/cc938959.aspx.
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5. Discussion

In this section, we discuss the main results and findings of our ex-
periment in which we applied the proposed StEP Method, followed by a
reflection on the method itself.

5.1. Energy consumption of CITEX

Recall that our test case was designed to simulate 1000, 3000 and
10,000 visitors that obtain three routes, i.e., the core functionality, for
three times. The energy profile for this test case shows that obtaining
the POI information is the most energy consuming activity related to
this functionality, accounting for at least 42.59% of the SEC (left side of
Table 5). This result suggest that if an SPO wants to reduce the SEC of
CITEX, the most prominent code to address is related to obtaining POI
information, i.e., the source code comprising the “INFO” element. The
performance measurements presented in the previous section support
this finding through the significant decrease of CPU utilization with the
NoInfo version.

A different approach is to consider the energy consumption related
to the actual activities that are performed, i.e., the Task Energy
Consumption (TEC) [13]. The TEC provides an energy consumption for
each individual time a task has been performed. For example, in the
10,000 visitors scenarios CITEX obtained 540,000 POI information
items, 570,000 POIs and 90,000 routes per execution. Dividing the SEC
of each element by these numbers, learns that CITEX consumes 0.021 J
per POI information item, 0.005 J per POI and 0.066 J per route. A
finding that is stable across usage scenarios. Hence, analyzing the TEC

suggests that the “Route” element should be the first object for opti-
mization. In the calculation of the TEC, note that the discrepancy be-
tween POI information items and POIs is caused by a so-called waypoint
POI: a POI that does not contain information and is only used to ensure
a visitor follows the prescribed route.

Different analysis methods provide CITEX stakeholders with mul-
tiple approaches to address the formulated energy requirement. Product
stakeholders are free to decide what analysis best supports their vision
related to the energy concern. The activities of determining what ad-
justments should be made and validating their effect, are beyond the
StEP Method and are included in the ECP.

5.1.1. Process level energy consumption
Continuing the analysis on process level (‘SQL Server’ and ‘API’ in

Table 5), we find results that are for a large part consistent with the
findings based on the total SEC. Except for the 3000 visitors usage
scenario, both the SQL Server and API processes indicate that obtaining
POI information is the most energy consuming activity. As no differ-
ences were found in terms of performance or energy consumption, the
exception with the SQL Server process was unexpected. Potentially a
turning point was reached with the number of POIs where the database
had trouble finding its most efficient processing speed. Still, the analysis
on process level does not provide any reason to reconsider the analysis
methods presented above.

5.1.2. Energy consumption scaling
A test case with multiple usage scenarios also provides the oppor-

tunity to investigate the scaling of resource utilization, including energy
consumption, with different load intensities. With the transition from
1000 to 3000 visitors the SEC of the Benchmark version increases with
a factor of 2.68, and again with a factor of 3.81 from 3000 to 10,000
visitors. These factors indicate that the available hardware is capable of
more efficiently handling the first load increase, i.e., 3 times as much
visitors at the cost of 2.68 times more resources, whereas the second
increase appears inefficient. This translates to 1.94 J, 1.73 J and 1.98 J
SEC per visitor for respectively the 1000, 3000 and 10,000 visitors
scenarios. While these findings are not likely to affect any software-
based efforts towards fulfilling the energy requirements, the results
contain a potential lesson for load balancing the existing hardware.
With respect to the latter, a more detailed analysis on scaling could be
performed to determine the energy consumption ‘near sweet-spot’ [34].

5.2. Stubbing software for SEC measurements

Applying a stub and thereby providing a standard response for a
specific software element, is already commonly used to enable SPOs to
test specific functionality early on in the development cycle [22]. The
stub allows the software to process requests as intended, without re-
quiring the (incomplete) code to be fully executed. Hence, while stub-
bing software is not new, its application in relation to energy con-
sumption had not yet been made explicit.

In relating software stubs to energy consumption we were inspired
by genome research, where disabling a gene to investigate its effects is a
commonly applied method. With the StEP Method, we translated this
approach to the SA domain and focus on the effects caused by the
disabled software elements. Without requiring deep knowledge on the

Fig. 7. The energy consumption per software element in the 1000 visitors usage scenario.

Fig. 8. The energy consumption per software element in the 3000 visitors usage scenario.

Fig. 9. The energy consumption per software element in the 10,000 visitors usage sce-
nario.

Table 5
The SEC percentages for each software element based on the total and process level energy consumption measurements.

SEC SQL Server API

Element 1000 3000 10000 1000 3000 10000 1000 3000 10000

INFO 54.24% 42.59% 55.98% 78.23% 37.03% 73.10% 57.90% 56.44% 56.94%
POI 9.83% 18.55% 13.78% 10.40% 39.26% 14.67% 15.34% 14.95% 13.73%
Route 35.93% 38.86% 30.24% 11.38% 23.71% 12.24% 26.76% 28.61% 29.33%
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code and internal structure comprising CITEX, the StEP Method allowed
us to quantify qualitative aspects of the product and provide input for
future design decisions and trade-offs.

Based on our experiment, we identify two aspects that should be
taken into consideration by an SPO in applying the StEP Method: the
stakeholders in relation to a requirement and the resources (e.g., time)
available to apply the StEP Method. These aspects determine the con-
text in which the StEP Method is to be applied and thereby the pre-
parations required to successfully apply the method. For example, a
software architect is likely to investigate the target functionality on the
level of major architectural elements. As such, an energy profile would
be used to compare between releases, on an environment that resembles
the production environment. Additionally, the test case can be set on a
large scale to simulate longer periods of operational time of the soft-
ware. In this context, the same measurement approach can be applied
as described in this paper. The resulting energy profile is not likely to
include measurements on the level of individual software elements.

On the other hand, a developer is more likely to investigate the
target functionality on code level and wants to know the exact functions
that are performed in relation to the target functionality. With devel-
opers, the energy profile is created during development using the local
system. As using the system during a load test will pollute measure-
ments, the test case should be quick to perform while still producing
observable discrepancies between the stubbed versions and the
benchmark. A more predictive approach (e.g., [19]) could prove more
valuable in such contexts, although the actual effects of any adjust-
ments should still be verified by profiling the software. Concerning the
measurement approach, several tools exist [35–37] that are able to
replicate our profiling approach on a smaller scale. However, keep the
accuracy of these tools in mind during selection.

5.3. Reflections on applying the step method

Although the experiment provided valuable insights for CITEX,
there are limitations to our proposed profiling method.

5.3.1. Scalability of the step method
One of the main limitations of the StEP Method is the effort required

to apply the method. In our experiment, the test case encompassed
three usage scenarios and two stubs were applied to CITEX. Including
the benchmark, a total of nine different configurations were required to
create the energy profile related to the energy requirement. This is a
significant effort for SPOs, which potentially prevents them from ap-
plying the method. In addition, the results obtained by applying the
StEP Method are focused on a single application thus requiring the
method to be repeated for each software product.

With respect to the effort of applying the StEP Method, our ex-
periment demonstrates one of the most extensive applications by in-
vestigating relatively large architectural elements. As explained, the
StEP Method can also be applied on a smaller scale (e.g., lines of code)
and focused on a specific software module instead of the entire product.
Similar to other qualitative requirements [5], stakeholders should
consider what level of investment is required to analyze the qualitative
aspects of a product. Furthermore, instead of separate usage scenarios,
a test case can be designed to simulate a varying load (e.g., a varying
number of visitors) for a software product. This reduces the number of
configurations required for a test case.

On repeating the method for different software products, we ac-
knowledge that general guidelines and best practices can be distilled
from one product that are relevant for others. However, the effects of
applying these lessons learned should be checked with each application.
Different implementations potentially impact the energy consumed by
the software, thus negating the possibility to generalize findings across
products. In addition, different hardware configurations can sig-
nificantly impact the effect of a specific implementation [21]. Hence,
each product would still require its own analysis when energy concerns

are addressed at code level.

5.3.2. Step method activities
The activities comprising the StEP Method proved sufficient to

systematize energy consumption analysis with CITEX and guide the
stakeholders through the process of analysis. A short discussion on this
with the CITEX software architect, learned that the activities provided
sufficient insight into the process and made clear what was expected
from the CITEX team during the experiment. As a result, most activities
could be performed fairly easily supported by, e.g., architectural de-
scriptions being readily available. One activity that was a concern at
first was determining the measurement approach as the team had no
prior experience with software energy consumption analysis. However,
this concern was dispelled after a short explanation of the topic.

5.3.3. Complex environments
The StEP Method was applied in a relatively simple test environ-

ment, representative for a production deployment of CITEX. In our
view, applying the method in a more complex, e.g., virtualized, en-
vironment does not impact the method, provided that reliable SEC
measurements can be performed. However, in general, as additional
elements are present, more effort will be required to control these
elements to obtain valid measurements. For example, a stakeholder
should know, or even influence, how the load is distributed over the
available resources. Hence, with increased complexity we expect an
increase with respect to the costs of applying the StEP Method.

Our advice is to apply the method in a test environment that is
representative for the production environment and maintain focus on
optimizing the software. Once optimized and deployed, e.g., on a cloud
based platform, the focus of optimization shifts to the synergy between
software and hardware. At this stage, power saving features in relation
to networking activity [38] and the resource allocation algorithm [39]
can be implemented to even further improve the sustainability of a
software product.

5.3.4. Stubs and stub effects.
A limitation in relation to stubs is the inability to measure the en-

ergy effect of a stub itself. Consequently, the energy consumed by a stub
is included in the measurements of the different stubbed versions of a
software product. Additionally, despite the quality of the stubs that are
applied, modifying software could lead to unexpected changes in soft-
ware behavior that potentially affect the measurements that are per-
formed. Such a change could occur outside of the scope of the test case
and thus go by unnoticed. Detailed performance measurements help to
identify such occurrences, allowing the stakeholder to adjust the stub
accordingly.

5.3.5. Energy overhead
A large part of the SEC, on average 66.77% with 10,000 visitors,

could not be attributed to the CITEX processes monitored with JM.
However, as we were not able to monitor the effects on OS level, we can
only summarize this portion as overhead. Similar to CPU intensity and
energy consumption, the overhead changes with each version and is not
considered to have a linear relation with software activity. In general
though, increased activity from an application also implies increased
activity from the OS to coordinate tasks, as shown in Fig. 10. Further
research is required to fully understand and control this effect.

5.3.6. Visualizing the energy profile
To visualize the results of the energy profiling method, we anno-

tated the architectural description with the energy consumption figures
for the respective elements (i.e., Figs. 7–9). However, especially when
the energy profile is created for multiple small elements, an annotated
architectural description could overwhelm stakeholders with too much
information at once. Different visualization methods could be applied
that better fit the needs of stakeholders, simplify the interpretation of
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the measurements and thereby facilitate discussion on software energy
consumption [25]. For example, a color coding scheme (Fig. 11) could
be applied to indicate the ‘hotspots’ of the software. Additionally, the
profile does not have to be limited to the SEC. Including, for example,
performance measurements could provide a more clear message for the
stakeholders.

6. Threats to validity

Following the discussion of the StEP Method itself in Section 5, this
section presents the threats to internal, external and construct validity
of our experiment, as required by [29,31,40].

6.1. Internal validity

The internal validity is concerned with uncontrolled factors that
might affect the results of the experiment.

Observer effect. While our experiment was designed to minimize
the impact of performing the experiment on our results, we could not
completely rule out the effects of JM and Windows Performance
Monitor. We know JM uses a small amount of memory, adding to the
performance measurements, which does not translate to observable
energy consumption [15]. With respect to Windows Performance
Monitor, we were not able to determine a potential effect on the energy
consumption. However, as performance measurements were consistent
across executions and these measurements represent a consistent part of
the monitored network activity.

OS effects. Despite our efforts we cannot be fully certain that no OS
processes became active during an execution of the load test.
Configuration tools do not provide full control over, e.g., services and
internal timers that might induce activity without direct input from a
user. We analyzed our performance measurements in detail, i.e., for
each process separately, and did not find unusual activity during the
executions.

Measurement interval. Both hardware and software measurement
approaches have a sampling interval of one second. Given the nature of
electrical power, this low sampling frequency might result in an un-
derestimation of the SEC due to high-frequency energy components.
However, this interval is also commonly used in the state of the art [7].

6.2. External validity

The external validity addresses the extent to which the results can
be generalized beyond the experiment.

Experiment environment. Given the relation between power
consumption and the hardware components, performing the experi-
ment in a different environment could yield different measurement
results. While the generalization of the study could be improved by
diversifying the hardware involved in the experiment, obliging stake-
holders to perform measurements on multiple hardware environments
would significantly increase the required investments for applying the
StEP Method. And even if such an effort is made, the generalizability of
the results across hardware platforms is expected to be limited [21].
Hence, to obtain the best energy consumption measurements for CITEX,
we chose to perform the experiment in an environment that closely
resembles the actual production environment. Ideally, energy con-
sumption measurements are performed on the target hardware, i.e., the
hardware that the software will be executed on. However, involving the
target hardware is not always be possible due to, e.g., limited control
and access to such an environment. This is particularly the case when
an external hosting party is involved.

Measurement equipment. As shown in Fig. 6, large differences
exist with respect to the quality of the measurements between the tools
we utilized. Given the diversity of power meters and software tools
available to perform SEC measurements, there is an unavoidable de-
pendency with respect to the accuracy and detail of the obtained
measurements.

6.3. Construct validity

Construct validity addresses the degree to which the measures
capture the concepts of interest in the experiment.

Sustainability and software quality. Central to performing mea-
surements is to have a clear vision on the metrics that should be re-
ported. In our research we quantify the environmental dimension of
sustainability through the SEC, however, we acknowledge different
metrics could have been applied. The measurements explained in the
research design reflect the data required to calculate the SEC and were
identified in collaboration with the CITEX architect.

Fig. 10. The energy consumption overhead (in Joule) not
explained by the SEC of the individual processes com-
prising CITEX.

Fig. 11. A color scheme overlay to visualize the energy profile for CITEX. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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Non-stubbed elements. In our experiment, we were not able to
stub every element identified to the activities comprising the target
functionality. Hence, our results assume the impact of the other ele-
ments to scale with the stubs applied in the NoInfo and NoPOI_NoInfo
versions, and we deduced the SEC for the ‘POI’ element. Despite this
constraint, we were able to quantify SEC differences, supported by
performance measurements, and demonstrate our proposed StEP
Method.

7. Related work

Measurements on the energy consumption of software products are
difficult to perform accurately, and have proven to be time-con-
suming [41]. Each change in the software, e.g., code obfuscation [42],
requires its own test to be designed, executed multiple times and the
results analyzed afterwards. Although specialized equipment can be
utilized, e.g., [43], such an approach is both difficult and expensive to
apply in an industrial context.

The complexity of performing energy consumption measurements
increases in cloud computing environments due to, e.g., virtualization
techniques and load balancers. The additional layers between the
software and hardware, make it difficult to allocate energy consump-
tion of a distributed system to specific software activity [18]. Although
these layers can also assist with identifying the main sources of energy
consumption, e.g., [44], performance-based power models should be
used with caution [45].

In comparison, developers of mobile software are able to estimate
the SEC of their apps on their workstation through emulation
tools [46]. However, as the energy impact of a software product scales
with each installation, the efforts towards this aspect are worthwhile.
For example, if four million users changed to a different, functionally
equivalent web browser, the monthly energy consumption of an
American household could be saved each hour [7].

Our approach of using stubs to analyze software is not new. For
example, in gray-box testing [22], stubs are used to study the effects of
certain components in isolation. The software architecture can be used
to define stubs, as for example has been done in [47] to test a flight
software product line. However, in our approach, we invert the idea of
gray boxing: comparing the overall system with the system where some
functional element has been substituted by a stub, provides information
about the isolated functional element, rather than the effect on the
complete system.

In this way, our approach may support feature slicing for hypothesis
based software development [48]. This approach may assist architects
in studying different design alternatives, also called design di-
versity [49,50]. With our proposed method, different alternatives and
tactics can be compared to obtain a catalogue of green tactics [20].

Additionally, considering energy consumption as a first class citizen
allows for trade-off analyses, e.g., with respect to reliability [51]. Tra-
ditional software architecture evaluation methods, such as ATAM [52]
mainly rely on expert opinions. Relating test-based measurements with
the software architecture, allows to create better, objective insights for
software architects, supporting the longetivity of the architecture [53].
Compared to more recent methods, e.g., KLAPER [54], test-based
measurements do not require the construction and maintenance of ex-
pensive performance models to evaluate alternative system designs
[55].

8. Conclusions

In this paper we propose the Stubbed Energy Profiling Method to
determine the energy consumption of software (i.e., SEC) on the level of
architectural elements, and applied this method in an experiment per-
formed using a commercial software product. The method is intended
as a detailed elaboration of how to create an energy profile, as required
for applying the Energy Consumption Perspective [13]. The StEP

Method is based on creating multiple versions of a software product,
each including a stubbed software element, which are then compared to
a non-stubbed benchmark. Quantifying the differences between
stubbed and non-stubbed software versions provides the SEC of
the stubbed elements, which creates the energy profile for the
software.

In total, three different versions of CITEX were included in the ex-
periment, which allowed us to thoroughly investigate the energy im-
plications related to the core functionality of the product. Next to the
non-stubbed benchmark, two stubbed versions were created that en-
abled the SPO to create an energy profile of CITEX and identify the
major energy consuming architectural elements while performing its
core functionality. The level of detail also helped to identify the source
code developers should target to address energy related concerns. Using
different analysis methods, we were able to identify multiple energy
hotspots in the software. With CITEX we identified the element that
consumed the most energy in absolute terms and the element was the
most energy consuming in relation to the number of tasks it performed.

An SPO that applies the StEP Method improves its control over
the environmental sustainability aspect of their software products.
Specifically, the SPO gains the ability to target the most energy con-
suming elements of its software products. Additionally, as the method
can be applied during development, energy related concerns can be
addressed when the costs of doing so are lowest.

For future work we look into refining the StEP Method and the SEC
measurements. For example, to further validate the method, the
method should be applied on different levels of granularity (e.g., in-
dividual lines of code) and on different hardware platforms. In addition,
further investigation is required into, among others, automating soft-
ware tests to minimize the required investments for applying the
method. Second, while the approach relies on creating stubs, it is not
always possible to create stubs for a functional element. By recording
sufficient software operation data for each functional element, we en-
vision the automatic creation of stubs that are more realistic, and thus
provide better approximations in the analysis. Furthermore, in our ex-
periment the overhead on average accounted for 66.77% of the SEC. We
look to performing an in-depth analysis of the overhead as this is a
significant contributor to the SEC of a software product.
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