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We present an efficient mixed finite element method to solve the fourth-order thin film 

flow equations using moving mesh refinement. The moving mesh strategy is based on har- 

monic mappings developed by Li et al. (20 01,20 02). To achieve a high quality mesh, we 

adopt an adaptive monitor function and smooth it based on a diffusive mechanism. A va- 

riety of numerical tests are performed to demonstrate the accuracy and efficiency of the 

method. The moving mesh refinement accurately resolves the overshoot and downshoot 

structures and reduces the computational cost in comparison to numerical simulations us- 

ing a fixed mesh. 
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1. Introduction 

Thin liquid film flows appear in various situations in nature and engineering applications, such as rain flow down along

a window, spin coating, lubrication, membranes in biophysics, etc. Despite the diversity of applications, the governing model

is similar if the film is sufficiently viscous. Huppert first explained the fingering instability of the thin film flows using a

mathematical model in [1] . After Huppert’s initial research on liquid film flow down an incline, experiments have been

carried out in different configurations, such as the rewetting of an inclined solid surface [2] , thermally driven (Marangoni

effect) thin films [3] and so on. The experimental studies reveal that, in the case of forced spreading, the thin film front

undergoes a fingering instability. Besides experimental studies, theoretical researches of thin film flows have also been con-

ducted in the last few decades under different aspects. Results on solution existence, traveling wave, phase plane analysis,

pattern formation, stability, kinetics and nucleation are given in [4–9] . 

In order to study the behaviors of the thin film flow equations numerically, a variety of numerical methods have been

developed in literature. Bertozzi and Bowen [10] implemented a positivity preserving finite difference scheme. Ha et al.

[11] studied the stability of traveling wave solutions to the thin film equation by comparing the solutions obtained by

Crank–Nicolson, fully implicit, Godunov, adapted upwind and weighted essentially non-oscillatory (WENO) schemes. Li et al.

[12] developed a shifting mesh algorithm specifically to allow for the investigation of long-time rivulet formation. For an

extensive review of numerical methods, we refer to the introduction section of [12] . 

In the previous studies conducted by Bertozzi et al. [5,11] , different results on the stability of the solution profiles have

been obtained. The authors of [5] claimed that the equation u t + (u 2 − u 3 ) z + (u 3 u zzz ) z = 0 admitted four types of traveling

waves. In which, two were stable and the other two were not. With a larger bump width, one of the unstable profiles

did not settle down to a single traveling wave. Instead, two shocks emerged, an undercompressive wave followed by a
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slower compressive wave, and at large times the bump appeared to spread out and so was classified as unstable. In [11] , by

comparing the simulation results obtained by Crank–Nicolson, fully implicit, Godunov, adapted upwind and WENO schemes,

the authors concluded that it was merely the choice of numerical schemes and step sizes that lead to bump spreading, and

the traveling wave tagged ‘unstable’ in [5] was not unstable. In order to study the interfacial dynamics of the thin film flow

equation, it is helpful to develop stable and accurate numerical schemes base on adaptive mesh refinement. 

It must be noticed that fully resolving the advancing thin film front requires a dense mesh and heavy computational costs

for long-time simulations. Therefore, it is beneficial to utilize adaptive mesh method to improve the numerical accuracy and

efficiency. In previous works, the h -adaptive (local refinement) method and r -adaptive (moving mesh refinement) method

were commonly used in thin film flow areas. Sun et al. [13] developed an h -adaptive mesh refinement method based on an

optimal interpolation error estimate for a 2D thin film equation in the mixed finite element formulation. Li et al. [14] devel-

oped an h -adaptive finite difference essentially non-oscillatory scheme for a nonlinear time-dependent gravity-driven thin

film equation. It was shown that the adaptive mesh method offers increased flexibility together with a significant reduction

in memory requirement. 

The moving mesh method for thin film flow problem has been studied recently. Alharbi and Naire [15] worked out the

moving mesh finite difference method by coupling the moving mesh partial differential equations (MMPDEs) [16] with the

1D thin film flow equations which model a surfactant-laden drop. By adapting the curvature monitor function to include

multiple solution components, the moving mesh method accurately resolves the complicated multiple wave-like structures

in both variables: the film height and surfactant concentration. In [17] , Alharbi further studied the 2D gravity-driven fin-

gering instability of liquid sheet by utilizing the MMPDE4 [16] and the parabolic Monge–Amp ́e re (PMA) equation which is

based on optimal transport. The results showed that the moving mesh methods are accurate and offer significant reductions

in memory requirements. 

Owing to the great advantage of adaptive methods over fixed mesh methods, the objective of our work is to study the

fourth-order thin film flow problem by using the mixed finite element formulation on the adaptive moving mesh. We mainly

focus on the traveling wave examples which have been studied by Bertozzi et al. [5,11] . To study the long time behaviors of

the traveling wave solutions, we introduce the moving framework and scaling technique. To smooth the monitor and avoid

a distorted mesh, we extend the 1D diffusive mechanism to 2D to get a local quasi-uniform adaptive mesh. Besides, we also

implement a precondition strategy which has been used for Cahn–Hilliard equations to accelerate the computing. 

The moving mesh strategy used in this work is originally proposed in [18,19] and has been widely extended and applied

to many applications. For example, it has been successfully utilized in the 1D and 2D hyperbolic systems of conservation

laws [20] , the spike dynamics of the singularity perturbed Gierer-Meinhardt model in 2D [21] , the dendritic growth in 2D

and 3D governed by a phase-field model [22] and the simulations of Kohn–Sham equation [23] . A review of this moving

mesh strategy may be found in [24] . 

The remainder of this paper is organized as follows. Section 2 introduces the thin film flow equation and the moving

reference framework. Sections 3 presents the mixed finite element formulation and discusses the discretization in the space

direction and the implicit-explicit scheme in the time direction. In Section 4 , we present the moving mesh strategy, the

choice of monitor function and the smoothing mechanism. In Section 5 , several numerical experiments are carried out to

demonstrate the effectiveness and efficiency of the proposed scheme. Finally, Section 6 ends with some conclusions. 

2. Mathematical model 

In this section we present a brief derivation of the thin film flow equation. For more details of the background and the

derivation we refer the interested readers to [1,7,8] . 

The thin film flow equation can be derived using a lubrication or long wavelength approximation of the Navier–Stokes

(NS) equations [8] . Consider the flow of a fluid film down an inclined plane, let u denote the thickness of the film, x be the

coordinate orthogonal to the gravity direction in the plane and z be the coordinate down the gradient of the inclined plane.

The mass conservation law in a two-dimensional situation reads 

∂u 

∂t 
+ ∇ · (u 

�
 v ) = 0 . (1)

In the lubrication approximation [25] , the velocity � v averaging over the thickness of the film, is given by 

�
 v = − u 

2 

3 μ
(∇p − ρg sin θ� e z ) , (2)

where μ is the dynamic viscosity of the fluid, p is the pressure, ρ is the density of the fluid, g is the gravitational constant,

θ is the angle of inclination (from the horizontal) and 

�
 e z is the unit vector in the z direction. The Laplace–Young boundary

condition [26] describes that, at the fluid interface, the pressure can be given as the difference between the component of

gravity normal to the incline and the surface tension, 

p = ρgu cos θ − γ0 �u, (3)
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where γ 0 is the surface tension coefficient and �u is an approximation to the surface curvature. By substituting (2) and

(3) into (1) we get a fourth-order nonlinear parabolic partial differential equation (PDE) 

∂u 

∂t 
+ ∇ ·

[
ρgu 

3 

3 μ
( sin θ� e z − cos θ∇u + 

γ0 

ρg 
∇(∇ 

2 u )) 

]
= 0 . (4) 

After a suitable rescaling [8] , Eq. (4) can be written in a simplified form as 

∂u 

∂t 
+ 

∂F (u ) 

∂z 
− β∇ · [ K(u ) ∇u ] + γ∇[ K(u ) ∇�u ] = 0 . (5) 

where F (u ) = K(u ) = u 3 , β is related to the vertical component of gravity and γ measures the surface tension. 

2.1. Moving framework 

In numerical simulations, the region of interest is near the front of the thin film where effects like bumps occur. With a

fixed reference frame, the spatial domain would need to be taken as the entire domain over which the flow would evolve,

leading to large portions of the area where no change occurs. Therefore, we will address this issue using a moving reference

framework by adding an extra term −s ∂u 
∂z 

to Eq. (5) , where the speed of the moving framework is the traveling wave speed

given by the Rankine–Hugoniot condition using the boundary values, 

s = 

k r (u + ) − k r (u −) 

u + − u −
. (6) 

Adding the term −s ∂u 
∂z 

to Eq. (5) gives 

∂u 

∂t 
+ 

∂ ̂  F (u ) 

∂z 
+ β∇ · [ K(u ) ∇u ] + γ∇ · [ K(u ) ∇�u ] = 0 , (7) 

where ˆ F (u ) = F (u ) − su . 

The effects of the moving framework for fourth-order equations have been studied by Ha et al. [11,27] , their results show

that the moving framework gives consistent solutions as the fixed framework. 

3. The mixed finite element discretization 

There are several different finite element methods to solve fourth-order PDEs. One is the standard finite element method

(FEM) with high order piecewise polynomials which includes derivatives as degrees of freedom. Another approach is to use

a low order basis such as the mixed finite element method [13] . 

As in Ref. [13] , we apply a mixed finite element method to the fourth-order equation. We describe the main idea briefly

for the ease of reference. By defining the potential variable w = βu − γ�u, Eq. (7) can be split into a set of second order

equations, { 

∂u 

∂t 
− ∇ · [ K(u ) ∇w ] + 

∂ ̂  F (u ) 

∂z 
= 0 , (x, z) ∈ �, 

−βu + γ�u + w = 0 , (x, z) ∈ �, 

(8) 

with initial and boundary conditions ⎧ ⎪ ⎨ 

⎪ ⎩ 

u (x, z, t = 0) = u 0 (x, z) , (x, z) ∈ �, 

u (x, z, t) = u B (x, z, t) , (x, z) ∈ ∂�D , 

�
 n · ∇u = 0 , (x, z) ∈ ∂ �/∂ �D , 

�
 n · ∇w = 0 , (x, z) ∈ ∂�, 

(9) 

where �∈ R 

2 is the physical domain, �D is the Dirichlet boundary, � n denotes outward normal direction of ∂�. 

The weak form for the mixed formulation (8) is to find u, w ∈ H 

1 (�) such that ⎧ ⎨ 

⎩ 

(
∂u 

∂t 
, φ

)
+ K(u )(∇ w, ∇ φ) −

(
ˆ F (u ) , 

∂φ

∂z 

)
= 0 , 

−β(u, φ) − γ (∇ u, ∇ φ) + (w, φ) = 0 , 

(10) 

where φ ∈ H 

1 ( �) is the test function for both equations. 

Now we discretize the system (8) in space using the standard piece-wise linear finite element method (FEM) and we use

the same space for both variables. 

Denote T as the triangular mesh for the physical domain � and h be the characteristic length of the triangle edge. The

finite element space P (T ) ∈ H 

1 (�) is chosen as a standard linear finite element space. Let � x = { � x i } N i =1 
be the nodes of T ,
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the finite element space P (T ) is expanded by the basis functions { φ j } N j=1 
such that φ j ( � x i ) = δi j , where δij is the Kronecker

delta operator. Then the approximations to u and w can be represented in the following form, 

u h = 

N ∑ 

j=1 

u j (t) φ j (x, y ) , w h = 

N ∑ 

j=1 

w j (t) φ j (x, y ) . (11)

The time integration of the thin film flow equation is demanding because of the appearance of nonlinear fourth-order

term. In the literature, different time discretizations have been employed to solve the thin film flow equations, such as

the alternating direction implicit (ADI) schemes studied by Witelski and Bowen [28] , the backward differentiation formulas

(BDF) schemes in [13] , the semi-implicit scheme in [14] , the total variational diminishing (TVD) Runge–Kutta scheme used

in [11] and so on. For stability issues, an explicit scheme requires a time step �t of the order h 4 . This can make the explicit

schemes prohibitively expensive. Another common approach for solving equation of this type is to use the first order ac-

curate semi-implicit scheme. In this work, we apply the well known implicit-explicit (IMEX) scheme [29] which combined

an implicit scheme for the stiff component and an explicit scheme for the non-stiff component to the nonlinear system of

ODEs obtained after space discretization. The main merit of using such a scheme is that the overall discretization method

has the desired stability and accuracy properties. In this work we will only try the first-order IMEX scheme, in order to

achieve higher accuracy in the time direction, the higher order IMEX Runge–Kutta schemes investigated by Ascher et al.

[30] may also be considered. In the uniform mesh situation, the adaptive time stepping method can be used to improve

the computational cost as in [7] . However, as mentioned in [13] , the adaptive time stepping method may be not necessarily

efficient if used together with local mesh refinement. For simplicity, we will only consider constant time step size in the

discretization. 

We divide the time interval [0, T ] in to N t intervals of size �t > 0 with T = N t · �t . By treating the diffusion and hyper-

diffusion terms implicitly and the nonlinear convection term explicitly, the IMEX scheme reads {
(u 

n +1 
h 

− u 

n 
h 
, φi ) + �tK(u 

n +1 
h 

)(∇w 

n +1 
h 

, ∇φi ) − �t( ̂  F (u 

n 
h 
) , ∂φi 

∂z 
) = 0 , i = 1 , 2 , · · · N, 

−β(u 

n +1 
h 

, φi ) − γ (∇ u 

n +1 
h 

, ∇ φi ) + (w 

n +1 
h 

, φi ) = 0 , i = 1 , 2 , · · · , N. 
(12)

Let ū = [ u 1 , u 2 , . . . , u N ] 
T , w̄ = [ w 1 , w 2 , . . . , w N ] 

T , 0̄ denote the 2 N -dimensional zero vector and x̄ = [ ̄u ; w̄ ] denote the com-

bined unknown coefficients, by substituting (11) into (12) , the discretized system can be presented in the following form

f̄ ( ̄x n +1 ) := 

[
f̄ 0 ( ̄u 

n +1 ) 

f̄ 1 ( w̄ 

n +1 ) 

]
= 

[
M 1 ̄u 

n +1 − �t ̄F ( ̄u 

n ) + �tK 1 (u 

n +1 
h 

) ̄w 

n +1 − M 1 ̄u 

n 

−βM 1 ̄u 

n +1 − γ K 2 ̄u 

n +1 + M 1 w̄ 

n +1 

]
= 0̄ , (13)

where the elements of M 1 , F̄ ( ̄u 
n ) , K 1 (u n +1 

h 
) and K 2 are given by 

M 1 i j = 

∫ 
T 
φi φ j d x d z, F̄ ( ̄u 

n ) i = 

∫ 
T 

ˆ F (u 

n 
h ) 

∂φi 

∂z 
d x d z, 

K 1 i j (u 

n +1 
h 

) = 

∫ 
T 

K(u 

n +1 
h 

)(∇ φi , ∇ φ j )d x d z, K 2 i j = 

∫ 
T 
(∇ φi , ∇ φ j )d x d z, i, j = 1 , 2 , . . . , N. 

Because of the term K(u n +1 
h 

) in (12) , in every time step we have to solve a nonlinear system. Here we choose the well

known quasi-Newton method. By evaluating K 1 at t n , an approximation to the Jacobian of (13) reads 

J = 

[
M 1 �tK 1 (u 

n 
h 
) 

−βM 1 − γ K 2 M 1 

]
. (14)

Let the initial guess at every time step be x̄ n +1 , 0 = x̄ n , the iteration of quasi-Newton method reads 

x̄ n +1 ,s +1 = x̄ n +1 ,s − J −1 f̄ ( ̄x n +1 ,s ) . (15)

In every iteration step the stopping criterion is chosen as ‖ ̄x n +1 ,s +1 − x̄ n +1 ,s ‖ ≤ tol . 

3.1. Precondition strategy 

The linear system in quasi-Newton iteration is usually very stiff because of the diffusion terms. Recently, different pre-

condition strategies for solving fourth-order PDEs like (5) have been proposed. For example, the precondition strategies in

[31–33] for Cahn–Hilliard equations. 

In order to solve the linear system (15) efficiently, we apply a block Schur complement preconditioner to the block

Jacobian matrix J and choose a generalized minimal residual (GMRES) solver for the preconditioned linear system in the

quasi-Newton iterations. In the Schur complement preconditioning, we apply the approximation strategy proposed in [32] . 

The block-triangular preconditioner for J is 

P = 

[
M 1 0 

−βM 1 − γ K 2 S 

]
, (16)
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where the Schur complement of J is S = M 1 + (βM 1 + γ K 2 ) M 

−1 
1 

(�tK 1 ) . In the preconditioning, in order to reduce the com-

putational cost, we adopt the strategy proposed in [32] to approximate the Schur complement, 

ˆ S = 

ˆ S 1 M 

−1 
1 

ˆ S 2 = (M 1 + 

√ 

�t (βM 1 + γ K 2 )) M 

−1 
1 (M 1 + 

√ 

�t K 1 ) , (17) 

the approximated preconditioner is then denoted by ˆ P . As suggested by Bosch et al. [32] , the algebraic multigrid (AMG)

preconditioner is chosen for the approximation to the inverse of ˆ S 1 and 

ˆ S 2 . 

Now, we briefly illustrate the implementation of preconditioning. The preconditioner is built to operate on the Jacobian

matrix J in block matrix form, such that the product matrix 

ˆ P 

−1 J = 

[
M 

−1 
1 

0 

ˆ S −1 (βM 1 + γ K 2 ) M 

−1 
1 

ˆ S −1 

][
M 1 �tK 1 

−βM 1 − γ K 2 M 1 

]
, (18) 

is of a from that Krylov subspace-based iterative solver like GMRES can solve in a few iterations. 

In preconditioning, we need to solve [ ̄x 0 ; x̄ 1 ] = 

ˆ P 

−1 [ ̄f 0 ; f̄ 1 ] . We first get x̄ 0 using x̄ 0 = M 

−1 
1 

f̄ 0 and then compute x̄ 1 =
ˆ S −1 ( ̄f 1 + (βM 1 + γ K 2 ) ̄x 0 ) . 

4. Mesh redistribution and monitor smoothing 

In this section we briefly introduce the moving mesh strategy proposed by Li et al. [18,19] , in which the physical equation

and the moving mesh equation are solved alternately. In particular, we will concentrate on the choice of monitor function

smoothing method. 

4.1. Moving mesh strategy 

Let � x and 

�
 ξ denote the coordinates of the physical domain � and the computational domain �c , respectively. In [18] , a

harmonic mapping � ξ = 

�
 ξ ( � x ) from � to �c is achieved by solving the Euler–Lagrange equation 

∂ 

∂x i 

(
G 

i j ∂ξ k 

∂x j 

)
= 0 , (19) 

where M = (G 

i j ) −1 is the monitor function. 

In order to give reasonable distribution of grid points on the boundary, Li et. al. [19] introduced an optimization problem

with some appropriate constraints to redistribute the interior and boundary points simultaneously, {
min E( � ξ ) 

s . t . �
 ξ | ∂� = 

�
 ξb ∈ K, 

(20) 

where K is an admissible set for the boundary mappings and E( � ξ ) is the mesh energy defined by 

E( � ξ ) = 

∑ 

k 

∫ 
�

G 

i j ∂ξ k 

∂x i 
∂ξ k 

∂x j 
d 

�
 x . (21) 

Li et. al. [19] proposed an iterative algorithm to move the mesh. In the beginning, the initial mesh 

�
 ξ 0 on �c is generated

by solving the following optimization problem: ⎧ ⎨ 

⎩ 

min 

∑ 

k 

∫ 
�

∑ 

i 

(
∂ξ k 

∂x i 

)2 

d 

�
 x , 

s . t . �
 ξ | ∂� = 

�
 ξb ∈ K. 

(22) 

At time step t n , denote the mesh generated from problem (20) as � ξ (n ) , the moving mesh algorithm can be summarized as 

1. Get � ξ n by solving (20) and compute the difference δ � ξ = 

�
 ξ 0 − �

 ξ n . If ‖ δξ‖ L ∞ is smaller than a given tolerance, then the

mesh-redistribution at time step t n is finished. Otherwise, do step 2 to step 4. 

2. Obtain the displacement of the physical mesh δ� x by using δ � ξ and the Jacobi matrix, then move the physical mesh by 

�
 x n = 

�
 x n + τδ� x n , (23) 

where τ ∈ [0, 1] is a parameter to prevent mesh tangling. 

3. Update the solution u n 
h 

on the new mesh 

�
 x n . 

4. Update the monitor function using the updated solution u n 
h 

and go to step 1. 

For more details of the moving mesh strategy and the solution update algorithm we refer the readers to Li et al. [18,19] .
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4.2. Choice of the monitor function 

In the moving mesh method, the monitor function M connecting the mesh with the physical solution, is chosen to

redistribute more gird points at critical regions where more accuracy is needed, thereby reducing errors introduced by the

numerical scheme. In this work, we consider an adaptive monitor function [34–36] 

M = (1 − κ) γ (u ) + κω, (24)

where γ ( u ) is a normalization of the monitor component ω, 

γ (u ) = 

1 

| �| 
∫ ∫ 

ωd x d z, 

and the parameter κ indicate the ratio of points in the critical regions [37] . 

In practice, the monitor component ω can be chosen as a function of the gradient of u : 

ω = |∇u | , (25)

or a function of the second order derivative of u : 

ω = | �u | 1 2 . (26)

In the following, we call the monitor using (25) as the arc-length type monitor and the monitor using (26) as the curvature

type monitor. 

4.3. Smoothing mechanism 

Since the computed monitor M is usually not smooth, in order to avoid a very distorted mesh around critical regions,

the monitor function is generally smoothed [38–40] before solving the moving mesh problem. In the moving mesh finite

element method (MMFEM) situation, one approach to smooth the monitor is to filter the monitor several times [18] , but

this approach needs to determine the filter time and may be too costly if filter time is large. Instead, we apply a smoothing

strategy based on a diffusive mechanism in [39] . Similar smoothing strategies have also been adopted in [22,41–43] and

obtained good results. 

A 2D extension of the smoothing equation in [39] is given by ⎧ ⎨ 

⎩ 

[
I −

(
σξ (σξ + 1)(�ξ ) 2 

∂ 2 

∂ξ 2 
+ ση(ση + 1)(�η) 2 

∂ 2 

∂η2 

)]
˜ M = M, (ξ , η) ∈ �c , 

�
 n · ∇ 

˜ M = 0 , (ξ , η) ∈ ∂ �, 

(27)

where I is the identity operator, σ ξ and ση are the spatial smoothing parameters in ξ - and η-directions. This smoothing

equation is defined on the initial computational mesh which is fixed for all time steps, therefore, we only need to calculate

the discretization of the linear operator once and used it for all later steps. At every time step, we preform several conjugate

gradient (CG) iterations to obtain reasonable approximation to ˜ M . With this smoother monitor ˜ M , the corresponding mesh

will be less singular, hence the physical equation can be solved more efficiently. 

4.4. Properties of the adaptive mesh 

Before we solve the smoothing equation, we would like to study the effects of the spatial smoothing parameters σ ξ and

ση in (27) . Huang and Russell [39,44] studied a 1D moving mesh partial differential equation (MMPDE), ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

∂ 

∂ξ

(
˙ ˜ n 

ω 

)
= − 1 

τs 

∂ 

∂ξ

(
˜ n 

ω 

)
, 

˜ n = 

[
I − σs (σs + 1)(�ξ ) 2 

∂ 2 

∂ξ 2 

]
n, 

(28)

the authors proved that the 1D mesh obtained using this MMPDE admits a local quasi-uniformity: | x ξξ
x ξ

| ≤ 1 √ 

σ (σ+1)�ξ
with

discretized version: 

σ

σ + 1 

≤ �x i +1 (t) 

�x i (t) 
≤ σ + 1 

σ
, ∀ t ∈ [0 , T ] . (29)

Although we are not able to prove similar properties for the adaptive mesh obtained using the moving mesh strategy with

monitor smoothed by the 2D extension (27) , we numerically show that the adaptive mesh has similar properties: 
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Fig. 1. Surface plot of the test function (31) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

Density ratio along x -direction: 
σξ

σξ + 1 

≤ �x i +1 (t) 

�x i (t) 
≤ σξ + 1 

σξ
, 

Density ratio along z-direction: 
ση

ση + 1 

≤ �z j+1 (t) 

�z j (t) 
≤ ση + 1 

ση
, ∀ t ∈ [0 , T ] . 

(30) 

Since we are working on 2D triangular mesh, we approximate 
�x i +1 (t) 

�x i (t) 
( 
�z j+1 (t) 

�z j (t) 
) using the area ratio 

area i +1 
area i 

along x -direction

( 
area j+1 

area j 
along z -direction). 

Choosing the test function as 

u (x, z) = −tanh (100 z) tanh (100 x ) , (x, z) ∈ [ −0 . 5 , 0 . 5] × [ −0 . 5 , 0 . 5] . (31) 

The surface plot in Fig. 1 indicates that the gradient norm of this function is higher along the x and z axes than in other

regions. 

We use the arc-length type monitor and fix the spatial smoothing parameters σξ = 3 , ση = 1 . By choosing different adap-

tivity parameter κ = 0 . 25 , 0 . 5 , 0 . 75 , the corresponding meshes and density ratios at the horizontal and vertical boundaries

of the meshes are present in Fig. 2 . We can observe that the meshes have different density ratios in different directions. For

all values of κ , the density ratios of the horizontal and vertical boundaries are bounded by the interval [ 
σξ

σξ +1 , 
σξ +1 

σξ
] and

[ 
ση

ση+1 , 
ση+1 
ση

] (the violations at the corners are due to the non-uniformity of the initial triangular mesh), respectively. With

the increase of adaptivity parameter κ , the minimum and maximum density ratios get more and more close to the lower

and upper bounds. These plots clearly show the local quasi-uniformity of the adaptive mesh obtained by the smoothed

monitor. 

5. Numerical experiments 

In this section we present some numerical results computed using the MMFEM described in the previous sections. First,

we show the numerical convergence order of the scheme. Then we show the accuracy, efficiency and different features of

the moving mesh method. At last, we present the simulations of 2D finger pattern. 

Our codes are based on the AFEPack [45] and we use the 2D mesh generator EasyMesh [46] to generate triangular

meshes. In order to implement the AMG preconditioning, we also used some packages from deal.II [47] which provide

wrapper classes to use the linear algebra parts of the Trilinos library [48] . For all AMG preconditioners we choose two steps

of Chebyshev smoother and two V-cycles. The tolerance used in the quasi-Newton iteration is taken to be tol = 1.0e −6 and

the tolerance used in the GMRES solver is 1.0e-8. For all numerical simulations we choose σξ = ση = 1 . 
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Fig. 2. Adaptive meshes and density ratios for κ = 0 . 25 (left), κ = 0 . 5 (middle) and κ = 0 . 75 (right) with σξ = 3 , ση = 1 . Red dotted and blue dashed curves 

denote the density ratios along the horizontal and vertical boundaries, respectively. The dashed lines from bottom to top denote density ratios: 1 
2 
, 3 

4 
, 4 

3 
, 2 . 

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 1 

Space accuracy test of the MMFEM using the fixed mesh and the moving mesh ( T = 0 . 01 , �t = 

1 . 0 e −5 ). 

Fixed mesh Moving mesh 

arc-length type curvature type 

Mesh size L 2 error L 2 order L 2 error L 2 order L 2 error L 2 order 

h = 0 . 1 1.0731e −02 − 1.1289e −02 − 1.1370e −02 −
h = 0 . 05 2.5489e −03 2.0743 2.9667e −03 1.9280 2.8239e −03 2.0095 

h = 0 . 025 5.9273e −04 2.1040 7.5613e −04 1.9722 6.8194e −04 2.0500 

h = 0 . 0125 1.7112e −04 1.7924 1.6521e −04 2.1943 1.4097e −04 2.2743 

 

 

 

 

 

 

 

 

5.1. Convergence order 

To test the convergence order of the scheme (12) in the space direction, we consider a linear equation whose solution is

smooth: ⎧ ⎪ ⎨ 

⎪ ⎩ 

∂u 

∂t 
− β�u + γ�2 u = 0 , (x, y ) ∈ � = [0 , 1] × [0 , 1] , 

u (x, z, t = 0) = cos (2 πx ) cos (2 πz) , 

�
 n · ∇u = 0 , (x, z) ∈ ∂�. 

(32)

The exact solution of (32) is 

u ex (x, z, t) = exp (−(8 βπ2 + 64 γπ4 ) t) cos (2 πx ) cos (2 πz) . 

Choosing β = 0 . 5 , γ = 0 . 0025 , σξ = ση = 1 , κ = 0 . 5 and fixing the time step size �t = 1 . 0 e–5 , the corresponding errors and

orders for h = 0 . 1 , 0 . 05 , 0 . 025 , 0 . 0125 at T = 0 . 01 are presented in Table 1 , from which a second-order rate of convergence

is observed. 

In Fig. 3 we present the exact solution and adaptive meshes obtained using both the arc-length type monitor and the

curvature type monitor with initial mesh size h = 0 . 0125 at T = 0 . 01 . Because of the smoothness of the cosine shape solu-

tion, the effect of the moving mesh method is weak, but we can still observe the difference between the meshes: the mesh

points in the left figure are clustered near the steep transition regions and mesh points in the right figure are clustered near

the peak and valley regions. 
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Fig. 3. Exact solution (center) and adaptive meshes for (32) obtained using the arc-length type monitor (left) and the curvature type monitor (right) with 

initial mesh size h = 0 . 0125 at T = 0 . 01 . 

 

 

 

 

 

 

 

 

 

5.2. Simulations of traveling waves 

Analytical solutions to the nonlinear thin film flow equation are not always available, so we will use the MMFEM to

produce one-dimensional traveling wave (TW) solutions to Eq. (5) and verify the performance of the method. Since the flux

only exists in the z -direction, we consider the TW solutions in this direction. The TW connecting two regions of different

values has the form {
u (z, t) = u (ζ ) = u (z − st) , 

u (−∞ ) = u −, u (+ ∞ ) = u + . 

Assuming all the derivatives of the TW vanish as ζ → ±∞ , by substituting u ( ζ ) into (5) we obtain a fourth-order ordinary

differential equation (ODE) 

−su 

′ + F ′ (u ) − β[ K(u ) u 

′ ] ′ + γ [ K(u ) u 

′′′ ] ′ = 0 . (33) 

Integrating (33) once gives 

−s (u − u + ) + F (u ) − F (u + ) − βK(u ) u 

′ + γ K(u ) u 

′′′ = 0 , (34) 

subject to the boundary conditions 

u (−∞ ) = u −, u (+ ∞ ) = u + . (35) 

Eq. (34) can be treated as either an initial value problem (IVP) or as a boundary value problem (BVP). In this work we solve

(34) as a BVP. Since (34) is of third-order, we will impose the third boundary condition as 

u 

′′′ (−∞ ) = 0 . (36) 

By introducing v = u ′ and w = v ′ , we transform (34) to a first-order system of ODEs ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

u 

′ = v , 
v ′ = w, 

w 

′ = 

1 

γ K(u ) 
[ s (u − u + ) − (F (u ) − F (u + )) + βK(u ) v ] , 

u (ζ−) = u −, u (ζ+ ) = u + , w (ζ−) = 0 , ζ ∈ [ ζ−, ζ+ ] . 

(37) 

The above system is then solved using the built-in BVP solver ‘bvp4c’ in MATLAB [49] . 

To study the TW solutions to the thin film flow model, we consider a specific situation [3] , in which the film flows up

an inclined plane because of the Marangoni stress [50] created by a temperature gradient on the planes. In this case, the

counteracting effect of the Marangoni stress and the gravitational force leads to a non-convex flux function 

F (u ) = u 

2 − u 

3 . (38) 

Taking K(u ) = u 3 , β = 0 , γ = 1 , the governing equation reads 

u t + 

∂(u 

2 − u 

3 ) 

∂z 
+ ∇ · (u 

3 ∇�u ) = 0 . (39) 

The significance of the non-convex flux function is that it allows (39) admitting different types of TW solutions. Bertozzi

et al. [5,6,51] showed that (39) may have the admissible Lax shock, undercompressive shock and rarefaction wave, depending
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Table 2 

Comparison of CPU times between the fixed mesh and the 

moving mesh (( x , z ) ∈ [0, 0.5] × [0, 5], T = 20 , �t = 0 . 1 ). 

Fixed mesh Moving mesh ( κ = 0 . 3 ) 

Mesh size CPU time [s] Mesh size CPU time [s] 

h = 

1 
16 

37.58 h = 

1 
8 

24.80 

h = 

1 
32 

141.13 h = 

1 
16 

72.09 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

on the choice of initial conditions. In the following, we will test the MMFEM with different initial conditions and see if we

can get the same numerical results as in [5,11,52] . 

In previous studies [5,11,52] , the value of γ is taken to be 1 and the length of the computational interval in the z -

direction ranges from 300 to 10 0 0 and the end time ranges from 500 to 10 0 0 0 0. In order to simplify the computation, we

introduce ˆ x = 0 . 1 x, ̂  z = 0 . 1 z, ̂  t = 0 . 1 t, then (39) can be rescaled to 

u ˆ t + 

∂(u 

2 − u 

3 ) 

∂ ̂  z 
+ 0 . 001 ̂

 ∇ · (u 

3 ˆ ∇ 

ˆ �u ) = 0 , (40)

where ˆ ∇ = [ ∇ ˆ x , ∇ ˆ z ] 
T , ˆ � = 

∂ 2 

∂ ̂ x 2 
+ 

∂ 2 

∂ ̂ z 2 
. Now in the moving framework, the computational interval in ˆ z -direction can be fixed

as, for example, [0, 5], and the end time T = 100 is large enough to allow the initial profile to develop into a TW solution.

For convenience, in the following simulations, we still use x , z , t instead of ˆ x , ̂  z , ̂  t . 

Consider u − = 0 . 3323 and u + = 0 . 1 , we solve (40) with three different initial conditions [5] connecting u − and u + : 

Case 1 : u (x ) = 

1 

2 

(u − − u + )(1 − tanh (10(z − 2 . 5))) + u + , (41)

Case 2 : 

⎧ ⎨ 

⎩ 

u (x ) = 

1 

2 

(u − − 0 . 6)(1 − tanh (10(z − 2)) + 0 . 6 , x ≤ 2 . 5 , 

u (x ) = 

1 

2 

(0 . 6 − u + )(1 − tanh (10(z − 3)) + u + , x > 2 . 5 , 

(42)

Case 3 : 

⎧ ⎨ 

⎩ 

u (x ) = 

1 

2 

(u − − 0 . 6)(1 − tanh (10(z − 1 . 5)) + 0 . 6 , x ≤ 2 . 5 , 

u (x ) = 

1 

2 

(0 . 6 − u + )(1 − tanh (10(z − 3 . 5)) + u + , x > 2 . 5 , 

(43)

In the simulations, we solve (40) using the moving framework with speed s = 

F (u −) −F (u + ) 
u −−u + = 0 . 2786 in the 2D domain [0,

0.5] × [0, 5] with Dirichlet boundary conditions on z = 0 , 5 and Newman boundary conditions on x = 0 , 0 . 5 . The 1D solutions

are extracted from the 2D solutions. 

Case 1 

In Fig. 4 we present the computed solutions for the fixed mesh and the moving mesh for Case 1. We choose h = 

1 
16 , 

1 
32 

for the fixed mesh and h = 

1 
8 , 

1 
16 for the moving mesh. The time step size is taken as �t = 0 . 1 . Since in all three cases, u is

bounded by 0 ≤ u ≤ 2/3, the max wave speed is F ′ (1 / 3) = 1 / 3 , then the CFL numbers are in the interval [0.26 67, 1.0 6 67]. By

taking the TW solution computed from the BVP (37) as the most accurate one, we can observe that when the meshes are

refined, both the solutions and phase planes of the fixed mesh and moving mesh converge to the TW profiles. It is worth

mentioning that, with the moving mesh, the solutions computed using h = 

1 
8 is comparable to the fixed mesh solution with

h = 

1 
16 . When h = 

1 
16 , the moving mesh solution almost coincides with the TW solution. The plotted grids also show that

in the moving mesh situation, the arc-length type monitor redistributes more grid points along the steep front while the

curvature type monitor function clusters more grid points near the overshoot and downshoot areas. Therefore, the resolu-

tions at the overshoot and downshoot obtained by curvature type monitor are more accurate than those obtained by the

arc-length type monitor. The linear stability analysis in [53,54] states that the presence of the bump is a necessary condition

for the instability of the fluid to small perturbations in the transverse direction. Therefore, in the following examples we

will only apply the curvature type monitor function which gives higher resolution at the bump. 

Fig. 5 shows the numerical solution (top) and the adaptive mesh (bottom) obtained by the curvature type monitor. It

clearly shows that more grid points are distributed around the overshoot and downshoot areas with higher curvature values

than other regions. 

Table 2 gives a comparison of the CPU times used by the fixed mesh and the moving mesh with curvature type mon-

itor. As can be seen, because of the additional cost of mesh refinement, the moving mesh takes more CPU time than

the fixed mesh when using the same initial mesh size h = 

1 
16 . But to achieve solutions of the same quality, the mov-

ing mesh requires less CPU time (24.80 [s] and 72.09 [s]) than the fixed mesh (37.58 [s] and 141.13 [s]). From Fig. 4 and

Table 2 we can conclude that the MMFEM is more efficient for obtaining the same solution accuracy than the fixed mesh

method. 
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Fig. 4. Case 1: Comparisons of solutions (top left), phase planes (top right), close-ups of the left part (bottom left) and right part (bottom right) of the 

phase planes between the fixed mesh and the moving mesh using the curvature type monitor and the arc-length type monitor ( σξ = ση = 1 , κ = 0 . 3 , 

�t = 0 . 1 , T = 100 ). In the top left figure, the dashed curve denotes the initial condition, the pink and blue cross markers denote the 1D grid points 

obtained by the arc-length type monitor with h = 1 / 16 and the curvature type monitor with h = 1 / 16 , respectively. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. 2D solution (top) and adaptive mesh (bottom) at t = 100 obtained using the moving mesh method with curvature type monitor, σξ = ση = 1 , κ = 

0 . 3 , �t = 0 . 1 . 

 

 

 

 

Case 2 

In the second case, a bump with width 1 (corresponding to width 10 in [5] ) is introduced to the initial condition. Bertozzi

et al. [5] pointed out that this initial profile will develop into a different TW solution moving with the same speed as in

Case 1. 

In Fig. 6 we plot the evolution of the initial condition at times t = 0 , 1 , 2 , 4 , 6 , 8 , 80 , 100 . The initial bump evolves to a

TW with an undercompressive wave on the right and a compressive wave on the left. At t = 0 , the speeds of the left and
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Fig. 6. Solutions at different times (left) and with different time step sizes at t = 100 (right) using the moving mesh for case 2. Blue cross markers at 

the bottom of the figures denote the 1D grid points. σξ = ση = 1 , κ = 0 . 3 , �t = 0 . 1 . (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 

Fig. 7. Solutions at different times (left) and with different time step sizes at t = 100 (right) using the moving mesh for Case 3. Blue cross markers at 

the bottom of the figures denote the 1D grid points. σξ = ση = 1 , κ = 0 . 3 , �t = 0 . 1 . (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

right waves are 

s l = 

F (u −) − F (0 . 6) 

u − − 0 . 6 

≈ 0 . 2625 < s, s r = 

F (0 . 6) − F (u + ) 
0 . 6 − u + 

= 0 . 2700 < s. (44)

Both speeds are smaller than the TW wave speed s , so the waves move a little to the left of the initial condition. As time

goes by, the speeds of both waves increase to s and keep constant. Therefore, this TW solution is stable. 

In Fig. 6 (right) we plot the solutions obtained using different time steps. All curves show that the TW wave is stable.

This also indicates the robustness of the MMFEM. 

Case 3 

In Case 3, the initial bump width is increased from 1 to 2. In [5] , the authors claimed that with a larger bump width

the solution does not settle down to a single traveling wave. Instead, two shocks emerge, an undercompressive wave on the

right connecting u + to a larger state u uc ≈ 0.568, followed by a slower compressive wave connecting u uc to u −. Both waves

travel more slowly than the TW wave in Case 1, and at large times the bump appeared to spread out and so was classified

as unstable. 

Fig. 7 shows our numerical results at different time steps. As the same in Case 2, at the beginning, both waves travel a

little to the left of the initial condition. As time goes by, a constant state with height u uc ≈ 0.568 appears. The speeds of the

compressive wave and the undercompressive wave can then be computed as 

s c = 

F (u −) − F (u uc ) 

u − − u uc 
≈ 0 . 2786 , s uc = 

F (u uc ) − F (u + ) 
u uc − u + 

≈ 0 . 2786 . (45)

Therefore, both waves travel at the same speed s , and the waves are stable rather than unstable. In [11] , Ha et al. studied

this case using the Crank–Nicolson scheme, the second-order Godunov scheme with limiters, the adapted upwind scheme

and the WENO scheme. Among all these schemes, the WENO scheme showed very little spread of bump width for a range

of CFL numbers while other schemes were sensitive to choice of the CFL number. They reached the conclusion that the TW

is stable, it was merely the choice of numerical schemes and step sizes that led to the bump spreading. Fig. 7 presents

solutions computed using different time steps at T = 100 . The results again show the robustness of the MMFEM. 
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Fig. 8. Comparison of numerical results with the experimental data scanned from Li et al. [12] : case 4 (top), case 5 (bottom). 

Fig. 9. Back view of numerical solutions obtained by fixed meshes and moving mesh at t = 40 , �t = 0 . 1 . Left: fixed mesh h = 0 . 4 ; middle: fixed mesh 

h = 0 . 2 ; right: moving mesh h = 0 . 4 . 

 

5.3. Comparison with laboratory experiments 

Now, we compare our results with two laboratory experiments [55] which have also been used as test cases in [12] . 

Case 4 

Consider Eq. (39) and the following initial condition connecting u − = 0 . 025 and u + = 0 . 005 in the interval [ −5 , 50] : 

Case 4 : 

⎧ ⎨ 

⎩ 

u (x ) = 

1 

2 

(u − − 0 . 75)(1 − tanh (3 z) + 0 . 75 , x ≤ 9 . 0 , 

u (x ) = 

1 

2 

(0 . 75 − u + )(1 − tanh (3(z − 18)) + u + , x > 9 . 0 . 

(46) 

We compute the solution to time T = 120 with time step �t = 0 . 05 and initial mesh size h = 0 . 25 . The obtained solution is

shown in Fig. 8 (top). 
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Fig. 10. 3D view of the numerical solution obtained by the moving mesh method at t = 40 , �t = 0 . 1 , h = 0 . 4 . 

Fig. 11. Numerical solutions and corresponding meshes obtained by moving mesh method with h = 0 . 4 , �t = 0 . 1 . From left to right: t = 0 , t = 20 , t = 40 , 

t = 80 . 

 

 

Case 5 

Consider Eq. (39) and the following initial condition connecting u − = 0 . 081 and u + = 0 . 005 in the interval [ −5 , 50] : 

Case 5 : 

⎧ ⎨ 

⎩ 

u (x ) = 

1 

2 

(u − − 0 . 75)(1 − tanh (3 z) + 0 . 75 , x ≤ 7 . 7 , 

u (x ) = 

1 

2 

(0 . 75 − u + )(1 − tanh (3(z − 15 . 4)) + u + , x > 7 . 7 . 

(47)

We compute the solution to time T = 75 with time step �t = 0 . 05 and initial mesh size h = 0 . 25 . The obtained solution is

shown in Fig. 8 (bottom). 

From Fig. 8 we can conclude that the computational results are in good agreement with laboratory experiments. 
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5.4. Simulations of 2D finger phenomenon 

In this section we show the long time evolution of the fingering instability. Previous study [8] states that for the thin film

flow equation, perturbations of long wavelengths are linearly unstable and the short wavelengths are stabilized by surface

tension effects. In the simulations of finger pattern, we impose a cosinusoidal perturbation characterized by the wavelength

λ0 and the amplitude A 0 along the x -direction of the initial condition. Then we track the evolution of the 2D solution to

show the evolution of finger phenomenon. 

Consider the physical domain [0, 15] × [0, 30], we use the Dirichlet boundary conditions on z = 0 , 30 and the homo-

geneous Neumann boundary conditions on x = 0 , 15 . The parameters in the smoothing step are σξ = ση = 1 , κ = 0 . 5 . Let

u − = 1 and u + = 0 . 1 , the perturbed initial condition is given by 

u (x, z, 0) = 0 . 5(u − − u + )(1 − tanh (z − 15 + A 0 cos (2 πx/λ0 )) + u + . (48) 

Here the amplitude of the perturbation is A 0 = 0 . 2 ans the wave length λ0 = 15 . This type of perturbation method has also

been adopted in [27] to simulate the finger formations in particle-laden thin film flow. 

In Eq. (5) we take F (u ) = K(u ) = u 3 , β = 0 , γ = 1 and perform computations using the reference framework moving with

the velocity of the unperturbed flow s = 

F (u −) −F (u + ) 
u −−u + . 

In order to show the improvement of the moving mesh over the fixed mesh, we compute the solutions to the same

problem with the fixed mesh (mesh size h = 0 . 2 , 0 . 4 ) and the moving mesh (initial mesh size h = 0 . 4 ). Fig. 9 presents the

back view of the thin film front at t = 40 . By comparing these three solutions at the same time step, we can find that

spurious oscillations appear at the bottom of the solution obtained by the fixed mesh with h = 0 . 4 , while the moving mesh

successfully redistributes more gird points near the critical regions (see Fig. 10 and the mesh in Fig. 11 ) and suppresses

spurious oscillations. 

In Fig. 11 we illustrate the surface plots of u and corresponding meshes at time steps t = 0 , 20 , 40 , 80 for the moving

mesh method. We clearly observe the formation of a single finger. At the beginning, a bump is observed to slowly start

forming. As time increases, the solution appears to develop into a single finger. The plots of u also show that the speed of

the finger front is higher than the TW speed s while the speed at the finger root is smaller. This phenomenon agrees with

the results in Ref. [7] . The obtained mesh at different time steps capture the finger shape and shows the effectiveness of

the moving mesh method. 

6. Conclusions 

In this paper, we have successfully solved the fourth-order thin film flow equations in a mixed finite element formulation

with moving mesh refinement based on harmonic mappings [18,19] . In order to efficiently solve the discretized nonlinear

system, we used the quasi-Newton iteration method and applied the block-triangular Schur complement preconditioning

with the recently developed Schur complement approximation strategy [32] . In the moving mesh step, we smoothed the

monitor function using a 2D extension of the diffusive mechanism in [39] . Numerical results showed that the 2D smoothing

equation admits a local quasi-uniformity which helped to reduce the singularity of the adaptive mesh. In numerical simu-

lations, we compared the traveling wave solutions obtained by the fixed mesh and the moving mesh with the arc-length

type monitor and the curvature type monitor. The results demonstrated the different features of the monitor functions: the

arc-length type monitor increased the resolutions at steep regions by distributing more grid points near those regions while

the curvature type monitor increased the accuracy in overshoot and downshoot regions by clustering more grid points there.

The comparisons between the moving mesh and fixed mesh also showed that the moving mesh method needs shorter CPU

time and less grid points to obtain solutions of the same quality than the fixed mesh method. Finally, by solving three nu-

merical examples taken from Bertozzi et al. [5] , we verified the conclusion made by Ha et al. [11] , that when a large bump

width is used in Case 3, the solution will settle down to a single stable traveling wave, and the bump spreading is merely

due to the choice of numerical scheme and step sizes. 
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