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Abstract: We establish an action of the representations of N = 2-superconformal
symmetry on the category of matrix factorisations of the potentials xd and xd − yd ,
for d odd. More precisely we prove a tensor equivalence between (a) the category
of Neveu–Schwarz-type representations of the N = 2 minimal super vertex operator
algebra at central charge 3–6/d, and (b) a full subcategory of gradedmatrix factorisations
of the potential xd − yd . The subcategory in (b) is given by permutation-type matrix
factorisations with consecutive index sets. The physical motivation for this result is
the Landau–Ginzburg/conformal field theory correspondence, where it amounts to the
equivalence of a subset of defects on both sides of the correspondence. Our work builds
on results by Brunner and Roggenkamp [BR], where an isomorphism of fusion rules
was established.
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1. Introduction

In this paper we will establish a tensor equivalence between certain categories of matrix
bifactorisations andof representations of N = 2minimal super vertex operator algebras.
Physically, this amounts to comparing the behaviour of a subset of defects at two ends
of a renormalisation group flow. In this introductory section we will briefly review the
physical motivation and provide some context for our result. The main body of the paper
is purely mathematical and makes no further reference to the physical motivation.

The main result of this paper can be seen as an instance of the so-called Landau–
Ginzburg/ conformal field theory correspondence, which amounts to the following phys-
ical considerations. One starts from a family of two-dimensional quantum field theories,
called N = 2 supersymmetric Landau–Ginzburg models with target space C

n and
superpotential W ∈ C[x1, . . . , xn] (see e.g. [Ho]). These theories are not conformally
invariant and hence each such theory actually provides a one-parameter family of the-
ories via the renormalisation group flow. Following the flow towards the short-distance
behaviour (the UV theory) one reaches the free N = 2 supersymmetric theory with
targetCn . Following the flow towards the long-distance behaviour (the IR theory) results
in an a priori unknown and typically non-free N = 2 superconformal field theory.

By Zamolodchikov’s c-theorem [Za], the easiest statement to make about the IR
theory is that its Virasoro central charge is strictly less than 3n. Using quantities that
stay invariant along the flow, one can deduce various other properties of the IR theory
in terms of the initial data n and W . For the purpose of this paper, let us single out three
of these, in historical order:

1. Algebras of chiral primary fields [Ma,VW,LVW] In the space of bulk fields one
considers the subspace of chiral primaries as determined by N = 2 supersymmetry.
These fields have regular operator product expansion, resulting in the structure of
an associative unital algebra over C on this subspace, called the (c,c)-chiral ring. In
terms of our initial data, it is given by the Jacobi ring

Jac(W ) = C[x1, . . . , xn] /
〈

∂
∂x1

W, . . . , ∂
∂xn

W
〉
.

2. Categories of boundary conditions preserving B-type supersymmetry [KL,BHLS,
HL] This is a C-linear category whose objects are boundary conditions that preserve
the B-type subalgebra of the supersymmetry algebra. Themorphisms are given by the
C-linear subspace of chiral primaries amongst all boundary (changing) fields. The
composition of morphisms is again obtained from the operator product expansion.
In terms of our initial data, the category of boundary conditions is the homotopy
category of matrix factorisations of W over the algebra C[x1, . . . , xn],

HMFC[x1,...,xn ],W ,

whose definition we recall in Sect. 3.
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3. Tensor categories of defect conditions preserving B-type supersymmetry [BR,CR1]
This is a C-linear tensor category whose objects are defect conditions compatible
with B-type supersymmetry.Morphisms and composition are defined as for boundary
conditions. The zero distance limit of two defect lines defines the so-called fusion of
defects, providing a tensor product on the category of defect conditions. In terms of
our initial data, the tensor category of defects is a “bimodule version” of the above
category,

HMFbi;C[x1,...,xn ],W ,

see Sect. 3.

If one has some independent access to the above quantities in a candidate IR theory,
one can try to compare them to the Landau–Ginzburg results given above. For example,
if the candidate IR theory is a rational conformal field theory, the representation theory
of vertex operator algebras provides such an alternative approach, leading to surprising
mathematical statements.

In this paper we are concerned with the third of the above invariants, and in this case it
is convenient to use a graded variant of the above construction. The grading is provided
by the so-called R-charge. On the Landau–Ginzburg side, W is quasi-homogeneous
of total degree 2, and the degrees |xi | of its variables now form part of our initial
data. We then restrict to the R-charge zero sector in the invariants 1–3 above. Invariant
1, the chiral ring, then becomes trivial – its R-charge zero subalgebra is just C. But
invariants 2 and 3 remain interesting, see Sect. 3 for the definitions of HMFgr

C[x1,...,xn ],W
and HMFgrbi;C[x1,...,xn ],W .

On the conformal field theory side, there is an elegant description of boundary con-
ditions and defects in the case of bosonic, non-supersymmetric theories [FRS,FFRS3].1

The initial data in this case is a rational vertex operator algebra V , together with a
C-linear category B, which is in addition a module category over Rep(V ).

2. Boundary conditions preserving V are described by B itself. For M, N ∈ B, the
morphism space B(M, N ) is the space of conformal weight zero boundary fields
changing M to N .

3. Defect conditions transparent to the holomorphic and anti-holomorphic copy of V
are described by the tensor category EndRep(V )(B) of module-category endofunctors
ofB. Natural transformations of module functors describe the conformal weight zero
defect (changing) fields.

An important example (and in fact the example relevant to this paper) is provided by
choosing B = Rep(V ) (as module category over itself) which entails EndRep(V )(B) �
Rep(V ) (as tensor categories).

There are two reasons why one should not expect an equivalence between the two
descriptions of invariants 2 and 3 given above. Firstly, the boundary (defect) conditions
above have the extra requirement of compatibility with V (respectively V ⊗CV ), and the
renormalisation groupflowendpoints ofLandau–Ginzburg boundary (defect) conditions
may or may not satisfy this requirement. Secondly, not all boundary (defect) conditions
of the IR theory may arise as end points of renormalisation group flows. The prediction,
therefore, is that (up to footnote 1):

1 Unfortunately, the corresponding description for rational N = 2 superconformal theories has to date not
beenworked out. But onemay reasonably expect that the result will be similar. For the sake of this introduction,
we use the bosonic description as a placeholder for the yet-to-be-given supersymmetric variant. We also note
that for unitary N = 2 theories, conformal weight zero implies R-charge zero.
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2. a full subcategory of HMFgr
C[x1,...,xn ],W is equivalent, as a C-linear category, to a full

subcategory of B;
3. a full tensor subcategory of HMFgrbi;C[x1,...,xn ],W is equivalent, as a C-linear tensor

category, to a full tensor subcategory of EndRep(V )(B).

The point we wish to make in treating invariants 2 and 3 alongside each other is that
invariant 3 is much stronger as it compares C-linear tensor categories. Still, there are
surprisingly few examples where even only a correspondence of some objects in HMFgrbi
and EndRep(V )(B) is provided [BR,BF]. And, prior to the present work, there was no
example in which a tensor equivalence has been established (beyond group-like subcat-
egories, cf. [CR1]).

Let us now describe the mathematical contents of this paper in more detail. On the
Landau–Ginzburg side, we consider the case thatW depends only on a single variable x
and is given byW = xd . InHMFgr

bi;C[x],xd we select the full tensor subcategoryP
gr
d which

consists of so-called permutation-type matrix factorisations which have consecutive
index sets, see Sect. 3. On the conformal field theory side, we take the bosonic part of
the N = 2 minimal super vertex operator algebra V (N = 2, d) and consider the full
tensor subcategory C(N = 2, d)NS of its NS-type representations. Our main result is

Theorem 3.16 For d odd, there is a tensor equivalence Pgr
d � C(N = 2, d)NS.

Our work is based on [BR], where (for all d) the existence of a multiplicative equiva-
lence (that is, a functor for which F(M⊗N ) � F(M)⊗ F(N ), but without a coherence
condition on the isomorphisms) is established. The missing piece provided by the above
theorem is the comparison of associators. For some specific triples of objects (but for
all d), this comparison of associators was already carried out in [CR1].

The proof of Theorem 3.16works by first establishing a universal property for C(N =
2, d)NS , that iswedescribe tensor functors out ofC(N = 2, d)NS .Wedo this bymeans of
universal properties of Temperley-Lieb categories and products with pointed categories
(Sect. 2). This description requires d to be odd. We then use the universal property to
obtain a tensor functor into Pgr

d and use a semi-simplicity argument to show that it is an
equivalence (Sect. 3).

From predictions in 2 and 3 above it is expected that Theorem 3.16 holds for all d.
However, the present proof strategy does not work as we are not aware of a suitable
universal property satisfied by C(N = 2, d)NS for even d.

Returning for a moment to the general discussion of invariants 2 and 3 above, we
wish to point out that there is currently no general mechanism known to find which
potentials W correspond to which pairs (V,B), nor a criterion to single out the relevant
subcategories. It would of course be highly desirable to prove the equivalences in 2 and
3 without working out both sides explicitly first, but this seems currently to be out of
reach.

Notation. Let k be an algebraically closed field (which can be assumed to be the field C

of complex numbers). We call a category C tensor if it is an additive k-linear monoidal
category such that the tensor product is k-linear in both arguments. A monoidal functor
between tensor categories is tensor if it is k-linear. By fusion category we mean a tensor
category which is semi-simple, with finite dimensional morphism spaces, finitely many
isomorphism classes of simple objects, and with simple unit object.
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2. Categories of Representations for N =2 Minimal Super Vertex Operator
Algebras

2.1. Representations of N =2minimal super vertex operator algebras. LetV (N = 2, d)

be the super vertex operator algebra of the N = 2 minimal model of central charge
c = 3(d−2)

d , where d ∈ Z≥2, see [Ade] and e.g. [DPYZ,EG,Ada] for more on N = 2
superconformal algebras. Its bosonic part V (N = 2, d)0 can be identified with the coset
(ŝu(2)d−2⊕ û(1)4)/û(1)2d [DPYZ] (see [Ca] for a proof in the framework of conformal
nets).

Accordingly, the category C(N = 2, d) of representations of V (N = 2, d)0 can be
realised as the category of local modules over a commutative algebra A in the product

E = Rep(ŝu(2)d−2) � Rep(̂u(1)2d) � Rep(̂u(1)4)

= C(su(2), d − 2) � C
(
Z2d , q

−1
2d

)
� C(Z4, q4) , (2.1)

see [FFRS1].We refer to e.g. [FFRS2] for the detailed definitions of algebras inmonoidal
categories and of their modules, for the notion of local modules, and for pointers to
the original literature. For a ribbon category C the notation C stands for the tensor
category C with the opposite braiding and ribbon twist. The category C(su(2), d − 2) =
Rep(ŝu(2)d−2) is the category of integrable highest weight representations of the affine
su(2) at level d − 2. Its simple objects [l] are labelled by l = 0, . . . , d − 2 and have

lowest conformal weight hl = l(l+2)
4d . Their dimensions are dim[l] = ηl+1−η−l−1

η−η−1 with

η = e2π i/d and their ribbon twists are θl = e2π ihl 1[l]. The fusion rule of C(su(2), d−2)
is

[k] ⊗ [l] �
min(k+l,2d−4−k−l)⊕

m=|k−l| step 2
[m].

The category Rep(̂u(1)2d) of representations of the vertex operator algebra for u(1),
rationally extended by two fields of weight d, is a pointed fusion category (a fusion
category with a group fusion rule) with group G of isomorphism classes of simple
objects given by Z2d . Braided monoidal structures on pointed fusion categories require
G to be abelian and are classified by quadratic functions q : G → C

∗ [JS1]. We denote
the space of quadratic functions G → C

∗ by Q(G, C
∗) and the pointed fusion category

determined by q ∈ Q(G, C
∗) as in [JS1] by C(G, q). The ribbon twist of C(G, q) is

θa = q(a) 1a . The qm ∈ Q(Zm, C
∗) appearing in (2.1) are defined as qm(r) = e

π ir2
m ,

where m is even.
We can label simple objects of E by [l, r, s], where l ∈ {0, . . . , d − 2}, r ∈ Z2d and

s ∈ Z4. The ribbon twist for E is given by θ[l,r,s] = e2π ihl,r,s 1 with

hl,r,s ≡ l(l + 2)

4d
+
s2

8
− r2

4d
mod Z.

The underlying object of the algebra A in the product (2.1) is [0, 0, 0] ⊕ [d − 2, d, 2].
Note that [d − 2, d, 2] is an invertible object of order 2 and ribbon twist 1, so that
[0, 0, 0]⊕ [d −2, d, 2] has a uniquely defined commutative separable algebra structure.
The tensor product with [d − 2, d, 2] has the form

[d − 2, d, 2] ⊗ [l, r, s] � [d − 2 − l, r + d, s + 2].
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In particular no simple objects are fixed by tensoring with [d − 2, d, 2] and hence all
simple A-modules are free:

A⊗[l, r, s] � A⊗[d−2−l, r + d, s + 2] � [l, r, s] ⊕ [d− 2− l, r + d, s+ 2]. (2.2)

A simple A-module M is local if the ribbon twist on all simple subobjects of M is
given by the same constant (see [Pa,KO] and [FFRS2, Cor. 3.18]). Thus, local A-modules
correspond to [l, r, s] with even l + r + s:

hd−2−l,r+d,s+2 − hl,r,s = (d − 2 − l)(d − l) − l(l + 2)

4d
+

(s + 2)2 − s2

8

− (r + d)2 − r2

4d
= s − l − r

2
.

The fermionic part V (N = 2, d)1 of V (N = 2, d) corresponds to the A-module

A ⊗ [0, 0, 2] � [0, 0, 2] ⊕ [d − 2, d, 0]
so that the simple objects of the NS (R) sector of C(N = 2, d) are A⊗[l, r, s] with even
(odd) s:

hl,r,s+2 − hl,r,s − h0,0,2 = (s + 2)2 − s2 − 4

8
= s

2
.

Denote by C(N = 2, d)NS the full subcategory of C(N = 2, d) consisting of NS
objects, i.e. with simple objects of the form A⊗[l, r, s] with even s. By (2.2) any simple
object in C(N = 2, d)NS can be written as

[l, r ] := A ⊗ [l, r, 0] with l ∈ {0, 1, . . . , d − 2}, r ∈ Z2d , l + r even. (2.3)

2.2. The structure of C(N = 2, d)NS for odd d. Note that direct sums of objects [l, r, s]
with even l + r + s form a ribbon fusion subcategory Eeven of E . It can be characterised
as the Müger centraliser of [d − 2, d, 2] in E . Recall that the Müger centraliser of a
subcategory D ⊂ C in a ribbon fusion category is {X ∈ C | θX⊗Y = θX⊗θY , ∀Y ∈ D}
[Mü].

The induction functor A⊗− : E → AE is a faithful tensor functor. Its restriction to
Eeven is in addition ribbon, so that

Eeven
A⊗−−−−→ AEeven = AE loc = C(N = 2, d)

is a faithful ribbon tensor functor. For odd d the object [1, d, 0] lies in Eeven and tensor
generates a subcategory of Eeven with simple objects [l, dl, 0], l = 0, . . . , d − 2 and
the fusion with [1, d, 0] given by

[1, d, 0] ⊗ [l, dl, 0] �
{

[l − 1, d(l − 1), 0] ⊕ [l + 1, d(l + 1), 0]; 1 ≤ l < d − 2
[d − 3, d(d − 3), 0]; l = d − 2

(2.4)
Since the last entry in [l, dl, 0] is zero, the restriction of the induction functor A⊗− to
this subcategory is fully faithful. Denote by T its image in C(N = 2, d).
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The invertible object [0, 2, 0] belongs to the Müger centraliser of [1, d, 0] in Eeven:

exp 2π i
(
h1,d+2,0 − h1,d,0 − h0,2,0

) = exp 2π i
(

(d+2)2−d2−4
4d

) = 1.

It tensor generates a pointed subcategory V in Eeven equivalent to C(Zd , q
−2
d ). The

restriction of the induction functor A⊗− to this subcategory is fully faithful.
For d odd, [1, d] ∈ C(N = 2, d)NS and it is straightforward to see that C(N =

2, d)NS is tensor generated by [1, d] and [0, 2] (recall the notation (2.3)). Furthermore,
the intersection of the subcategories tensor generated by [1, d] and by [0, 2] is trivial.
Since (the associated bicharacter of) q−2

d is non-degenerate the subcategory V is non-
degenerate as a braided category. Hence, byMüger’s centraliser theorem [Mü, Prop. 4.1]
C(N = 2, d)NS � T � V as ribbon fusion categories.

Finally, we will show that as a tensor category and for odd d, C(Zd , q
−2
d ) is equiv-

alent to the category V(Zd) of Zd -graded vector spaces with the trivial associator. The
quadratic form q−2

d ∈ Q(Zd , C
∗) determines the braided tensor structure on C(Zd , q

−2
d )

via the canonical isomorphism from Q(Zd , C
∗) to the third abelian group cohomology

H3
ab(Zd , C

∗) [JS1]. The associator on C(Zd , q
−2
d ), i.e. the structure of a tensor category,

is determined by the image under the homomorphism H3
ab(Zd , C

∗) → H3(Zd , C
∗).

For d odd, this homomorphism is trivial, hence the associator on C(Zd , q
−2
d ) is trivial.

The above discussion is summarised in the following statement.

Proposition 2.1. For an odd d there is an equivalence of fusion categories

C(N = 2, d)NS � T � V(Zd).

2.3. Universal properties. Here we formulate universal properties of Temperley-Lieb
and pointed fusion categories. We say that a tensor category C is freely generated by an
object X ∈ C together with a collection of morphisms { f j : X⊗n j → X⊗m j } making
a collection of diagrams Ds commutative if for any tensor category D the functor of
taking values

Funct⊗(C,D) → D′, F �→ F(X)

is an equivalence.Here,Funct⊗(C,D) is the category of tensor functors (with tensor nat-
ural transformations as morphisms). The targetD′ is the category with objects (Y, {g j }),
where Y ∈ D and the g j : Y⊗n j → Y⊗m j make the collection of diagrams Ds , with X
replaced by Y and f j by g j , commutative in D. Morphisms (Y, {g j }) → (Y ′, {g′

j }) in
D′ are morphisms Y → Y ′ in D fitting into commutative squares with all g j , g′

j .

2.3.1. Temperley-Lieb categories Let C be a tensor category and let I ∈ C be the tensor
unit. For U, V,W ∈ C we denote by aU,V,W : U⊗(V⊗W ) → (U⊗V )⊗W the asso-
ciativity isomorphism of C and by λU : I⊗U → U and ρU : U⊗I → U the left and
right unit isomorphisms. We call an object T of a tensor category C self-dual if it comes
equipped with morphisms

n : I → T ⊗ T , u : T ⊗ T → I,
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such that the diagrams

T 1 ��

λ−1
T

��

T

I⊗T
n⊗1�� (T⊗T )⊗T

a−1
T,T,T �� T⊗(T⊗T )

1⊗u �� T⊗I

ρT

��

T
1 ��

ρ−1
T

��

T

T⊗I
1⊗n�� T⊗(T⊗T )

aT,T,T �� (T⊗T )⊗T
u⊗1 �� I⊗T

λT

�� (2.5)

commute. If there is a scalar κ ∈ k such that u ◦ n = κ 1I , we say T has (self-dual)
dimension κ .

The category TLκ freely generated by a self-dual object of non-zero dimension κ is
called theTemperley-Lieb category (see [Tu,ChapterXII]). It has a geometric description
as a category with morphism being (isotopy classes of) plane tangles modulo some
simple relations. In particular, according to this description the endomorphism algebras
TLκ(T⊗n, T⊗n) are Temperley-Lieb algebras T Ln(κ), i.e. algebras with generators
ei , i = 1, . . . , n − 1 and relations

e2i = κ ei , ei ei±1ei = ei , ei e j = e j ei |i − j | > 1.

Now write κ = η + η−1 for η ∈ k. Consider the simple objects Tn ∈ TLκ defined
as images of certain idempotents pn ∈ T Ln(κ) (the Jones-Wenzl projectors), which are
given by, for n ≥ 1,

pn+1 = pn⊗1 − [n]η
[n + 1]η (pn⊗1) ◦ en ◦ (pn⊗1) , p1 = 1,

where [n]η = ηn−η−n

η−η−1 are the quantum numbers. The dimension of Tn (which can be
computed as the trace of pn) is dim(Tn) = [n + 1]η. We set T0 = I , the monoidal unit,
and from the above definition T1 = T is the generating object. It is straightforward to see
that the endomorphism algebras TLκ(T⊗Tn, T⊗Tn) are 2-dimensional for all n ≥ 1.

For η a root of unity of order > 2, the last well-defined Jones-Wenzl projector is
pd−1, where d is the order of η if it is odd and half the order of η if it is even. In this
case the category TLκ has a maximal fusion quotient Tκ which can be defined as the
quotient

Tκ := TLκ/〈pd−1〉
by the ideal of morphisms tensor generated by the Jones-Wenzl projector pd−1 ∈
T Ld−1(κ), see [EO]. Moreover the ideal of morphisms tensor generated by the Jones-
Wenzl projector pd−1 is the unique non-zero proper tensor ideal in TLκ [GW], that is,
any non-faithful tensor functor TLκ → D factors through Tκ → D. Thus we have the
following.

Theorem 2.2. A tensor functor from Tκ to a tensor category D is determined by a self-
dual object of dimension κ in D with vanishing Jones-Wenzl projector pd−1.
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The next corollary provides an easy-to-use replacement for the vanishing condition on
the Jones-Wenzl projector. Recall that the simple objects of Tκ are Ti , i = 0, . . . , d − 2
with T0 = I, T1 = T . The tensor productwith T is T⊗Ti � Ti−1⊕Ti+1 for 0 < i < d−2
and T⊗Td−2 � Td−3.

Corollary 2.3. LetD be a rigid fusion category with simple objects Si , i = 0, . . . , d−2
and the tensor product S1⊗Si � Si−1⊕Si+1 for 0 < i < d − 2 and S1⊗Sd−2 � Sd−3.
A tensor functor TLκ → D such that Ti �→ Si factors through Tκ .

Proof. The non-faithfulness of the tensor functor is manifest since TLκ(T⊗Td−2,

T⊗Td−2) is 2-dimensional, while D(S1⊗Sd−2, S1⊗Sd−2) is only 1-
dimensional. ��

See also [Da] for details.

2.3.2. The categories C(N = 2, d)NS for odd d Here, we describe a universal property
of C(N = 2, d)NS for odd d as a tensor category. This description makes use of group
actions on tensor categories and equivariant objects, which we review in Appendix A. In
the following proposition, a pointed subcategory of a tensor categoryD with underlying
group Zd acts by conjugation, and DZd denotes the corresponding tensor category of
equivariant objects.

Theorem 2.4. Let d be odd. A tensor functor F : C(N = 2, d)NS → D is determined
by

• a tensor functor V(Zd) → D,
• a self-dual object T = F([1, d]) in the categoryDZd of quantumdimensiondim(T ) =

2 cos
(

π
d

)
such that the induced functor TL2 cos( π

d ) → DZd is not faithful.

Proof. By Proposition 2.1, the category C(N = 2, d)NS is tensor equivalent to the
Deligne product T � V(Zd). By Theorem A.6, a tensor functor F : T � V(Zd) → D
is determined by a tensor functor V(Zd) → D and a tensor functor T → DZd .

The dimension of [1, d] ∈ T (which coincides with the dimension of [1, 0, 0] in E)
is equal to 2 cos

(
π
d

)
. The fusion rules of T (see (2.4)) show that it is freely generated as

a tensor category by [1, d], and that the Jones-Wenzl projector pd−1 vanishes (Corollary
2.3). By semi-simplicity, it follows thatTL2 cos( π

d ) → T descends to a tensor equivalence

T2 cos( π
d ) → T . Consequently, a tensor functor T → DZd is determined by a self-dual

object T = F([1, d]) in the categoryDZd with quantum dimension dim(T ) = 2 cos
(

π
d

)

and such that the induced functor TL2 cos( π
d ) → DZd is not faithful. ��

3. Matrix Factorisations

3.1. Categories of matrix factorisations and tensor products. A matrix factorisation
over a commutative k-algebra S of an element W ∈ S is a Z2-graded free S-module M
togetherwith a twisted differential dM : M → M of odddegree satisfyingdM◦dM = W .
Here, the right hand side stands for the endomorphism m �→ W.m. We will often omit
the superscript M in dM and display the Z2-grading explicitly as M = M0 ⊕ M1,
d = d0 ⊕ d1 or graphically as

M : M1

d1
��
M0

d0

�� .
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A matrix factorisation is of finite rank if its underlying free S-module is of finite rank.
We distinguish several categories of matrix factorisations:

• MFS,W : Objects are matrix factorisations M = (M, d) and the morphism space
MFS,W (M, N ) consists of all S-linear maps from M to N . The Z2-grading of M
and N induces a Z2-grading on MFS,W (M, N ). The twisted differentials of M
and N combine to a (non-twisted) degree 1 differential δ on MF(M, N ) given by
δ( f ) = dN ◦ f − (−1)| f | f ◦ dM , where | f | is the Z2-degree of f . In this way, the
morphisms in MFS,W form a Z2-graded complex.

• ZMFS,W : Objects are as for MFS,W and morphisms from M to N are degree zero
cycles in MFS,W (M, N ), that is

ZMFS,W (M, N ) = { f : M → N | f is S-linear of degree 0 and δ( f ) = 0}.

• HMFS,W : Objects are as for MFS,W and the set of morphisms from M to N is the
degree zero homology in MFS,W (M, N ), that is

HMFS,W (M, N ) = ZMFS,W (M, N ) / {δ(g) | g : M → N is S-linear of degree 1}.

We will often write morphisms f ∈ ZMFS,W (M, N ) (or representatives of classes in
HMFS,W (M, N )) in a diagram as follows:

M1

dM
1

��

f1

��

M0

dM
0

��

f0

��
N1

dN
1

��
N0

dN
0

��

That f is in ZMF(M, N ) is equivalent to f0 and f1 being S-linear maps such that
the subdiagram with upward curved arrows commutes and that with downward curved
arrows commutes:

f0 ◦ dM
1 = dN

1 ◦ f1 , f1 ◦ dM
0 = dN

0 ◦ f0.

In fact, ifW is not a zero-divisor in S, one condition implies the other (see [Yo1, Ch.7]).
For more on matrix factorisations in general we refer to foundational works [Ei,Bu]

or for example to [Yo1,KR].
The above definitions can be made also for bimodules, giving rise to the notion of a

matrix bifactorisation [CR1].

Definition 3.1. A matrix bifactorisation over S of W is a pair
(
M, dM

)
where M is a

Z2-graded free S-S-bimodule and dM : M → M an S-S-bimodule endomorphism of
degree 1 satisfying dM ◦ dM = W.1M − 1M .W , where the right hand side stands for the
map m �→ W.m − m.W .
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Here, an S-S-bimodule is called free if it is free as an S ⊗k S-left module. As with
matrix factorisations one can define morphisms of matrix bifactorisations (in this case
morphisms of bimodules instead of simplymodules).We denote the resulting differential
Z2-graded category as MFbi;S,W . The associated categories with morphisms which are
degree zero cycles and degree zero homology classes are defined as before and will be
denoted as ZMFbi;S,W and HMFbi;S,W .

As the algebra S and the element W will be clear from the context (in fact, we will
soon restrict to S = C[x] and W = xd ), we will omit the subscript S,W from now on.

For S = k[x1, . . . , xn] andW ∈ S a potential (i.e. Jac(W ) is finite dimensional, see
[KR] for details), the category HMFbi is tensor [CR1,CM2] (for S arbitrary, it is still
non-unital tensor). The tensor product of M, N ∈ MFbi is given by

M ⊗S N , d = dM ⊗S 1N + 1M ⊗S d
N .

In the followingwewill just write⊗ for⊗S . The above definition hides aKoszul sign: for
m ∈ M and n ∈ N we have (1M ⊗ dN )(m ⊗ n) = (−1)|m| m ⊗ dN (n), where |m| ∈ Z2
denotes the degree of m. Thus, if we spell out the twisted differential of M ⊗ N in
components and make the Koszul sign explicit, we have

M ⊗ N :
M1 ⊗ N0

⊕
M0 ⊗ N1

dM⊗N
1 =

(
dM
1 ⊗ 1N0 1M0 ⊗ dN

1−1M1 ⊗ dN
0 dM

0 ⊗ 1N1

)

		 M0 ⊗ N0
⊕

M1 ⊗ N1

dM⊗N
0 =

(
dM
0 ⊗ 1N0 −1M1 ⊗ dN

1
1M0 ⊗ dN

0 dM
1 ⊗ 1N1

)




The associativity isomorphisms are simply those of the underlying tensor category of
bimodules. However, the unit object in the category of Z2-graded S-S-bimodules, the
bimodule S, is not free as an S⊗k S-left module. As a consequence, the categories MFbi
and ZMFbi are non-unital tensor. On the other hand, HMFbi has a unit object, which we
give explicitly in the case S = C[x] andW = xd below. For the general case we refer to
[CR1,CM2]. For more on tensor products see [Yo2,KR,BR,CR1,DM,CM1,CM2,Mu].

From here on and for the remainder Sect. 3 we fix

S = C[x], W = xd , where d ∈ Z, d ≥ 2.

For calculations it will often be convenient to describeC[x]-C[x]-bimodules asC[x, y]-
left modules M . Here, the left action of p ∈ C[x] is by acting on M with p(x) and the
right action by acting with p(y). We will employ this tool without further mention.

The tensor unit in HMFbi is

I : C[x, y]
d1=x−y

��
C[x, y]

d0= xd−yd

x−y

�� .
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The left and right unit isomorphisms λM : I ⊗ M → M and ρM : M ⊗ I → M are
given by

I⊗M

λM

��

I1 ⊗ M0
⊕

I0 ⊗ M1

(0 LM1 )

��

(
(x−y)⊗1 1⊗dM

1

−1⊗dM
0

xd−yd

x−y ⊗1

)

 I0 ⊗ M0
⊕

I1 ⊗ M1

(LM0 0)

��

(
xd−yd

x−y ⊗1 −1⊗dM
1

1⊗dM
0 (x−y)⊗1

)
��

M M1

dM
1

�� M0

dM
0

��

M⊗I

ρM

��

M1 ⊗ I0
⊕

M0 ⊗ I1

(RM1 0)

��

(
dM
1 ⊗1 1⊗(x−y)

−1⊗ xd−yd

x−y dM
0 ⊗1

)

 M0 ⊗ I0
⊕

M1 ⊗ I1

(RM0 0)

��

(
dM
0 ⊗1 −1⊗(x−y)

1⊗ xd−yd

x−y dM
1 ⊗1

)
��

M M1

dM
1

�� M0

dM
0

��

(3.1)

The maps L and R are, for a given C[x]-C[x]-bimodule N , defined as

LN : C[x, y] ⊗ N −→ N RN : N ⊗ C[x, y] −→ N

f (x, y) ⊗ n �−→ f (x, x).n n ⊗ f (x, y) �−→ n. f (x, x)

It is easy to verify that λM and ρM are in ZMFbi. With some more work, one sees that
they have homotopy inverses, see [CR1].

Finite rank factorisations in HMFbi have right duals [CR2,CM2]. We will only need
explicit duals of matrix factorisations M ∈ HMFbi for which M0 and M1 are of rank 1.
In this case we have [CR2]

M : C[x, y]
d1(x,y)

��
C[x, y]

d0(x,y)

�� � M+ : C[x, y]
dM+
1 :=−d1(y,x)

��
C[x, y]

dM+
0 :=d0(y,x)

�� .

Note that I + = I . Since the corresponding duality maps play an important role in our
construction, we take some time to recall their explicit form and some properties from
[CR2]. The coevaluation coevM : I → M ⊗ M+ is the simpler of the two,
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I

��

C[x, z]
x−z



(
1

1

)

��

C[x, z]
xd−zd
x−z

��

⎛

⎝
d1(x,y)−d1(z,y)

x−z
d0(x,y)−d0(z,y)

x−z

⎞

⎠

��
M ⊗ M+

C[x, y, z]⊕2

(
d1(x,y) −d1(z,y)

−d0(z,y) d0(x,y)

)


C[x, y, z]⊕2

(
d0(x,y) d1(z,y)

d0(z,y) d1(x,y)

)
��

Here the left and the right bottom instances of C[x, y, z]⊕2 correspond to

(M ⊗ M+)1 =
M1 ⊗ M+

0⊕
M0 ⊗ M+

1

, (M ⊗ M+)0 =
M0 ⊗ M+

0⊕
M1 ⊗ M+

1

,

respectively. It is immediate that this is indeed a morphism in ZMFbi. The evaluation
evM : M+ ⊗ M → I takes the form

M+ ⊗ M

��

C[x, y, z]⊕2

(BM CM )

��

(
−d1(y,x) d1(y,z)

−d0(y,z) d0(y,x)

)

		
C[x, y, z]⊕2

(AM 0)

��

(
d0(y,x) −d1(y,z)

d0(y,z) −d1(y,x)

)




I C[x, z]
x−z


C[x, z]

xd−zd
x−z

��

Here the left and the right top instances of C[x, y, z]⊕2 correspond to

(M+ ⊗ M)1 =
M+

1 ⊗ M0
⊕

M+
0 ⊗ M1

, (M+ ⊗ M)0 =
M+

0 ⊗ M0
⊕

M+
1 ⊗ M1

,

respectively. The C[x, z]-module maps AM , BM ,CM are defined as follows. The map
CM is simply minus the projection onto terms independent of y: CM (ym) = −δm,0. For
AM and BM we introduce the auxiliary function

GM ( f ) = 1

2π i

∮
x − z − y

y d1(y, z)
f (x, y, z)dy, f ∈ C[x, y, z].
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The contour integration is along a counter-clockwise circular contour enclosing all poles.
It is not immediately evident but still true thatGM ( f ) is a polynomial. Oneway to see this
is to rewriteGM ( f ) = 1

2π i

∮ x−z−y
y(yd−zd )

d0(y, z) f (x, y, z)dy and to expand (yd−zd)−1 =
∑∞

m=0(z/y)
m . In this way one can rewrite the integrand as a formal Laurent series in

y whose coefficients are polynomials in x, z. The contour integration picks out the
coefficient of y−1.

We will need two further properties of GM :

GM
(
d1(y, z) y

m) = (x − z)δm,0, GM
(
d1(y, x) f (x, y, z)

) ∈ (x − z)C[x, z]. (3.2)

Thefirst property is clear. For the secondproperty, let g(x, z) := GM
(
d1(y, x) f (x, y, z)

)
.

The condition g(z, z) = 0 is then immediate from the first property.
We can now give the maps AM and BM :

AM ( f ) = −GM ( f ) , BM ( f ) = GM
(
d1(y, x) f (x, y, z)

)

x − z
.

To verify that evM ∈ ZMFbi(M+ ⊗ M, I ), it suffices to check (evM )0 ◦ dM+⊗M
1 =

d I
1 ◦ (evM )1 on (ym, yn) for all m, n ≥ 0. This is straightforward using (3.2):

(evM )0 ◦ dM+⊗M
1 (ym, yn) = AM

( − d1(y, x)y
m + d1(y, z)y

n)

= GM (d1(y, x)y
m) − (x − z)δn,0,

d I
1 ◦ (evM )1(y

m, yn) = (x − z)(BM (ym) + CM (yn))

= GM (d1(y, x)y
m) − (x − z)δn,0.

The zig-zag identities for evM and coevM are verified in [CR2, Thm.2.5].

3.2. Permutation type matrix bifactorisations. We fix the primitive d’th root of unity2

η = e
2π i
d .

For a subset S ⊂ Zd write S = Zd \ S. By a permutation type matrix bifactorisations
we mean

PS : C[x, y]

d1= ∏

j∈S
(x−η j y)

��
C[x, y]

d0= ∏

j∈S
(x−η j y)

�� . (3.3)

For example, I = P{0}. The bifactorisations P∅ and P{0,1,...,d−1} are isomorphic to the
zero object in HMFbi. The remaining PS are non-zero and mutually distinct. To see this,
in the following remark we recall a useful tool from [KR].

2 Anticipating Remark 3.17 below, the reader may check that all statements below–except for Theorem
3.16—work equally for any other choice of primitive d’th root of unity.
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Remark 3.2. Given a matrix bifactorisation (M, d), we obtain a Z2-graded complex by
considering the differential d̄ on M/〈x, y〉M . Since xd − yd ∈ 〈x, y〉, d̄ is indeed
a differential. Denote by H(M) the homology of this complex. Then [KR, Prop. 8]
implies that if f ∈ HMFbi(M, N ) is an isomorphism in HMFbi, the induced map
H( f ) : H(M) → H(N ) is an isomorphism of C-vector spaces. (In [KR] also the
converse is proved in the context of power series rings – for us a graded version of the
equivalence will be relevant later, see Remark 3.12.)

Lemma 3.3. Let R, S ⊂ Zd be nonempty proper subsets. The permutation type matrix
bifactorisations PR and PS are non-zero, and they are isomorphic in HMFbi if and only
if R = S.

Proof. It is enough to show that PR and PS are not isomorphic for R �= S. For a non-
empty proper subset S, the matrix factorisation PS is reduced, that is, the differential d̄
induced on the quotient PS/〈x, y〉PS is zero. Thus H(PS) � C ⊕ C. By Remark 3.2,
if f ∈ ZMFbi(PS, PR) is an isomorphism in HMFbi, then f0 and f1 must contain a
non-zero constant term. Writing out the condition that f is a cycle shows that this is
possible only for R = S. ��

We will mostly be concerned with a special subset of permutation type bifactorisa-
tions, namely those with consecutive index sets. For a ∈ Zd and λ ∈ {0, 1, 2, . . . , d−2}
we write

Pa:λ := P{a,a+1,...,a+λ}.

We define Pd to be the full subcategory of HMFbi consisting of objects isomorphic (in
HMFbi) to finite direct sums of the Pa:λ. A key input in our construction is the following
result established in [BR, Sect. 6.1].

Theorem 3.4. Pd is closedunder taking tensor products. Explicitly, forλ,μ ∈ {0, . . . , d−
2},

Pm:λ ⊗ Pn:μ �
min(λ+μ,2d−4−λ−μ)⊕

ν=|λ−μ| step 2
Pm+n+ 1

2 (λ+μ−ν):ν .

For the dual of a permutation type matrix bifactorisations one finds (PS)+ � P−S .
Explicitly:

P−S

��

C[x, y]

∏

j∈S
(x−η− j y)

��

(−1)|S|+1 ∏
j∈S η− j

��

C[x, y]
∏

j∈S
(x−η− j y)

��

1

��
(PS)+ C[x, y]

− ∏

j∈S
(y−η j x)

��
C[x, y]

∏

j∈S
(y−η j x)

��

(3.4)

The self-dual permutation type matrix bifactorisations of the form Pa:λ therefore have
to satisfy 2a ≡ − λ mod d. Depending on the parity of d, one finds:
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• d even: λ must be even and a ≡ λ
2 mod d or a ≡ λ+d

2 mod d,
• d odd: λ can be arbitrary and a ≡ d−1

2 λ mod d.

3.3. A tensor functor from Zd to Pd . Consider the algebra automorphism σ of C[x]
which acts on x as σ(x) = ηx . It leaves the potential xd invariant and generates the
group of algebra automorphisms with this property. We get a group isomorphism

Zd −→ Aut(C[x] with xd fixed), k �→ σ k .

Given a matrix bifactorisation M ∈ MFbi and a, b ∈ Zd , we denote by aMb the matrix
bifactorisation whose underlying C[x]-bimodule is equal to M as a Z2-graded C-vector
space, but has twisted left/right actions (p ∈ C[x], m ∈ M):

(p,m) �→ σ−a(p).m, (m, p) �→ m.σ b(p),

where the dots denotes the left/right action on the original bimodule M . Since Zd is
abelian, we get a left action even if we were to omit the minus sign in σ−a , but we
include it to match the conventions of [CR3, Sect. 7.1]. For permutation type matrix
bifactorisations we have isomorphisms:

PS−a−b

sa,b

��

C[x, y]

∏

j∈S
(x−η j−a−b y)



η−|S|a · σ−a⊗σ b

��

C[x, y]
∏

j∈S
(x−η j−a−b y)

��

σ−a⊗σ b

��
a(PS)b a(C[x, y])b

∏

j∈S
(x−η j y)


a(C[x, y])b

∏

j∈S
(x−η j y)

��

(3.5)

Here, σ−a ⊗σ b is the automorphism of C[x, y]which acts as x �→ η−ax and y �→ ηb y.
The following lemma is straightforward.

Lemma 3.5. For all a, b ∈ Zd , a(−)b defines an auto-equivalence ofHMFbi and of Pd .
If b = − a, this auto-equivalence is tensor with a(M ⊗ N )−a = aM−a ⊗ aN−a and
sa,−a : I → a I−a.

Consider the objects a I ∈ HMFbi for a ∈ Zd . Applying the functor a(−) to the unit
isomorphism λb I : I ⊗ b I → b I gives the isomorphism

μa,b := a(λb I ) : a I ⊗ b I → a+b I. (3.6)

ByZd wemean themonoidal categorywhose set of objects isZd ,whose set ofmorphisms
consists only of the identity morphisms, and whose tensor product functor is the group
operation (i.e. addition), see Appendix A.1.

Proposition 3.6. χ : Zd → Pd , χ(a) = a I , together with μa,b : χ(a) ⊗ χ(b) →
χ(a + b), defines a tensor functor.
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Proof. First note that by (3.5), a I � P{−a}, so that indeed χ(a) ∈ Pd . It is shown in
[CR3, Prop. 7.1] that the μa,b satisfy the associativity condition

μa,b+c ◦ (1a I ⊗ μb,c) = μa+b,c ◦ (μa,b ⊗ 1c I ) for all a, b, c ∈ Zd .

This amounts to the hexagon condition for the coherence isomorphisms μa,b. ��
We can now construct two tensor functors Zd → Aut⊗(Pd). The first functor takes

a ∈ Zd to a(−)−a ; we denote this functor by A. This functor is strictly tensor: A(0) = I d
and A(a) ◦ A(b) = A(a + b).

The second functor is the adjoint action of χ ; we denote it by Adχ . Given a ∈ Zd , on
objects the functor Adχ (a) acts as M �→ χ(a) ⊗ M ⊗ χ(−a). Morphisms f : M → N
getmapped to 1χ(a)⊗ f ⊗1χ(−a). The isomorphismsμ−a,a : χ(−a)⊗χ(a) → χ(0) = I
give the tensor structure on Adχ (a). So far we saw that for all a ∈ Zd , Adχ (a) ∈
Aut⊗(Pd). Next we need the coherence isomorphisms Adχ (a)◦ Adχ (b) → Adχ (a+b).
These are simply given by μa,b ⊗ (−) ⊗ μ−b,−a .

The following lemma will simplify the construction of Zd -equivariant structures
below.

Lemma 3.7. A and Adχ are naturally isomorphic as tensor functors.

Proof. We need to provide a natural monoidal isomorphism α : Adχ → A. That is, for
each a ∈ Zd we need to give a natural monoidal isomorphism α(a) : Adχ (a) → A(a),
such that the diagram

Adχ (a) ◦ Adχ (b)

α(a)◦α(b)
��

μ∗ �� Adχ (a + b)

α(a+b)
��

A(a) ◦ A(b) �� A(a + b)

(3.7)

commutes, where μ∗ := μa,b ⊗ (−) ⊗ μ−b,−a . Define

α(a)M := [
a I ⊗ M ⊗ −a I

a(λM )⊗(s−1−a,a)−a−−−−−−−−−−→ aM ⊗ I−a
a(ρM )−a−−−−−→ aM−a

]
.

α(a) is tensor:We need to verify commutativity of

Adχ (a)(M) ⊗ Adχ (a)(N )

α(a)M⊗α(a)N

��

∼ �� Adχ (a)(M ⊗ N )

α(a)M⊗N

��
A(a)(M) ⊗ A(a)(N ) �� A(a)(M ⊗ N )

where the top isomorphism is 1 ⊗ μ−a,a ⊗ 1. Commutativity of this diagram is a
straightforward calculation if one notes the following facts: M ⊗ −a I = M−a ⊗ I
and M−a ⊗ aN = M ⊗ N (equal as matrix factorisations, not just isomorphic), and

[
M ⊗ −a I

1⊗(s−1−a,a)−a−−−−−−−→ M ⊗ I−a
(ρM )a−−−→ M−a

] = [
M−a ⊗ I

ρM−a−−−→ ]
.

α satisfies (3.7): One way to see this is to act on elements. The unit isomorphisms (3.1)
are non-zero only on summands in the tensor products involving I0, in which case they
act as

λM : p(x, y) ⊗ m �→ p(x, x).m, ρM : m ⊗ p(x, y) �→ m.p(x, x).
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One verifies that the top and bottom path in (3.7) amount to mapping

u(x, y) ⊗ v(x, y) ⊗ m ⊗ p(x, y) ⊗ q(x, y) ∈ (a I )0 ⊗ (b I )0 ⊗ M ⊗ (−b I )0 ⊗ (−a I )0

to
{
σ−b(u(x, x)) v(x, x)

}
.m.

{
σ−b(p(x, x)) σ−a−b(q(x, x))

} ∈ a+bM−a−b.

��

3.4. A functor from TLκ toZd-equivariant objects inPd . WewritePZd
d for the category

of Zd -equivariant objects inPd , where the Zd action is given by the functor A defined in
the previous section. The definition and properties of categories of equivariant objects
are recalled in AppendixA.1.

By Theorem 2.4, our aim now is to find a tensor functor

F : TLκ → PZd
d .

According to Sect. 2.3.1, to construct a functor out of TLκ , we need to give a self dual
object, duality maps, and compute the resulting constant κ . We will proceed as follows:

1. Give a self dual object T ∈ Pd .
2. Give duality maps u, n, show they satisfy the zig-zag identities (2.5), and compute

κ .
3. Put a Zd -equivariant structure on T and show that the maps u, n are Zd -equivariant.

Step 1We listed self-dual objects of the from Pa:λ at the end of Sect. 3.2. ByTheorem3.4,
there are only two choices which match the tensor products required by Corollary 2.3. In
both cases, d is odd, and either λ = 1, a = (d−1)/2 or λ = d−3, a = (d−3)(d−1)/2.
Both choices can be used in the construction below; we will work with the first option:

d odd, T := Pd−1
2 :1 = P{

d−1
2 , d+12

}.

Explicitly,

T : C[x, y]
K (x,y)

��
C[x, y]

xd−yd

K (x,y)

�� ,

where

K (x, y) =
(
x − η

d−1
2 y

) (
x − η

d+1
2 y

)
= x2 + y2 + κxy,

κ = −
(
η

d−1
2 + η

d+1
2

)
= 2 cos π

d .

Writing κ for the coefficient of xy will be justified below, where we will find it to be the
parameter in TLκ .

Step 2Denote the isomorphism given in (3.4) by t : T → T +, t = (1,−1). Define maps
u : T ⊗ T → I and n : I → T ⊗ T via

u = [
T ⊗ T

t⊗1−−→ T + ⊗ T
evT−−→ I

]
, n = [

I
coevT−−−→ T ⊗ T + 1⊗t−1−−−→ T ⊗ T

]
. (3.8)



N = 2 Minimal Conformal Field Theories 615

From this one computes u ◦ n = κ . For example,

u0 ◦ n0 = AT (x + z + κy) = κ.

Together with the zig-zag identities for evT and coevT established in [CR2] we have
proved:

Proposition 3.8. u and n are morphisms in ZMFbi. The satisfy the zig-zag identities in
HMFbi, as well as n ◦ u = κ .

Step 3 We can make the PS Zd -equivariant via

τS;a : PS → a(PS)−a , τS;a = η
d+1
2 a(|S|−1) sa,−a , (3.9)

where sa,−a was given in (3.5). These maps satisfy a(τS;b)−a ◦τS;a = τS;a+b, as required
(cf. Appendix A.1). Note that on I = P{0}, the above Zd -equivariant structure is just

sa,−a : I → a I−a , in agreement with the one on the tensor unit of PZd
d as prescribed by

Lemma 3.5 and Proposition A.1.

Lemma 3.9. The maps evPS and coevPS composed with the isomorphism P−S � (PS)+

from (3.4) are Zd-equivariant.

Proof. For coev we need to check commutativity of

I
coevPS ��

sa,−a

��

PS ⊗ (PS)+
∼ �� PS ⊗ P−S

τS;a⊗τ−S;a
��

a I−a
a(coevPS )−a �� a(PS ⊗ (PS)+)−a

∼ �� a(PS)−a ⊗ a(P−S)−a
= a(PS ⊗ P−S)−a

which follows straightforwardly by composing the various maps. The corresponding
diagram for ev is checked analogously. ��
Corollary 3.10. u and n are Zd-equivariant morphisms.

According to Sect. 2.3, at this point we proved the existence of the tensor functor
TLκ → PZd

d . To describe its image and to show that it annihilates the non-trivial tensor
ideal in TLκ , we need to introduce a graded version of the above construction.

3.5. Graded matrix factorisations. There are several variants of graded matrix factori-
sations, see e.g. [KR,HW,Wu,CR1]. The following one is convenient for our purpose.
We take the grading group to be C, which is natural from the relation to the R-charge in
conformal field theory, but other groups are equally possible. For example, to construct
the tensor equivalence in Theorem 3.16, the grading group d−1

Z is sufficient.

Definition 3.11. Let S be a C-graded k-algebra such that W ∈ S has degree 2. A C-
graded matrix factorisation of W over S is a matrix factorisation (M, d) of W over S
such that the S action on M is compatible with the C-grading and d has C-degree 1.
That is, if q(s) (resp. q(m)) denotes the C-degree of a homogeneous element of S (resp.
M), then q(s.m) = q(s) + q(m) and q(d(m)) = q(m) + 1.



616 A. Davydov, A. Ros Camacho, I. Runkel

In analogy with Sect. 3.1 we defineMFgrS,W , ZMFgrS,W and HMFgrS,W to haveC-graded
matrix factorisations as objects and only C-degree zero morphisms. For example,

HMFgrS,W (M, N ) = {
f ∈ ZMFS,W (M, N ) | f has C-degree 0

}

/
{
δ(g)

∣∣ g : M → N is S-linear, Z2-odd and of C-degree −1
}
.

The same definitions apply to matrix bifactorisations, giving categories MFgrbi;S,W , etc.
Under tensor products, the C-degree is additive.

Remark 3.12. In the present setting of graded matrix factorisation, the implication in
Remark 3.2 is an equivalence [Wu, Cor. 4.9]: f ∈ HMFgrbi (M, N ) is an isomorphism in
HMFgrbi if and only if the induced map H( f ) : H(M) → H(N ) is an isomorphism of
C-vector spaces.

We will again restrict our attention to the case S = C[x] and W = xd , so that
q(x) = 2

d .
As an example, let us describe allC-gradings on permutation type matrix bifactorisa-

tions. TheC-grading onC[x, y] is fixed by choosing the degree of 1. Let thusC[x, y]{α}
be the graded C[x]−C[x]-bimodule with q(1) = α. The possible C-gradings on PS are

PS{α} : C[x, y]{α + 2
d |S| − 1}

d1= ∏

j∈S
(x−η j y)


C[x, y]{α}

d0= ∏

j∈S
(x−η j y)




.

The unit isomorphism λM given in (3.1) above becomes a morphism in HMFgrbi precisely
if the unit object is C-graded as

I = P{0}{0}.
To see this note that xm yn ∈ I0 = C[x, y] will act as a degree 2(m + n)/d map on M .
With this charge assignment for I , HMFgrbi is tensor.

Next we work out the grading on M+ for M with M0 and M1 of rank 1. We first
convince ourselves that for a homogeneous p ∈ C[x, y, z] we have deg(AM (p)) =
deg(p) − deg(dM

1 (x, y)) + 1, where deg denotes the polynomial degree. So if M0 =
C[x, y]{α}, for AM to give a C-degree 0 map, we need M+

0 = C[x, y]{−α + 2
d (1 −

deg(dM
1 ))} (cf. [CR2, Sect. 2.2.4]). This forces the C-grading to be

M : C[x, y]{α + 2
d deg(d1) − 1}

d1(x,y)

C[x, y]{α}

d0(x,y)
��

� M+ : C[x, y]{−α − 1 + 2
d }

dM+
1 :=−d1(y,x)��

C[x, y]{−α + 2
d (1 − deg(d1))}

dM+
0 :=d0(y,x)




.

One can check that ev and coev are indeed degree 0 maps with respect to these gradings.
Note that we have I + = I also as graded matrix bifactorisations.
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In the next section we will be interested in the PS{α} with α = 1−|S|
d . We abbreviate

these as P̂S . This subset of graded permutation type matrix bifactorisations is closed
under taking duals:

(P̂S)
+ � P̂−S, where P̂S = PS

{ 1−|S|
d

}
.

An explicit isomorphism is again given by (3.4), which is easily checked to have C-
degree 0.

The next two lemmas show that the P̂S generate (under direct sums) a semi-simple
subcategory of HMFgrbi .

Lemma 3.13. ZMFgrbi (P̂R, P̂S) is C1 if R = S and 0 else.

Proof. Write α = 1−|R|
d and β = 1−|S|

d , such that P̂R = PR{α} and P̂S = PS{β}. The
morphism space ZMFbi(PR, PS) is given by all (p, q) with p, q ∈ C[x, y] such that
p · dPR

1 = dPS
1 · q. For (p, q) to be also in ZMFgrbi (PR{α}, PS{β}), we need p, q to be

homogeneous and α = β + 2
d deg(p) and α + 2

d |R| − 1 = β + 2
d |S| − 1 + 2

d deg(q). This
simplifies to 2 deg(p) = |S| − |R| and 2 deg(q) = |R| − |S|, which is possible only for
|R| = |S|, in which case p, q are constants. Finally, the condition p · dPR

1 = dPS
1 · q has

non-zero constant solutions only if R = S. ��
Lemma 3.14. P̂∅ and P̂Zd are zero objects in HMFgrbi . For R, S �= ∅, Zd we have

HMFgrbi (P̂R, P̂S) = ZMFgrbi (P̂R, P̂S).

Proof. That P̂∅ and P̂Zd are zero objects in HMFgrbi follows since one component of
the twisted differential is 1, and hence there is a contracting homotopy for the identity
morphism.

Let now R, S be nonempty proper subsets of Zd . For the second part of the statement
one checks that there are no Z2-odd morphisms of C-degree −1 from P̂R to P̂S . For
example, a C-degree −1 map ψ0 : (P̂R)0 → (P̂S)1 has to satisfy

1 + |S|
d

− 1 +
2 deg(ψ0(x, y))

d
− 1 − |R|

d
= −1,

where deg(ψ0) is the polynomial degree of ψ0(x, y). Thus, deg(ψ0) = −|S|+|R|
2 , and

ψ0 can be non-zero only if |R| = |S| = 0. An analogous computation for ψ1 shows
deg(ψ1) = |S|+|R|

2 − d, and so ψ1 can be non-zero only if |R| = |S| = d. ��
We now focus on the graded matrix factorisations P̂a:λ, i.e. the PS{α} with S =

{a, a + 1, . . . , a + λ} and α = −λ/d. We define

Pgr
d = 〈

P̂a:λ
∣∣ a ∈ Zd , λ ∈ {0, . . . , d − 2}〉⊕ ⊂ HMFgrbi ,

i.e. the full subcategory of HMFgrbi consisting of objects isomorphic, in HMFgrbi , to finite
direct sums of the P̂a:λ.

We now need to check whether the decomposition of tensor products in Theorem 3.4
carries over to the graded case. This could be done by adapting the method used in [BR],
which works in the stable category of C[x, y]/〈xd − yd〉 modules. We give a related but
different proof by providing explicit C-charge 0 embeddings of the direct summands in
the decomposition of P̂a:1⊗ P̂b:λ and proving that they give an isomorphism via Remark
3.12. This is done in Appendix B
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Theorem 3.15. The category Pgr
d is semi-simple with simple objects P̂a:λ, a ∈ Zd and

λ ∈ {0, 1, . . . , d−2}. It is closed under tensor products and the direct sumdecomposition
of P̂m:λ ⊗ P̂n:ν in HMFgrbi is as in Theorem 3.4.

3.6. A functor from TLκ to Zd-equivariant objects inPgr
d . The morphismsμa,b in (3.6)

have C-degree 0. The functor χ in Proposition 3.6 therefore also defines a tensor functor

χ : Zd −→ Pgr
d .

As in Sect. 3.3 we obtain two tensor functors A, Adχ : Zd → Aut⊗(Pgr
d ). The natural

monoidal isomorphism A → Adχ established in Lemma 3.7 uses only C-degree 0
morphisms.

Next we follow the three steps in Sect. 3.4 and verify that they carry over to the
C-graded setting. Consider the self-dual object T̂ ∈ Pgr

d . The duality maps n and u from
(3.8) are of C-degree 0 since t , evT , coevT are. The maps τ from (3.9) are equally of
C-degree 0 and hence equip T̂ with a Zd -equivariant structure. The proof of Lemma 3.9
still applies and shows that u and n are Zd -equivariant morphisms in HMFgrbi .

By Sect. 2.3.1 the data T̂ , τ , u and n determine a tensor functor

F : TLκ → (
Pgr
d

)Zd
.

Here we used that T̂ ∈ Pgr
d and that by Theorem 3.15, Pgr

d is a full tensor subcategory
of HMFgrbi .

Theorem 3.16. There is a tensor equivalence G : C(N = 2, d)NS → Pgr
d such that

G([l, l + 2m]) � P̂m:l .

Proof. Corollary 2.3 and the tensor product established in Theorem 3.15 show that F
is not faithful and induces a fully faithful embedding F̃ : Tκ → (Pgr

d )Zd . By Theorem
2.4 the embedding F̃ gives rise to the functor G : C(N = 2, d)NS → Pgr

d . The functor
G is fully faithful (it sends simple objects to simple objects) and surjective on (simple)
objects. Thus, G is an equivalence.

Recall that the Zd -action on Pgr
d is such that a ∈ Zd gets mapped to a I ∼= P{−a},

and that F̃ maps T ∈ Tκ to P̂d−1
2 :1 ∈ Pgr

d . We choose the monoidal embedding Zd →
C(N = 2, d) as a �→ [0,−2a] (to avoid this minus sign, one can define χ in Proposition
3.6 as χ(a) = −a I , resulting in lots of minus signs in other places). The induced tensor
functor G obeys G([1, d]) = P̂d−1

2 :1 and G([0, 2a]) = P{a}. ��

Remark 3.17. Note that one can replace η with any other primitive d’th root of unity ηl

(here l is coprime to d). In particular replacing η with ηl in (3.3) gives another matrix
bifactorisation, PS(ηl). It is not hard to see that P{ d−1

2 , d+12 }(ηl) is a self-dual object of
dimension κl = 2 cos πl

d and defines a fully faithful embedding Tκl → HMFbi. Its image
is additively generated by the direct summands in tensor powers of P{ d−1

2 , d+12 }(ηl) and
can be computed explicitly fromTheorem3.15with ηl in place of η. This is an instance of
the action of a Galois group on categories of matrix factorisation, see [CRCR, Rem.2.9]
for a related discussion.
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A. Equivariant Objects and Pointed Categories

Here we collect some (well known) categorical trivialities which allow us to avoid
difficult calculations with matrix bifactorisations. Throughout Appendix A all tensor
(and in particular all fusion) categories will be assumed to be strict. In labels for some
arrows in our diagrams we suppress tensor product symbols for compactness.

A.1. Categories of equivariant objects. Let G be a group. An action of G on a tensor
category C is a monoidal functor F : G → Aut⊗(C) from the discrete monoidal
category G to the groupoid of tensor autoequivalences of C. More explicitly, a G-action
on C consists of a collection {Fg}g∈G of tensor autoequivalences Fg : C → C labelled
by elements of G together with natural isomorphisms φ f,g : Ff ◦ Fg → Ff g of tensor
functors such that φ f,e = 1, φe,g = 1 and such that the diagram

Ff ◦ Fg ◦ Fh
φ f,g◦1 ��

1◦φg,h

��

Ff g ◦ Fg

φ f g,h

��
Ff ◦ Fgh

φ f,gh �� Ff gh

commutes for any f, g, h ∈ G.
Let C be a tensor category togetherwith aG-action. An object X ∈ C isG-equivariant

if it comes equipped with a collection of isomorphisms xg : X → Fg(X) such that the
diagram

X
x f g ��

x f

��

Ff g(X)

Ff (X)
Ff (xg)

�� Ff (Fg(X))

φ f,g

��

commutes for any f, g ∈ G.
A morphism a : X → Y between G-equivariant objects (X, xg), (Y, yg) is G-

equivariant if the diagram

X
xg ��

a

��

Fg(X)

Fg(a)

��
Y

yg �� Fg(Y )

commutes for any g ∈ G. Denote by CG the category of G-equivariant objects in C.
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Proposition A.1. Let C be a strict tensor category with a G-action. Then the category
CG is strict tensor with tensor product (X, xg)⊗(Y, yg) = (X⊗Y, (x |y)g), where (x |y)g
is defined by

X⊗Y
xg yg �� Fg(X)⊗Fg(Y )

(Fg)X,Y �� Fg(X⊗Y )

and with unit object (I, ι), where ιg : I → Fg(I ) is the unit isomorphism of the tensor
functor Fg.

Proof. All we need to check is that the G-equivariant structures of the triple tensor
products (X, xg)⊗((Y, yg)⊗(Z , zg)) and ((X, xg)⊗(Y, yg))⊗(Z , zg) coincide. These
G-equivariant structures x |(y|z), (x |y)|z are the top and the bottom outer paths of the
diagram

X⊗Y⊗Z
xg ygzg

�����
����

����
����

���

Fg(X)⊗Fg(Y )⊗Fg(Z)
(Fg)X,Y 1 ��

1(Fg)Y,Z

��

Fg(X⊗Y )⊗Fg(Y )

(Fg)XY,Z

��
Fg(X)⊗Fg(Y⊗Z)

(Fg)X,Y Z �� Fg(X⊗Y⊗Z)

whose commutativity is the coherence of the tensor structure of Fg . ��
Clearly the forgetful functor

CG → C, (X, x) �→ X

is tensor.

Remark A.2. It is possible to definemore generalG-actions on (tensor) categories involv-
ing associators for G (3-cocycles for G). All constructions generalise straightforwardly.

A.2. Inner actions and monoidal centralisers of pointed subcategories. An object P of
a tensor category C is invertible if the dual object P∗ exists and the evaluation evP :
P∗⊗P → I and coevaluation coevP : I → P⊗P∗ maps are isomorphisms. Clearly an
invertible object is simple since C(P, P) � C(I, I ) = k.

The set Pic(C) of isomorphism classes of invertible objects is a group with respect
to the tensor product (the Picard group of C). Choosing a representative s(p) in each
isomorphism class p ∈ Pic(C) and isomorphisms σ(p, q) : s(p)⊗s(q) → s(pq) for
each pair p, q ∈ Pic(C) allows us to define a function α : Pic(C)×3 → k∗ (here k∗
is the multiplicative group of non-zero elements of k). Indeed for p, q, r ∈ Pic(C) the
composition

s(pqr)
σ(pq,r)−1

−−−−−−→ s(pq)⊗s(r)
σ(p,q)−1 1−−−−−−→ s(p)⊗s(q)⊗s(r)

1 σ(q,r)−−−−→
s(p)⊗s(qr)

σ(p,qr)−−−−→ s(pqr)

is an automorphismof s(pqr) and thus has a formα(p, q, r)1s(pqr) for someα(p, q, r) ∈
k∗. It is easy to see that α is a 3-cocycle and that the class [α] ∈ H3(Pic(C),k∗) does
not depend on the choice of s and σ .
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A tensor category C is pointed if all its simple objects are invertible. A fusion pointed
category C can be identified with the categoryV(G, α) ofG-graded vector spaces, where
G = Pic(C) and with the associativity constraint twisted by α ∈ H3(Pic(C),k∗).

Let P be an invertible object of a tensor category C. The functor

P⊗ − ⊗P∗ : C → C, X �→ P⊗X⊗P∗

comes equipped with a monoidal structure

P⊗X⊗P∗⊗P⊗Y⊗P∗ 1 evP 1 �� P⊗X⊗Y⊗P∗

making it a tensor autoequivalence, the inner autoequivalence corresponding to P . The
assignment P �→ P⊗−⊗P∗ defines a homomorphism of groups Pic(C) → Aut⊗(C).

The monoidal centraliser ZD(F) of a tensor functor C → D is the category of pairs
(Z , z), where Z ∈ D and zX : Z⊗F(X) → F(X)⊗Z are a collection of isomorphisms,
natural in X ∈ C, such that ZI = 1 and such that the diagram

Z⊗F(X⊗Y )

1 FX,Y

��

zXY �� F(X⊗Y )⊗Z

FX,Y 1
��

Z⊗F(X)⊗F(Y )

zX 1 �����
����

����
���

F(X)⊗F(Y )⊗Z

F(X)⊗Z⊗F(Y )

1 zY

����������������

commutes for any X,Y ∈ C. A morphism (Z , z) → (Z ′, z′) in ZD(F) is a morphism
f : Z → Z ′ in D such that the diagram

Z⊗F(X)
zX ��

f 1
��

F(X)⊗Z

1 f
��

Z ′⊗F(X)
z′X �� F(X)⊗Z ′

commutes for any X ∈ C.
Proposition A.3. Let F : C → D be a tensor functor between strict tensor cate-
gories. Then the monoidal centraliser ZD(F) is strict tensor with the tensor product
(Z , z)⊗(Z ′, z′) = (Z⊗Z ′, z|z′) where (z|z′)X is defined by

Z⊗Z ′⊗F(X)
(z|z′)X ��

1 z′X ����
���

���
���

� F(X)⊗Z⊗Z ′

Z⊗F(X)⊗Z ′
zX 1

��������������

and with the unit object (I, 1).

Proof. Note that the monoidal centraliser ZD(I dD) of the identity functor I dD : D →
D is the monoidal centre Z(D). The proof of the proposition is identical to the proof of
monoidality of the monoidal centre (see [JS2]). ��
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Clearly the forgetful functor

ZD(F) → D, (Z , z) �→ Z

is tensor.
Let G be a group and V(G) be the pointed tensor category whose group of iso-

morphism classes of objects is G and which has trivial associator. A tensor func-
tor F : V(G) → C gives rise to the action of G on C by inner autoequivalences
Fg(X) = F(g)⊗X⊗F(g)∗, g ∈ G.

Theorem A.4. Let G be a group and let C be a tensor category with a tensor functor
F : V(G) → C. Then the monoidal centraliser ZC(F) is tensor equivalent to the
category of G-equivariant objects CG, where the G-action is defined by the functor
V(G) → C as above.

Proof. Define a functor ZC(F) → CG by assigning to (Z , z) ∈ ZC(F) a G-equivariant
object (Z , z̃g)g∈G with z̃g : Z → Fg(X) = F(g)⊗X⊗F(g)∗ given by

Z
1 coevF(g) �� Z⊗F(g)⊗F(g)∗

zg 1 �� F(g)⊗Z⊗F(g)∗ .

It is straightforward to see that this is a tensor equivalence. ��

A.3. Tensor functors from products with pointed categories. Recall from [De,BK] that
the Deligne product C �D of k-linear semi-simple categories C andD is a semi-simple
category with simple objects X � Y for X and Y being simple objects of C and D
correspondingly. One can extend the definition of X � Y to arbitrary X ∈ C and Y ∈ D.
The hom spaces between these objects are

(C � D)(X � Y, X ′ � Y ′) = C(X, X ′)⊗kD(Y,Y ′) ,

where on the right is the tensor product of vector spaces over k.
The Deligne product of fusion categories is fusion with the unit object I � I and the

tensor product defined by

(X � Y )⊗(X ′ � Y ′) = (X⊗X ′) � (Y⊗Y ′).

The Deligne product of fusion categories has another universal property, which we
describe next.

We say that a pair of tensor functors Fi : Ci → D has commuting images if they
come equipped with a collection of isomorphisms cX1,X2 : F1(X1)⊗F2(X2) → F2(X2)

⊗F1(X1) natural in Xi ∈ Ci and such that the following diagrams commute for all
Xi ,Yi ∈ Ci :

F1(X1)⊗F2(I )
cX1 ,I ��

��

F2(I )⊗F1(X1)

��
F1(X1)⊗I �� F1(X1) �� I⊗F1(X1)

F1(I )⊗F2(X2)
cI,X2 ��

��

F2(X2)⊗F1(I )

��
I⊗F2(X2) �� F2(X2) �� F2(X2)⊗I
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F1(X1⊗Y1)⊗F2(X2)
cX1Y1,X2 ��

(F1)X1,Y1 1

��

F2(X2)⊗F1(X1⊗Y1)

1(F1)X1,Y1

��
F1(X1)⊗F1(Y1)⊗F2(X2)

1cY1,X2 �����
����

����
����

��
F2(X2)⊗F1(X1)⊗F1(Y1)

F1(X1)⊗F2(X2)⊗F1(Y1)

cX1,X2 1

�������������������

F1(X1)⊗F2(X2⊗Y2)
cX1,X2Y2 ��

1(F2)X2 ,Y2

��

F2(X2⊗Y2)⊗F1(X1)

(F2)X2 ,Y2 1

��
F1(X1)⊗F2(X2)⊗F2(Y2)

cX1,X2 1 �����
����

����
����

��
F2(X2)⊗F2(Y2)⊗F1(X1)

F2(X2)⊗F1(X1)⊗F2(Y2)

1cX1,Y2

�������������������

Proposition A.5. The Deligne product C1 � C2 of fusion categories C1 and C2 is the
initial object among pairs of tensor functors Fi : Ci → D with commuting images, that
is for a pair of tensor functors Fi : Ci → D with commuting images there is a unique
tensor functor F : C1 � C2 → D making the diagram

C1

���
��

��
��

��

F1

��	
		

		
		

		
		

		
		

C2

��














F2

����
��
��
��
��
��
��
�

C1 � C2
F
��
D

commutative.

Proof. Note that the assignments X1 �→ X1 � I, X2 �→ I � X2 define a pair of tensor
functors Ci → C1 � C2 with commuting images.

Conversely, let Fi : Ci → D be a pair of tensor functors with commuting images.
Define F : C1 � C2 → D by F(X1 � X2) = F1(X1)⊗F2(X2). Since C1 and C2 are
fusion, this determines F uniquely as a k-linear functor. The monoidal structure for F
is uniquely determined to be

F(X1 � X2)⊗F(Y1 � Y2)

��

FX1�X2,Y1�Y2 �� F
(
(X1 � X2)⊗(Y1 � Y2)

)

��
F(X1)⊗F(X2)⊗F(Y1)⊗F(Y2)

1cX2,Y11

��

F
(
(X1⊗Y1) � (X2⊗Y2)

)

��
F(X1)⊗F(Y1)⊗F(X2)⊗F(Y2)

(F1)X1,Y1 (F2)X2,Y2 �� F1(X1⊗Y1)⊗F2(X2⊗Y2)
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It is straightforward to check that this definition satisfies the coherence axioms of a
monoidal structure. ��
Remark A.6. Note that the data of a pair of tensor functors Fi : Ci → D with commuting
images amounts to a tensor functor C1 → ZD(F2)whose composition with the forgetful
functor ZD(F2) → D equals F1.

Theorem A.7. Let C be a fusion category and let G be a finite group. Then the data
of a tensor functor C � V(G) → D amounts to a tensor functor V(G) → D and a
tensor functor C → DG, where the G-action is defined by the functor V(G) → D as in
Appendix A.2.

Proof. By Proposition A.5 a tensor functor C � V(G) → D corresponds to a pair of
tensor functors F : V(G) → D, F ′ : C → D with commuting images. By Remark
A.6 this is equivalent to a tensor functor C → ZD(F) to the centraliser of F . Finally
by Theorem A.4 the centraliser ZD(F) is canonically equivalent to the category of
equivariant objects DG . ��
Remark A.8. It is possible to extend Theorem A.7 to the case of pointed categories
V(G, α)with non-trivial associatorsα ∈ Z3(G,k∗).As forRemarkA.2 all constructions
generalise straightforwardly.

B. Proof of Theorem 3.15

Semi-simplicity of Pgr
d follows from Lemma 3.14, as does the list of simple objects.

Let λ,μ ∈ {0, 1, . . . , d − 2} and a, b ∈ Zd . To show the decomposition rule

P̂a:λ ⊗ P̂b:μ �
min(λ+μ,2d−4−λ−μ)⊕

ν=|λ−μ| step 2
P̂a+b+ 1

2 (λ+μ−ν):ν , (B.1)

we verify the cases λ = 0 and λ = 1 explicitly. The general case follows by a standard
argument using induction on λ.
Case λ = 0:The isomorphism P̂a:0⊗ P̂b:μ � P̂a+b:μ is immediate from the isomorphism
P̂a:0 � −a I given in (3.5), the isomorphism −a I ⊗ M → −aM provided by −a(λM ) for
any matrix factorisation M , and −a(PS) � PS+a , again from (3.5).
Case λ = 1: For μ = 0 the isomorphism P̂a:1 ⊗ P̂b:0 � P̂a+b:1 constructed as in case
λ = 0, using Pb:0 � I−b. To show the decomposition (B.1) for μ ∈ {1, 2, . . . , d − 2}
we start by giving maps

g− : P̂a+b+1:μ−1 −→ P̂a:1 ⊗ P̂b:μ , g+ : P̂a+b:μ+1 −→ P̂a:1 ⊗ P̂b:μ

in ZMFgrbi . Write A = P̂a:1, B = P̂b:μ, Q− = P̂a+b+1:μ−1 and Q+ = P̂a+b:μ+1. We have
to find gε

i j , ε = ±1, that fit into the diagram
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Qε

��

C[x, z]
{

μ+2+ε
d − 1

}
qε(x,z)

		

(
gε
10
gε
01

)

��

C[x, z]
{
−μ+ε

d

}

xd−zd
qε(x,z)





(
gε
00
gε
11

)

��

A⊗B

C[x, y, z]
{
3−μ
d − 1

}

⊕
C[x, y, z]

{
1+μ
d − 1

}

⎛

⎝
p1(x,y) pμ(y,z)

− yd−zd

pμ(y,z)
xd−yd

p1(x,y)

⎞

⎠

		 C[x, y, z]
{
−μ+1

d

}

⊕
C[x, y, z]

{
5+μ
d − 2

}
⎛

⎜
⎝

xd−yd

p1(x,y)
−pμ(y,z)

yd−zd

pμ(y,z) p1(x,y)

⎞

⎟
⎠





(B.2)
Here,

p1(x, y) = (x − ηa y)(x − ηa+1y) , q−(x, z) =
a+b+μ∏

j=a+b+1

(x − η j z) ,

pμ(y, z) =
b+μ∏

j=b

(y − η j z) , q+(x, z) =
a+b+μ+1∏

j=a+b

(x − η j z).

Comparing C-degrees determines the polynomial degrees of the individual maps to be

deg
(
gε
10

) = μ − 1
2 (1 − ε) , deg

(
gε
00

) = 1
2 (1 − ε) ,

deg
(
gε
01

) = 1
2 (1 + ε) , deg

(
gε
11

) = d − 2 − μ − 1
2 (1 + ε).

Commutativity of (B.2) is equivalent to

(i) qε(x, z) g
ε
00(x, y, z) = p1(x, y) g

ε
10(x, y, z) + pμ(y, z) gε

01(x, y, z)

(ii) qε(x, z) g
ε
11(x, y, z) = − yd − zd

pμ(y, z)
gε
10(x, y, z) +

xd − yd

p1(x, y)
gε
01(x, y, z)

These conditions imply the remaining two conditions. Let us show how one arrives at
g− in some detail and then just state the result for g+.

We have deg(g−
01) = 0 and we make the ansatz g−

01 = 1 (choosing g−
01 = 0 forces

g− = 0, so this is really a normalisation condition). The polynomial g−
00 is of degree

1, so g−
00(x, y, z) = αx + βy + γ z for some α, β, γ ∈ C. Condition (i) determines g−

10
uniquely to be

g−
10(x, y, z) = q−(x, z)(αx + βy + γ z) − pμ(y, z)

p1(x, y)
.
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We need to impose the condition that g−
10 is a polynomial. This amounts to verifying

that the numerator has zeros for y = η−ax and y = η−a−1x . Using

pμ(μ−ax, z) = q−(x, z) η−a(μ+1)(x − ηa+bz) ,

pμ(μ−a−1x, z) = q−(x, z) η−(a+1)(μ+1)(x − ηa+b+μ+1z)

gives the unique solution

g−
00(x, y, z) = η−aμ

(
− η−a−1 1 − η−μ

1 − η−1 x +
1 − η−μ−1

1 − η−1 y − ηb z

)
.

Finally, a short calculation shows that condition (ii) is equivalent to

g−
11 = 1

p1(x, y)

(
xd − zd

q−(x, z)
− yd − zd

pμ(y, z)
g−
00(x, y, z)

)
.

The term in brackets is clearly a polynomial. To show that it is divisible by p1(x, y),
one simply verifies that the term in brackets is zero for y = η−ax and y = η−a−1x .

For g+ the calculation works along the same lines with the result

g+00 = 1

g+01 = ηa(μ+1)
(
1 − ημ+2

1 − η
x − ηa+1

1 − ημ+1

1 − η
y − ηa+b+μ+1 z

)

g+10 = q+(x, z) − pμ(y, z) g+01(x, y, z)

p1(x, y)

g+11 = 1

p1(x, y)

(
xd − zd

q+(x, z)
g+01(x, y, z) − yd − zd

pμ(y, z)

)

As above, one verifies that the g+10 and g+11 are indeed polynomials in x, y, z.
We will now establish that (g−, g+) : P̂a+b+1:μ−1 ⊕ P̂a+b:μ+1 −→ P̂a:1 ⊗ P̂b:μ

is an isomorphism in HMFbi (and thereby also in HMFgrbi as g± have C-degree 0).
We do this by employing Remark 3.12, that is, by showing that (H(g−), H(g+)) :
H(P̂a+b+1:μ−1) ⊕ H(P̂a+b:μ+1) −→ H(P̂a:1 ⊗ P̂b:μ) is an isomorphism.

For P̂S we have H(P̂∅) = H(P̂Zd ) = 0 and H(P̂S) = C ⊕ C if S �= ∅, Zd . The first
case occurs only for μ = d − 2, where H(P̂a+b:μ+1) = 0.

For H(P̂a:1 ⊗ P̂b:μ) we need to compute the homology of the complex

C[y]
⊕

C[y]

(
η2a+1y2 yμ+1

−yd−μ−1 −η−2a−1yd−2

)

�� C[y]
⊕

C[y](
−η−2a−1yd−2 −yμ+1

yd−μ−1 η2a+1y2

)
��

Define the vectors v0 := (η2a+1,−yd−μ−3) (this has second entry equal to y−1 for
μ = d−2, but the results below are polynomial nonetheless) and v1 = (−yμ−1, η2a+1).
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One finds

ker(d̄0) = C[y]v0 ·
{
1; μ < d − 2
y; μ = d − 2

ker(d̄1) = C[y]v1

im(d̄1) = y2C[y]v0 im(d̄0) = yC[y]v1 ·
{
y; μ < d − 2
1; μ = d − 2

Writing [· · · ] for the homology classes, the homology groups Hi := Hi (P̂a:1 ⊗ P̂b:μ)

are given by

H0 =
{

{[v0], [yv0]}; μ < d − 2
{[yv0]}; μ = d − 2

, H1 =
{

{[v1], [yv1]}; μ < d − 2
{[v1]}; μ = d − 2

.

The map (g−, g+) acts on homology by, for μ < d − 2,

H0(g
−, g+) =

(
η−2a−1β− [yv0] , η−2a−1[v0]

)
,

H1(g
−, g+) =

(
η−2a−1[v1] , η−2a−1β+ [yv1]

)
.

Here β− is the coefficient of y in g−
00 and β+ is the coefficient of y in g+01. Forμ = d−2,

the second entry in the abovemaps is absent, as H(P̂a+b:μ+1) = 0 in this case. Altogether
we see that H(g−, g+) is indeed an isomorphism.

This proves the decomposition P̂a:1 ⊗ P̂b:μ � P̂a+b+1:μ−1 ⊕ P̂a+b:μ+1 in HMFgrbi and
completes the proof of Theorem 3.15.
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