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Meta-analysis of prediction model
performance across multiple studies:
Which scale helps ensure between-study
normality for the C-statistic and
calibration measures?
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Abstract

If individual participant data are available from multiple studies or clusters, then a prediction model can be externally

validated multiple times. This allows the model’s discrimination and calibration performance to be examined across

different settings. Random-effects meta-analysis can then be used to quantify overall (average) performance and

heterogeneity in performance. This typically assumes a normal distribution of ‘true’ performance across studies. We

conducted a simulation study to examine this normality assumption for various performance measures relating to a

logistic regression prediction model. We simulated data across multiple studies with varying degrees of variability in

baseline risk or predictor effects and then evaluated the shape of the between-study distribution in the C-statistic,

calibration slope, calibration-in-the-large, and E/O statistic, and possible transformations thereof. We found that a

normal between-study distribution was usually reasonable for the calibration slope and calibration-in-the-large;

however, the distributions of the C-statistic and E/O were often skewed across studies, particularly in settings with

large variability in the predictor effects. Normality was vastly improved when using the logit transformation for the C-

statistic and the log transformation for E/O, and therefore we recommend these scales to be used for meta-analysis. An

illustrated example is given using a random-effects meta-analysis of the performance of QRISK2 across 25 general

practices.
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1 Introduction

Clinical prediction models aim to guide clinical decision-making by accurately predicting the probability of an
outcome in patients, for either diagnostic (i.e. to predict existing outcomes, usually disease presence) or prognostic
purposes (i.e. to predict future outcomes).1,2 Prediction models are often developed using multivariable regression
analysis, and typically include a combination of two or more variables (‘predictors’) to predict the outcome.
Statistically, for a prediction model to perform well, it should have good calibration and discrimination.3,4

Discrimination of the model is its ability to distinguish between patients who have the outcome of interest and
those that do not. Calibration is how well the predicted probabilities from the model agree with the observed
outcome frequencies in the data.
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Prediction models often perform well in the data used to develop the model, but worse when applied to new
subjects.1,3,5 Therefore, it is strongly recommended to externally validate prediction models using independent
data, not used for the development.6–8 Ideally, a model should be externally validated in various samples, to
evaluate its potential generalisability and need for re-calibration or other model updating.8–10 This is possible when
multiple sources of data are available, such as individual participant data (IPD) from different countries, studies or
clusters (e.g. centres in registry data).11–13

Recently, random-effects meta-analysis has been recommended to summarise predictive performance measures
of a model that have been validated across multiple studies or clusters,14–17 and to assess the presence of
unexplained (statistical) heterogeneity in these measures. It has previously been shown that between-study
heterogeneity is highly likely due to changes in case mix variation, baseline risk, and predictor effects.15,17–20

For this reason, evaluating the impact of such heterogeneity is crucial to fully appraise the summary
performance of a developed prediction model and to evaluate its potential generalisability. In this regard,
prediction intervals offer a valuable asset, as these intervals describe the likely range of model performance in a
new population or setting similar to one of those included in the analysed studies. Hereto, they account for
imprecision of the summary performance estimates and for heterogeneity (variability) of ‘true’ performance
across studies.

A standard model for random-effects meta-analysis assumes that the ‘true’ performance is normally distributed
within and across studies.21,22 When studies are reasonably large, within-study normality of performance estimates
can be justified by appealing to the central limit theorem. In particular, maximum likelihood estimates are known
to be approximately normally distributed. However, in terms of the between-study distribution of true
performance, the assumption of normality is usually based on convenience, rather than any sound reasoning.23

Yet, the assumption is fundamentally important when making predictive inferences about potential performance
in new studies or populations; for example, when deriving a 95% prediction interval for the potential calibration
slope in a new study.14,22

Lee and Thomson explored flexible parametric models for random-effects meta-analysis when the normality
assumption between studies does not hold, and highlight that it is important to allow for skewing, especially
when the predictive distribution is of interest.24 In a novel case study, Van Klaveren et al. showed the
importance of random effects meta-analysis for examining the discrimination performance of a prediction
model in clustered data, and considered the distributional assumption when pooling C-statistics across
clusters.14 Plotting standardised residuals for both the original C-statistic scale and the logit scale, the
authors concluded that the original C-statistic scale was the most appropriate in their particular
example.However, in general they recommend that to ‘decide if the meta-analysis should be undertaken on
the probability scale or the log-odds scale we suggest considering the normality assumptions on both scales by
normal probability plots and Shapiro-Wilk tests of the standardized residuals’. Though this can be helpful, it
may be difficult to disentangle the within-study variability (sampling error of study-specific C-statistic estimates)
from the between-study variability (heterogeneity in the true C-statistic across studies, e.g. due to differences in
case-mix). Furthermore, when the number of studies is small, it is hard to ascertain whether observed
discrepancies with normality are genuine or simply due to chance. In such situations, it is also helpful to
consider external empirical evidence, for example about the between-study distribution of the C-statistic and
logit C-statistics observed in large-scale simulation studies. Simulation also allows multiple performance
statistics to be evaluated, for example to summarise calibration performance, for which normality of
between-study distributions is also of interest.

This motivates us, therefore, to perform an extensive simulation study to examine the true between-study
distribution of the C-statistic and other model performance measures in a wide set of situations. We do this
through simulated individual participant data from multiple studies across a variety of realistic settings, with
large study sample sizes used to minimise within-study sampling error. Our objective is to identify appropriate
scales to use for meta-analysing the C-statistic and also calibration measures (calibration slope, calibration-in-the-
large, and the ratio of expected to observed (E/O) probabilities), such that the true between-study distribution of
the performance statistic is likely to be approximately normal.

The outline of the paper is as follows. Section 2 provides background details on model performance measures
and random-effects meta-analysis. Section 3 describes the simulation study design, scenarios and results. Section 4
then illustrates the key finding using a random-effects meta-analysis to summarise the performance of the QRISK2
model across multiple general practices.25 Section 5 concludes with discussion, including recommendations for the
scale on which to pool the C-statistic and calibration measures.
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2 Meta-analysis to summarise predictive performance of a prediction model

Let us consider a simple prediction model developed for a binary outcome (either diagnostic, or prognostic
occurring in a relatively short time period) using a logistic regression model with a single predictor. The fitted
model can be written as

logit p̂ið Þ ¼ �̂ þ �̂xi ð1Þ

where xi is the predictor value for patient i. The predicted probability of the outcome for a patient can be
calculated as

p̂i ¼
eLPi

1þ eLPi
ð2Þ

where LPi¼ �̂ þ �̂xi and is referred to as the linear predictor.26 As mentioned, it is important to externally
validate the performance of such a model across multiple data samples or sources. We now introduce
definitions of key performance statistics, and then outline the standard model for random-effects meta-analysis
to summarise performance statistics of a specific model estimated from multiple validation studies.

2.1 Measures of model performance considered

When validating a prediction model, it is important to consider both the discrimination and calibration
performance of the model.

2.1.1 Discrimination

Discrimination is a measure of how well a model can differentiate between individuals who have the outcome of
interest and those that do not. The C-statistic is a commonly used measure of discrimination and is calculated as
the proportion of all possible pairs (of individuals in which one had the outcome of interest and the other did not)
that are concordant. A pair is said to be concordant if the predicted probability is higher for the individual that
had the outcome compared to the predicted probability for the individual that did not.26 This is equivalent to the
area under the ROC curve for a logistic regression model.27 The closer the C-statistic is to the value 1, the better
the model discriminates between individuals that did and did not have the outcome. A value of 0.5 suggests that
the model predicts no better than chance alone.

2.1.2 Calibration

The calibration of a model is a measure of how well the predicted probabilities from the model agree with the
observed outcome frequencies or probabilities. Calibration statistics typically quantify how much the model
under- or over-predicts outcome risk, ideally across the spectrum of predicted risks (often defined by tenths of
predicted risks).

The calibration statistics considered in this paper are:

. Calibration-in-the-large: This is the difference between the mean number of predicted outcomes and the mean
number of observed outcomes.1,28 A calibration model written as

logit pið Þ ¼ �þ �ðLPiÞ ð3Þ

can be fitted where the estimate of � given �¼ 1 (LPi is used as an offset) provides the estimate of calibration-
in-the-large.1 Calibration-in-the-large should be close to zero for a well-calibrated model.

. Expected/observed ratio (E/O): Another common summary measure of overall calibration is given by the ratio
of expected (E) and observed (O) total number of outcomes (or ratio of the E and O outcome probabilities).
This quantity should be close to one if the model calibrates well in the validation dataset, and is directly related
to the calibration-in-the-large statistic.17

. Calibration slope: If the calibration model given in equation (3) is fitted without constraints, �̂ is the estimated
calibration slope.20,29 A calibration slope <1 indicates overfitting, where predictions from the model are more
extreme than the observed outcomes in the validation dataset (predictions for high risk patients are too high
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and predictions for low risk patients are too low). A calibration slope >1 indicates underfitting, where
predictions do not vary enough (predictions for high risk patients are not high enough and predictions for
low risk patients are not low enough). Overfitting is more common (e.g. due to automated selection
procedures); however, underfitting can occur, e.g. when predictor effects were overly shrunk using
penalisation methods during the model development. A model that calibrates well in the validation dataset
would result in a calibration slope close to 1.

2.2 Random-effects meta-analysis for summarising performance across studies

Consider now that we wish to meta-analyse a particular performance statistic (e.g. C-statistic) across multiple
validation studies. The standard, random-effects meta-analysis can be written as

Yi � Nð�i, S
2
i Þ, �i � Nð�, �2Þ ð4Þ

where Yi is the performance statistic estimated in study i¼ 1, . . . , k. The meta-analysis assumes normality of the
performance statistic, both at the within-study and between-study levels. Within each study, the estimated
performance statistic is assumed to be normally distributed about some true performance for that study (�i)
with ‘known’ variance (S2

i ). Between studies, the true performance statistic from each study is also assumed to
be drawn from a normal distribution with mean performance � and between-study variance �2.

2.2.1 Confidence intervals

Following estimation of a meta-analysis model, an approximate 100(1��)% confidence interval for the mean
pooled performance statistic � can be estimated using the Hartung–Knapp–Sidik–Jonkman (HKSJ) approach
which is recommended over conventional calculations, particularly when the number of studies, k, is small and
when between-study heterogeneity is likely to be present.30–32 This can be calculated as

�̂ � tk�1;�2

ffiffiffi
q
p

�̂� ð5Þ

using the 1��/2 quantile of the Student’s t-distribution with k�1 degrees of freedom, multiplied by
ffiffiffi
q
p

and the
estimated standard error of �̂, �̂�

q ¼
1

k� 1

X
i

ŵið yi � �̂Þ
2; �̂� ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1P
i ŵi

s

where the estimated weights are calculated as

ŵi ¼
1

Ŝ2
i þ �̂

2
:

2.2.2 Prediction intervals

A random-effects meta-analysis (model (4)) assumes a normal distribution of true performance across studies.
Therefore, the performance in a single study may differ considerably from the average performance. To address
this, Higgins et al. propose that an approximate 100(1��)% prediction interval for model performance in a new
but similar study can also be derived following random-effects meta-analysis (4), using the formula

�̂ � t�, k � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�̂2 þ �̂ 2

�

q
ð6Þ

where t�, k � 2 is the 100 1� �
2

� �
% percentile of the t-distribution for k�2 degrees of freedom.22 The t-distribution is

used to account for �̂2 being an estimate itself and therefore having uncertainty that is otherwise not accounted for.
This frequentist-based formulae is only an approximation, but gives an indication as to the range of performance a
model may have over relevant populations and settings.33 A Bayesian approach to derive predictive intervals and
distributions is also possible and is a more natural framework.22 Regardless, the assumption of between-study
normality is always important when deriving predictive inferences based on model (4).
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2.2.3 Normality assumption within and between studies

The assumption of within-study and between-study normality is common in the meta-analysis field.21,22 As
noted earlier, the assumption of within-study normality (of the Yi’s) is reasonable if the sample size and number
of subjects with the outcome in the validation study are reasonably large, as one can then appeal to the Central
Limit Theorem (CLT). The assumed between-study normality of the true performance statistics (�i’s) across
studies is harder to justify. Baker and Jackson are critical of this assumption in random-effects meta-analysis
models in general, as it is often based on pragmatic rather than theoretical reasons. They state: ‘the CLT does
not really imply anything for the distribution of the random effects. . . We can only appeal to the CLT here with
the vague idea that the unknown source of variation between studies might be the sum of several factors’.23

In Section 3, we investigate (through a simulation study) the best scale to meta-analyse performance statistics so
that their between-study distribution is more likely to be normally distributed. We assume that within-study
normality is justified by studies being reasonably large. Further work may also examine within-study
distributions, but our focus here is on the validity of the between-study normal distribution. We have explicitly
designed our simulation study to disentangle within-study and between-study distributions, essentially by making
within-study variability tiny.

2.2.4 Alternative scales for meta-analysis of performance measures

If the between-study distribution is not normally distributed for any of the performance measures on
their original scale, it may be more appropriate to transform the measurements to an alternative scale for
meta-analysis. For example, if using a natural logarithm transformation, the random-effects model can be
written as

logðYiÞ � Nð�i, S
2
i Þ, �i � Nð�, �2Þ ð7Þ

where log stands for the natural logarithm. Assuming normality at both levels of a transformed variable is easier to
implement in a meta-analysis than assuming normality on different scales of the variable. In this simulation study,
we are interested in the most appropriate scale for the between-study distribution, and therefore minimise within-
study error to reveal the true between-study distribution.

We will consider the natural logarithm (log) transformation which often works well for ratios that are subject to
right skewing (such as hazard ratios and odds ratios). The logit transformation is often used for proportions such
as probabilities (e.g. in a logistic regression model) and showed good coverage for confidence intervals of the area
under the ROC curve (same as the C-statistic) for diagnostic tests in a simulation study by Qin and Hartilovac.34

The logit transformation for the C-statistic is calculated as log(Ci/(1�Ci)). We will also consider the variance
stabilising transformations suggested by Trikalinos et al., which are the arcsine and square root transformations
for proportions and rates, respectively.35

3 Simulation study

3.1 Methods for simulation

In all simulations, we consider the performance of a chosen prediction model across multiple validation studies.
The assumed prediction model to be examined was considered to be a logistic regression model for a binary
outcome, and initially we consider that there is just a single continuous variable (predictor) in the model. Building
on previous work,19 the clinical example considered is a diagnostic model for diagnosis of deep vein thrombosis
(DVT), with (initially) age as the only predictor. This logistic regression prediction model can be written as

logit pij
� �
¼ �� þ �� � ageij ð8Þ

where i represents the individual in study j.
For each simulation scenario, the performance of this model is examined across validation studies, covering

settings where the model is correctly specified for each study (no variability) and settings where it is correct on
average but not in all studies (between-study variability). We begin with base scenarios in which the model is
correctly specified in all studies and thus variability in model performance only appears due to sampling error.
Other settings are then defined in which the prediction model performance may vary across studies due to
between-study variability in ‘true’ predictor effects.
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3.1.1 Defining scenarios for simulation

Nine base scenarios. We considered the example of predicting risk of deep vein thrombosis (DVT) using a single
predictor such as age to define the first base scenario. Values from Oudega et al. informed the distribution of age,
predictor effect of age and the model intercept (using the prevalence of DVT).36 Therefore, we generated patient
data assuming mean-centred age � Normal(0,17.62). A univariable odds ratio of 1.01 was reported for age (which
relates approximately to ��¼ 0.01) and the prevalence of DVT was taken as 0.22, which can be achieved by
generating data with ��¼�1.274, given that ��¼ 0.01.

Eight other base scenarios were also defined by varying the parameter values of �� and �� to give a different
prevalence and/or strength of the predictor. Parameter values were selected as if all generated studies come from
exactly the same population (generated using the same true prediction model). The nine scenarios are defined in
Table 1.

Size and number of studies selected to assess between-study distributions. In order to examine the shape of the between-
study distributions in model performance, within-study sampling error should be minimised. For this reason, we
generated very large study samples so as to avoid the amalgamation of the within-study and between-study
distributions. Based on preliminary simulations, we decided to use 1000 studies each containing 500,000
patients (Supplemental material 1).

Simulation settings introducing variability between studies. The nine base scenarios were extended to a variety of
simulation settings in which variability was introduced for either the intercept term or the predictor effect when
generating the patient-level data. Seven such simulation settings were defined (Table 2). In each of these settings,
the models used to generate the study level data were defined using a study-specific intercept and a study-specific
predictor effect, �j and �j, respectively. The models used to generate data can now be written as

logit pij
� �
¼ �j þ �j � ageij where �j � Normal ��, �

2
�

� �
; �j � Normal ��, �

2
�

� �
: ð9Þ

Table 1. Parameter values of the true prediction model in nine base scenarios.

Scenario �� �� Prevalencea C-statistica

1 �1.274 0.010 0.22 0.55

2 �2.957 0.010 0.05 0.55

3 2.210 0.010 0.90 0.55

4 �1.425 0.045 0.22 0.7

5 �3.215 0.045 0.05 0.7

6 2.440 0.045 0.90 0.7

7 �2.386 0.145 0.22 0.9

8 �5.133 0.145 0.05 0.9

9 3.987 0.145 0.90 0.9

aThe �� and �� values are selected to give the corresponding average prevalence and C-statistic (average from 100 large samples each of

1,000,000 patients).

Table 2. Defined settings for simulation, with variability in either �j or �j across studies.

Simulation setting Standard deviation for �j and �j in each scenario

1: No variability in �j or �j ��¼ 0 ��¼ 0

2: Little variability in �j ��¼ 0.1 ��¼ 0

3: Moderate variability in �j ��¼ 0.5 ��¼ 0

4: Large variability in �j ��¼ 1.0 ��¼ 0

5: Little variability in �j ��¼ 0 ��¼ 0.005

6: Moderate variability in �j ��¼ 0 ��¼ 0.020

7: Large variability in �j ��¼ 0 ��¼ 0.070

3510 Statistical Methods in Medical Research 27(11)



There was variability across studies in �j if �� 4 0 and variability in �j if �� 4 0. The prediction model being
validated in all studies remained the same as before (model (8)), where the intercept is the mean of the study-
specific intercepts ��, and the predictor effect is the mean of the study specific predictor effects ��: In such
situations where there is variability across studies (�� 4 0 or �� 4 0), the prediction model in (8) is incorrect,
as it ignores the variability in �j or �j and therefore will induce heterogeneity in its performance when applied to
different populations. Setting 1 is defined as having no variability in �j or �j, so all the study-specific intercepts are
identical and equal to the prediction model intercept (��), as are the study-specific predictor effects (��). In such
situations, the prediction model is correct in all populations. This setting is useful as a comparison for the other
simulation settings.

For simplicity, we consider variability in either �j or �j but not for both at the same time. Three values were
selected for �� and three values for ��. The values were selected to give small, moderate and large variation in
either �j or �j but are fairly arbitrary as the amount of heterogeneity in the performance statistic also depends on
the �j and �j values themselves. The standard deviations (SDs) for �j (��’s) were chosen to be values of about half
the �� used in defining the scenarios. Therefore, the largest value of ��¼ 0.07 is extreme for scenarios 1–3 where
��¼ 0.01 and large for scenarios 4–6 where ��¼ 0.045. The seven different simulation settings are defined in
Table 2 in terms of �� and ��.

In summary, we use nine simulation scenarios which define the prediction models in terms of the average
intercept and average predictor effect. We also define seven simulation settings which relate to the level of
variability in either the intercept or predictor effect. There are therefore 63 simulations considered
(9 scenarios� 7 settings), which cover a range of values for �� and ��, and different levels of variability in
either �j and �j. We also define extensions to the simulation study for more realistic data situations which are
discussed at the end of Section 3.1.1.

Generating patient-level data and calculating performance statistics. For each scenario in each setting, patient-level
data (i.e. mean-centred age and binary DVT outcome) were generated for 500,000 patients in each of 1000
validation studies based on model (9). The individual patient data were generated for each validation study j by
first sampling �j and �j values from the distributions �j � Normal ��, �

2
�

� �
, �j � Normal ��, �

2
�

� �
. Mean-centred

age was sampled for each patient from ageij � Normal 0, 17:62
� �

, the linear predictor was then calculated for
each patient as LPij ¼ �j þ �j � ageij and from this the outcome probability was calculated, pij ¼

expðLPijÞ

1þexpðLPijÞ
.

Using a Bernoulli distribution with probability pij, a binary outcome was sampled for each patient
(outcome¼ 0 or 1).

For each validation study generated, the prediction model to be examined was applied (i.e. model (8) using ��
and �� from Table 1) to each patient to obtain predicted probabilities, and then performance statistics calculated
by quantifying discrimination (by the C-statistic) and calibration (by E/O, calibration-in-the-large, and calibration
slope) across all patients.

Evaluating the between-study distributions for performance statistics. The distribution of the obtained performance
statistics across the 1000 studies was summarised using the mean, SD, median, minimum, maximum and
interval containing 95% of values. The coefficient of skewness and coefficient of kurtosis were also calculated
to summarise the shape of the between-study distribution. Summary statistics were then compared to those
expected from a normal distribution (i.e. an equal mean and median, skewness of 0 and kurtosis of less than �3).

The between-study distributions were also plotted using histograms (with normal distribution lines using mean
and SD from data overlaid). The symmetry and shape of the distribution could then visually be compared to a
normal distribution.

In settings where the between-study distribution of a performance statistic was not approximately normal,
transformations were applied, plotted and summarised to ascertain if they offered any improvement in the
between-study normality assumption. Transformations considered were the natural logarithm, logit, arcsine
(considered for the C-statistic) and square root (considered for E/O). The arcsine and square root
transformations were considered based on the work of Trikalinos et al., who recommended them as variance
stabilising when meta-analysing proportions and rates, respectively.35

All steps to the simulation study are summarised in Box 1.

Extensions to simulations. Additional simulation settings were also considered. For brevity, we do not include full
details but they involved (i) limiting the age range to between �42 and 40 (corresponding to 18 and 100 years if the
mean age is 60), (ii) varying the distribution of age across studies, and (iii) including an additional predictor and
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interaction in the data generating model, to reflect a situation where the model being considered for use in clinical
practice has missing predictors.

3.2 Simulation study results

3.2.1 C-statistic

When there was only between-study variability in the intercept term of the data generation model, there was barely
any skewness in the observed distribution of the C-statistic (Figure 1). Indeed, we found that the width of the

Box 1. Outline of the steps taken in the simulation study to evaluate between-study distributions of

performance statistics.

Step 1: Define the prediction model to be examined (i.e. select one of the scenarios 1–9 from Table 1 to define a prediction

model based on model (8)).

Step 2: Define model (9) as the true model, and define the amount of between-study variability in either the study-specific

intercept (�j) or predictor effect (�j) (i.e. select one of the seven settings from Table 2).

Step 3: For each validation study j, sample the true intercept (�j) and predictor effect (�j) from �j � Normal ��, �
2
�

� �
and

�j � Normal ��, �
2
�

� �
.

Step 4: Within each validation study j¼ 1,. . ., 1000, generate patients i¼ 1,. . ., 500,000 and sample mean-centred age from ageij

� Normal 0, 17:62
� �

for each patient.

Step 5: Within each validation study j, generate the binary outcome variable for each patient by first calculating the linear

predictor for each individual, LPij ¼ �j þ �j � ageij and using this to calculate the probability of the outcome occurring by

pij ¼
expðLPijÞ

1þexpðLPijÞ
. The binary outcome is then sampled from a Bernoulli distribution where outcomeij � Bernoullið pijÞ.

Step 6: Estimate the performance statistics of interest in each validation study by taking the prediction model for the scenario

chosen in step 1, logit pij
� �
¼ �� þ �� � ageij and evaluating its predictive performance in the generated data from steps 4 and 5.

Step 7: Summarise the distribution of the obtained performance statistics across the 1000 studies by calculating summary

statistics (such as means and medians) by calculating coefficients of skewness and kurtosis, and plotting histograms.

Step 8: Consider transformations of performance statistics if not approximately normally distributed and repeat step 7.
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Figure 1. Coefficient of skewness for the C-statistic for all scenarios across different simulation settings, with level of variability in
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distribution was tiny given that there was only minor sampling error (due to the large study sizes) and no between-
study heterogeneity in discrimination. However, when the ‘true’ predictor effect in each validation study, �j, was
allowed to vary (settings 5–7), the distribution of the C-statistic increasingly deviated from normality as ��
increased. Looking at the coefficient of skewness (Figure 1), the distribution was most skewed in scenarios 7–9,
where �� was larger (stronger predictor on average across studies), which relates to when discrimination was very
good (around 0.9 on average) and so the C-statistic can only increase slightly to a maximum value of 1 but can
decrease much further.

When the variability in �j was large across studies (setting 7: ��¼ 0.07), the C-statistic was no longer normally
distributed in any of the scenarios (Figure 2(a)). For scenarios 1–3 with a weak predictor, the between-study C-
statistic was almost uniformly distributed and includes values below 0.5. Such values indicate that the prediction
model inversely discriminates between outcome categories in several studies.
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Transformations of the C-statistic. Given the apparent non-normality of the C-statistic on its original scale in
several settings, three transformations (log, logit, arcsine) were considered to ascertain potential improvements
in the empirical between-study normality (Figure 3). Results demonstrate that the natural logarithm
transformation did not offer any improvement in achieving between-study normality. Some improvements were
obtained in terms of skewness when applying the arcsine transformations. However, the logit transformation
appeared most advantageous as it greatly reduced the skewness when between-study variability in �j was large
(setting 7: ��¼ 0.07, see Figure 2(b)). In addition to this, the between-study distribution of the logit C-statistic was
no worse in scenarios and settings that were approximately normal on the untransformed scale.

3.2.2 Ratio of expected and observed proportions

E/O was approximately normally distributed across the validation studies in all scenarios when there was little
variability in �j (setting 2: ��¼ 0.1). However, the distributions were more skewed when there was moderate
variability in �j (setting 3: ��¼ 0.5) and worse still when there was large variability in �j (setting 4: ��¼ 1.0).
The range of E/O also grew larger with increasing heterogeneity in the intercept (Figure 4). The estimated skewness
for E/O was 1.32 and 3.00 for scenario 1 in setting 3: ��¼ 0.5 and setting 4: ��¼ 1.0, respectively.

The distributions of E/O were extremely skewed for most scenarios when variability in �j was moderate (setting
6: ��¼ 0.02) or large (setting 7: ��¼ 0.07, Figure 5(a)). The distribution could be skewed in either direction but was
often bounded close to one for scenarios 1–3 and bounded at different values for scenarios 4–6. Therefore, the
peak of the distribution was often at this boundary value.

Transformations of E/O. A logarithm transformation applied to E/O improved the shape of distributions when
there was variability in �j, resulting in distributions that were closer to approximate normal distributions
(Figure 5(b)). However, the between-study distributions remained skewed for scenarios 3, 6 and 9 where the
average intercept was high resulting in a large number of outcomes. The natural logarithm transformation
resulted in distributions closer to the normal distribution compared to the square root transformation (Figure 6).

Using the natural logarithm transformation for E/O also improved the shape of the distributions for scenarios
7–9 when there was moderate variability in �j (setting 6: ��¼ 0.02). However, the natural logarithm
transformation did not improve the distributions of E/O when variability in �j was large (setting 7: ��¼ 0.07),
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which remained very skewed in most scenarios (Supplemental material 2). The square root transformation did not
improve the distribution of E/O in this setting either.

3.2.3 Calibration slope

The between-study distribution of the calibration slope was approximately normal in all scenarios (1–9) and in
all simulation settings for variability in �j or �j (settings 2–7). Distributions were fairly symmetrical with the
coefficient of skewness ranging from �0.3 and 0.33 across all simulation scenarios and settings (additional
figures can be found in Supplemental material 2). Variability in �j did not affect the distribution of calibration
slope, so the distributions were almost identical to setting 1 where there is no variability in �j or �j. The SD of
the between-study distribution increased as �� increased and was larger when �� was smaller (see
Supplemental material 2).

3.2.4 Calibration-in-the-large

Calibration-in-the-large was approximately normally distributed and remained symmetrical with coefficients of
skewness close to zero in settings 2–4 with variability in the intercept �j. Variability in the predictor effect �j,
however, did cause the distribution to skew, particularly in scenarios 1–3 where the mean predictor effect was weak
(Figure 7).

The width of the distributions for calibration-in-the-large was approximately the same for different scenarios
but increased as variability in �j increased (see Supplemental material 2 for figure). The width of the distribution
increases with variability in the predictor effect �j too, with wider distributions as �� increases; however, the
distribution also becomes skewed (see Supplemental material 2 for figure). The distributions for all scenarios
were positively skewed with the exception of scenarios 3, 6 and 9 (large intercept) which were negatively skewed.
The distributions became skewed when the variability was large relative to the value of the average predictor
effect ��. Therefore, distributions for scenarios 1–3 (weak predictor) were skewed when there was little
variability in �j (setting 5: ��¼ 0.005), distributions for scenarios 1–6 were skewed when there was moderate
variability in �j (setting 6: ��¼ 0.02) and distributions for all scenarios were skewed when there was large
variability in �j (setting 7: ��¼ 0.07). See supplemental material 2 for histograms in setting 6 as an example.
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3.2.5 Results of simulation extensions settings

The findings from the previous simulations remained the same in the extensions. In particular, the logit
transformation for the C-statistic and the natural logarithm transformation for the E/O statistic were helpful to
improve normality. Results are available in Supplemental material 3.

4 Illustrative example: meta-analysis of the C-statistic across practices for QRISK2

The most important finding of the simulation study is that the logit scale is preferable for meta-analysis of the C-
statistic. We now illustrate the implications of this by examining the discrimination performance of the QRISK2
model across 25 general practices (hereafter referred to as ‘studies’).25 The QRISK2 model was developed to
predict the 10-year cardiovascular disease risk for use in general practice, in individuals without a prior diagnosis
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of cardiovascular disease. The model includes the following predictors: ethnicity, age, BMI, Townsend
(deprivation) score, systolic blood pressure, cholesterol/HDL ratio, family history of coronary heart disease,
smoking status, treated hypertension, type 2 diabetes, rheumatoid arthritis, atrial fibrillation, and renal disease.
The model also includes interactions between age and the other predictors. The C-statistic was estimated in each
study separately, and the standard errors of the C-statistic estimate and the standard error of the logit C-statistic
estimate were obtained using bootstrapping. A random-effects meta-analysis was then fitted using REML to pool
the C-statistics, either on their original scale or the logit scale. Forest plots are given in Supplemental material 4.

Results (Table 3) demonstrate that there is slightly more heterogeneity (relative to within-study variability) on
the original scale compared to the logit scale (I2¼ 91.2% and I2¼ 88.6% respectively), and that some studies (e.g.
12 and 24 with C-statistics much closer to 1) receive less weight when pooled using the logit scale compared to the
original scale. However, the summary C-statistic and its 95% confidence interval are very similar when using either
the original scale or the logit scale in the meta-analysis (Table 3).

To quantify the impact of heterogeneity more meaningfully than I2, we used equation (6) to calculate an
approximate 95% prediction interval for the C-statistic in a new setting (back-transforming to the C-statistic
scale when the logit scale was used). There are notable differences in the prediction intervals depending on which
scale we use for pooling. Working on the original C-statistic scale leads to a symmetric prediction interval about
the summary estimate; however, the use of the logit scale leads to symmetry on the logit scale, but asymmetry on
the C-statistic scale. Further, the lower and upper values were lower when using the logit scale (95% PI: 0.67 to
0.92) compared to the original scale (95% PI: 0.69 to 0.97). Therefore, although the summary (pooled) estimates of
the C-statistic are very similar when using the C-statistic or logit C-statistic scale, the predicted discrimination
performance of QRISK2 based on the prediction interval is slightly lower when using the logit transformation.

Partlett and Riley note that the accuracy of equation (6) is most suitable when heterogeneity is relatively large,
and there are not a mixture of small and large studies.33 To address this, we restricted the studies to those with >20
outcomes, which removed four smaller practices. This is also akin to situations where within-study normality of
study estimates is likely to be justified, due to the CLT. The findings were similar to before, with the 95%
prediction interval having lower values at the bounds when using the logit-scale (95% PI: 0.67–0.91) compared
to the original scale (95% PI: 0.70–0.94).

5 Discussion

Summarising how well a certain prediction model performs across different samples, studies, locations or, settings
is becoming increasingly of interest in clinical research,12 with examples of this being done for prediction models of
breast cancer incidence, development of gastric cancer and risk of kidney failure.37–39 A random-effects model is
appropriate to combine estimates of model performance across multiple validation studies, and to investigate the
presence of statistical heterogeneity. Hereby, it is typically assumed that performance measures are normally
distributed across studies, which is important when deriving approximate prediction intervals. We investigated
this assumption for a variety of scenarios, and the key findings are given in Box 2, and now summarised.

An important finding is that the original C-statistic scale is inappropriate for use in most random-effects meta-
analyses, as the between-study distribution of the C-statistic on the original scale is not normally distributed when
there is variability in the predictor effect across studies. A simulation study by Austin and Steyerberg showed that
the C-statistic depends on both the log odds ratio and variance of a continuous explanatory variable.40 Our study
supports this as when the age distribution was fixed, the C-statistic increased as the predictor effect increased
(relating to the log odds ratio). The between-study distribution of the C-statistic was also wider when the age
distribution varied across studies as in the simulation extensions. Variability in the predictor effect across studies is
likely to occur in practice when studies include different populations, or adopt (slightly) different definitions for
predictors and/or outcomes. However, pooling of untransformed C-statistics is still commonplace in many meta-
analyses.15,19 We found that the logit scale is more appropriate and therefore should be preferred when pooling C-
statistics. Our QRISK2 example showed that, although the pooled C-statistic and confidence interval are relatively

Table 3. Random-effects meta-analysis results for the QRISK2 example.

Scale used Pooled C-statistic 95% Confidence interval 95% Prediction interval I2 statistic (%)

Original 0.829 0.800–0.859 0.691–0.968 91.2

Logit 0.830 0.800–0.856 0.672–0.921 88.6
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unaffected by the scale chosen, the estimated prediction interval can differ importantly when using the logit scale
rather than the original scale. This, in turn, may substantially affect any inferences on a model’s potential
generalisability.

Despite the advantages of using the logit transformation, the between-study distributions of the C-statistic may
remain skewed when there is large variability in strong predictor effects. For E/O, the log scale was generally more
appropriate but again problems may occur when there is large variability in baseline risk and the incidence of the
outcome is high or when there is large variability in predictor effects. The between-study distributions of
calibration-in-the-large and the calibration slope were approximately normal in all settings with the exception
of when the variability in the predictor effect was large in relation to the size of the predictor effect for calibration-
in-the-large. As a ratio, E/O has a lower bound of 0 and no upper bound in theory. Therefore, we expect that E/O
will become skewed as between-study heterogeneity in the predictor effect increases, as this will increase the
potential for large expected values relative to observed values in some settings. However, in the simulation
study we saw the E/O distributions for individual simulation scenarios bounded. This is due to the expected
prevalence due to the model combined with the strength of the model predictor and the amount of between-
study heterogeneity. Similarly, boundaries were also observed for calibration-in-the-large, but only when there was
large heterogeneity in the predictor effect. E/O and calibration-in-the-large are closely related measures, and as
such it is preferable to use calibration-in-the-large rather than E/O for meta-analysis. However, when IPD are not
available such as when conducting a systematic review and meta-analysis of published validation studies, all
relevant performance measures may not be reported in all studies. For this reason, we present
recommendations for both E/O and calibration-in-the-large.

The key recommendations for the scale on which to pool performance statistics in a random-effects meta-
analysis are given in Box 3.

In addition to measures of calibration and discrimination, test accuracy measures such as sensitivity and
specificity can be calculated if the model is to be tested as a decision rule (i.e. test positive if patients have a

Box 2. Key findings from the simulation study looking at true between-study distributions of

performance statistics.

C-statistic:

. The between-study distribution of the C-statistic was often skewed, especially when there was variability in the predictor effect

(�j) and when the distribution of the predictor values (also known as case-mix) varied across studies.

. The logit-C transformation best approximated the Normal distribution, although some degree of skewness remained in the

presence of strong predictor effects (scenarios 7–9) or when variability in �j was large.

Expected/observed number of outcomes:

. The E/O had an approximately normal between-study distribution when baseline risk (�j) was similar across studies. However,

it was skewed when baseline risk and/or predictor effects varied across studies.

. The log E/O transformation improved the normality assumption when there was variability in baseline risk and/or predictor

effects. Skewness remained when the baseline risk was high (such as in scenarios 3, 6 and 9) or when predictor effects

substantially varied across studies.

Calibration slope:

. Calibration slope had an approximately normal between-study distribution in all settings considered. Variability in the baseline

risk or predictor effect only affected the mean value and SD but not the shape of the distribution.

Calibration-in-the-large:

. Calibration-in-the-large had an approximately normal between-study distribution when there was variability in the intercept,

although the width of the distribution increased with increasing variability in �j.

. The distribution was skewed when variability in the predictor effect was large relative to the size of the predictor effect.
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probability greater than some specified value). When meta-analysed, sensitivity and specificity are usually assumed
to follow a bivariate normal distribution on the logit scale.41,42

Although we considered a large variety of simulation settings, further research is still needed. For example,
simulation settings in which the distributions of study-specific intercepts and predictor effects are sampled from a
different distribution could be considered. We also mainly considered settings in which the prediction model was
correct on average (model parameters were the mean values from which study intercepts and predictor effects were
sampled). In reality, the prediction model is itself developed using a smaller sample in which the intercept and/or
predictor effect may lie in the tails of the distributions considered rather than the centre. This could also affect the
between-study distributions of the performance measures and should be considered in further work. In one of our
extensions, we did look at when the true model had an additional predictor that was not included in the developed
model, but this did not change our findings. However, further simulations in a wider range of mis-specified true
models would be welcome. We only considered a prediction model for a binary outcome, and so further work
looking at survival models is also required to examine if our recommendations generalise, and could additionally
consider the D-statistic for discrimination.43

Further work should also examine the within-study distributions after transforming the performance statistics,
and whether the scale for the within-study distributions should be the same or different to those between-studies.35

Also, we note that if IPD are not available for all studies or clusters, researchers are limited to the information
reported by other authors who may not report standard errors or only report them for the original statistic rather
than for any transformed scale. One option is to use the Delta method to obtain the standard error of the
transformed statistic17; however, we do not know the impact of this on the final prediction intervals and
therefore this should also be investigated in further work.

In summary, when performing random-effects meta-analysis of the performance of a particular prediction
model that is validated across different study samples or datasets, we found that the logit transformation and
the natural logarithm transformation worked best for the C-statistic and ratio of expected and observed number of
outcomes, respectively, as it improved the normality of between-study distributions substantially, facilitating the
derivation of prediction intervals. However, caution should still be taken in situations where large heterogeneity in
the predictor effects across studies may be expected, as the normality assumption could still be inappropriate for
between-study distributions of performance statistics.
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