
How Good Is Your Puppet?
An Empirically Defined and Validated Quality

Model for Puppet
Eduard van der Bent

and Jurriaan Hage
Utrecht University, the Netherlands

J.Hage@uu.nl, eduardvdbent@gmail.com

Joost Visser
Software Improvement Group
Amsterdam, the Netherlands

j.visser@sig.eu

Georgios Gousios
TU Delft, Delft, the Netherlands

G.Gousios@tudelft.nl

Abstract—Puppet is a declarative language for configuration
management that has rapidly gained popularity in recent years.
Numerous organizations now rely on Puppet code for deploying
their software systems onto cloud infrastructures. In this paper
we provide a definition of code quality for Puppet code and
an automated technique for measuring and rating Puppet code
quality. To this end, we first explore the notion of code quality as
it applies to Puppet code by performing a survey among Puppet
developers. Second, we develop a measurement model for the
maintainability aspect of Puppet code quality. To arrive at this
measurement model, we derive appropriate quality metrics from
our survey results and from existing software quality models. We
implemented the Puppet code quality model in a software analysis
tool. We validate our definition of Puppet code quality and
the measurement model by a structured interview with Puppet
experts and by comparing the tool results with quality judgments
of those experts. The validation shows that the measurement
model and tool provide quality judgments of Puppet code that
closely match the judgments of experts. Also, the experts deem
the model appropriate and usable in practice. The Software
Improvement Group (SIG) has started using the model in its
consultancy practice.

I. INTRODUCTION

In recent years, cloud computing has become increasingly
popular [26]. In many cases, deployment of software systems
in the cloud entails the use of a configuration management
language, such as Chef [7], Ansible [3], or Puppet [18].
These languages allow software developers and/or system
administrators to specify the infrastructure needed to run an
application and how it should be deployed. Although the
specifications can be considered executable code, they are
typically very different from ordinary programming languages.
As a result, practitioners cannot simply apply existing notions
of code quality to these new languages.

The languages Chef and Ansible are imperatively styled,
which means that the developer specifies the steps that should
be taken to get a host to the required configuration. Puppet on
the other hand is declarative: one specifies the required state of
the server, and then the Puppet tool figures out how to reach
it. Various comparisons between these three languages have
been made by others [17], [24], [9].

Server configuration specifications written in Puppet are
developed, executed, and maintained like code in traditional

programming languages. As there are risks in having to
maintain ordinary code, one can imagine the issue of Puppet
code quality to be relevant for organisations that have a lot
of Puppet code in their portfolio (see, e.g., [29] and [31]). A
lot of work has been done on measuring and managing code
quality for (general-purpose) programming languages, but not
for configuration management languages like Puppet.

The major contribution of the paper is an expert-validated
quality model for Puppet that provides a rating of the quality of
a repository of Puppet code. This rating is based on a number
of metrics, as determined from a survey among Puppet devel-
opers (Section IV) and that can be computed automatically for
Puppet source code (Section V). The scores for the various
metrics are combined into a rating and calibrated against a
benchmark set of repositories in Section VI. We validate our
ratings with experts (Section VII).

II. A SHORT INTRODUCTION TO PUPPET

In this section we describe the basics of Puppet; more
comprehensive information can be found in [20]. In Puppet,
the basic building block is called a resource. Each resource
has a resource type. Common examples are files, packages
and service resource types; additional custom resource types
can be defined. In Puppet, a class is simply a collection of
resources. Figure 1 displays a (slightly modified) Puppetlabs
motd class [16] that configures the message of the day for
a system. It has two parameters: $motd_content is a
required parameter, and $motd_caption is a parameter
with a default value. Three resources are defined in this
example: the file resource is set for Linux-based systems; for
Windows, we use two registry values.

Facts in Puppet are system-specific variables and constants
collected by the Facter tool [10]. Facts can be used in
Puppet code like any other variable. Built-in facts in Puppet
offer a powerful way to get system information, since an
implementation is already provided for the user. Generic
facts are OS-independent. Examples of OS-specific facts are
macosx_buildversion and solaris_zones. In Fig-
ure 1, the built-in fact $::kernel is used to determine the
kind of operating system.

Fig. 1: An example of a class in Puppet.

An exec is a particular, important kind of predefined re-
source type, and is essentially a shell command run from
Puppet. The following exec updates the list of packages for
the Cabal package manager:

exec { ’ c a b a l upda te ’ :
u s e r => $use r ,
e n v i r o n m e n t => ”HOME=$home ” ,
p a t h => [’ / b in ’ , . . .] ,

}

Puppet modules typically configure a single application or
service. A module consists of files to configure a service,
including tests, a README, templates in embedded Ruby,
custom types and providers, and custom facts.

Templates are either Embedded Ruby or Embedded Puppet
files, that can be run by providing parameters to them. This
is useful when a configuration file is dependent on run-time
constants, such as the number of cores or the amount of
available memory. Custom types and providers are custom
resources, written in Ruby. The type provides the interface,
the provider contains the implementation.

At top level, Puppet runs on a node, a device managed
by Puppet. The following is an example node definition that
simply instantiates the motd class of before:

node ’ t e s t ’ {
c l a s s { ’ motd ’ :

m o t d c o n t e n t => ’ Welcome t o S e c t i o n I I ’
}

}

III. MOTIVATION FOR OUR WORK

The form of our quality model for Puppet is inspired by ex-
isting quality models for rating the maintainability of general
purpose programming languages [14]. First, a set of metrics is
defined to measure various aspects of maintainability, like file
length and amount of code duplication. The metrics are applied
to each unit (what a unit is, depends on the language). Then for
every metric, risk profiles are defined, telling us what metric
scores are considered medium risk, which imply a high risk,
etc. Risk profiles are turned into a 5 star rating by specifying
for a given rating what percentage of a given system may fall

into each of the risk profiles. For example, to achieve a 5-star
rating for file length, there may be no code with very high risk,
at most 3 percent may be high risk, and at most 30 percent
may be of medium risk. Typically, these categories are defined
based on a large set of real world source code repositories.
Finally the rating for the various metrics are combined into a
single rating, e.g., by taking the average.

Which metrics to employ and how exactly we should
combine measurements for those metrics into ratings is likely
to be substantially different for Puppet as compared to a
general purpose language. For example, existing models typ-
ically include unit complexity where the definition of a unit
corresponds to the smallest executable piece of a program,
e.g., a method. But how does that translate to Puppet? It
can be argued that the units in Puppet are resources, since
these are the smallest executable pieces of code [22]. However
in Puppet, it is considered bad practice to put any kind of
complexity inside resources [23]. Furthermore, unit testing
is done at the class level in Puppet. But classes in Puppet
are often much longer than methods in a general purpose
language, so we would need to consider new thresholds for
computing our ratings for Puppet as compared to, say, Java.

Puppet also has other properties that are not captured by
existing models, like how well is data separated from code?
Most data in Puppet should go into Hiera — the key-value
lookup tool that comes with Puppet —, but , e.g., parameter
defaults are put directly in the code.

IV. A SURVEY ON CODE QUALITY AMONG PUPPET
DEVELOPERS

So, what makes Puppet code of low, or high quality? We
answer that question by asking Puppet developers by means
of a questionnaire. Below we describe our target population,
and the survey protocol we follow.

Population: As have others, we tap into the Puppet com-
munity through GitHub [30], the currently most popular
web-based code repository service. To determine the survey
population, we used GHTorrent [11] to find all users that had
more than 10 commits in at least 2 repositories each that were
labeled by the GitHub API as containing Puppet, and that were
pushed in the last six months. In addition to this, we also
required the text ”Puppet” to appear in the repository clone
URL, to increase the likelihood that Puppet programming was
part of the focus of the repository, and that non-trival Puppet
development has taken place.

To establish this, we joined the tables of contributors and
users to add email addresses to the result (Users without
emails cannot be reached, so they are excluded). We joined
this table with the table of repositories, and then filtered out all
contributors with 10 or fewer commits. Then, every contributor
that appeared more than once was selected for the survey
population.

The Construction of the Survey: Given the absence of
established theory or literature on Puppet code quality, we
decided to aim for a survey that is explorative in nature.
Therefore, we opted for a short list of open questions, in order

to reach a sizable audience and thereby increase our coverage.
We created an initial survey with which we carried out a pilot.
The results led us to make considerable adjustments to the
survey. This new survey was piloted twice before proceeding
to carry out the survey at scale.

To determine the questions of the survey, a large list of
candidate questions that might be relevant was created. Then
we discussed the questions with various experts in the fields
of software engineering, empirical studies, and Puppet and
removed questions that would invite vague answers, questions
that were difficult to understand and questions whose answers
would be irrelevant to our research.

The questions in this initial survey were rather generic. We
found that people familiar with maintainability gave useful
answers, but in a pilot among five internal Puppet program-
mers and in our first external try-out, we found that generic
questions, like ”What are typical issues you encounter when
reading Puppet code?”, were too unfocused. In the end we kept
only 4 of our 10 questions, and added a number of questions
about Puppet software quality. This is the final list of questions
that we sent out to 257 Puppet programmers:
- How many years of experience do you have with
programming Puppet?
- If you had to judge a piece of Puppet code (file or module)
on its quality what would you look for?
- Could you give some examples of bad practices in Puppet
code?
- What aspects do you take into account when selecting a
Puppet module from GitHub or Puppet Forge?
- How do you decide what goes into Hiera and what doesn’t?
- What is your biggest problem when programming Puppet?

Analysis: Out of 257 we got 42 responses, a rate of about
16%. The results of the survey have been published online [5].

The responses to the first survey question show that our
population ranges from new to very experienced Puppet de-
velopers: 11 participants had 5 years of experience or more,
13 had 3-4 years, 15 had 1-2 years, and 3 had less than one
year of experience.

In the remainder of this section, we briefly discuss the
answers to the other questions of our survey. We analyzed the
answers to questions 2 to 6 by coding the answers, following
the process specified in Gousios et al. [12]. We required at
least two responses for a code where possible, and tried to
group unique responses together in a more general category.
Since some answers consisted of long enumerations of quality
aspects, there was no upper bound on the number of codes a
response could get. The graphs showing the codes and their
frequencies are included in Appendix A of [4]. The dataset
and code table are available online [6].

If you had to judge a piece of Puppet code (file or module)
on its quality, what would you look for? Looking at the
top 5, code quality in Puppet is not very different from
normal programming languages. Testing, documentation, code
style, design and linting are common concepts in general
purpose programming languages as well. More interesting is

the program structure — examples here are proper usage of
the Package, Config, Service design pattern, and making use
of a params class to set defaults. The exec resource is also
frequently mentioned and specific to Puppet: usage of execs
should be kept to a minimum.

Less frequently mentioned categories include readability,
complexity and dependencies (common also for general pur-
pose programming languages) with Puppet-specific categories
including the correct use of parameters, custom types, being
cross-platform, and behavior. Note that although these were
less frequently mentioned, this does not mean we disregarded
them when constructing our model.

Could you give some examples of bad practices in Puppet
code? The improper usage of execs was prominent here. Other
bad practices are a lack of program structure (no PCS /
params.pp for instance, or having very large files), hardcoded
variables (that should have been parameters), having too many
dependencies (or too few), non-idempotence (a catalog applied
multiple times should not result in changes being made every
run) and having too many or too few parameters. Also failing
to use Hiera when this is needed is considered bad practice.
Non-Puppet specific bad practices are lack of documentation,
complex code, and lack of tests.

What aspects do you take into account when selecting a
Puppet module from GitHub or Puppet Forge? The dominant
anwers to this question are not Puppet-specific: programmers
look for signs of recent activity, documentation, popularity,
the reputation of the author, and functionality followed by the
amount of testing, support of platform, and the Puppet version
that is used. Only four respondents said they actually look at
the Puppet code itself.

How do you decide what goes into Hiera and what does not?
Most responses indicate that data is stored in Hiera and code
is in Puppet, but it appears there is a difference in opinion on
what is data and code. Some people put defaults in Puppet, but
others put them in Hiera (module-data). A recurring pattern
seems to be that varying data, such as data that is company,
environment or site specific should go into Hiera.

In other cases, less disagreement is evident. Operating
system-specific information should not go in Hiera. An exam-
ple of such a variable is the package name for the Apache
application. In Debian, it is simply called apache, but in
RedHat it is called httpd. The best practice is to have these
differences in the code, and not in Hiera.

What is your biggest problem when programming Puppet?
The responses here indicate that different respondents have dif-
ferent problems with Puppet. Problems were therefore grouped
by us based on their commonalities.

Most reported problems are related to the way that Puppet
itself is designed. Examples include snowflake servers, the
limitations of having a single node, and nondeterminism.

Problems related to third-party modules are also a common
theme, leading to developers to apply fixes to third party code
or switching to a different supplier. The poor quality of third-
party modules was also mentioned.

Other examples of problems include the lack of high
quality tests, documentation for the types and providers API,
functionality that respondents would like Puppet to have, and
the quality of error messages. Finally, a few respondents
mentioned a general lack of best practices.

V. THE PUPPET QUALITY MODEL

A. The Metrics We Started With
Taking the answers from the survey as a starting point, the

following metrics were considered for inclusion in the quality
model:

• File Length: having all code in a single class was
mentioned in the survey, as well as the number of
lines. Having too much code inside a single file (which
according to best practices, should only contain one class
[21]) is an indication that too much is going on in the
file to understand it.

• Complexity: complexity, simplicity and if-statements
were mentioned in the survey results, so we will measure
the complexity. This is measured at the file level.

• Number of exec statements: an exec is a shell command
in Puppet, and best practice suggests to minimize these.

• Warnings and errors from Puppet-lint [19]: Puppet-lint
checks for style violations and code that may easily lead
to errors (like quoted booleans). We decided to omit
warnings and errors that we believed to be purely style
issues. That left only two kinds of errors to consider and
since these turned out to be quite rare in our dataset, we
only looked at the warnings (see Figure 2 for the list).

• Number of resources: resources are the basic building
blocks of Puppet, so measuring resources could be an
indication that a file has too many responsibilities. Since
best practice with execs is to use the proper (custom) re-
source, we also measure the number of custom resources.

• Dependencies: Puppet offers many different types of
dependencies. Some are across different classes, such as
a class including or referring to another class. Dependen-
cies may also exist between resources, such as a resource
with a metaparameter requiring it to be applied after a
certain other resource. Dependencies can be between files
or within files. We measure for each file both fan-in, fan-
out, and internally between components in the same file.

• Relations between resources: these can occur in the form
of arrows or metaparameters. In Puppet, relations specify
the ordering of operations.

• Parameters and variables: since it is difficult to measure
whether a variable or parameter is actually useful, we
have decided to measure how many variables / parameters
per file are present. Since parameters can have defaults,
we also measure how many required parameters there
are: parameters for which a value must be supplied when
calling the class.

• Hardcodes: we do not distinguish between harmless hard-
codes like ”root” and harmful ones like hardcoded ip-
addresses, email addresses, passwords, certificates and
private keys.

single quoted string containing a variable found
”foo::bar not in autoload module layout”

quoted boolean value found
string containing only a variable
variable not enclosed in
ensure found on line but it’s not the first attribute
mode should be represented as a 4 digit octal
value or symbolic mode
unquoted resource title
case statement without a default case
selector inside resource block
not in autoload module layout
class defined inside a class
class inherits across module namespaces
right-to-left (<-) relationship
top-scope variable being used without explicit namespace
class not documented
defined type not documented

Fig. 2: Relevant errors (above the double line) and warnings. In the end only
the warnings were counted.

We added to this list the following well-known metrics:
volume (size of the code base), code duplication and file-
level fan-in (aka module coupling). Since the characteristics of
Puppet seem quite different from general purpose languages to
which these metrics have been applied, we will be looking for
new thresholds. For example, a high-volume Puppet codebase
might be very small when compared to the average Java
system.

B. From Metrics to Quality Model

To obtain our quality model, we implemented the proposed
metrics and applied them to a large number of Puppet repos-
itories obtained from GitHub. The process to obtain these
repositories was as follows: using the GitHub search API
we collected the clone URLs of all Puppet repositories on
GitHub (16.139 at the time of collecting). On February 1,
2016, we cloned these Puppet repositories, except repositories
that were removed or inaccessible. We used shallow cloning
and cloned recursively where possible — some submodules
were in private repositories and could not be reached.

The GitHub dataset contained repositories that were marked
as Puppet code (because of the .pp extension), but that were
not actually Puppet code, e.g., Pascal and PowerPoint files.
Whether we dealt with real Puppet code or not was discovered
by running Puppet-lint: all files that gave parse errors were
removed from our dataset. After this clean-up our dataset
consisted of 15.540 repositories with Puppet code.

We computed the pair-wise Spearman correlation between
the various implemented metrics for our dataset as shown in
Figure 3 and Figure 4. Now, if we have two highly-correlated
metrics, we can drop one in favour of the other. For example,
both the number of resources and the number of hardcoded

values are strongly correlated with file length, so we dropped
the former two in favour of the latter.

Moreover, we decided to omit metrics that apply to only a
small percentage of our dataset. For example, the number of
lint errors was low overall, so we dropped the metric from
our list. The same applied to having global defaults, although
that was not the only reason for dropping it: in some situation
having global defaults is fine (inside the manifest, as remarked
upon by one of our interviewees), and in other cases it is not.

Only very few Puppet repositories had more than one class
per file. Therefore, it makes more sense to flag having more
than one as a violation, instead of using this information as part
of our quality model. The number of variables metric turned
out to behave erraticly: the majority of the files did not contain
any variables. Also, we have seen one Puppet repository with
200 arrows (an arrow in Puppet creates relationships between
resources), but in most cases the number of arrows was small,
so we decided to omit this metric too.

We opted to use file fan-in instead of other metrics such
as fan-out, the number of metaparameters, and the number
of internal calls. Having a high fan-out, a large number of
metaparameters, and/or internal calls typically means that the
file itself is already too large, so we consider measuring the
filelength an adequate measure. The fan-out of modules is also
measured as part of the module degree metric.

The final model consisted of the metrics shown in Table 5,
together with, for reasons of space, only a short description of
how exactly they are measured. Although we have removed
some of the Puppet specific metrics, in favor of keeping more
generic ones, note that this is only because we believe that this
choice does not affect the star ratings. Our tool still supports
the other metrics to show in more detail what might be the
cause for obtaining a low rating.

VI. THE TOOL AND ITS CALIBRATION

A. The Tool Implementation

We implemented the metrics by extending Puppet-lint to
generate our measurements, and wrote a custom program
to aggregate the measurements and to draw dependency/call
graphs.

We adapted Puppet-lint to automatically traverse an entire
folder structure and check every .pp file, but we excluded all
filepaths that contained folders called spec, tests, files
and examples, since this is either test code or code that
skews the metrics. For example, resources are often declared
outside of classes in files in the examples directory, but since
this is not production code we left it out of our measurements.
We also included a duplicated block detector in our tool.

Now that we have a reasonable set of implemented metrics,
we want to turn the measurements we make for a given
application into a star-rating that is more easily communicable.
This process is called calibration.

B. Establishing the Benchmark

The configurations we selected for our benchmark were
taken from the original dataset of Section V. We took repos-

itories that had at least 5000 lines of Puppet code (not
counting commentary, whitespace and lines containing only
curly braces), and that had a ”modules” directory, which is for
ordinary Puppet configuration the default location of the mod-
ules. Putting the limit lower than 5000 would strongly increase
the number of Puppet system we would have to manually
investigate to perform the fork detection, the calibration and
the validation of Section VII, and we would run more risk of
having a single dominant module that would skew the metrics.
It also seems to us that it is more likely for maintainers of a
large Puppet system to want to diagnose the maintainability
of their Puppet code, than those maintaining a small system.

This left us with 299 repositories (out of 15.540, of which
more than 14.000 were under 1000 lines). Since we cloned
every GitHub repository, we may have cloned a lot of forks
(or identical repositories not marked as such). We wanted to
be reasonably sure that we were left with a number of unique
repositories, and therefore computed the total lines of code,
the total number of lines and the percentage of duplicatation
of each repository. Repositories with numbers close together
were considered to be the same, and we kept only one of
each. At this point 100 repositories remained, of which we
then deleted repositories that had large chunks of third-party
code. Although third-party code is a risk of its own, we were
not out to measure the quality of code that the owners should
not maintain.

We were then left with 26 repositories. We manually re-
viewed each repository, and removed a few more duplicates
and repositories that were not configurations, but simply large
collections of scripts. Finally, this resulted in 17 repositories.

C. The Difference between Third-party Code and Own Code

One of the observations we made in our study is that code
from third-party code is vastly different from the code that has
been written for ”own use”.

Unsurprisingly, third-party modules try to handle every use
case, support more Operating Systems and have more param-
eters / options. For all assumed non-third party modules we
have drawn quantiles of filesize, complexity and parameters,
and we have done the same for all Puppet approved and sup-
ported modules that contain Puppet code. These quantiles are
shown in Figure 6. We can conclude from these numbers that
generally most non-third party modules are smaller, have fewer
parameters and are less complex than third party modules. On
the other hand, there are non-third party modules that are much
larger, have more parameters and are more complex than third
party modules.

D. Rating Repositories

To turn the metrics into ratings, we made use of risk profiles
[2]. With risk profiles, it is possible to rate how much of a
given code base falls into either the low risk, medium risk, high
risk or very high risk category, and using these percentages for
all systems, it is possible to make a comparison and give a
quality rating. The advantage of risk profiles is that instead of
raising an error saying ”this file is too long” after it passes a

filelength #resources #exec complexity #warnings #errors #parameters #arrows
filelength 0.80 0.29 0.52 0.25 0.22 0.52 0.25
#resources 0.80 0.29 0.33 0.21 0.25 0.32 0.21
#exec 0.29 0.29 0.21 0.14 0.09 0.18 0.13
complexity 0.52 0.33 0.21 0.24 0.14 0.40 0.22
#warnings 0.25 0.21 0.14 0.24 0.31 0.05 0.16
#errors 0.22 0.25 0.09 0.14 0.31 NA NA
#parameters 0.52 0.32 0.18 0.40 0.05 NA 0.18
#arrows 0.25 0.21 0.13 0.22 0.16 NA 0.18
#globaldefaults 0.06 0.04 NA 0.06 NA 0.05 NA 0.09
#classesperfile 0.30 0.32 0.13 0.20 0.30 0.62 0.17 NA
#hardcodes 0.90 0.81 0.25 0.40 0.18 0.22 0.34 0.20
#requiredparams 0.26 0.16 0.11 0.17 0.10 0.05 0.58 0.10
fanout 0.43 0.44 NA 0.14 0.07 0.17 0.18 0.11
fanin 0.23 0.15 0.14 0.21 0.09 -0.06 0.16 0.09
internal 0.52 0.56 0.37 0.23 0.13 0.25 0.25 NA

Fig. 3: First half of Spearman correlations. Correlations with P-values higher than 0.01 are listed as NA.

#globaldefaults #classesperfile #hardcodes #requiredparams fanout fanin internal
filelength 0.06 0.30 0.90 0.26 0.43 0.23 0.5
#resources 0.04 0.32 0.81 0.16 0.44 0.15 0.6
#exec NA 0.13 0.25 0.11 NA 0.14 0.4
complexity 0.06 0.20 0.40 0.17 0.14 0.21 0.2
#warnings NA 0.30 0.18 0.10 0.07 0.09 0.1
#errors 0.05 0.62 0.22 0.05 0.17 -0.06 0.2
#parameters NA 0.17 0.34 0.58 0.18 0.16 0.3
#arrows 0.09 NA 0.20 0.10 0.11 0.09 NA
#globaldefaults -0.05 0.06 0.00 0.00 NA NA
#classesperfile -0.05 0.27 0.14 0.12 0.17 0.3
#hardcodes 0.06 0.27 0.11 0.40 0.16 0.5
#requiredparams 0.00 0.14 0.11 0.10 0.12 0.1
fanout 0.00 0.12 0.40 0.10 NA 0.2
fanin NA 0.17 0.16 0.12 NA 0.2
internal NA 0.31 0.51 0.12 0.17 0.18

Fig. 4: Second half of Spearman correlations of listed metrics.

certain threshold, which might appear hundreds of times when
first analyzing a codebase, you can accurately see how severe
the problem is — are the files just a bit too long, or are the
files extremely large?

We derived Puppet-specific thresholds for the metrics in our
model, similar to Alves et al. [1], and applied these thresholds.
In our case, we opted for thresholds that were very different
(widely spread) from each other. Where possible, we ensured
that the threshold for medium/high risk was twice as large as
low/medium risk, and high/very high risk was as least thrice
as large as low/medium risk. Otherwise, a small measurement
difference between two systems could, e.g., lead to one being
assigned low risk, and the other high risk.

We then created a risk profile per metric by deriving
the 70/80/90% values of a configuration: the 70 percent of
all lowest scores mapped to low risk, the next 10 percent
to medium risk, etc. Using this risk profile, we derive the

thresholds to make the data fit a 5/30/30/30/5% distribution.
So the 5% best systems get 5 stars, the next 30% of systems 4
stars, and so on. After fitting the systems to the 5/30/30/30/5%
distribution, we derive the thresholds to get a certain star
rating. Thus, if the code has exactly the same or less than
the 5-star threshold, it will get 5 stars. If it has less than the
4-star threshold, but more than the 5-star threshold, the rating
will be between 4 and 5.

An indicative example is the metric for measuring com-
plexity. The risk profile we derived is shown in Figure 7a,
and the associated thresholds for the star-ratings are shown in
Figure 7b. These numbers imply that if at most 2.4% of the
lines of code are in files of a ”medium risk” complexity, and
no LOC within files of ”high risk” and ”very high risk”, then
the given system belongs to the best 5% of observed systems.
There is no limit on the amount of ”low risk” code that can
be present in a configuration.

Measurement Implementation
Filelength The number of lines per file.
Complexity The number of control statements per

file, plus number of alternatives in
case statements.

of parameters The number of parameters per file.
of exec resources The number of exec resources per

file.
of filtered lint
warnings

The number of filtered lint warnings
per file.

File fan-in The number of incoming dependen-
cies per file.

Module Degree The number of incoming and out-
going number of dependencies per
module.

Duplication The number of redundant lines of a
code base divided by the number of
lines of a code base.

Volume The number of lines of a code base.

Fig. 5: Our quality model measurements and their implementation.

Our second example is the Puppet-specific metric for execs.
The chosen thresholds are given in Figure 7c and the thresh-
olds for the various star-ratings are given in Figure 7d. Whilst
the number of execs allowed per file may seem very low, the
thresholds for the star rating shows that you are still allowed
to use them sparingly without getting punished too harshly.
The risk profiles and star-ratings for filelength are shown in
Figure 7e and Figure 7f.

We computed the ratings for the number of parameters, the
number of filtered lint warnings, fan-in and module degree
in the same manner. For file length we used 25/50/75%
instead of 70/80/90% to ensure that, in absolute numbers, the
difference in size between a low risk and a high risk system
was not too small. We rated volume by putting the systems
in 5/30/30/30/5% bins, ordered by volume, and gave a rating
based on that. Duplication was rated in a similar manner. The
final rating for a system was computed as the average of the
separate metric ratings. Due to lack of space, we do not include
the risk profiles and star ratings for these metrics.

VII. EXPERT VALIDATION

A. Comparing the Outcomes of our Tool with Expert Rankings

The quality model was validated with semi-structured inter-
views, with different groups of people. We interviewed several
employees of the SIG that had Puppet knowledge, as well as
a Puppet programmer from a different company, an external
researcher with knowledge of Puppet, and two employees of
the company behind Puppet.

The goal of the validation is to both see if the proposed
quality metrics are good enough predictors of code quality,
but also to see if there are potential flaws in the model. For
example, to discover whether trying to improve on certain
metrics will not (negatively) affect the maintainability of a

system, or if certain metrics are simply not suited to the
language or the domain of configuration management. It is also
be possible that some metrics should be weighted more heavily
(i.e. volume or a complex architecture) than is currently
implemented.

The interview consisted of answering questions and making
a comparison between systems. We split the 17 systems into
5 bins: one with the 20% worst quality systems, the second
with the next 20%, etc. We then selected from every bin the
most up-to-date system. We decided to use only 5 systems,
because there is a limited amount of time available for every
interviewee to rank the systems. The time scheduled for
the interview was one hour. With 5 systems, we used on
average 45 minutes for the comparison and 15 minutes for
the questions.

Although our tool computes a rating for each system, we
asked our experts to come up with a ranking (similar to Cox
et al. [8]). The reason is that the interviewees were not all
familiar with automated tooling to rate software systems. We
then compared their ranking with the rating based ranking
computed by our tool.

In advance, we sent the participants the GitHub links of the
snapshots of the repositories that we used [32], and asked them
to take a look at them, and if possible rank them. Everyone
looked at them before the interview, for a period ranging from
five minutes to two hours. At the start of the interview, some
had already made up their mind on the ranking whilst others
had not yet decided on a ranking.

During the interview, the following questions were asked:
1. What maintainability problems have you encountered in

Puppet?
2. A lot respondents to the survey have said that overuse of

execs is a bad practice. Do you agree? If so, what issues
arise when execs are overused?

3. What do you think is missing from the model? What
should be changed?

4. What do you think should be added to the model?
5. Do you think the model is useful in practice?
At the start of the interview we first explained what main-

tainability is according to the ISO 25010 standard. Different
people have different interpretations of quality, so we made
clear the focus of the interview was on maintainability. After
this, we asked questions 1 and 2.

Then, we asked the interviewees to make a ranking of the
five systems, with the best system being first and the worst
system last, based on their maintainability and quality. We
provided descriptive statistics of the related systems and a call
graph for every system.

After this ranking, we showed them our model and ex-
plained our use of risk profiles, and asked questions 3, 4 and
5. This concluded the interview.

As is visible in Figure 8, there are differences between the
raters in rankings of the systems. These differences can be
attributed to a few different factors. Some interviewees put
a very large emphasis on the volume of the codebase, and
mostly used that to rank the codebases. Some interviewees

#parameters 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
non-third party 0.0 0.0 0.0 2.0 4.0 7.0 12.0 21.0 48.0 2416.0
third party 3.3 10.6 22.0 30.6 54.0 87.6 112.2 170.4 331.5 633.0
#LoC 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
non-third party 10 18 29 44 63 92 141 212 406 19262
third party 37 119 209 276 479 596 826 1261 1935 3869
#branches 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
non-third party 1 1 2 4 5 7 12 20 39 1301
third party 6 14 22 30 47 73 111 140 174 480

Fig. 6: Quantiles of #parameters, #LoC and #branches per module

Risk Category Complexity Value
Low Risk 1-7
Medium Risk 8-20
High Risk 21 - 34
Very High Risk 34+

(a) Risk profile for complexity

Stars Medium Risk High Risk Very High Risk
***** 2.4 0.0 0.0
**** 13.0 1.5 0.0
*** 69.0 53.2 7.4
** 86.5 76.2 34.0

(b) % of LOC allowed per risk category for Complexity
Risk Category Execs value
Low Risk 0
Medium Risk 1
High Risk 2
Very High Risk 3+

(c) Risk profile for execs

Stars Medium Risk High Risk Very High Risk
***** 0.50 0.00 0.0
**** 5.90 2.50 0.7
*** 54.95 51.25 1.8
** 77.45 75.25 7.6

(d) % of files allowed per risk category for the number of execs
Risk Category File Length
Low Risk 0 - 45
Medium Risk 46 - 110
High Risk 111 - 345
Very High Risk 345+

(e) Risk profile for filelength

Stars Medium Risk High Risk Very High Risk
***** 31 3.3 0.0
**** 56 26.0 7.3
*** 90 77.5 14.0
** 95 89.5 45.0

(f) % of LOC allowed per risk category for filelength

Fig. 7: Risk profiles and star ratings

System GovUK RING Fuel-
infra

Wiki-
media

Kilo-
Puppet

Rating 3,57 3,47 3,05 2,91 2,34
Rank 1 2 3 4 5
Interview 1 3 1 2 4 4
Interview 2 1 2 3 4 5
Interview 3 2 1 3 5 4
Interview 4 1 4 3 2 5
Interview 5 1 2 4 3 5
Interview 6 1 2 3 4 5
Interview 7 1 2 4 2 5
Interview 8 2 1 3 5 4
Interview 9 4 1 2 5 3
Median Rank 1 2 3 4 5

Fig. 8: For each of 5 systems, the rating and rank according to our model,
the rankings the interviewees gave the systems and the median of the rank of
the interviewees.

considered the presence of tests and documentation to be
very important, while others did not. In addition to this, the
ratings of some systems were very close to each other, e.g.,
RING and GovUK. Some interviewees, like number 7, ranked
some repositories as equally maintainable. Finally, there might
have been differences in the definition of maintainability used.
Some interviewees considered how easy it would be to start
maintaining while others considered how easy it would to keep
maintaining the system.

Notice, first, that the median of the interview ranks is equal
to the rank given by the tool. We have used the median here
since rank is an ordinal variable, and if the mean of this
data is taken, this might be heavily influenced by outliers (for
example, an interviewee might rank a system as 5, but can
still consider it to be of high quality). It would have been
meaningful to take the mean of this data if we had asked for
a rating, since in that case the size of the observed quality
difference between systems can be expressed.

The inter-rater agreement using Kendall’s W — we did not
include our tool as a rater — was 0,589, with a p-value of
2 ∗ 10−4. This means that between the interviewees there was
strong consistency [13].

B. Answers to Questions

We summarize the answers given to the questions asked
during the interview. The interview transcripts can be found
in Appendix B of [4].

What maintainability problems have you encountered in
Puppet? Different types of problems were reported. Upgrading
third party libraries was reported, as well as a general lack of
tests or the necessity to maintain existing tests.

A lot respondents to the survey have said that overuse of
execs is a bad practice. Do you agree? If so, what issues arise
when execs are overused? The overuse of execs is considered
bad across the board. The main reasons for this are non-
idempotence, being outside the declarative model, and lack
of support from the IDE and the language. That said, most
people did indicate that execs aren’t that bad if used with
care. This is in agreement with the survey answers.

What do you think is missing from the model? What should
be changed? A few items were mentioned here.

Execs: instead of a rating, a violations category for execs
should be considered. Additionally, look for execs that always
run, either by analyzing the resource itself or the output of a
Puppet run.

Lint Warnings: some warnings might be disabled, which
can differ from project to project. In addition, some warnings
are unavoidable or false positives. For example, a warning
results if you inherit from a params class, because doing so
makes code incompatible with Puppet 2.7. However, this is
not problematic if you use Puppet of a later version. Another
example is having a quoted boolean in the code. Sometimes
doing so is quite acceptable, leading to a false positive.

Parameters: having a high number of parameters is con-
sidered of lesser importance by the experts. Some of them
indicated that the number of parameters should have different
thresholds, or that only the number of required parameters
should be taken into account.

Duplication: duplication is a useful metric, but either the
block size should be changed (currently, things may be consid-
ered duplication that aren’t), or a better clone detector should
be implemented so that cloning and reordering parameters can
be robustly detected. Our current implementation does not
detect these cases.

What do you think should be added to the model? Again, a
few aspects were mentioned.

Metric to rate a module: in some cases a ”god module”
was present in the configurations. Having a module with too
many responsibilities is not following the best practice of
modules only having one task, and can become a maintenance
risk. Whilst module degree measures whether a module has
too many dependencies, if the module has a few connections
but is very large, this is also an indication of too many
responsibilities.

Testing: currently tests are not taken into account, but our
experts do report they would like to see a metric that does,
e.g., by measuring test code volume, assert density, or ”node
coverage”.

Library Management: are third party modules that are
included in code (if any) marked as such and never edited?
The best practice is to never edit third-party libraries, because
it may become difficult if not impossible to combine with
upstream changes, while also adding to the total maintenance
burden. In addition to this, new employees will also have to
get used to your edited third party libraries instead of the ones
that are commonly used.

Documentation: experts found documentation to be a very
important aspect. Particularly if a codebase is very large,
having documentation to explain where to start and how code
is developed is very important. An additional challenge is
making sure that what is written in the code and in the
documentation remain consistent. This is of course very hard
to detect automatically.

Other quality related aspects should be considered as well
when judging a configuration, such as how passwords and
other secrets are handled, end-of-life third-party modules, and
the presence of certain hardcodes. The last aspect is likely to
be particularly difficult to implement.

We conclude this section with our final question: do you
think the model is useful in practice?

Every respondent considered the metrics to be useful both
to find out what kind of problems a codebase poses, and as
a general indication of quality. One interviewee indicated that
he would want to use a tool like this in his own organization.

C. Threats to Validity

As usual in this kind of study there are various threats to
validity. We consider internal (credibility) and external validity
(generalizability). As to the former, the survey described in
Section IV ensures that our metrics reflect what Puppet de-
velopers believe to contribute to the maintainability of Puppet
code. The outcome of the first survey question implies that
our respondents have a broad range of levels of experience,
and the set-up of the survey ensures that we contacted only
developers with more than a glancing exposure to Puppet by
ensuring that they have made more than 10 commits in at least
2 Puppet repositories.

As we explained before, rating the quality is particlarly
important for large repositories. Therefore, we included only
large Puppet repositories (5000 lines and up) in our calibration
and made an effort to delete potential clones and duplicates so
that our calibration could not be easily biased by the inclusion
of many (almost) copies of the same repository.

As to generalizability, the thresholds for the various star-
ratings derived here were only for 17 systems. It is not
unlikely that when more or other systems are considered, the
computed thresholds will change. Also, we restricted ourselves
to publicly available systems, and our work may not generalize
to private ones. Moreover, due to time constraints on the part
of our experts, we could not consider more than 5 systems

in the validation study. On the other hand, considering more
systems would probably also make it harder for experts to
come up with a strict ranking.

VIII. RELATED WORK

The work of Sharma et al. [25]on Puppeteer shares many
similarities with ours: we both extended puppet-lint, con-
structed a metric catalog, and mined GitHub repositories.
There are also many differences: (1) we did an extensive expert
validation, while in their case only one Puppet developer was
consulted; (2) we selected only complete Puppet repositories,
while they selected all repositories that contained Puppet code
and had 40 or more commits; (3) we did not include the
original puppet-lint output as a metric; (4) we took great pains
to ensure that the final 17 systems we worked with were
of substantial size, and not clones of each other, while for
Puppeteer they used many more repositories for validation and
were not so selective. For example, they employed the puppet-
lint parser to decide that certain files were Puppet source
files, but as it happens that parser is very forgiving. Also,
we manually inspected the 105 or so systems we were left
with, and among these found only 17 that we considered to
be unique enough.

However, the main difference is the focus of the research:
the goal of Puppeteer is to detect code smells in Puppet, and
this makes sense both for large and small repositories, while in
our case we are trying to find a general maintainability rating
for (large) Puppet repositories. Notwithstanding, our models
do show a lot of similarities: both models include measures
on complexity, duplicate blocks, exec statements, class (file in
our model) size and modularity, although the precise imple-
mentation might differ. Puppeteers metric catalog, as well as
puppet-lint itself, is a valuable tool for development teams to
check their own code for any known smells and ensure that
their codebase adheres to as many known best practices as
possible.

Xu & Zhou [27] have researched errors in configuration
management, so-called misconfigurations, and have analyzed
their causes. Just as unmaintainable software can be a financial
disaster, misconfigurations can also cost a lot of money.
They analyze why things are misconfigured, and also suggest
solutions to some of these problems. Their subject differs from
ours, but we consider it a useful source to help troubleshoot
difficult errors.

Alves et al. [1] have shown how to derive thresholds from
metrics for the SIG quality model. They demonstrate how to
automatically derive thresholds, and provide a justification for
why the thresholds in the SIG model are what they are. We
followed a similar approach.

Cox [8] has used expert opinion to rate a dependency
freshness metric. The dependency freshness metric tries to
capture how well developers keep third-party dependencies of
their software system up-to-date. Their validation approach
was similar to ours, using both semi-structured interviews and
having participants construct a ranking of the subject systems.

Lampasona et al. [15] have proposed a way to perform early
validation of quality models, based on expert opinion. We pro-
pose validating quality models with respect to their complete-
ness (it addresses all relevant aspects) and to their minimality
(a model only contains aspects relevant for its application con-
text). We used minimality and completeness in our validation
interview, asking what could be removed/changed, or what
should be added.

Building Maintainable Software [28] was a good resource
for explaining the measurements in the SIG model. The
book describes ten guidelines on how to build maintainable
software, and whilst other papers on the SIG model explain the
implementation, the book also provides justifications for why
certain metrics are used and also demonstrates what happens
when things go wrong.

IX. CONCLUSION

In this paper we have described the complete process of
developing a code quality model for the Puppet configuration
language. We have used an existing quality model as a starting
point, considered various Puppet specific metrics for our model
based on a survey among Puppet developers, implemented
the metrics in a tool, ran the tool over a large bechmark
extracted from Github, derived thresholds for each of the
chosen metrics to arrive at a single 5-star rating for real-
world Puppet configurations, and validated our ratings with
experts. The validation showed that the measurement model
and tool provide quality judgments of Puppet code that closely
match the judgments of experts. The experts deemed the model
appropriate and usable in practice.

As to future work, the model we devised cannot be con-
sidered minimal and complete. A case can be made for
parameters to be left out as a metric, because there is a
high Spearman correlation between both parameters and com-
plexity, and the former was mentioned by one expert as not
being very important. Note though that the parameter count
can be used to distinguish third party code from other code.
Section VII lists a number of additional metrics that could be
included in our tool.

The 17 systems we used to calibrate our model gave us a
first good initial calibration, but is too low to achieve a reliable
calibration. More work is therefore needed here. Finally, we
note that at this time metrics are weighed uniformly and it
may well be that better results can be obtained by assigning
different weights to the various metrics.

More generally, we expect that the approach as laid down
in this paper can be applied to Ansible and Chef. We surmise
that the more general metrics will be useful again, but that
our model will not work for them unchanged: some of the
Puppet-specific metrics will need to be replaced by Ansible
or Chef specific ones. More study is certainly needed here.

ACKNOWLEDGMENTS

We thank the survey participants as well as the experts
for their contribution to our work. We thank the anonymous
referees for their comments and help us improve our paper.

REFERENCES

[1] T. Alves, C. Ypma, and J. Visser. ”Deriving Metric Thresholds from
Benchmark Data”, In proceedings of the 26th IEEE International Con-
ference on Software Maintenance, 2010.

[2] T. Alves, J. Correia, and J. Visser. ”Benchmark-based Aggregation of
Metrics to Ratings”, In Proceedings of the Joint Conference of the 21th
International Workshop on Software Measurement (IWSM) and the 6th
International Conference on Software Process and Product Measurement
(Mensura), pp20-29, IEEE Computer Society, 2011.

[3] https://www.ansible.com
[4] E. van der Bent. ”Defining and measuring Puppet code

quality.” MSc Thesis (ICA-3583600). June 21, 2016. Dept.
of Information and Computing Sciences, Utrecht University.
https://dspace.library.uu.nl/bitstream/handle/
1874/335044/thesis.pdf?sequence=2

[5] http://evanderbent.github.io/puppet/2016/01/28/puppet-code-quality-
survey.html

[6] https://github.com/evanderbent/PuppetSurveyData
[7] https://www.chef.io
[8] J. Cox. ”Measuring Dependency Freshness in Software Systems”, Mas-

ter’s thesis, Radboud University Nijmegen, 2014.
[9] T. Delaet, W. Joosen, and B. Vanbrabant. ”A Survey of System Config-

uration Tools .” LISA. 2010.
[10] https://docs.puppet.com/facter/
[11] G. Gousios, ”The GHTorrent Dataset and Tool Suite”, in Proceedings

of the 10th Working Conference on Mining Software Repositories (MSR
’13), 2013, pp. 233–236, IEEE Press.

[12] G. Gousios, M. Storey, and A. Bacchelli. ”Work Practices and Chal-
lenges in Pull-Based Development: The Contributor’s Perspective”, in
Proceedings of the 38th International Conference on Software Engineer-
ing, 2016.

[13] C. Griessenauer, J. Miller, B. Agee, W. Fisher, J. Curé, P. Chapman, P.
Foreman, W. Fisher, A. Witcher, and B. Walters. ”Observer Reliability
of Arteriovenous Malformations Grading Scales using Current Imaging
Modalities”. Journal of Neurosurgery, 120.5, 2014.

[14] I. Heitlager, T. Kuipers & J. Visser. ”A Practical Model for Measuring
Maintainability”, QUATIC 2007, pp. 30–39.

[15] C. Lampasona, M. Kls, A. Mayr, A. Gb, and M. Saft. ”Early Validation
of Software Quality Models with respect to Minimality and Complete-
ness: An Empirical Analysis.” Software Metrik Kongress. 2013.

[16] https://github.com/puppetlabs/puppetlabs-motd
[17] S. Pandey. ”Investigating Community, Reliability and Usability of

CFEngine, Chef and Puppet .” Department of Informatics, University of
Oslo, 2012.

[18] https://www.Puppet.com
[19] http://puppet-lint.com
[20] https://docs.puppet.com/puppet/
[21] https://docs.Puppet.com/Puppet/latest/reference/lang classes.html
[22] https://docs.Puppet.com/Puppet/latest/reference/lang resources.html
[23] https://docs.Puppet.com/guides/style guide.html
[24] K. Torberntsson & Y. Rydin. ”A Study of Configuration Management

Systems .” Uppsala University, 2014.
[25] T. Sharma, M. Fragkoulis, and D. Spinellis. ”Does your configuration

code smell?”, in 13th international conference on Mining Software
Repositories (MSR ’16), 2016.

[26] K. Weins, ”Cloud Management Blog”,
http://www.rightscale.com/blog/cloud-industry-insights/cloud-computing-
trends-2016-state-cloud-survey

[27] T. Xu and Y. Zhou. ”Systems Approaches to Tackling Configuration
Errors: A Survey .” ACM Computing Surveys 47, no. 4 (July 2015).

[28] J. Visser, P. van Eck, R. van der Leek, S. Rigal, and G. Wijnholds.
”Building Maintainable Software. Ten Guidelines for Future-Proof Code”,
O’Reilly Media, 2016.

[29] Y. Jiang, and B. Adams. ”Co-evolution of Infrastructure and Source
Code: An Empirical Study”, Proceedings of the 12th Working Conference
on Mining Software Repositories (MSR ’15), IEEE Press, pp 45-55, 2015.

[30] J. Cito, G. Schermann, J. E. Wittern, P. Leitner, S. Zumberi, and H.
C. Gall. ”An Empirical Analysis of the Docker Container Ecosystem
on GitHub”, Proceedings of the 14th Working Conference on Mining
Software Repositories (MSR ’17), IEEE Press, pp 323-333, 2017.

[31] B. Adams and S. McIntosh, ”Modern Release Engineering in a Nutshell
– Why Researchers Should Care,” 2016 IEEE 23rd International Con-
ference on Software Analysis, Evolution, and Reengineering (SANER),
2016, pp. 78-90.

[32] https://github.com/fuel-infra/Puppet-manifests
https://github.com/alphagov/govuk-Puppet
https://github.com/wikimedia/operations-Puppet
https://github.com/CCI-MOC/kilo-Puppet
https://github.com/NLNOG/ring-Puppet

