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Abstract
Study Objectives: The changes in electroencephalogram (EEG) activity that characterize sleep and its sub-states—slow-wave sleep (SWS) 
and rapid eye movement (REM) sleep—are similar in mammals and birds. SWS is characterized by EEG slow waves resulting from the 
synchronous alternation of neuronal membrane potentials between hyperpolarized down-states with neuronal quiescence and depolarized 
up-states associated with action potentials. By contrast, studies of non-avian reptiles report the presence of high-voltage sharp waves 
(HShW) during sleep. How HShW relate to EEG phenomena occurring during mammalian and avian sleep is unclear. We investigated the 
spatiotemporal patterns of electrophysiological phenomena in Nile crocodiles (Crocodylus niloticus) anesthetized with isoflurane to determine 
whether they share similar spatiotemporal patterns to mammalian and avian slow waves.

Methods: Recordings of anesthetized crocodiles were made using 64-channel penetrating arrays with electrodes arranged in an 8 × 8 equally 
spaced grid. The arrays were placed in the dorsal ventricular ridge (DVR), a region implicated in the genesis of HShW. Various aspects of the 
spatiotemporal distribution of recorded signals were investigated.

Results: Recorded signals revealed the presence of HShW resembling those reported in earlier studies of naturally sleeping reptiles. HShW 
propagated in complex and variable patterns across the DVR.

Conclusions: We demonstrate that HShW within the DVR propagate in complex patterns similar to those observed for avian slow waves 
recorded from homologous brain regions. Consequently, sleep with HShW may represent an ancestral form of SWS, characterized by 
up-states occurring less often and for a shorter duration than in mammals and birds.
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Statement of Significance

The presence of similar electrophysiological sleep states in birds and mammals leads to questions about their evolutionary origins. When 
did such states arise? Were these states inherited from a common ancestor or did they evolve independently? Most studies of non-avian 
reptiles report the presence of high-voltage sharp waves (HShW) during sleep. We provide the first description of the spatiotemporal pat-
terns of HShW in crocodilians under isoflurane anesthesia. Interestingly, HShW propagated in complex patterns similar to the patterns of 
slow wave propagation previously described in homologous regions of the avian brain. This suggests that non-avian reptilian HShW may 
represent similar electrophysiological phenomena to mammalian and avian slow waves.
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Introduction
Mammalian and avian sleep consists of two sub-states, slow-
wave sleep (SWS) and rapid eye movement (REM) sleep. 
SWS—also known as non-REM sleep—is characterized by high 
amplitude slow waves (0.5–4.0 Hz) in the electroencephalogram 
(EEG) [1, 2]. In mammals, EEG slow waves reflect the synchron-
ous slow alternation of neuronal membrane potentials between 
a hyperpolarized down-state, in which neurons are inactive, 
and a depolarized up-state with action potentials. Although far 
less studied, similar cellular processes are thought to account 
for the presence of avian EEG slow waves [3, 4]. In both mam-
mals and birds, the intensity of SWS, as indicated by the level 
of EEG slow wave activity (SWA; typically around 0.5–4.5 Hz 
power), increases following extended periods of wakefulness 
[5–9]. REM sleep is characterized by low-voltage fast EEG activ-
ity similar to that occurring during wakefulness. REM sleep is 
also associated with reduced or complete loss of skeletal mus-
cle tone, myoclonic twitches, including rapid eye movements, 
reduced thermoregulatory responses, and irregular respiratory 
and heart rates [10]. In both taxonomic groups, the time spent in 
REM sleep also increases following sleep deprivation [7, 11, 12]. 
REM sleep decreases over early ontogeny in altricial birds fol-
lowing hatching and in altricial mammals postpartum [13–15]. 
In precocial mammals, the decrease in REM sleep occurs pri-
marily in utero [16–18]. Collectively, this indicates that from a 
phenomenological and regulatory standpoint, mammals and 
birds exhibit remarkably similar sleep states.

The presence of SWS and REM sleep in such distantly 
related groups raises questions about the evolutionary ori-
gins of these states. Mammals and birds are members of two 
clades (Synapsida and Sauropsida, respectively) that last shared 
a common amniote ancestor 300 million years ago [19, 20]. 
Consequently, SWS and REM sleep might have been inherited 
from a common amniote ancestor in whom both states were 
already present [21]. Alternatively, these sleep states might have 
evolved convergently in mammals and birds [22, 23]. As birds are 
a derived type of reptile (Dinosauria), these alternative scenarios 
can be tested by examining sleep in their closest living reptilian 
relatives—the crocodilians.

Unfortunately, the electrophysiological correlates of sleep in 
crocodilians and other non-avian reptiles are subject to debate. 
This is due to contradictory results across studies, in some cases 
even in the same species, as well as uncertainty over how to 
interpret EEG patterns that do not unequivocally compare to 
those found in mammals and birds [24]. For example, a com-
mon, albeit not universal, electrophysiological correlate of sleep 
behavior reported in crocodilians [25] and other non-avian 
reptiles, is what have been termed high voltage sharp waves 
(HShW) [21, 24–27]. HShW are mono- or polyphasic potentials 
typically with an extra-cellular amplitude of up to 300 μV last-
ing 50–150 ms that emerge intermittently and irregularly from a 
lower amplitude EEG pattern, primarily during periods of behav-
ioral sleep. The incidence of HShW increases following sleep 
deprivation, suggesting that they reflect homeostatically regu-
lated sleep processes [28–30].

It has been suggested that HShW are homologous to sharp 
wave ripple (SWR) complexes occurring in the mammalian 
hippocampus during SWS due to their similar form and irregu-
lar pattern of occurrence [21, 27]. Mammalian SWR complexes 
are an emergent property of the hippocampal CA1/CA3 circuitry 
[31]. CA3 neurons initiate intermittent highly synchronous 

bursts of activity that cause high amplitude (e.g. 2 mV), sharp 
wave field potentials in the dendritic layer and 100–200 Hz “rip-
ples” in the pyramidal layer of CA1 [31]. Interestingly, HShW in 
pogona lizards (Pogona vitticeps) are accompanied by fast activity 
that has been equated to the ripple component of mammalian 
SWR complex [21]. In addition to these similarities in waveform, 
the incidence of both HShW and SWR increase following sleep 
deprivation [28, 29] and respond similarly to various pharmaco-
logical agents [32–38].

Despite the similarities between reptilian HShW and mam-
malian SWR, several lines of evidence question whether they 
reflect homologous phenomena. First, the pharmacologic agents 
that similarly influence the incidence of mammalian hip-
pocampal SWR and reptilian HShW [35, 39–41] may have simi-
lar effects on SWS-related slow waves (e.g. [40]). Consequently, 
these manipulations do not necessarily rule out the possibility 
that reptilian HShW more closely reflect mammalian/avian slow 
waves than they do mammalian hippocampal SWRs. Second, 
mammalian SWRs have only been observed in the hippocampus, 
subiculum, and adjacent entorhinal cortex [31], whereas HShW 
occur throughout much of the reptilian brain. Specifically, HShW 
occur in the reptilian hippocampus (i.e. medial cortex [21, 36–
38]), dorsal cortex [25, 26, 28, 29, 36–38, 42], and dorsal ventricular 
ridge (DVR) [21, 37], the latter being a large structure found in 
reptiles and birds thought to be developmentally homologous to 
portions of the mammalian neocortex and pallial amygdala [43]. 
In addition to reptilian HShW having a more widespread distri-
bution in the reptilian brain than SWR have in the mammalian 
brain, HShW have not been reported in the avian hippocampus 
or DVR during SWS [4, 7, 44–50]; rather both structures exhibit 
slow waves typical of SWS. The apparent absence of HShW in 
birds, a derived type of reptile, further questions whether rep-
tilian HShW are homologous to mammalian hippocampal SWR. 
Instead, the presence of HShW in the reptilian hippocampus, 
dorsal cortex, and DVR during sleep behavior and the presence 
of slow waves in the sleeping avian hippocampus, dorsal cortex 
(i.e. hyperpallium), and DVR suggests that reptilian HShW are a 
precursor waveform to avian slow waves.

One aspect of HShW that has not been examined previously 
is their fine-scale spatio-temporal properties. In mammals 
and birds, slow waves propagate across the brain. Mammalian 
slow waves typically propagate from rostral locations in the 
prefrontal cortex in a anteroposterior direction during SWS, 
although individual slow waves can originate from virtually 
any cortical region [51–62]. Avian slow waves occurring under 
isoflurane [4] or spontaneous SWS [63] generally exhibit more 
complex propagation patterns, likely as a result of their nuclear 
brain organization [4]. Interestingly, propagating slow waves 
have been observed in the avian DVR [4], a structure that, as 
previously mentioned, exhibits HShW in sleeping reptiles [21]. 
Herein, we investigate the spatiotemporal properties of HShW 
within the DVR using high-density, electrode arrays in Nile croc-
odiles (Crocodylus niloticus) lightly anesthetized with isoflurane 
[1, 64].

Methods

Holding and care

Six juvenile (0.5–1.5-year-old) Nile crocodiles, weighing 
469  ±  168  g (mean ± SD) and with a snout-to-vent length of 
25.5 ± 4.4 cm were used in this study. All crocodiles were housed 
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and cared for in accordance with the Mindestanforderungen an 
die artgerechte Haltung von Krokodilen in privaten Terrarien und 
zoologischen Einrichtungen and in accordance with German 
law. Additionally, all housing and care procedures, as well as, 
experimental protocols were approved by the “Regierung von 
Oberbayern.”

Surgical instrumentation and recording procedure

Recordings were carried out using the following procedure. 
Anesthesia was induced using isoflurane (5.0% vaporized in 
O2 delivered at a rate of 250 ml/min). Once an adequate plane 
of anesthesia was established each crocodile was intubated 
and mechanically ventilated 2–4 times per minute (mainten-
ance: 2.0%–2.5% isoflurane). Meloxicam (0.2  mg/kg; intramus-
cular injection) was administered for systemic analgesia. The 
crocodile was then mounted into a stereotaxic frame resting 
on a heating pad. Core body temperature was measured with 
a cloacal probe and maintained at 30°C, per veterinary instruc-
tion. Twenty minutes after the analgesic injection the skull was 
exposed and a small window (2–3 mm2) was opened in the cra-
nium and underlying dura.

For our recordings, we used 64-channel silicon multi-
electrode arrays with iridium electrode sites (NeuroNexus 
Technologies, Ann Arbor, Michigan; A8x8–5mm–200-200-177 
and A8x8–5mm–200-200-413). The electrodes on the arrays were 
arranged in an 8 x 8 grid with equal spacing of 200 μm between 
electrode rows and columns. Arrays with two different elec-
trode sizes were used (177 μm3 and 413 μm3). To begin, the array 
was positioned just above the exposed brain surface, and the 
absence of small movements caused by respiration was verified 
under high magnification (40–60×). The array was then slowly 
inserted into the brain. Isoflurane was reduced to a lower level 
(0.5%–1.0%) for the recordings. Recordings started 15 minutes 
post-insertion and lasted 10–15 minutes. Video was recorded 
during all experiments and with real-time temperature readout 
and respiration visible.

Recordings were referenced to a silver wire placed under 
the skin above the probe insertion site. Signals were buffered 
using headstage preamplifiers (10× gain; MPA32I; Multi Channel 
Systems, Reutlingen, Germany) and amplified with a multichan-
nel amplifier 250× gain; bandpass filters 0.1 to 5000 Hz; PGA64; 
MultiChannel Systems, Austin, Texas). The resulting signals 
were digitized with a sampling frequency of 14 kHz and reso-
lution of 16-bits (NI9205; National Instruments). Digitized sig-
nals were stored in HDF5 file format [65].

At the end of each recording session, the crocodile was euth-
anized by increasing the isoflurane level to 5.0% for 20 minutes 
and subsequently severing the spinal cord. The brain was then 
removed and frozen at −80°C for later confirmation of electrode 
placement.

Data filtering and analysis

Analyses were carried out using the methods outlined in an ear-
lier study employing the same techniques [4]. Recorded signals 
were filtered for high-frequency signals (0.5–5 kHz) containing 
action potentials and low-frequency signals (0.1–350 Hz) con-
taining local field potentials (LFP). The LFP analyses were based 
on bandpass (0.5–35 Hz) filtered signals. LFP were character-
ized by the presence of HShW occurring relatively infrequently 

(1.0–48.4 per minute), as previously described in other non-avian 
reptiles. Analyses were carried out on identified peaks in the 
LFP signal, which were defined as an episode with a duration 
of greater than 20 ms in which the electrical potential crossed 
a fixed threshold of −80  μV on three or more electrode sites. 
In recordings containing very few HShW, we manually verified 
that the −80  μV threshold identified most peaks. By choosing 
a higher threshold value we were able to include all HShW for 
the analysis, but exclude smaller variations in the signals. For a 
detailed description of the calculation of cross-correlation coef-
ficient and LFP time lag between sites, as well as, spatial mean 
trajectory calculation refer to the methods section of this earlier 
study [4].

Histology

The position of the array was verified histologically using a Dil 
fluorescent dye painted on the shanks prior to insertion [66]. 
Each brain was cut in 25 μm sections using a cryostat and sec-
tions were mounted on glass slides. After sectioning, electrode 
placement was verified by tracing back the fluorescence left by 
the array using fluorescent microscopy.

Results
In all six crocodiles, most of the electrode sites were in the DVR. 
In four of the crocodiles the shallowest electrode sites were in 
the dorsal cortex overlying the DVR (Supplementary Figures S1, 
S2, S4, and S5). For unclear reasons, we only observed distinct 
differences in HShW amplitude between structures in one of 
these individuals (crocodile 4 in Figure  3, and Supplementary 
Figure  S4). Simultaneous recordings from medial cortex, 
dorsal cortex, and DVR were obtained from one crocodile 
(Supplementary Figure  S7). Because the available data from 
the medial and dorsal cortices was limited, we concentrated 
on propagation patterns in the DVR in our analyses. Multiunit 
activity was not detected in any of our recordings.

HShW occurred mono-, bi-, and polyphasically with ampli-
tudes in some cases exceeding 1,000  μV (Figure  1A and B; 
Supplementary Figures  S1–S5). Generally, the HShW occurred 
with higher amplitude at deeper, more lateral recording sites 
(Figure 1B, C, and F; Supplementary Figures S1–S6F), which were 
histologically verified to be located within the DVR (Figure 1H 
for histology). The rate of HShW occurrence was 0.8- 66.2/min 
between individuals recorded under similar anesthesia levels. 
The signals were usually also present, albeit with a lower amp-
litude, at shallower recording sites (Supplementary Figure S1, B 
and C).

When plotted over short time scales, HShW occurred at 
slightly offset times across recording sites, suggesting propa-
gation through the brain (Figure  1, C and D). To illustrate this 
further, videos were generated compiling still frames across 
recordings in which each pixel corresponds to a recording site 
with color indicating signal voltage (Figure  1D and Figure  2; 
Supplementary Videos S1–S5 and S13). The HShW shown in 
Figure 1 occurred earlier and with a higher mean power in the 
ventrolateral recording sites (Figure  1, D–G; Supplementary 
Video S1).

To explore systematic patterns in between-electrode 
delays in LFP peak occurrence, we calculated the mean of the 
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Figure 1. Characteristics of HShW occurring in the DVR for crocodile 4. (A) This is an enlarged view of a 10-second period filtered for LFP for electrode site 62 (column 

8, row 4). (B) Same 10-second period from part (A) filtered for LFP for all 64 recording sites (arranged in an 8 × 8 grid). (C) A temporally expanded view of a single HShW. 

The grey boxes delineate the same time period across each channel to more clearly illustrate that the HShW is occurring at slightly offset times across the recording 

sites. (D) Plots showing the LFP voltage distribution across time for the same HShW, with voltage at an electrode site coded in color. (E) Trajectory of the spatial mean of 

the same selected event. (F) The mean LFP time lag of the selected peak. (G) Average LFP power distribution across the recording array for the same HShW. (H) Coronal 

section of the crocodile brain indicating recording array position. Array position is marked with a blue square. Scale bars and units are provided in each section of the 

figure, red stars mark the HShW depicted in this figure.
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Figure 2. HShW selected to illustrate complex propagation patterns. Each plot shows a sequential series of frames with each pixel representing the voltage at an elec-

trode site. Peak boundaries were determined using −80 μV as a detection threshold. The frames are separated by 4 ms. Events (A)–(C) were selected from crocodile 1 and 

(D) from crocodile 3. Events (A–C) contain recording sites in the dorsal cortex (top two rows of recording sites) and the dorsal ventricular ridge (DVR; bottom six rows 

of recording sites). Events from D are from a deeper recording from the DVR.
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cross-correlation coefficients and LFP time lag between record-
ing sites across all identified HShW. A clear pattern of propaga-
tion was observed in 4 of 6 crocodiles. Plots of mean LFP time 
lag in which a pattern was apparent revealed a propensity for 
signals to occur first at deep lateral recordings sites within the 
DVR and to occur later in more dorsomedial (i.e. superficial and 
nearer the midline) sites (Figure 3).

Although an overall propagation pattern is significant in only 
four of six crocodiles, HShW exhibiting similar, complex propa-
gation patterns were present in recordings from all crocodiles 
(Figure 2; Supplementary Figures S1–S7; Supplementary Videos 
S2–S12 and S14). Individual HShW emerged from a variety of 
different directions, including both lateral (Figure  2A  and C; 
Supplementary Videos S2 and S4) and medial (Figure 2B and D; 

Supplementary Videos S3 and S5) recording sites in all crocodiles 
(e.g. Figure  2, A–D; Supplementary Videos S2–S5). Additionally, 
as previously noted, the patterns with which HShW propagate 
across the recording array are both variable and complex, includ-
ing arcs and rings of activity (Figure 2A, C, and D; Supplementary 
Videos S2, S4, and S5).

Plots of the movement of the spatial mean further demon-
strate that on an individual level, signals have the potential to 
originate from a variety of regions and follow variable trajecto-
ries across recording sites (Figure 4A). However, when a larger 
group of trajectories are randomly selected from an individual 
(N = 200 in Figure 4B; Supplementary Figure S8, A and B), an over-
all pattern of propagation emerges. HShW emerge most often in 

Figure 3. Mean time lags of LFP for all identified HShW for individual crocodiles. (A) Mean time lag between recording sites for all identified HShW (voltage thresh-

old  =  −80  μV). (B) Mean LFP time lag between recording sites for HShW in which signals are highly correlated with statistically significant time lag differences 

(cross-correlation coefficient value ≥ 0.75; p ≥ 0.05). There is an overall tendency for HShW to occur earlier in ventrolateral recording sites and later in more medial 

recording sites. This tendency is even stronger in individuals with statistically significant time lag differences.

Figure 4. Trajectory plots of the HShW spatial mean across time. All trajectories are from crocodile 3. (A) Plots of the movement of the spatial mean as a product of 

time for individual HShW signals show the diversity of propagation patterns. (B) Plots of the movement of the spatial mean over time for 200 randomly selected HShW 

signals.
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the ventrolateral quarter of the recording array and move in a 
dorsomedial direction.

Conclusions
Our recordings of anesthetized juvenile Nile crocodiles showed 
HShW similar to those reported in earlier studies of naturally 
sleeping reptiles [21, 25, 26, 28, 29, 67–76]. LFP exhibited mono-, 
bi-, and polyphasic HShW with amplitudes exceeding 1000 μV. 
Like naturally occurring slow waves in sleeping mammals  
[51–62] and slow waves induced by isoflurane in birds [4], HShW 
also propagated across the DVR in crocodiles. Interestingly, 
rather than exhibiting a stereotyped spatiotemporal pattern, 
HShW were highly variable. HShW propagated following com-
plex patterns following a variety of different trajectories across 
recording sites, including arcs and rings of activity. Interestingly, 
as in mammals [51] and birds [4], despite this variability, there 
was an overall propagation pattern in most crocodiles, with 
HShW usually occurring earlier in ventrolateral sites and later 
in dorsomedial sites of the DVR.

Limitations

Unexpectedly, we did not observe any multi-unit activity (MUA) 
during HShW or at any other time in the recordings. By contrast 
in our previous recordings of zebra finches (Taeniopygia guttata), 
using the same electrodes, amplifiers, sampling rate, and type of 
anesthesia, MUA was closely associated with propagating nega-
tive waves in the LFPs [4]. Consequently, the absence of MUA in 
the crocodile recordings does not appear to reflect a technical 
problem with our set-up. Interestingly, in naturally sleeping 
pogona lizards, MUA was clearly associated with HShW occur-
ring in the DVR [21]. Although the reasons for these discrepan-
cies remain unclear, the higher density of neurons in the avian 
brain may have increased the probability of detecting MUA in 
finches [77]. Perhaps further study using arrays more sensitive 
to units (i.e. tetrodes) would be more likely to detect MUA in the 
non-avian reptilian brain.

The incidence of HShW varied across crocodiles and record-
ings. This variability likely reflects, in part, inter-individual vari-
ability in responsiveness to the anesthetic. As isoflurane at low 
doses induces slow waves similar to those occurring during nat-
ural SWS in rats [78], we kept the concentration of isoflurane at 
a low level. However, as isoflurane at higher doses suppresses 
slow waves in mammals [78] and birds (Rattenborg, unpublished 
data), it is possible that the same isoflurane dose suppressed 
HShW in some crocodiles. A systematic experiment, including 
measurements of isoflurane levels in the blood, is needed to 
assess the influence that this anesthetic has on the incidence of 
HShW in crocodiles. Temperature has also been demonstrated 
to have a profound effect on HShW amplitude and occurrence 
in reptiles [75]. A  study investigating the effects of body tem-
perature upon HShW propagation patterns will be important for 
our understanding of natural sleep states in non-avian reptiles.

Various anesthetics induce brain rhythms similar to those 
present during natural sleep. EEG patterns under isoflurane 
anesthesia in mammals and birds are characterized by the 
presence of high-amplitude, low-frequency slow waves simi-
lar to natural SWS [1, 3, 4, 78]. Isoflurane anesthesia activates 
sleep-promoting neurons in the ventrolateral preoptic nucleus 
of the hypothalamus, neurons that also fire preferentially during 

natural sleep [79]. In addition, slow waves occurring under iso-
flurane anesthesia relieve the homeostatic pressure for sleep 
following extended periods of wakefulness in a manner similar 
to natural SWS [78]. Taken together, this suggests that isoflu-
rane induced slow waves share similar functional and regula-
tory mechanisms to slow waves during naturally occurring SWS. 
Nevertheless, it would be of interest to replicate this study using 
other anesthetics. It would also be of particular interest to study 
the spatiotemporal distribution of HShW in naturally sleeping 
crocodiles to see how those compare to waves occurring under 
anesthesia.

Evolution of slow waves

The propagation patterns of HShW in the crocodile DVR were 
similar to those of slow waves recorded in the avian DVR under 
similar conditions. Given that SWRs also propagate within the 
mammalian hippocampus [80, 81], propagation alone does 
not reveal whether reptilian HShW are more closely related to 
mammalian SWRs or slow waves found in mammals and birds. 
Nonetheless, when combined with other lines of evidence, the 
latter scenario seems more likely. In contrast to mammalian 
SWRs, which are confined to the hippocampus, reptilian HShW 
occur in the dorsal cortex and DVR, regions thought to be hom-
ologous to the neocortex and pallial amygdala [43]. Moreover, 
slow waves, but not SWRs, have been found in the avian hippo-
campus during SWS [82]. Instead, the presence of HShW in the 
reptilian hippocampus, dorsal cortex, and DVR and the pres-
ence of slow waves in the avian hippocampus, dorsal cortex (i.e. 
hyperpallium), and DVR, as well as the fact that both non-avian 
reptilian HShW and avian slow waves propagate in complex pat-
terns in the DVR, suggest that reptilian HShW are a precursor 
waveform to avian slow waves.

According to this scenario, reptilian HShW may involve the 
same neuronal processes responsible for the slow oscillation in 
membrane potentials that gives rise to mammalian/avian slow 
waves. However, in contrast to mammals and birds, reptiles may 
lack the cellular or network properties needed to frequently ini-
tiate and synchronize up-states, and to sustain them once they 
occur [83, 84]. As a result, in contrast to up-states occurring in 
mammals and birds, reptilian up-states appear to occur less fre-
quently and for a shorter duration resulting in the sharp char-
acteristics of the HShW when compared to mammalian/avian 
slow waves. Moreover, the “ripples” reported in pogona lizards 
during HShW may reflect the increase in neuronal activity that 
typically occurs during the up-state of slow oscillations [85, 86]. 
If HShW and slow waves represent homologous waveforms, 
then sleep with HShW might have been the ancestral form of 
sleep present in the stem amniote ancestor to mammals, rep-
tiles, and birds.

The evolutionary transition from HShW to slow waves might 
have been linked to evolutionary changes in physiology and/or 
brain organization. One possibility is that this occurred in con-
junction with the shift from exothermic to endothermic physio-
logical states. Temperature is known to have large effects on 
electrophysiological phenomena [87–92]. Lower temperatures 
have been shown to place constraints on the cellular processes 
involved in the maintenance of neuronal transmembrane 
potentials resulting in a decrease in EEG amplitude and fre-
quency in mammals [93, 94]. However, recent research suggests 
that lower temperature is unlikely to explain the presence of 
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HShW in reptiles. In mice, cortical cooling actually increased the 
time spent in slow oscillation up-states [95]. Consequently, dif-
ferences in temperature may not fully explain the differences 
in sleep-related neurophysiology observed between birds, mam-
mals, and non-avian reptiles.

Another possibility is that neuronal density and/or con-
nectivity plays a role in the differences in neurophysiology [83]. 
Corticocortical connections in the mammalian neocortex have 
been implicated in the synchronization of the slow oscillation 
across large neocortical regions [83, 96–99]. Comparatively lower 
corticocortical connections and neuronal density in the reptil-
ian brain, when compared to the brains of birds and mammals 
[77, 100, 101], might therefore reduce the propensity of the net-
work to initiate and sustain up-states resulting in HShW, rather 
than slow waves.

In addition to neuronal density and connectivity, the dens-
ity of astrocytes may also influence the characteristics of sleep-
related neurophysiology. Recent studies have demonstrated that 
astrocytes play a role in the genesis and characteristics of slow 
oscillations in the mammalian brain [102–104]. Of particular 
interest, mice in which astrocytes have been inhibited initiate 
up-states less often and exhibit shorter up-states, resulting in 
activity similar in form to reptilian HShW [102]. As the density 
of astrocytes in the brains of non-avian reptiles is lower than in 
birds and mammals [105, 106], astrocyte density could explain 
why non-avian reptiles exhibit HShW, rather than slow waves.

In addition to potentially explaining the differences between 
reptilian HShW and avian/mammalian slow waves, variation in 
any of the above-mentioned mechanistic explanations could 
also explain the variation in the incidence and duration of 
HShW observed across non-avian reptiles. For example, within 
squamates, the incidence of HShW during sleep ranges from ~1 
HShW/min in the desert iguana (Dipsosaurus dorsalis [107]) to 
~60–180 HShW/min in the bearded dragon (Pogona vitticeps [21]). 
HShW in pogona lizards also seem to have a longer duration 
(i.e. more slow wave-like pattern) than those reported for other 
reptiles [21, 27]. As such, this species might be expected to have 
higher neuronal density, higher neuronal interconnectivity, and/
or higher astrocyte density than other reptiles. Interestingly, 
among the non-avian reptiles studied, the evidence for REM 
sleep is strongest in pogona lizards [21], raising the possibility 
that traits responsible for slow waves might also play a role in 
the genesis of REM sleep in mammals, birds, and some non-
avian reptiles.

Summary and functional implications

Understanding how sleep-related electrophysiological traits of 
non-avian reptiles relate to brain activity observed in birds and 
mammals is fundamental to understanding the evolutionary 
origins of SWS and REM sleep states. Insight into the evolution-
ary process necessary for the development of these patterns 
of brain activity may also shed light upon the functional roles 
of these states. Our results show that HShW occurring in the 
crocodile DVR exhibit complex propagation patterns qualita-
tively similar to those observed for slow waves in the avian DVR 
recorded under similar conditions [4]. Although complex propa-
gation alone is not diagnostic of slow waves (mammalian SWRs 
also propagate within the hippocampus) [80], the occurrence of 
HShW and slow waves in the DVR of closely related taxonomic 
groups suggests that HShW reflect neurophysiological phenom-
ena closely related to slow waves, rather than morphologically 
similar SWRs which emerge from the unique cytoarchitecture, 

and perhaps function [82], of the mammalian hippocampus 
[31]. In this respect, HShW and avian/mammalian slow waves 
may reflect homologous phenomena. Morphological differences 
between intermittently occurring HShW and regularly occurring 
slow waves may simply arise from avian/mammalian neurons 
initiating up-states more often, and remaining in up-states 
longer once they occur.

Collectively, this scenario suggests that although the cap-
acity for neurons to alternate between up- and down-states 
is an ancestral trait present in the common amniote ancestor 
to Synapsida and Sauropsida, mammals and birds independ-
ently evolved as yet unknown traits that increase the capacity 
to initiate and sustain up-states during sleep [84]. Although 
the traits responsible for the greater investment in up-states 
remain unclear, candidates include increased neuronal density 
and interconnectivity, as well as an increased concentration of 
astrocytes. The functional implications of spending more time 
in up-states remain unclear but might include increased sleep-
dependent information processing which is thought to be medi-
ated by memory reactivation occurring during up-states of the 
slow oscillation [108–110]. Further study is needed to confirm 
the presence of this ostensible evolutionary pattern and evalu-
ate its full functional consequences.
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