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ABSTRACT

Time-domain processing has a long history in seismic im-
aging and has always been a powerful workhorse that is rou-
tinely used. It generally leads to an expeditious construction
of the subsurface velocity model in time, which can later be
expressed in the Cartesian depth coordinates via a subsequent
time-to-depth conversion. The conventional practice of such a
conversion is done using Dix inversion, which is exact in the
case of laterally homogeneous media. For other media with
lateral heterogeneity, the time-to-depth conversion involves
solving a more complex system of partial differential equa-
tions (PDEs). We have developed an efficient alternative for
time-to-depth conversion and interval velocity estimation
based on the assumption of weak lateral velocity variations.
By considering only first-order perturbative effects from lat-
eral variations, the exact system of PDEs required to accom-
plish the exact conversion reduces to a simpler system that
can be solved efficiently in a layer-stripping (downward-step-
ping) fashion. Numerical synthetic and field data examples
show that our method can achieve reasonable accuracy and is
significantly more efficient than previously proposed methods
with a speedup by an order of magnitude.

INTRODUCTION

Time-domain imaging is an efficient technique that is routinely
applied to seismic data processing. It constitutes prestack time
migration and may also include operations such as normal and dip
moveout analysis and stacking (Yilmaz, 2001). It can also be alter-
natively formulated based on the method of wave-equation migration
in time-domain coordinates (Fomel, 2013). Because time-domain
imaging operates in the time coordinates, it provides efficiency and

convenience. The price paid for this simplicity, however, includes
placing the resultant images in distorted coordinates and the limited
applicability in structurally complex areas. Nevertheless, time-do-
main imaging is still a reliable and cost-effective tool for many other
areas, including unconventional reservoirs on land (Fomel, 2014).
Conventional time-to-depth conversion involves an application of

Dix inversion, which is strictly valid only in laterally homogeneous
models. The effects from lateral velocity variations can cause un-
stable inversion and produce inaccurate results (Lynn and Claerb-
out, 1982; Black and Brzostowski, 1994; Bevc et al., 1995; Blias,
2009; Sripanich et al., 2017). Cameron et al. (2007, 2008) show that
converting seismic images from the distorted time coordinates to the
Cartesian depth coordinates in the presence of lateral velocity var-
iations amounts to solving an inverse problem specified by a system
of partial differential equations (PDEs) that describes the kinematics
and geometric spreading of image rays (Hubral, 1977). Solving this
system involves finding an accurate interval velocity and coordinate
maps from the time domain to the depth domain. Figure 1 shows a
schematic of three general paths adopted in previous works. The
first approach begins with the estimation of interval velocity still
expressed in the time domain from image ray tracing followed
by a time-to-depth conversion using a Dijkstra-like solver (Cameron
et al., 2007, 2008, 2009). The second approach combines the two
steps together and proceeds by propagating an image wavefront
(Cameron et al., 2007; Valente et al., 2017). An extension of the
problem along 2D profiles to three dimensions is discussed by
Iversen and Tygel (2008). For the third approach, Li and Fomel
(2015) propose to formulate this inversion in a nonlinear iterative
optimization framework supplied with regularization for better han-
dling of its ill-posedness. This method allows for a global update of
the estimated interval velocity at each iteration, which is generally
preferable to solutions from time stepping along the image rays in
the other known methods.
In this paper, we consider the case of mild lateral variations and

propose approximating the original system of PDEs to limit our con-
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sideration to their first-order perturbative effects. This linearization
leads to a notable simplification and a higher efficiency while still
correcting the conventional Dix inversion for lateral variations. The
result from this approach can be used as an initial velocity model for
the subsequent optimization for a faster convergence.

THEORY

The time-domain coordinates ðx0; t0Þ used in time migration are
related to the Cartesian depth coordinates ðx; zÞ through the knowl-
edge of image rays (Figure 2), which have an orthogonal slowness
vector to the surface (Hubral, 1977). For each subsurface location
ðx; zÞ, an image ray travels through the medium and emerges at
ðx0; 0Þ with traveltime t0. The forward maps x0ðx; zÞ and t0ðx; zÞ
can be obtained with the knowledge of the interval velocity vðx; zÞ.
We can also define the inverse maps xðx0; t0Þ and zðx0; t0Þ for the
time-to-depth conversion process. A similar description of the co-
ordinate relation also holds in three dimensions.
In the time domain, one operates with the time-migration velocity

vmðx0; t0Þ estimated from migration velocity analysis (Yilmaz,
2001; Fomel, 2003a, 2003b). In a laterally homogeneous medium,
vm corresponds theoretically to the root-mean-square velocity:

wmðt0Þ ¼
1

t0

Z
t0

0

wðzðtÞÞdt; (1)

which we denote as w ¼ v2 throughout the text. The inverse process
to recover interval velocity vðzÞ can be done through the Dix (1955)
inversion:

wdðt0Þ ¼
d
dt0

ðt0wmðt0ÞÞ; (2)

where the subscript d is used to denote an output parameter from the
Dix inversion process. A simple conversion from wdðt0Þ to wðzÞ
reduces then to a straightforward integration over time to obtain a
zðt0Þ map.
However, in the case of laterally heterogeneous media, Cameron

et al. (2007) prove that the Dix-inverted velocity can be related to
the true interval velocity by the geometric spreading Qðxðx0; t0Þ;
zðx0; t0ÞÞ of the image rays traced telescopically from the surface
as follows:

wdðx0; t0Þ ¼
wðxðx0; t0Þ; zðx0; t0ÞÞ
Q2ðxðx0; t0Þ; zðx0; t0ÞÞ

; (3)

where the geometric spreading Q satisfies

∇x0 · ∇x0 ¼
1

Q2
: (4)

Combining equations 3 and 4 gives

∇x0ðx; zÞ · ∇x0ðx; zÞ ¼
wdðx0ðx; zÞ; t0ðx; zÞÞ

wðx; zÞ : (5)

To solve for the interval velocity, two additional equations are
needed (Cameron et al., 2007; Li and Fomel, 2015):

∇x0ðx; zÞ · ∇t0ðx; zÞ ¼ 0; (6)

∇t0ðx; zÞ · ∇t0ðx; zÞ ¼
1

wðx; zÞ : (7)

Equation 6 indicates that x0 is constant along each image ray, and
equation 7 denotes the eikonal equation of image ray propagation.
Equations 5–7 amount to a system of PDEs that can be solved for
the interval velocity vðx; zÞ as well as the maps xðx0; t0Þ and zðx0; t0Þ
needed for the time-to-depth conversion process.

Taking weak lateral variations into account

Instead of attempting to solve equations 5–7 directly, we assume
that the lateral variations are mild and that the parameters can be
approximated with respect to the laterally homogeneous back-
ground up to the first-order linearization as follows:

wðx; zÞ ≈ wrðzÞ þ Δwðx; zÞ; (8)

x0ðx; zÞ ≈ xþ Δx0ðx; zÞ; (9)

t0ðx; zÞ ≈
Z

z

0

1ffiffiffiffiffiffiffiffiffiffiffi
wrðzÞ

p dzþ Δt0ðx; zÞ: (10)

Dix velocity   v
d
 (x

0 
, t

0
)

Interval velocity   v (x, z)

Image ray tracing

Level-set method
(wavefront propagation)

 v (x
0 
, t

0
)

Time-to-depth conversion

Nonlinear optimization

Figure 1. A schematic illustrating the general approaches to time-
to-depth conversion and interval velocity estimation.
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Depth coordinates Time coordinates

Figure 2. The relationship between time-domain coordinates and
the Cartesian depth coordinates. An example image ray with slow-
ness vector normal to the surface travels from the source xs into the
subsurface. Every point along this ray is mapped to the same dis-
tance location xs in the time coordinates with different correspond-
ing traveltime ts.
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The first terms on the right side of equations 8–10 correspond to
the correct values of the velocity squared wr, x0, and t0 for the refer-
ence laterally homogeneous background. Our objective is to seek
Δw, Δx0, and Δt0 that quantify the first-order effects from lateral
heterogeneity. Substituting equations 8–10 into equations 5–7 and
restrict our consideration only up to the first-order perturbations, we
can derive

wdðx; zÞ ¼ wrðzÞ
�
1þ 2

∂Δx0
∂x

ðx; zÞ
�
þ Δwðx; zÞ; (11)

∂Δt0
∂x

ðx; zÞ ¼ −
1ffiffiffiffiffiffiffiffiffiffiffi
wrðzÞ

p
�
∂Δx0
∂z

ðx; zÞ
�
; (12)

Δwðx; zÞ ¼ −2wrðzÞ
ffiffiffiffiffiffiffiffiffiffiffi
wrðzÞ

p �
∂Δt0
∂z

ðx; zÞ
�
; (13)

which is a considerably simpler system to solve than the original
one. However, implementing our system requires knowledge of
wdðx; zÞ, which is unavailable from migration velocity analysis be-
cause the Dix velocity squared wdðx0; t0Þ is still expressed in the
time domain. In the same spirit as before, we propose to consider
instead a linearized approximation given by

wdðx0ðx;zÞ;t0ðx;zÞÞ¼wd

�
xþΔx0;

Z
z

0

1ffiffiffiffiffi
wr

p dzþΔt0
�
;

≈wd

�
x;
Z

z

0

1ffiffiffiffiffi
wr

p dz

�
þ
�
Δx0ðx;zÞ×

∂wd

∂x0
ðx0ðx;zÞ;t0ðx;zÞÞ

�

þ
�
Δt0ðx;zÞ×

∂wd

∂t0
ðx0ðx;zÞ;t0ðx;zÞÞ

�
: (14)

Following a similar procedure and retaining only the first-order
terms, we can approximate ð∂wd∕∂x0Þðx0ðx; zÞ; t0ðx; zÞÞ and
ð∂wd∕∂t0Þðx0ðx; zÞ; t0ðx; zÞÞ, which results in

wdðx; zÞ ≈ wdrðx; zÞ þ
�
Δx0ðx; zÞ ×

∂wd

∂x0
ðx; zÞ

�

þ
�
Δt0ðx; zÞ ×

∂wd

∂t0
ðx; zÞ

�
; (15)

where the reference wdrðx; zÞ denotes the wdðx0; t0Þ converted to
depth based on the laterally homogeneous background assumption
and the two derivatives are evaluated first in the original ðx0; t0Þ co-
ordinates followed by a similar conversion. Substituting equation 15
into equation 11 leads to the following first-order linear system:

∂u
∂z

¼ A
∂u
∂x

−
1

2wr
ffiffiffiffiffi
wr

p ðBuþ fÞ; (16)

where u ¼ ½Δt0;Δx0�T

A ¼
�

0 1∕ ffiffiffiffiffi
wr

p
− ffiffiffiffiffi

wr
p

0

�
; (17)

B ¼
� ∂wd

∂t0
∂wd
∂x0

0 0

�
; (18)

f ¼
�
wdr − wr

0

�
: (19)

Equation 16 can be solved by stepping in the depth z-direction
given the following initial conditions at the surface z ¼ 0:

Δt0ðx; 0Þ ¼ 0 and Δx0ðx; 0Þ ¼ 0: (20)

In our numerical experiments, we adopt the following procedure
to solve system 16:

1) Provided the wdðx0; t0Þ from migration velocity analysis, we
compute the ∂wd∕∂x0 and ∂wd∕∂t0 using smooth differen-
tiation.

2) Convert the velocity and both derivatives to depth based on the
assumption of laterally homogeneous media to obtain wdrðx; zÞ,
ð∂wd∕∂x0Þðx; zÞ, and ð∂wd∕∂t0Þðx; zÞ.

3) Choose a reference laterally homogeneous background wrðzÞ
from wdrðx; zÞ.

4) Given the initial condition 20 on u and other known parameters
from the previous steps, we compute ∂u∕∂x for the topmost
layer using smooth differentiation, which helps to alleviate the
effects from sharp contrasts and their corresponding numerical
artifacts that may get carried on to the next depth step.

5) Make a step in depth based on

∂u
∂z

≈
ukþ1 − uk

Δz
; (21)

where Δz represents the depth increment of the model, the cur-
rent layer is denoted by k, and the next layer is denoted by kþ 1.

6) Repeat steps 4 and 5 for the next layer until the final layer.
7) Compute Δw from the estimated u using equation 13.

EXAMPLES

Linear sloth model

We first test our method using a synthetic model with known ana-
lytical time-to-depth conversion solutions. In this model, the exact
velocity squared is given by

wðx; zÞ ¼ 1

s0 − 2qxx
; (22)

where s0 ¼ 1 and qx ¼ 0.026, which gives a maximum of 25%
changes in lateral velocity along the 7 km lateral extent of the model.
The analytical solutions to time-to-depth conversion in this particular
type of model are given by (Li and Fomel, 2015)
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x0ðx; zÞ ¼
2s0xþ qxz2

s0 þ 2qxxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs0 − 2qxxÞ2 − 4q2xz2

p ; (23)

t0ðx; zÞ ¼
ffiffiffi
2

p
zð2s0 − 4qxxþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs0 − 2qxxÞ2 − 4q2xz2

p
Þ

3ðs0 − 2qxxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs0 − 2qxxÞ2 − 4q2xz

2
p

Þ12 :

(24)

Figure 3 shows the true interval velocity of the model (equation 22),
and the analytical x0 and t0 overlaid by the contours indicating im-
age rays and propagating image wavefront. Other inputs for our
conversion method are shown in Figure 4. We choose the reference
wrðzÞ background to be the central trace of the reference wdrðx; zÞ.
The estimated results are shown in Figure 5, and their correspond-
ing errors in comparison with the analytical values are shown in
Figure 6. The errors appear to be generally small, indicating a good
accuracy for all estimated parameters, but the performance deteri-
orates closer to the edges of the model, where the true velocity
squared wðx; zÞ is further away from the chosen reference wrðzÞ.

Linear-gradient model

We further test our method with another synthetic model that
contains stronger velocity variations in the vertical and horizontal
directions. In this model, the exact velocity is given by

vðx; zÞ ¼ v0 þ gzzþ gxx; (25)

where v0 ¼ 2 km∕s, gz ¼ 0.6 s−1, and gx ¼ 0.15 s−1. These param-
eters result in 33%–50% changes in horizontal velocity and
a maximum of 60% change in vertical velocity. The analytical sol-
utions to time-to-depth conversion in this particular type of model
were given by (Li and Fomel, 2015)

x0ðx; zÞ ¼ xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv0 þ gxxÞ2 þ g2xz2

p
− ðv0 þ gxxÞ

gx
; (26)

t0ðx;zÞ¼
1

g
arccosh

2
64g

2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðv0þgxxÞ2þg2xz2
p

þgzz
�
−vg2z

vg2x

3
75;

(27)

a)

b)

c)

Figure 3. (a) The true velocity squared of the linear sloth model
(equation 22). (b) Analytical x0 is overlaid by image rays. (c) Analyti-
cal t0 is overlaid by contours showing propagating image wavefront.

a)

b)

c)

Figure 5. The estimated values of Δx0, Δt0, and Δw in the linear
sloth model (equation 22).

a)

b)

c)

Figure 4. Inputs of our time-to-depth conversion for the linear sloth
model. The last input wrðzÞ (not shown here) is taken to be the cen-
tral trace of (a) wdrðx; zÞ in this case.
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where g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2z þ g2x

p
denotes the magnitude of the total gradient. It

follows from equations 26 and 27 that j∇x0j ¼ 1, j∇t0j ¼ 1∕v, and
∇x0 · ∇t0 ¼ 0, which indicate that the geometric spreading of image
rays in this model is equal to one and the Dix velocity is equal to the
interval velocity expressed in the time-domain coordinates x0 and t0
(equation 3). Nonetheless, the image rays still bend laterally because

gx ≠ 0 and will lead to distorted time-domain coordinates. The mi-
gration velocity squared wm and its Dix-inverted counterpart wd can
also be derived analytically, and are given by (Li and Fomel, 2015)

wmðx0; t0Þ ¼
� ðv0 þ gxx0Þ2
t0ðg cothðgt0Þ − gzÞ

�
2

; (28)

wdðx0; t0Þ¼
� ðv0þgxx0Þg
g coshðgt0Þ−gz sinhðgt0Þ

�
2

: (29)

Figure 7 shows the true interval velocity of the model (equa-
tion 25) and the analytical x0 and t0 overlaid by the contours that
show the image rays and the propagating image wavefront. Figure 8
shows other inputs for our conversion method. Again, we arbitrarily
choose the reference wrðzÞ background to be the central trace of the
reference wdrðx; zÞ. Figure 9 shows the final estimated values of the
three quantities — Δx0, Δt0, and Δw. Their corresponding errors
are shown in Figure 10, suggesting a reasonable accuracy of our
method when the true velocity is close to the reference wrðzÞ in
the middle of the model. Higher errors are observed as the velocity
difference becomes larger closer to the side and bottom edges.

Land field data example

To first test our method with real data, we adopt a land data set
provided by the National Petroleum Reserve Alaska (Taylor and Zihl-
man, 1995). We particularly use the data from lines 31–81 from the
acquisition season of 1981. Despite the long maximum recording
time of 6 s of this data set, it only contains small-offset information
with the maximum offset of 5.225 kft, which leads to a high uncer-
tainty in semblance-based velocity analysis.

a)

b)

c)

Figure 7. (a) The true velocity squared of the linear gradient model
(equation 25). (b) Analytical x0 is overlaid by image rays. (c) Ana-
lytical t0 is overlaid by contours showing propagating image wave-
front.

a)

b)

c)

Figure 6. The errors of the estimated values of Δx0, Δt0, and Δw in
comparisonwith the true values in the linear slothmodel (equation 22).
The errors are small for all estimated parameters indicating a good
accuracy of our method.

a)

b)

c)

Figure 8. Inputs of our time-to-depth conversion for the linear gra-
dient model. The last input wrðzÞ (not shown here) is taken to be the
central trace of (a) wdrðx; zÞ in this case.

Time to depth with weak variations S231

D
ow

nl
oa

de
d 

02
/1

4/
19

 to
 1

31
.2

11
.1

04
.3

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



We first preprocessed the data set to correct for uneven recording
topography, ground-roll attenuation, and surface-consistent ampli-
tudes. We subsequently obtain migration velocity using Fowler’s
(1984) dip moveout (DMO) to perform velocity analysis along with
DMO simultaneously. The resultant picked migration velocity is

shown in Figure 11, with the maximum lateral velocity variation
of approximately 16%. Figure 12 shows the inputs for our time-
to-depth conversion method: Dix-inverted migration velocity
squared wdrðx; zÞ and its gradients evaluated in the time-domain
coordinates followed by similar conversion to depth based on a lat-
erally homogeneous assumption. The output interval velocity and
its difference from the conventional Dix-inverted velocity are
shown in Figure 13. This difference is required to honor lateral
variation in the migration velocity field.

Marine field data example

For the final example, we adopt a field-data example from the
Gulf of Mexico (Claerbout, 1996) used previously by Li and Fomel
(2015) to additionally test our method and compare its performance
with the optimization workflow from Li and Fomel (2015). In this

Figure 11. Picked migration velocity from Fowler’s DMO for the
Alaskan data set. One can observe a lateral variation of velocity
across the extent of the model.a)

b)

c)

Figure 10. The errors of the estimated values of Δx0, Δt0, and Δw
in comparison with the true values in the linear gradient model
(equation 25). The errors are small for all estimated parameters ex-
cept in the vicinity of the side and bottom edges of the model, which
could be attributed to the growing difference between the true value
of wðx; zÞ in that region and the reference wrðzÞ in the middle of the
model.

a)

b)

c)

Figure 12. The inputs of our conversion method for the Alaskan
field-data example: Dix-inverted velocity squared wdr and its gra-
dients.

a)

b)

c)

Figure 9. The estimated values of Δx0, Δt0, and Δw in the linear
gradient model (equation 25).
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data set, the maximum recording time is 4 s with the maximum off-
set of 3.48 km. We estimate the initial wdrðx; zÞ automatically using
the method of velocity continuation (Fomel, 2003b) followed by 1D
Dix inversion to depth. We use the central trace of wdrðx; zÞ as the
reference wrðzÞ model, and the remaining inputs to our method are
shown in Figure 14.
A comparison of the final estimated interval velocity from our

method and the optimization-based method (Li and Fomel, 2015)

is shown in Figure 15, with a good general agreement despite
using only about one-tenth of the computational time. Due to the
availability of larger offset data, we compare the final seismic image
after our time-to-depth conversion process and that from prestack
Kirchhoff depth migration (PSDM) using the estimated interval
wðx; zÞ ¼ wrðzÞ þ Δwðx; zÞ in Figure 16. The results are compa-
rable verifying the effectiveness of our method. We further inves-
tigate the common-image gathers (CIGs) generated from PSDM
based on the conventional Dix velocity squared wdrðx; zÞ and the
estimated wðx; zÞ. We observe a noticeable improvement in the
flatness of the CIGs from the estimated wðx; zÞ especially in the
deeper sections, where the effects from lateral variations become
more prominent (Figure 17). The results from this example are
comparable with those of Li and Fomel (2015), but achieved with
approximately one-tenth of the cost. They further attest the validity
of our method.

DISCUSSION

In this study, we restrict our consideration to mild heterogeneity
and only focus on the first-order perturbative effects from lateral
velocity variations. The higher-order terms are important for the
consideration of stronger variations. Furthermore, we emphasize
that the proposed method uses a laterally homogeneous background
model wrðzÞ as the reference. The update from lateral heterogeneity
comes entirely from the estimated first-order change Δwðx; zÞ,
Δx0ðx; zÞ, and Δt0ðx; zÞ. When the considered medium deviates
significantly from such an assumption, for example, in the linear
gradient model (equation 25), the proposed method will produce
erroneous results and regular Dix-inverted velocity may represent
a more feasible option.

a)

b)

Figure 13. The estimated interval wðx; zÞ from (a) our method and
(b) the difference between the Dix-inverted migration velocity and
the estimated velocity using our method for the Alaskan field-data
example.

a)

b)

c)

Figure 14. The inputs of our conversion method for the Gulf of
Mexico field-data example: the Dix velocity squared wdr and its
gradients.

a)

b)

c)

Figure 15. (a) The difference between the estimated velocity
squared using the proposed method and the Dix-inverted velocity
squared. A comparison of the estimated interval wðx; zÞ (b) from our
method and (c) from the optimization approach for the GOM field-
data example.
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An important underlying assumption of the proposed method in-
volves well-behaved image rays with the absence of caustics, which
in turn imposes limits on the size and the degree of velocity varia-
tions in the model. A possible alternative is to divide the original
model into several depth intervals to ensure an agreement with such
as assumption (Li and Fomel, 2015).

Another possible issue to the proposed method concerns the direc-
tion of traveling image rays. Our algorithm assumes that the rays can
only enter from the surface (in-flow boundary) and exit the model at
the side edges or at the bottom edge. However, it is possible that parts
of themodel require in-flow image rays from the side edges (Figures 3
and 7). We avoid this complication by limiting our consideration of
the results to the windowed part within the coverage of image rays.

Numerical implementation of our algorithm
involves taking derivatives in steps 1, 4, and 7.
To mitigate the effects of possible sharp con-
trasts, we propose applying smooth differentia-
tion. This is particularly important because the
numerical artifacts will get accumulated to the
later depth as the algorithm proceeds. Several im-
plementation schemes are available for this pur-
pose. In step 4, we specifically use a simple
application of a derivative filter followed by iter-
ations of local triangular smoothing when gener-
ating our numerical examples.
Our method can be extended to three dimen-

sions in a straightforward manner. The lateral co-
ordinates x0 and x become vectors x0 ¼ ðx0; y0Þ
and x ¼ ðx; yÞ for consideration of displacements
in the inline and crossline directions. The geomet-
ric spreading of an image ray becomes a matrixQ.
Following the similar procedure as described in
this paper, an efficient framework for 3D time-
to-depth conversion and interval velocity estima-
tion can be developed.
Conventionally, the time-migration process

relies on a hyperbolic summation curve, which
is only approximately correct in general aniso-
tropic media with lateral heterogeneity (Black
and Brzostowski, 1994; Alkhalifah, 1997;
Yilmaz, 2001). As proposed by Cameron et al.
(2007) and used in this study, additional consid-
eration of the geometric spreading of image rays
can help to mitigate the possible errors from the
hyperbolic assumption and increase the range
of applicability of time migration in laterally
heterogeneous media. Recent studies by Dell
et al. (2013) on the general expression of diffrac-
tion traveltime in homogeneous anisotropic me-
dia and Sripanich et al. (2017) on the influence of
lateral heterogeneity on the Taylor coefficients of
the traveltime expansion in layered anisotropic
media shed some light on how the complexities
of lateral heterogeneity and anisotropy can influ-
ence seismic traveltimes beyond the hyperbolic
assumption and represent another step toward
the goal of making time-domain imaging more
accurate and versatile.
Last, we point out that Alkhalifah et al. (2001)

propose a notable alternative approach to handle
the effects of lateral heterogeneity and anisotropy
in time-domain processing by recasting the prob-
lem in terms of vertical traveltime. This method
allows for an application of the Dix inversion in
laterally factorized media, where the ratio be-

Figure 17. A comparison of CIGs generated from PSDM at 8 and 11.25 km using the
conventional Dix-inverted velocity and the estimated interval velocity from our method.
In deeper sections, where there are prominent lateral variations, we can observe an im-
provement in flatness of the CIGs from the estimated wðx; zÞ.

a)

b)

Figure 16. A comparison of the final converted seismic images (a) from our time-to-
depth conversion method and (b) from the PSDM using the estimated interval velocity
for the GOM field-data example.
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tween the NMO velocity and the vertical velocity of P-waves re-
mains relatively constant, at the expense of increased computational
cost.

CONCLUSION

Using linearization, we reformulate the system of PDEs for the
exact time-to-depth conversion and interval velocity estimation
process to a simpler system appropriate for handling weak lateral
variations. The new system can be solved in a downward-continu-
ation fashion with significantly improved computational efficiency.
Our numerical examples show that our method produces accurate
results that honor the effects of lateral heterogeneity with a speedup
by an order of magnitude. Therefore, the results of our method can
be used to correct the conventional Dix conversion and to efficiently
produce a velocity model for immediate applicability or a good
starting model for more accurate velocity-estimation methods.
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