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A B S T R A C T

4-O-Methyl-D-glucuronic acid (MeGlcA) is a side-residue of glucuronoarabinoxylan and can form ester linkages
to lignin, contributing significantly to the strength and rigidity of the plant cell wall. Glucuronoyl esterases (4-O-
methyl-glucuronoyl methylesterases, GEs) can cleave this ester bond, and therefore may play a significant role as
auxiliary enzymes in biomass saccharification for the production of biofuels and biochemicals. GEs belong to a
relatively new family of carbohydrate esterases (CE15) in the CAZy database (www.cazy.org), and so far around
ten fungal GEs have been characterized. To explore additional GE enzymes, we used a genome mining strategy.
BLAST analysis with characterized GEs against approximately 250 publicly accessible fungal genomes identified
more than 150 putative fungal GEs, which were classified into eight phylogenetic sub-groups. To validate the
genome mining strategy, 21 selected GEs from both ascomycete and basidiomycete fungi were heterologously
produced in Pichia pastoris. Of these enzymes, 18 were active against benzyl D-glucuronate demonstrating the
suitability of our genome mining strategy for enzyme discovery.

Introduction

4-O-methyl-D-glucuronic acid (MeGlcA) is a side-residue of xylan (β-
1,4-linked D-xylose) that is found in both glucuronoxylan and glucur-
onoarabinoxylan, which are the principle components present in the
secondary cell walls of eudicotyledonous plants and both cell wall
layers of commelinoid monocots, respectively (Fig. 1) [1–3]. A large
proportion of MeGlcA in xylan can form ester linkages to lignin alcohol;
for example 30% and 40% of MeGlcA are esterified to lignin in
beechwood and birchwood, respectively [4,5]. In nature, these lignin-
carbohydrate complexes (LCCs) contribute significantly to the strength
and rigidity of the plant cell wall, rendering it recalcitrant to digestion.
However, they impede the industrial applications of plant biomass by
restricting the removal of lignin e.g. from cellulosic pulp in pulping
processes and hindering efficient enzymatic hydrolysis of biomass in

bioethanol production [6–9].
Glucuronoyl esterases (4-O-methyl-glucuronoyl methylesterases,

GEs) can cleave the ester bond between MeGlcA and lignin, and
therefore may play a significant role as auxiliary enzymes in biomass
saccharification for the production of biofuels and biochemicals. The
first GE was reported in 2006 from a white-rot like fungus
Schizophyllum commune [10], and belongs to carbohydrate esterase fa-
mily 15 (CE15) in the CAZy database [11,12]. From 182 members in
CE15, only 21 are from fungi, and of these so far only around 10 GEs
have been characterized (Table 1). Among these, the structures of the
Trichoderma reesei (Hypocrea jecorina) Cip2 [13] and the Myceliophthora
thermophila (Sporotrichum thermophile) StGE2 [14] have been resolved
by X-ray crystallography. The first structure revealed the Ser-His-Glu as
the putative catalytic triad of GEs, whereas in the latter case the cata-
lytic serine mutant in complex with methyl 4-O-methyl-β-D-
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glucopyranuronate was also reported revealing substrate binding
within the active site and indicating possible catalytic mechanism of
GEs.

The European Union (EU) collaborative project ‘Optimized esterase
biocatalysts for cost-effective industrial production’ (OPTIBIOCAT,
www.optibiocat.eu), granted in 2014 under the 7th EU Framework
Programme (FP7), aims to replace chemical processes by enzymatic
bioconversion via transesterification of esterases such as GEs for the
production of cosmetics. To explore additional fungal GE enzymes, we
used a genome mining analysis towards approximately 250 publicly
accessible fungal genomes [15]. In this study, we report the genome
mining strategy to identify novel fungal GEs and verify the strategy by

biochemical characterization of the heterologously produced selected
GEs, from both ascomycete and basidiomycete fungi, representing dif-
ferent phylogenetic sub-groups.

Materials and methods

Bioinformatics

Genome mining was performed by BLASTP search against 247
published fungal genomes [15] using 15 amino acid sequences from
characterized and putative GEs (A.1, A.2 in Supplementary materials).
All resulting amino acid sequences with an expected value lower than

Fig. 1. Model structure of 4-O-methyl-D-glucurono(arabino)xylan [modified from 12, 15]. GE indicates glucuronoyl esterase. In nature *O is typically linked to lignin instead of a methyl
group.

Table 1
Characterized GEs with their properties.

Origin Enzyme Sub-group Productiona Molecular mass
(kDa)2

pH Temperature (°C) pIb Reference

Optimum Stability Optimum Stability

Fungi
Schizophyllum commune ScGE 4 Pur 44 7.0 – 50 – 3.5 [10]

(rScGE) HP 53 (42) – – – – 3.7 [23]

Hypocrea jecorina (Trichoderma reesei) Cip2 5 HT 55 5.5 4.0–8.0 40–60 <40 7.9 [12]
Phanerochaete chrysosporium PcGE1 4 HAv, Pc, Sc 47 5.0–6.0 – 45–55 – 6.5 (5.5) [25,34]
Phanerochaete chrysosporium PcGE2 4 HSc 42 5.0–6.0 – 45–55 – 4.7 (4.8) [25]
Myceliophthora thermophila (Sporotrichum

thermophile)
StGE1 8 Pur 58 6.0 7.0–8.0 60 <55 6.7 [28]

Myceliophthora thermophila (Sporotrichum
thermophile)

StGE2 1 HP 43 7.0 4.0–10.0 55 <50 (5.8) [30]

Phanerochaete carnosa PcGCE 4 HP, HAt 72 (42) 6.0 – 40 – – [24]
Podospora anserina PaGE1 5 HP 63 – – – – 7.6 and 8.2

(6.9)
[27]

Cerrena unicolor CuGE 4 HAo 58 (48) – – – – – [26]
Neurospora crassa NcGE 8 HP 44 7.0 4.0–7.0 40–50 <70 – [29]
Acremonium alcalophilum AaGE1 5 HP 72 (53) – 7.0–11.0 – <50 – [34]
Wolfiporia cocos WcGE1 4 HP 45 (44) – 7.0c – <40 – [34]

Bacteria
Ruminococcus flavefaciens cesA – HE 46 – – – – – [35]
uncultured bacterium MZ0003 – HE 46 8.0 7.0–9.5 35 <30 – [33]

a Pur, purified from the original source; H, homologous expression (Ao, Aspergillus oryzae; At, Arabidopsis thaliana, Av, Aspergillus vadensis; E, Escherichia coli; P, Pichia pastoris; Pc,
Pycnoporus cinnabarinus; T, Trichoderma reesei; Sc, Schizophyllum commune).

b Parentheses indicate calculated values.
c pH stability varied on the buffer [34].
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1E−40 were collected. Duplicate, unusually long and incomplete se-
quences as well as sequences with ambiguous amino acids (X) were
discarded. Signal peptides were predicted using SignalP 4.1 (http://
www.cbs.dtu.dk/services/SignalP/ [16]) and removed from all candi-
date sequences. The sequences were aligned using Multiple Alignment
using Fast Fourier Transform (MAFFT) [17]. Phylogenetic analysis was
performed using the maximal likelihood method with complete dele-
tion of gaps and the Poisson correction distance of substitution rates
(statistical support for phylogenetic grouping was estimated by 1000
bootstrap re-samplings) of the Molecular Evolutionary Genetics Ana-
lysis (MEGA 7) program [18]. A few feruloyl esterase sequences were
included as an outgroup. Theoretical molecular masses and pI values
were calculated by ExPASy–ProtParam tool (http://www.expasy.ch/
tools/protparam.html [19]).

Cloning of ge genes

The genes encoding the selected GEs without signal peptide were
codon optimized and synthesized for expression in P. pastoris by
NZYTech (Lisbon, Portugal). The gene products were digested by EcoRI
and NotI (Thermo Fisher Scientific), and cloned in frame with α-factor
secretion signal in pPNic706 (ProteoNic, Leiden, the Netherlands). The

obtained plasmids were purified from Escherichia coli DH5α
(Invitrogen) transformants selected on Luria Bertani medium supple-
mented with 50 μg/mL kanamycin, fully sequenced (Macrogen,
Amsterdam, the Netherlands), linearised by SalI (Thermo Fisher
Scientific), and transformed into P. pastoris strain GS115 his4 according
to the manufacturer’s recommendation.

Ten transformants were selected for the enzyme production
screening, which was performed in 96 deep-well plates containing
0.8 mL medium. The selected clones were grown first in buffered
minimal glycerol medium (1% yeast nitrogen base, 0.1 M potassium
phosphate buffer pH 6.5, and 1% w/v glycerol). The plates were sealed
with AeraSeal™ (Sigma Aldrich) and were incubated overnight at 30 °C,
900 rpm (INFORS HT Microtron, Bottmingen, Switzerland). A volume
of cells equal to an OD600 of 1.0 was harvested and resuspended in
0.8 mL buffered minimal methanol medium (1% yeast nitrogen base,
0.1 M potassium phosphate buffer pH 6.5, and 0.5% methanol) for in-
duction. The induction was done at 30 °C, 900 rpm for 72 h before
being harvested. The cultures were supplemented with 80 μL of 0.5%
(v/v) methanol every 24 h.

Fig. 2. Phylogenetic relationships among the (putative) fungal GEs. △, characterized GEs. The sequences used for BLASTP search in genome mining analysis are indicated as ◊ for
characterized GE and ○ for putative GEs. Filled symbols indicate selected GEs for characterization in the present study. Bact. indicates group of bacterial GEs. U indicates ungrouped
sequences. Feruloyl esterases (FAEs) were used as an outgroup. The full phylogenetic tree is given in A.1 in Supplementary materials. Complete enzyme names, details and sequences are
given in Table 2 and A.2 in Supplementary materials.
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Production and biochemical properties of recombinant GEs

P. pastoris transformants were grown according to [20]. Induction
was continued for 96 h at 28 °C with methanol being supplemented to
0.5% (v/v) every 24 h. Culture supernatants were harvested (4000 × g,
4 °C, 20 min), filtered (0.22 μm; Merck Millipore, Darmstadt, Germany)
or concentrated (10 kDa cut off; Merck Millipore) and stored at −20 °C
prior further analysis. Molecular mass determination and deglycosyla-
tion were performed as previously described [20]. Protein concentra-
tions were assessed from SDS-PAGE gels by densitometry method using
ImageJ program [21] with bovine serum albumin (Pierce, Thermo
Scientific) as standard.

Enzyme activity assay of GEs

Activity of the recombinant GEs towards benzyl D-glucuronate
(Taros Chemicals, Dortmund, Germany) was performed in 200 μL re-
action mixtures adapted from [22]. The reactions were performed in
the presence of 2 mM substrate, 73 mM phosphate buffer, pH 6.0, and
50 μL of culture supernatant at 45 °C for 30 min. Detection of glu-
curonic acid release was performed by using D-Glucuronic/D-Ga-
lacturonic Acid Assay Kit (Megazyme, Wicklow, Ireland) according to
the manufacturer’s recommendation. The culture supernatant of P.

pastoris harboring pPNic706 plasmid without insert was used as nega-
tive control. All assays were performed in triplicate. One unit was de-
fined as the amount of enzyme de-esterifying 1 μmol of benzyl-D-glu-
curonic acid ester per min under the assay conditions.

Results and discussion

Genome mining and phylogenetic analysis of novel fungal GEs

To identify the putative fungal GEs, a genome mining strategy was
conducted by BLAST analysis with characterized and putative GEs
against the published fungal genomes [15]. More than 150 putative
fungal GEs were identified, which can be classified into 8 phylogenetic
sub-groups (Fig. 2, A.1, A.2 in Supplementary materials). The first
characterized GE (S. commune, ScGE, [10,23]) located to Sub-group 4
together with GEs from the white-rot fungi Phanerochaete carnosa
(PcGCE, [24]), Phanerochaete chrysosporium (PcGE1, PcGE2; [25]) and
Cerrena unicolor (CuGE, [26]) (Fig. 2). The ascomycete GEs, Tricho-
derma reesei GE (Cip2, [12]) and Podospora anserina GE (PaGE1 [27],)
clustered in Sub-group 5. Sub-group 8 consisted of the GEs from the
ascomycete fungi Myceliophthora thermophila (StGE1 [28],) and Neuro-
spora crassa (NcGE, [29]), whereas Sub-group 1 consisted of a second
GE from M. thermophila (StGE2, [30]). No characterized GE belongs to

Table 2
Molecular mass, production level and specific activity of characterized GEs in this worka.

Fungal species Accession number Sub-group Nameb Calculated
molecular
mass (kDa)

Apparent
molecular
mass (kDa)

Deglycosylated
protein (kDa)

Calculated pI Production
(mg/L)

Relative
activityc

(nkat/mg)

Podospora anserina CAP59671 1 PaGE2 44.3 nd nd 8.3 np na
Leptosphaeria

maculans
CBX90574 1 LmGE1 41.6 nd nd 8.2 np Actived

Dichomitus squalens jgi|Dicsq1|58498 1 DsGE1 41.8 65–70 45 5.0 2 1159

Coprinopsis cinerea jgi|Copci1|5044 2 CcGE1 43.4 60–75 45 6.0 52 na

Penicillium rubens CAP91804 3 PrGE1
(Pc13g07350)

40.2 50–60 42 6.3 14 162

Agaricus bisporus jgi|Agabi_varbisH97_2|209748 3 AbGE1 46.5 nd nd 5.9 np na
Hypholoma

sublateritium
jgi|Hypsu1|50423 3 HsGE1 47.4 48.8 nd 5.6 336 2334

Schizophyllum
commune

XP_003026289 4 ScGE 40.2 40 36 4.3 25 4

Phanerochaete
carnosa

AFM93784 4 PcGCE 42.5 nd nd 4.6 330 4501

Stereum hirsutum jgi|Stehi1|96554 4 ShGE1 47.2 nd nd 4.6 296 333
Dichomitus squalens jgi|Dicsq1|107426 4 DsGE2 46.7 75–100 50 4.2 38 46

Podospora anserina XP_001903136 5 PaGE1 49.2 60 60 8.1 26 60
Trichoderma reesei AAP57749 5 Cip2 46.7 71.4 nd 6.4 323 333
Ascobolus immersus jgi|Ascim1|226781 5 AiGE1 47.6 nd 45.5 7.7 <1 225
Piriformospora indica CCA74892 5 PiGE1 47.9 nd 48.9 8.3 5 67

Botryosphaeria
dothidea

jgi|Botdo1|13681 6 BdGE1 39.0 nd 42.4 7.2 1 77

Stagonospora
nodorum

jgi|Stano2|2908 7 SnGE1 39.5 nd nd 7.8 np Actived

Myceliophthora
thermophila
(Sporotrichum
thermophile)

AEO60464.1 8 StGE1 40.3 40 40 5.6 66 31

Podospora anserina CAP65970 8 PaGE3 40.3 50–60 40 8.5 44 36
Apiospora montagnei jgi|Apimo1|126025 8 AmGE1 40.0 40–50 40 6.7 69 17
Piromyces sp. E2 jgi|PirE2_1|60981 U PirGE1 40.6 42 40 6.1 <1 520

a nd, not detected; np, not produced; na, not active.
b Name in bold indicates the previously reported GEs.
c The assay performed at 45 °C using 2 mM benzyl-D-glucuronic acid ester in 73 mM phosphate buffer, pH 6.0.
d The enzyme was active but specific activity cannot be calculated because of undetectable protein level on the SDS-PAGE.
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Sub-group 2, 3, 6 and 7. Sub-group 3 consists of more than 30 members
and Sub-group 7 consists of 15 members, whereas Sub-group 2 and 6
are small sub-groups containing 3–4 GE candidates. One GE candidate
from an anaerobic fungus Piromyces sp. E2 (PirGE1) did not locate to
any of the sub-groups. This ungrouped sequence may develop into a
new sub-group if homologs for it are discovered. Two characterized
bacterial GEs were included in the analysis, and clustered separately
from the fungal GEs (Fig. 2).

Recently, a new classification of GEs was reported based on peptide
pattern recognition (PPR) [31], which separate putative GEs into 24
PPR groups. Fungal GEs were clustered in PPR groups 1, 8, and 18. In
comparison to our phylogenetic classification, the members from PPR
group 8 belonged to phylogenetic Sub-group 1, whereas the members
from PPR group 1 were divided in different phylogenetic groups. PPR
group 18 contained only one member (GenBank XP_001832002.2 from
Coprinopsis cinerea) representing an unusually long sequence (con-
taining 3438 amino acids), hence it was not included in our phyloge-
netic analysis. In addition, a new database for Carboxylic Ester Hy-
drolases (CEH) was launched – CASTLE (CArboxylic eSTer hydrolase,
http://castle.cbe.iastate.edu/, Iowa State University [32]). However,
GEs are currently grouped together with acetyl xylan esterases in CEH8
in CASTLE database.

Sequence analysis and catalytic triad of selected fungal GEs

Twenty-one candidates (five characterized and 16 putative fungal
GEs) were selected from both ascomycete and basidiomycete fungi with
focus on wood rotting fungi (e.g. Dichomitus squalens, P. carnosa,
Schizophyllum commune, Stereum hirsutum), saprophytic fungi living on
dead plant or herbivore dung (e.g. Podospora anserina, Ascobolus im-
mersus, Apiospora montagnei), plant pathogens (e.g. Botryosphaeria do-
thidea, Stagonospora nodorum, Leptosphaeria maculans) as well as in-
dustrially exploited fungi (e.g. T. reesei, Penicillium rubens), covering all
eight sub-groups from the phylogenetic tree, including one ungrouped
sequence (PirGE1), for heterologous production using P. pastoris as a
host and subsequent biochemical characterization (Table 2). The se-
lection of the number of putative GEs was solely based on the size of the
phylogenetic sub-group. The amino acid sequence alignment of 16
putative fungal GEs and all characterized GEs are present in A.3 in
Supplementary materials. The fungal GEs were relatively conserved and
the signature motif of CE15 family (G-C-S-R-X-G, [30]) was well
aligned, except for PirGE1 which has Tyr instead of Arg. In addition,
two bacterial GEs (CesA and MZ0003) have Val and His, respectively,
instead of Cys in the signature motif. Among the catalytic triad, Ser and
His are well conserved in all sequences, whereas Glu is not highly
conserved among CE15 enzymes and is substituted by Asp, Gln, Asn and
Ala, as well as Ser (StGE2, PaGE2–Podospora anserina, DsGE1–Dicho-
mitus squalens) and Cys (LmGE1–Leptosphaeria maculans, CesA and
MZ0003) [33].

Biochemical properties of selected fungal GEs

The putative GE-encoding genes were heterologously expressed in
P. pastoris. Only two (PaGE2 and AbGE1–Agaricus bisporus) out of 21 GE
candidates were not successfully produced. The production level varied
from 2 to 336 mg/L, and four enzymes (HsGE1–Hypholoma sub-
lateritium, PcGCE, Cip2, ShGE1–Stereum hirsutum) were produced up to
300 mg/L. From the 19 produced GE candidates, 18 were active to-
wards benzyl-D-glucuronic acid ester (Table 2). The highest specific
activity ( > 1000 nkat/mg) was detected for PcGCE, HsGE1 and
DsGE1. SnGE1–Stagonospora nodorum and LmGE1 showed low activity
(0.156 nkat/ml and 0.097 nkat/ml, respectively) and were produced at
low level as they were not visible in Coomassie blue stained SDS-PAGE
gel. CcGE1 protein from Coprinopsis cinerea was highly produced but
not active towards the tested substrate at different pH values (4–8).

Conclusions

In the present study, we showed that genome mining is a powerful
strategy for enzyme discovery to identify fungal GE encoding genes.
Our phylogenetic analysis categorized the putative fungal GEs into
eight sub-groups. We further demonstrated that from 16 putative fungal
GEs, 13 possessed GE activity towards benzyl D-glucuronate. The
members from Sub-groups 1, 4, 5 and 8 were previously characterized
and shown to possess GE activity (Table 1). Here we demonstrated that
the candidates from Sub-groups 3, 6, and 7 also possessed GE activity
(Table 2). Because of the limited availability of substrates used for the
assessment of GE activity, currently it is not possible to verify if the
phylogenetic grouping also reflects functional differences among GEs,
such as substrate specificity or possible site of action. In comparison
with the previously characterized fungal GEs used in this study, most of
the new GEs showed comparable activity. This indicates that they may
have potential in saccharification of plant biomass or other industrial
applications.
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