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We study the distribution of active, noninteracting particles over two bulk states separated by a ratchet
potential. By solving the steady-state Smoluchowski equations in a flux-free setting, we show that
the ratchet potential affects the distribution of particles over the bulks and thus exerts an influence of
infinitely long range. As we show, an external potential that is nonlinear is crucial for having such a
long-range influence. We characterize how the difference in bulk densities depends on activity and
on the ratchet potential, and we identify power law dependencies on system parameters in several
limiting cases. While weakly active systems are often understood in terms of an effective temperature,
we present an analytical solution that explicitly shows that this is not possible in the current setting.
Instead, we rationalize our results by a simple transition state model that presumes particles to cross
the potential barrier by Arrhenius rates modified for activity. While this model does not quantitatively
describe the difference in bulk densities for feasible parameter values, it does reproduce—in its
regime of applicability—the complete power law behavior correctly. Published by AIP Publishing.
https://doi.org/10.1063/1.5048698

I. INTRODUCTION

Over the last few years, active matter has emerged as
a testing ground for nonequilibrium statistical physics.1–8

Its relevance comes from the fact that experimental real-
izations exist9–11 of relatively simple active matter models,
such as active Brownian particles (ABPs) and run-and-tumble
(RnT) particles.12 While describing these systems can be
very challenging when they are far from thermodynamic
equilibrium,13,14 for small activity they are well understood
by effective equilibrium approaches.15–19 In particular, it is
well established that noninteracting particles at small activ-
ity can be described as an equilibrium system at an effec-
tive temperature.17,20–23 For example, inserting the effec-
tive temperature in the Einstein relation yields the enhanced
diffusion coefficient of an active particle, and using the
effective temperature in the Boltzmann distribution gives
the distribution of weakly active particles in a gravitational
field.12,23–28

However, even weakly active systems can display behav-
ior very different from equilibrium systems.29–37 For instance,
a single array of funnel-shaped barriers, which is more eas-
ily crossed from one lateral direction than from the other, can
induce a steady state with ratchet currents that span the entire
system.32 Alternatively, when the boundary conditions deny
such a system-wide flux, the result is a steady state with a

a)Electronic mail: a.j.rodenburg@uu.nl
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higher density on one side of the array than on the other.30,32

As the system can be arbitrarily long in the lateral direction,
the presence of the funnels influences the density profile at
arbitrarily large distance.

Needless to say, characterizing such a long-range effect
is a challenge, and the natural place to start is in a setting
as simple as possible. As we shall show, having an external
potential with a long-range influence on the density profile in
steady state is only possible with the key ingredients of (1)
activity and (2) an external potential that is nonlinear. There-
fore, a good candidate for a minimal model is to study the
distribution of active particles over two bulks separated by a
potential barrier that is only piecewise linear. Here, we focus
on a sawtooth-shaped barrier, known as a ratchet potential (see
Fig. 1). As we will see, the asymmetry of the ratchet induces
a flux-free steady state with different densities in both bulks.
Since the bulk sizes can be arbitrarily large, the influence of
the ratchet potential is indeed of infinite range. This system
has actually already been studied, both experimentally38 and

FIG. 1. (Dimensionless) ratchet potential βV, as a function of the Cartesian
x-coordinate in units of the diffusive length scale `. The ratchet can be char-
acterized by its height βVmax, the width of its left side xl /`, and its asymmetry
a = (xl − xr )/xr .
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theoretically.39 However, the former study was performed at
high degree of activity, and the latter study neglected Brown-
ian fluctuations, such that the degree of activity could not be
quantified. Thereby, the regime of weak activity, where the sta-
tistical physics generally seems best understood,14–19 remains
largely unexplored.

In this work, we study the effect of an external potential
on arbitrarily large bulk regions with as few complications as
possible. To this end, we investigate how a ratchet potential
affects active particles that also undergo translational Brown-
ian motion, such that the degree of activity can be quantified.
We ask the following questions: can we characterize how the
external potential influences the density distribution as a func-
tion of activity? And can we understand this distribution in the
limit of weak activity?

The article is organized as follows. In Sec. II, we intro-
duce two active particle models, as well as the ratchet potential.
In Sec. III, we numerically solve the density and polariza-
tion profiles of these active particles in the ratchet potential,
and we study how the difference in bulk densities depends
on activity and on the ratchet potential. In Sec. IV, we spe-
cialize to the limit of weak activity and provide an analytical
solution that explicitly shows that the nonzero difference in
bulk densities cannot be understood by the use of an effective
temperature. Instead, in Sec. V, we propose to understand the
density difference in terms of a simple transition state model.
We end with a discussion, in Sec. VI, on what ingredients are
necessary to have the external potential affect the densities in
such a (highly) nonlocal way, and with concluding remarks in
Sec. VII.

II. MODELS
A. 2D ABPs

In order to investigate the behavior of active particles in
a ratchet potential, we consider the widely employed model
of active Brownian particles40 (ABPs) in two dimensions.
For simplicity, we consider spherical, noninteracting particles.
Every particle is represented by its position r(t) = x(t)x̂+y(t)ŷ,
where x̂ and ŷ are the Cartesian unit vectors and t is the
time, as well as by its orientation ê(t) ≡ cos θ(t)x̂ + sin θ(t)ŷ.
Its time evolution is governed by the overdamped Langevin
equations

∂tr(t) = v0ê(t) − γ−1
∇V (r) +

√
2Dtηt(t), (1a)

∂tθ(t) =
√

2Drηr(t). (1b)

Equation (1a) expresses that a particle’s position changes in
response to (i) a propulsion force, which acts in the direc-
tion of ê and that gives rise to a propulsion speed v0, (ii) an
external force, generated by the external potential V (r), and
(iii) the unit-variance Wiener process ηt(t), which gives rise
to translational diffusion with diffusion coefficient Dt . Here γ
is the friction coefficient. Note that β ≡ (γDt)−1 is an inverse
energy scale, and that in thermodynamic equilibrium the Ein-
stein relation implies β = (kBT )−1, where kB is the Boltzmann
constant and T is the temperature. Equation (1b) expresses that
the orientation of a particle changes due to the unit-variance

Wiener process ηr(t), which leads to rotational diffusion with
diffusion coefficient Dr .

The stochastic Langevin equations (1) induce a proba-
bility density ψ(r, θ, t), whose time evolution follows the
Smoluchowski equation

∂tψ = −∇ ·
(
v0êψ −

1
γ

(∇V )ψ − Dt∇ψ
)
+Dr∂θθψ. (2)

Here ∇ = (∂x, ∂y)T is the two-dimensional spatial gradient
operator. Two useful functions to characterize the probabil-
ity density ψ(r, θ, t) are the density ρ(r, t) ≡ ∫ dθψ(r, θ, t),
and the polarization m(r, t) ≡ ∫ dθψ(r, θ, t)ê(θ). Their
time-evolutions follow from the Smoluchowski equation (2)
as

∂t ρ = −∇ ·
{
v0m −

1
γ

(∇V )ρ − Dt∇ρ
}
,

∂tm = −∇ ·
{
v0

(
S +

1
2
ρ
)
−

1
γ

(∇V )m − Dt∇m
}
− Drm,

(3)

where 1 is the 2 × 2 identity matrix, and where S(r, t)
≡ ∫ dθψ(r, θ, t)(ê(θ)ê(θ)−1/2) is the 2 × 2 nematic alignment
tensor. Due to the appearance of S, Eqs. (3) are not closed.
Therefore, solving Eqs. (3), rather than the full Smoluchowski
Eq. (2), requires a closure, an example of which we discuss in
Sec. II B.

We consider a planar geometry that is invariant in the
y-direction, i.e. V (r) = V (x), such that ψ(r, θ, t) = ψ(x, θ, t),
ρ(r, t) = ρ(x, t), m(r, t) = mx(x, t)x̂, etc. The geometry consists
of two bulks, located at x � 0 and x � 0. These bulk systems
are separated by the ratchet potential

V (x) =




0, for x < −xl,

Vmax

( x
xl

+ 1
)
, for − xl < x < 0,

Vmax

(
1 −

x
xr

)
, for 0 < x < xr ,

0, for xr < x,

(4)

where xl and xr are both positive. This sawtooth-shaped poten-
tial is illustrated in Fig. 1. Note that the potential is gener-
ally asymmetric, the degree of which is characterized by the
asymmetry factor a ≡ (xl − xr)/xr . Without loss of general-
ity, we only consider ratchets for which xl > xr , such that
a > 0.

The complete problem is specified by four dimensionless
parameters. We use the rotational time D−1

r , and the diffusive
length scale ` ≡

√
Dt/Dr , which is proportional to the size of a

particle undergoing free translational and rotational diffusion,
to obtain the Peclet number

Pe ≡
1
√

2

v0

Dr`
, as a measure for the degree of activity,

βVmax, the barrier height,
xl
` , the width of the ratchet’s left side,
a, the asymmetry of the ratchet.

(5)
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We caution the reader that the factor 1/
√

2 is often omitted
from the definition of the Peclet number; it is included here to
connect to the model described below.

B. 1D RnT

The fact that there is only one nontrivial dimension in the
problem suggests a simpler, one-dimensional model with the
same physical ingredients. In this model, which we refer to
as the 1D Run and Tumble (RnT) model, particles are char-
acterized by a position x(t), as well as by an orientation ex(t)
that points in either the positive or the negative x-direction,
i.e. ex = ±1. The orientation ex can flip with probability Dr

per unit time. Every particle performs overdamped motion
driven by (i) a propulsion force, that acts in the direction of
its orientation, (ii) an external force, generated by the ratchet
potential (4), and (iii) Brownian motion, with associated dif-
fusion constant Dt . The problem can be specified in terms of
probability density functions ψ±(x, t) to find particles with ori-
entation ex = ±1. For our purposes, it is more convenient to
consider the density ρ(x, t) ≡ ψ+(x, t) + ψ−(x, t) and polar-
ization mx(x, t) ≡ [ψ+(x, t)−ψ−(x, t)]/

√
2. These fields evolve

as

∂t ρ = −∂x

{√
2v0mx −

1
γ

(∂xV )ρ − Dt∂x ρ
}
,

∂tmx = −∂x

{ v0
√

2
ρ −

1
γ

(∂xV )mx − Dt∂xmx

}
−Drmx.

(6)

Note the similarity of Eqs. (6) with Eqs. (3) of the 2D ABP
model. In fact, if we define the Peclet number for the 1D RnT
model as Pe ≡ v0/(Dr`), then supplying the 2D ABP model
with the closure S(r, t) = 0 maps Eqs. (3) to the 1D RnT
model. The mapping is such that if one uses the same values
for the dimensionless parameters Pe, βVmax, xl/`, and a, then
both models yield equal density profiles ρ(x) and polarization
profiles mx(x, t). As the closure S(r, t) = 0 is exact in the limit
of weak activity, i.e. Pe� 1, this mapping is expected to give
good agreement between the two models for small values of
the Peclet number Pe.

III. NUMERICAL SOLUTIONS
A. Density and mean orientation profiles

We study steady state solutions of both 2D ABPs and 1D
RnT particles in the ratchet potential (4). To find the solutions,
for the 2D ABP model, we numerically solve Eq. (2) with
∂tψ = 0, whereas for the 1D model, we numerically solve
Eqs. (6) with ∂t ρ = ∂tmx = 0. We impose the following three
boundary conditions.

1. To the left of the ratchet, we imagine an infinitely large
reservoir that fixes the density to be ρl at xres � −xl, i.e.,
we impose ψ(xres, θ) = (2π)−1ρl for the 2D case, and
ρ(xres) = ρl, mx(xres) = 0 for the 1D case.

2. To the right of the ratchet, we assume an isotropic
bulk that is thermodynamically large, yet finite, such
that its density follows from the solution of the equa-
tions. In technical terms, at xmax � xr , we impose

∂xψ(xmax, θ) = 0 for the 2D case, and ∂x ρ(xmax) = 0,
mx(xmax) = 0 for the 1D case.

3. Additionally, for the 2D case, we assume periodic
boundary conditions, i.e. ψ(x, 0) = ψ(x, 2π) and
∂θψ(x, 0) = ∂θψ(x, 2π) for all x.

In order to allow the profiles to decay to their bulk values
specified by boundary conditions 1 and 2, in our numerical
calculations we always ensure the distance between xres (or
xmax) and the ratchet potential to be at least a multitude of the
most significant length scale.

Typical solutions are shown in Fig. 2. The considered
ratchet potential, with height βVmax = 4, width xl/` = 1, and
asymmetry a = 3, is shown as the dashed line in Fig. 2(a).
We consider both a passive system (Pe = 0) and an active
system (Pe = 1), using xres = −11l and xmax = 10.25l in this
case. The resulting density profiles and mean orientation pro-
files are shown in Figs. 2(a) and 2(b), respectively. For the
passive system, the solution is isotropic (i.e., ψ(x, θ) ∝ ρ(x)
and mx(x) = 0 everywhere), and given by the Boltzmann weight
ρ(x) = ρl exp(−βV (x)). One checks that these solutions indeed
solve Eqs. (2) and (6) when the propulsion speed v0 equals 0.
Thus, in accordance with this Boltzmann distribution, the den-
sity in the passive system is lower in the ratchet region than in

FIG. 2. (a) Density profiles ρ(x)/ρl and (b) mean orientation profiles
mx(x)/ρ(x) of 2D ABPs and 1D RnT particles, as indicated, in a ratchet poten-
tial V (x) of height βVmax = 4, width xl /` = 1, and asymmetry a = 3. The
dashed, vertical lines indicate the positions of the barrier peak (x = 0) and the
ratchet sides (x = −xl and x = xr ). The bulk density to the left of the ratchet
is ρ(x � −xl) = ρl . Passive particles (Pe = 0) are distributed isotropically
(mx = 0), with a density profile given by the Boltzmann weight ρ(x) = ρl
exp(−βV (x)). Consequently, the densities ρl and ρr in the bulks on either
side of the ratchet are equal. Active particles (Pe = 1) display much richer
behavior, with an accumulation of particles at either side of the ratchet, with
a mean orientation towards the barrier peak, with a depletion of particles near
the top of the ratchet, and with the right bulk density ρr exceeding the left
bulk density ρl .
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the left bulk, and its value ρr ≡ ρ(xmax) in the right bulk satis-
fies ρr = ρl, with ρl being the density in the left bulk. This is a
necessity in thermodynamic equilibrium, even for interacting
systems: the equality of the external potential implies equal
densities of the bulks.

For the active case (Pe = 1), the behavior is much richer.
First, the solution is anisotropic in the ratchet region, even
though the external potential is isotropic. Indeed, Fig. 2(b)
shows a mean orientation of particles directed towards the
barrier on either side of the ratchet. This is consistent with
the finding that active particles tend to align against a constant
external force,25,41 but is also reminiscent of active particles
near a repulsive wall. Indeed, at walls, particles tend to accu-
mulate with a mean orientation towards the wall,42,43 and a
similar accumulation is displayed by the density profiles of
Fig. 2(a) at the ratchet sides x = −xl and x = xr . The over-
all result is an accumulation of particles at the ratchet sides,
a depletion of particles near the center of the ratchet, and,
remarkably, a density ρr in the right bulk that is higher than
the density ρl in the left bulk.

The fact that the difference in bulk densities ∆ρ ≡ ρr − ρl

is positive is caused by the asymmetry of the ratchet: due to
their propulsion force, particles can cross the potential barrier
more easily from the shallower, left side than from the steeper,
right side. This argument is easily understood in the absence
of translational Brownian motion (Dt = 0), i.e., when the only
force that makes particles move (apart from the external force)
is the propulsion force. Indeed, in this case, one can even think
of ratchet potentials whose asymmetry is such that particles
can climb it from the shallow side, but not from the steep

side.39 For such a ratchet potential, all particles eventually end
up on the right side of the ratchet, such that clearly the right
bulk density ρr exceeds the left bulk density ρl. The effect of
having nonzero translational Brownian motion (Dt > 0) is that
particles always have some probability to climb the steep side
of the ratchet also. This leads to a density difference ∆ρ that
is smaller than in the Dt = 0 case. Yet, as long as the ratchet is
asymmetric, the density difference always turns out positive
for any positive activity Pe.

We stress that the fact that ρr > ρl is actually quite
remarkable. The reason is that, whereas the ratchet potential
is localized around x = 0, the right bulk can be arbitrarily
large. Since our results clearly show that the right bulk density
ρr is influenced by the ratchet, this means that the range of
influence of the external potential is in some sense infinitely
large.

B. Scaling of the bulk density difference ∆ρ

Next, we examine, one by one, how the density differ-
ence ∆ρ depends on activity Pe, the barrier height βVmax, the
barrier width xl/`, and the barrier asymmetry a. The results
are shown in Figs. 3(a)–3(d), for both the 2D ABP and the
1D RnT models. In all cases, both models give density differ-
ences that are quantitatively somewhat different, but qualita-
tively similar, as they are both consistent with identical power
laws.44

Figure 3(a) shows the density difference as a function of
activity Pe, for two different ratchet potentials. For small Pe,
the figure shows that the density difference increases as Pe2.

FIG. 3. Normalized density difference ∆ρ/ρl as a function of (a) activity Pe, (b) barrier height βVmax, (c) barrier width xl /`, and (d) barrier asymmetry a. Results
are shown for both the 2D ABP and 1D RnT models, as indicated. In the limiting cases of small and large values of its arguments, the density difference shows
power law behavior. The corresponding exponents are listed in Table I. Additionally, (a) shows the density difference obtained analytically in the limit of weak
activity (see Sec. IV), for the same ratchet parameters as used for the numerical solutions. The analytical and numerical solutions show good agreement up to
Pe ≈ 0.5.
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For large Pe, the density difference decreases again, to decay
to 0 in the limit Pe→ ∞. The reason for this decrease is that
particles with high activity can easily climb either side of the
ratchet potential, such that they hardly notice the presence of
the barrier at all. As shown by Fig. 3(a), this decay follows
the power law ∆ρ ∝ Pe−4. Whereas the prefactors of these
power laws are different for the two different ratchet potentials
considered, the exponents were found to be independent of the
ratchet parameters, which was tested for many more values of
βVmax, xl/`, and a.

Figure 3(b) shows the density difference as a function
of the barrier height βVmax. The barrier width, xl/` = 1, and
asymmetry, a = 3, are kept fixed, and two levels of activity,
Pe = 1 and Pe = 4, are considered. For all cases, we find the
power law ∆ρ ∝ (βVmax)3 up to values of the barrier height
βVmax ≈ 3. Exploring the behavior for large values of the
barrier height βVmax was numerically not feasible, but the fact
that the curves for activity Pe = 1 level off for barrier heights
βVmax ≥ 5 seems consistent with the asymptotic behavior for
βVmax � 1 that we shall obtain, in Sec. IV, in the limit of
weak activity.

Figure 3(c) shows the density difference as a function of
the width xl/` of the left side of the ratchet. Here the barrier
height and asymmetry are fixed, at βVmax = 2 and a = 1,
respectively, whereas the degree of activity is varied as
Pe = 0.1, 0.3, and 1. For small barrier widths, i.e., for xl/`
� 1, the curves show the power law ∆ρ ∝ (xl/`)2, indepen-
dent of the activity Pe. For very wide barriers, i.e., for xl/`
� 1, the curves show power law behavior with an exponent
that does depend on the activity Pe. For the smallest degree
of activity, Pe = 0.1, this exponent is found to equal −3.
This scaling, ∆ρ ∝ (xl/`)−3 for large widths xl/` � 1, will
also be obtained analytically in Sec. IV for the case of weak
activity.

Finally, Fig. 3(d) shows the density difference as a func-
tion of the barrier asymmetry a. The barrier height and width
are fixed at βVmax = 1 and xl/` = 1, respectively, and the
degree of activity is varied as Pe = 1 and Pe = 4. For nearly
symmetric ratchets, i.e., for a � 1, all curves show ∆ρ ∝ a,
whereas for large asymmetries a � 1, the curves suggest
asymptotic behavior, i.e., ∆ρ ∝ a0. This asymptotic behav-
ior can be understood on physical grounds, as the limit a→∞
corresponds to a ratchet whose right slope is vertical, a sit-
uation that we expect to lead to a finite density difference
indeed.

All discussed scalings are summarized in Table I. Of these,
the scaling ∆ρ∝ Pe2 for small activity Pe� 1 can be regarded
as trivial. The reason is that, in an expansion of the density
difference ∆ρ around Pe = 0, the quadratic term is the first
term to be expected on general grounds: (i) Eqs. (2) and (6) are
invariant under a simultaneous inversion of the self-propulsion
speed (v0 → −v0) and the orientation (ê → −ê, and hence
mx → −mx) such that the expansion of the density difference
∆ρcontains only even powers of Pe, and (ii) for the passive case
(Pe = 0), the density difference∆ρ equals 0, such that the zeroth
order term is absent. Similarly, the obtained scaling ∆ρ ∝ a
is as expected: since a symmetric ratchet (a = 0) leads to the
density difference ∆ρ = 0, the leading order term one expects
in an expansion of the density difference ∆ρ around a = 0 is

TABLE I. Power laws∆ρ ∝ baseexponent, for limiting values of the base. Here
the base denotes either the activity Pe, the barrier height βVmax, the barrier
width xl /`, or the barrier asymmetry a. Exponents were obtained numerically
for the 1D RnT and 2D ABP models (yielding consistent exponents), analyt-
ically for the case of small activity Pe � 1, and for a simple transition state
model. Exponents are shown only in limits where the corresponding solution
is applicable.

Exponent

Numerical Pe � 1 Transition state
Base Limit solution solution model

Pe Pe � 1 2 2 2
Pe � 1 �4

βVmax βVmax � 1 3 3
βVmax � 1 0 0 0

xl /` xl /` � 1 2 2 2
xl /` � 1 a �3

a a � 1 1 1 1
a � 1 0 0 0

aDepends on Pe. For Pe � 1, this exponent equals �3.

linear in the asymmetry a. However, all other scalings listed
in Table I cannot be predicted by such general arguments, and
are therefore nontrivial findings.

We emphasize that these results have been obtained and
verified by multiple approaches independently. While the pre-
sented results have been obtained by numerically solving the
differential equations (2) and (6) as explained above, both
the 2D ABP model and the 1D RnT model were also solved
by separate approaches. For the 2D ABP model, results were
additionally obtained by numerically integrating the Langevin
equations (1) in particle-based computer simulations. For the
1D RnT model, results were also obtained by solving a lat-
tice model, where particles can hop to neighbouring lattice
sites, and change their orientation, with probabilities that
reflect the same physical processes of self-propulsion, exter-
nal forcing, translational Brownian motion, and tumbling.45

For both the 2D ABP and the 1D RnT models, the two alter-
native approaches showed full agreement with the presented
results.

IV. WEAK ACTIVITY LIMIT

Having characterized how the ratchet potential influences
the densities of the adjoining bulks, we now turn to the ques-
tion whether we can better understand this effect. We first try to
answer this question for the simplest case possible, and there-
fore focus on the limit of weak activity, i.e. Pe� 1. Recall that
in this limit, the 2D ABP model and the 1D RnT model are
equivalent. In this section, we present an analytical solution
for the Pe � 1 limit. In Sec. V, we propose to rationalize its
results by a simple transition state model, which is valid for,
but not limited to, weak activity.

In the case of a small propulsion force, i.e., of Pe� 1, the
density can be expanded as ρ(x) = ρ0(x) + Pe2ρ2(x) +O(Pe4),
and the polarization as mx(x) = Pe m1(x)+O(Pe3). Here ρ0(x),
ρ2(x), and m1(x) are assumed to be independent of Pe. We
used the arguments that the density ρ(x) is an even function
of Pe and the polarization mx(x) an odd function of Pe, as
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explained in Sec. III B. With these expansions, Eqs. (6) can be
solved perturbatively in Pe, separately for each region where
the ratchet potential (4) is defined. As shown in the Appendix,
the solutions within one region are

ρ0(x) = A0e−βV (x),

m1(x) = −
A0
√

2
fe−βV (x) + B+ec+x/` + B−ec−x/` ,

ρ2(x) =
[
A2 − A0f

x
`

]
e−βV (x) +

√
2B+

c+ − f
ec+x/` +

√
2B−

c− − f
ec−x/` .

(7)

Here we defined the non-dimensionalized external force
f (x) ≡ −β`∂xV (x), such that f = 0 for x < −xl, f = −βVmax`/xl

for −xl < x < 0, f = βVmax`/xr for 0 < x < xr , and f = 0 for
x > xr , in accordance with Eq. (4). Furthermore, we defined
c± ≡ (f ±

√
f 2 + 4)/2. The integration constants A0, A2, B+,

and B− are found separately for each region by applying the
boundary conditions ρ(−∞) = ρl, m(∞) = m(−∞) = 0, and
the appropriate continuity conditions at the region boundaries
x = −xl, x = 0, and x = xr . Applying these conditions to the
solutions ρ0(x) in Eq. (7) shows that the leading order solution
is given by the Boltzmann weight, i.e., ρ0(x) = ρl exp(−βV (x))
for all x. Clearly, this is the correct passive solution. The higher
order solutions that follow, i.e., the polarization profile m1(x)
and the density correction ρ2(x), are plotted in Fig. 4. Qual-
itatively, these plots show the same features as displayed by
the numerical solutions in Fig. 2: an accumulation of particles

FIG. 4. (a) Normalized polarization profiles mx(x)/ρl and (b) deviations of
the density ρ(x) from the passive solution ρ0(x), for a ratchet potential of
height βVmax = 4, width xl /` = 1, and asymmetry a = 3. The dashed, vertical
lines indicate the positions of the barrier peak (x = 0) and the ratchet sides
(x = −xl and x = xr ). Results are shown for the analytical Pe � 1 solution, and
for the numerical solutions to the 1D RnT model, for activity levels Pe = 0.1,
0.5, and 1. The polarizations and density deviations are divided by Pe and Pe2,
respectively, such that the curves for the analytical solution are independent
of Pe.

facing the barrier at the ratchet sides x = −xl and x = xr , and a
right bulk density ρr that exceeds the left bulk density ρl. To
allow for a quantitative comparison, Fig. 4 also shows polar-
ization profiles mx(x) and density corrections ρ(x)− ρ0(x) that
were obtained for the 1D RnT model numerically. While the
ratchet potential is fixed, with barrier height βVmax = 4, width
xl/` = 1, and asymmetry a = 3, the comparison is made for
several degrees of activity, namely, Pe = 0.1, 0.5, and 1. The
analytical and numerical results show good agreement for
Pe = 0.1, reasonable agreement for Pe = 0.5, and deviate signifi-
cantly for Pe = 1. All of these observations are as expected since
the analytical solutions (7) are obtained under the assumption
Pe� 1.

The most interesting part of solution (7) is the density
correction ρ2(x), as this correction contains the leading order
contribution to the difference in bulk densities ∆ρ. To gain

FIG. 5. Normalized leading order coefficient (∆ρ)2 in the expansion of the
density difference ∆ρ for small activity Pe, as found from the analytical
Pe� 1 solution, and as predicted by the transition state model (a) as a function
of the barrier height βVmax, at fixed barrier width xl /` = 1 and asymmetry
a = 1, (b) as a function of the barrier width xl /`, at fixed barrier height βVmax
= 1 and asymmetry a = 1, and (c) as a function of the asymmetry a, at fixed
barrier height βVmax = 2 and barrier width xl /` = 1. The power laws shown
by the transition state model in its regime of applicability, i.e., for βVmax
� 1 and xl /` � 1, have exponents that agree with the power laws of the
analytical solution. These exponents can be found in Table I. The analytical
and transition state solution do not agree quantitatively for these parameter
values.
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some understanding for the meaning of the various terms con-
tributing to ρ2(x), we point out that for small activity, i.e., for
Pe � 1, active particles are often understood as passive par-
ticles at an effective temperature.17,20–24 In our convention,
this effective temperature reads T eff = T (1 + Pe2). Therefore,
one might think that for our weakly active system, the density
profile is given by the Boltzmann weight at this effective tem-
perature, i.e. by ρ(x) = A exp(−V (x)/kBT eff), within one region.
Here the prefactor A can depend on the activity Pe. Expanding
this effective Boltzmann weight for small Pe yields the pas-
sive solution ρ0(x), and the terms on the first line of ρ2(x) in
Eq. (7). However, it does not reproduce the final two terms that
contribute to ρ2(x) in Eq. (7). Precisely these last two terms
are crucial to obtain a nonzero difference ∆ρ in bulk densities.
Indeed, a density profile given solely by the effective Boltz-
mann weight necessarily yields equal bulk densities ρl = ρr ,
as the external potential V (x) is equal on either side of the
ratchet.

The analytical expression for the difference in bulk densi-
ties ∆ρ, implied by the solutions (7), is rather lengthy and
intransparent and is therefore not shown here. Instead, we
show the dependence of ∆ρ on the activity Pe graphically,
in Fig. 3(a), for the same two ratchet potentials as used for
the numerical solutions. As the density difference ∆ρ follows
from the correction ρ2(x), it scales as Pe2, just like the numer-
ical solutions for Pe� 1. As shown by Fig. 3(a), the analytical
and numerical solutions agree quantitatively up to Pe ≈ 0.5,
as also found in Fig. 4. Before we illustrate how the density
difference ∆ρ depends on the ratchet potential, we extract its
dependence on activity Pe by considering (∆ρ)2 = ∆ρ/Pe2,
i.e., the leading order coefficient in an expansion of ∆ρ around
Pe = 0. The coefficient (∆ρ)2 is independent of Pe, but still
depends on the barrier height βVmax, the barrier width xl/`,
and the asymmetry a. Its dependence on these ratchet param-
eters is plotted in Figs. 5(a)–5(c), respectively. These fig-
ures display all the power law behavior that was obtained
numerically in Sec. III. The power laws are summarized in
Table I.

V. TRANSITION STATE MODEL

As argued in Sec. IV, the nonzero difference in bulk den-
sities ∆ρ cannot be accounted for by the effective temperature
that is often employed in the weak activity limit. Instead, to
understand the behavior of the bulk density difference ∆ρ bet-
ter, we propose the following simple transition state model.
The model consists of four states, designed to mimic the 1D
RnT model in a minimal way. Particles in the bulk to the left
of the ratchet, with an orientation in the positive (negative)
x-direction, are said to be in state l+(l−), whereas particles in
the bulk to the right of the ratchet, with positive (negative)
x-orientation, are in state r+(r−). This setting is illustrated in
Fig. 6. Particles can change their orientation, i.e., transition
from l± to l∓ and from r± to r∓, with a rate Dr . Furthermore,
particles can cross the potential barrier and transition between
the l- and r-states. The associated rate constants are assumed
to be given by modified Arrhenius rates,46–48 where the
effect of self-propulsion is to effectively increase or decrease
the potential barrier. For example, the rate to transition

FIG. 6. Illustration of the states in the transition state model. Particles in the
left bulk with positive (negative) x-orientation are in state l+(l−). Similarly,
particles in the right bulk are in state r+ or r−. Within one bulk, particles can
change their orientation with rate constant Dr . Between the bulks, particles
can transition by crossing the potential barrier with the effective Arrhenius
rates of Eqs. (8) and (9), where the effect of self-propulsion is to shift the
potential barrier Vmax by the workγv0xl (γv0xr ) performed by the propulsion
force when a particles climbs the left (right) slope of the ratchet.

from l+ to r+ is

kl+→r+ =
νl

Ll
exp

[
−β(Vmax − γv0xl)

]
. (8)

As the propulsion force helps the particle to cross the barrier,
it effectively lowers the potential barrier Vmax by the work
γv0xl that the propulsion force performs when the particle
climbs the left slope of the ratchet. This modified Arrhenius
rate is expected to be valid under the assumptions (a) of a
large barrier height βVmax � 1, which is a condition for the
Arrhenius rates to be valid even for passive systems,49 (b) of
a ratchet potential that is typically crossed faster than a par-
ticle reorients, which can be achieved by making the barrier
width xl/` sufficiently small, and (c) that the work γv0xl per-
formed by the propulsion force is much smaller than the barrier
height Vmax. We point out that assumption (c) can be rewrit-
ten as Pe � βVmax`/xl. This means that if assumptions (a)
and (b) are satisfied, which imply that βVmax`/xl � 1, then
assumption (c) is not much further restrictive on the activity Pe.
The remaining rate constants follow along a similar reasoning
as

kl−→r− =
νl

Ll
exp

[
−β(Vmax + γv0xl)

]
,

kr+→l+ =
νr

Lr
exp

[
−β(Vmax + γv0xr)

]
,

kr−→l− =
νr

Lr
exp

[
−β(Vmax − γv0xr)

]
.

(9)

For large bulks on either side of the ratchet, the attempt fre-
quencies in the rate expressions (8) and (9) are inversely
proportional to the size of the bulk that is being transitioned
from. This size is denoted by Ll for the left bulk, and by Lr for
the right bulk. Therefore, the factors νl and νr are independent
of the bulk sizes Ll and Lr , and can only depend on the shape
of the ratchet potential, i.e., on its height βVmax, on its width
xl/`, and on its asymmetry a.

We denote the number of particles in the l± and r± states
by Nl± (t) and Nr± (t), respectively. The time evolution of these
particle numbers follows from the rates outlined above. For
example, the number of particles Nl+ (t) in state l+ evolves
according to the rate equation

∂tNl+ =−
(
Dr + kl+→r+

)
Nl+ + DrNl− + kr+→l+Nr+. (10)
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Similar equations hold for the particle numbers Nl− (t), Nr+ (t),
and Nr− (t). These rate equations can be solved in steady state,
i.e., when ∂tNl± = ∂tNr± = 0, for the particle numbers Nl± and
Nr± . We consider infinitely large bulks, i.e., Ll, Lr→∞. In this
case, the solutions show that Nl+ = Nl− and Nr+ = Nr− such that
the l and r states correspond to isotropic bulks. Furthermore,
the solution shows that the bulk densities ρl = (Nl+ + Nl− )/Ll

and ρr = (Nr+ + Nr− )/Lr differ by an amount ∆ρ = ρr − ρl

given by

∆ρ

ρl
=
νl

νr

cosh(Pe xl/`) − cosh(Pe xr/`)
cosh(Pe xr/`)

, (11)

where we recall that xr = (1 + a)−1xl. We point out that the ratio
νl/νr can generally depend on the ratchet parameters βVmax,
xl/`, and a. However, in the following, we simply assume
νl/νr = 1, which is justified for nearly symmetric ratchets.

To enable a comparison with the analytical solution of
Sec. IV, we now focus on the limit of weak activity, i.e.,
of Pe � 1. This ensures assumption (c) to be satisfied, but
we emphasize that the transition state model is not limited
to weak activity. We expand the density difference (11) as
∆ρ = (∆ρ)2 Pe2 + O(Pe4), and compare the coefficient (∆ρ)2
with the same coefficient obtained in Sec. III for the analyti-
cal solution in the weak activity limit. The coefficient (∆ρ)2

is plotted in Figs. 5(a)–5(c), as a function of the barrier height
βVmax, the barrier width xl/`, and the barrier asymmetry a,
respectively. Figure 5(a) merely illustrates that the density
difference (11) is independent of the barrier height βVmax.
This independency agrees with the asymptotic behavior dis-
played by the analytical solution for large barrier heights
βVmax� 1. Note that the regime βVmax� 1 is indeed assumed
for the modified Arrhenius rates [assumption (a)]. Figure 5(b)
illustrates that the density difference predicted by the transi-
tion state model scales quadratically with the barrier width, i.e.,
∆ρ ∝ (xl/`)2. This scaling agrees with the scaling of the ana-
lytical solution for the regime of small barrier widths xl/`� 1.
Again, this regime is assumed for the modified Arrhenius rates,
as having a small barrier width is required for having particles
cross the ratchet faster than they typically reorient [assump-
tion (b)]. Finally, Fig. 5(c) illustrates that the density difference
predicted by the transition state model scales linearly with the
barrier asymmetry for nearly symmetric ratchets, i.e., ∆ρ ∝ a
for a � 1, and asymptotically for very asymmetric ratchets,
i.e., ∆ρ ∝ a0 for a� 1. Both scalings are also displayed by the
analytical solution. All these power laws can again be found
in Table I.

Of course, the transition state model reproduces only the
power laws that lie inside its regime of applicability. How-
ever, the fact this simple model does reproduce all these
power laws is quite remarkable, since, as discussed in Sec. III,
most of these scalings are nontrivial. Furthermore, we note
that the transition state model can also be solved for finite
bulk sizes, which in fact predicts a turnover of the density
difference ∆ρ as a function of activity Pe, as observed in
Fig. 3(a).

Quantitatively, Fig. 5 clearly shows that the predictions
of the transition state model typically differ from the analyti-
cal solution by an order of magnitude. A possible reason for

this disagreement is that these plots are made for parameters
values that do not satisfy assumptions (a) and (b) that under-
lie the modified Arrhenius rates. In fact, it turned out to be
impossible to satisfy these assumptions simultaneously with
feasible parameter values. The root of the difficulty is that the
time it takes a particle to cross the potential barrier increases
with barrier height βVmax. As a consequence, having a barrier
that is simultaneously very high [assumption (a)] and typically
crossed faster than a particle reorients [assumption (b)] turns
out to require unrealistically small barrier widths xl/`. The
quantitative mismatch of the transition state model with the
full solution for small activity might also be attributed to the
assumption that the prefactors νl and νr in the rate expressions
(8) and (9) are not exactly identical, but in fact might depend
on the precise shape of the barrier. However, this possibility
goes beyond the current scope of this paper, and we leave it
for future study.

We conclude that, whereas it was not possible to test the
predictions of the transition state model in its regime of appli-
cability quantitatively, the model does reproduce the complete
power law behavior of this regime correctly.

VI. DISCUSSION

The most interesting aspect of the studied system is that
the external potential has a long-range influence on the density
profile. This is in sharp contrast to an ideal gas in equilib-
rium, whose density profile is only a function of the local
external potential. So what ingredients are necessary to obtain
this effect? To answer this question, we consider the 1D RnT
model subject to a general external potential V (x). Further-
more, we introduce the particle current J(x) and the orienta-
tion current Jm(x) that appear in the evolution equations (6),
i.e.,

J(x) =
√

2v0mx −
1
γ

(∂xV )ρ − Dt∂x ρ,

Jm(x) =
v0
√

2
ρ −

1
γ

(∂xV )mx − Dt∂xmx.
(12)

We focus on a state that is steady, such that J(x) = constant
≡ J, and flux-free, such that J = 0. Then Eqs. (6) and (12) can
be recast into the first order differential equation

`∂xY(x) =M(x)Y(x) (13)

for the three (non-dimensionalized) unknowns Y(x) ≡

(`ρ(x), `mx(x), Jm(x)/Dr)T . The coefficient matrix in Eq. (13)
is given by

M(x) =



f (x)
√

2Pe 0

Pe/
√

2 f (x) −1

0 −1 0



, (14)

where f (x) ≡ −β`∂xV (x) is the dimensionless external force,
which is now a function of position x. For a passive system
(Pe = 0), Eqs. (13) and (14) show that the density equation
decouples. In this case, the density profile is solved by the
Boltzmann weight, i.e., ρ(x) ∝ exp(−βV (x)), as required in
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thermodynamic equilibrium. For the general case, we observe
that if the coefficient matrix M(x) commutes with its integral
∫

x
x0

dx′M(x′), then Eq. (13) is solved by

Y(x) = exp

(
1
`

∫ x

x0

dx′M(x′)

)
·

*.
,

c1

c2

c3

+/
-
, (15)

where the integration constants c1, c2, and c3 are to be deter-
mined from boundary conditions. Here x0 is an arbitrary refer-
ence position. By virtue of ∫

x
x0

dx′f (x′) = −β`(V (x) − V (x0)),
the solution (15) is a local function of the external poten-
tial. An explicit calculation of the commutator shows that
[M(x), ∫

x
x0

dx′M(x′)] = 0 if and only if β(V (x) − V (x0))
= −f (x) (x − x0)/`, i.e., if the external potential is a linear
function of x. Therefore, for linear potentials, the density pro-
file is a local function of the external potential. This explains
why in a gravitational field the density profile can be found
as a local function of the external potential, and why sedi-
mentation profiles stand a chance to be described in terms
of an effective temperature in the first place.12,23–28,41,50–53

However, for nonlinear external potentials, e.g. for the ratchet
studied here that is only piecewise linear, the solution (15) is
not valid and a nonlocal dependence on the external poten-
tial is to be expected. Therefore, for the ratchet potential (4),
the kinks at x = −xl, x = 0, and x = xr are crucial to have
a density that depends nonlocally on the external potential.
Indeed, in the analytical solution for weak activity, presented
in Sec. IV, the nonlocal dependence of the right bulk den-
sity ρr on the external potential enters through the fact that
the integration constants in Eq. (7) are found from continuity
conditions that are applied precisely at the positions of these
kinks.

Summarizing, in order to have the external potential influ-
ence the steady-state density of ideal particles in a nonlocal
way, one needs to have (1) particles that are active (such that
the system is out of thermodynamic equilibrium) and (2) an
external potential that is nonlinear. Thereby, the 1D RnT par-
ticles in the ratchet potential (4) illustrate the nonlocal and
even long-range influence of the external potential in a most
minimal way.

In the discussion above, we have only shown that a lin-
ear external potential yields a density profile that is a strictly
local function of the potential. Thereby, a nonlinear potential
is not guaranteed to influence the density (arbitrarily) far away,
and indeed other criteria have been discussed in the literature.
For example, in the context of active Ornstein-Uhlenbeck par-
ticles, approximate locality was shown for a wide class of
nonlinear potentials,17,54 and it was argued that in order to
lose this property, it is crucial to have an external potential
with nonconvex regions.55 More generally, the fact that the
potential barrier is more easily crossed from one side than
from the other is a rectification effect, and it has been shown
that such effects can occur when the dynamics break time-
reversal symmetry, while the spatial mirror symmetry is also
broken.56,57 In our case, these criteria are met by the presence
of activity, and by having a ratchet that is asymmetric (a , 0),
respectively.

Our results are also fully consistent with the work by
Baek et al.,37 who study the effect of placing a nonspherical

body in a two-dimensional fluid of ABPs. They show that such
an inclusion leads to a steady state with a density perturbation
that scales in the far field as 1/r, where r is the distance to the
body. Repeating their derivation for the 1D RnT model in our
setting yields a far-field density perturbation that is simply con-
stant, i.e., independent of r. This is consistent with our findings.
Furthermore, under suitable conditions, in particular, that the
external potential is small everywhere, the authors of Ref. 37
derive that the far-field density perturbation scales as (Vmax)3.
This confirms our finding of the power law ∆ρ ∝ (βVmax)3

for small potential barriers βVmax � 1. Moreover, it suggests
that this scaling is not limited to the sawtooth-shaped potential
barrier considered here, but also holds for external potentials
of more general shape.

VII. CONCLUSIONS

We have studied the distribution of noninteracting, active
particles over two bulks separated by a ratchet potential. The
active particles were modelled both as two-dimensional ABPs
and as one-dimensional RnT particles. Our numerical solu-
tions to the steady state Smoluchowski equations show that
the ratchet potential influences the distribution of particles
over the bulks, even though the potential is short-ranged itself.
Thus, the external potential exerts a long-range influence on
the density profile. We have shown that such a (highly) nonlo-
cal influence can occur for noninteracting particles only when
they are (1) active and (2) subject to an external potential that
is nonlinear. Thereby, the piecewise linear setup considered in
this work captures this long-range influence in a most minimal
way.

To characterize the influence of the external potential, we
have described how the difference in bulk densities depends on
activity, as well as on the ratchet potential itself. Both models
of active particles showed consistent power law behavior that
is summarized in Table I.

To understand the long-range influence of the potential
in the simplest case possible, we focused on the limit of weak
activity. While weakly active systems are often described by an
effective temperature, our analytical solution explicitly shows
that the long-range influence of the ratchet potential cannot
be rationalized in this way. Instead, we propose a simple tran-
sition state model, in which particles can cross the potential
barrier by Arrhenius rates with an effective barrier height that
depends on the degree of activity. While the model could not
be tested quantitatively, as its underlying assumptions could
not be simultaneously satisfied for feasible parameter values,
it does reproduce—in its regime of applicability—the com-
plete power law behavior of the distribution of particles over
the bulks.

Future questions are whether the power law behavior can
be understood also outside the regime where the transition
state model applies, and whether the power laws also hold
for potential barriers of more generic shape than the sawtooth
of Fig. 1. Our work illustrates that even weakly active, non-
interacting particles pose challenges that are fundamental to
nonequilibrium systems and, moreover, that an external poten-
tial can exert a long-range influence in such systems. We expect
that incorporating such long-range and nonlocal effects will
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be part of a more generic statistical mechanical description of
nonequilibrium systems.
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APPENDIX: WEAK ACTIVITY SOLUTION

In this appendix, we derive the analytical solutions (7),
i.e. the steady state solutions to the 1D RnT Eqs. (6) in
the limit of weak activity. First, we define the particle flux
J(x) ≡

√
2v0mx − γ

−1(∂xV )ρ − Dt∂x ρ, such that the evo-
lution equation for the density, given by Eq. (6), reads ∂t ρ
= −∂xJ(x). Having a steady state (∂t ρ = 0) implies that J(x)
≡ J is constant, i.e. independent of x. The boundary condition
of having a bulk at x = xmax that is homogeneous and isotropic,
and hence flux-free, then implies J = 0. The equation J(x) = 0
has to be solved together with the steady state condition for the
polarization implied by Eq. (6). In dimensionless form, these
equations read

0 =
√

2Pe mx + f (x)ρ − `∂x ρ,

0 = −`∂x

{
Pe
√

2
ρ + f (x)mx − `∂xmx

}
− mx.

(A1)

Here, we defined the non-dimensionalized external force
f (x) ≡ −β`∂xV (x). We shall solve Eqs. (A1) separately for
every region where the ratchet potential (4) is a linear func-
tion. Within one such region, f (x) = f is constant, namely,
f = 0 to the left and to the right of the potential barrier,
f = −βVmax`/xl on the left slope of the barrier, and
f = βVmax`/xr on the right slope. We treat these cases simulta-
neously by simply writing f (x) = f, and keeping in mind that the
solution holds only within one region. Furthermore, we focus
on the limit of weak activity, i.e. of Pe � 1, and expand the
density as ρ(x) = ρ0(x) + Pe2ρ2(x) + O(Pe4), and the polar-
ization as mx(x) = Pe m1(x) + O(Pe3), as explained in the
main text. We insert these expansions into Eqs. (A1) and solve
order by order in Pe. To zeroth order in Pe, the equations read
fρ0 − `∂x ρ0 = 0, and are solved by

ρ0(x) = A0efx/` , (A2)

where A0 is an integration constant. Note that Eq. (A2) is the
Boltzmann weight, and hence the correct passive solution for
noninteracting particles. To linear order in Pe, the equations
read

− `∂x(fm1 − `∂xm1) − m1 =
1
√

2
`∂x ρ0, (A3)

where ρ0(x) is given by Eq. (A2). The solution to Eq. (A3) is

m1(x) = −
A0
√

2
fefx/` + B+ec+x/` + B−ec−x/` , (A4)

where B+ and B− are integration constants, and where
c± ≡ (f ±

√
f 2 + 4)/2. To quadratic order in Pe, the equations

read
f ρ2 − `∂x ρ2 = −

√
2m1, (A5)

where m1(x) is given by Eq. (A4). The solution to Eq. (A5) is
given by

ρ2(x) =
[
A2 − A0fx/`

]
efx/` +

√
2B+

c+ − f
ec+x/` +

√
2B−

c− − f
ec−x/` ,

(A6)

where A2 is another integration constant. Together, Eqs. (A2),
(A4), and (A6) constitute the solution (7) of the main text.

As emphasized above, these solutions hold within every
region separately. Therefore, the values of the integration con-
stants A0, A2, B+, and B− can differ per region. These val-
ues are determined from the boundary conditions outlined in
Sec. III A, i.e. ρ(−∞) = ρl, mx(−∞) = 0, and mx(∞) = 0 (we
take xres → −∞ and xmax → ∞), and from the requirements
that the density ρ(x), the polarization mx(x), and the orienta-
tion flux Jm(x) ≡ Pe ρ/

√
2 + f (x)mx − `∂xmx all be continuous

at the region boundaries x = −xl, x = 0, and x = xr . The condi-
tions that ρ(−∞) = ρl and that the density ρ(x) be continuous
straightforwardly imply that A0 = ρl everywhere. However, the
values that follow for the other integration constants A2, B+,
and B− are mostly lengthy and intransparent, and are therefore
not shown. The same is true for the leading order difference
in bulk densities ∆ρ = ρr − ρl = Pe2A2 |x>xr , whose depen-
dence on the parameters of the problem is instead depicted
graphically in Figs. 3(a) and 5(a)–5(c).
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