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We study fluctuations around equilibrium in a class of strongly interacting nonconformal plasmas using
holographic techniques. In particular, we calculate the quasinormal mode spectrum of black hole
backgrounds that approach Chamblin-Reall plasmas in the IR. In a specific limit, related to the exact
linear-dilaton background in string theory, we observe that the plasma approaches criticality and we obtain
the quasinormal spectrum analytically. We regulate the critical limit by gluing the IR geometry that
corresponds to the nonconformal plasma to a part of AdS space-time in the UV. Near criticality, the
spectrum can still be computed analytically and we find two sets of quasinormal modes, related to the IR
and UV parts of the geometry. In the critical limit, the quasinormal modes accumulate to form a branch cut
in the correlators of the energy-momentum tensor on the real axis of the complex frequency plane.

DOI: 10.1103/PhysRevD.97.081901

I. INTRODUCTION

Many applications of holographic duality concern sys-
tems around a critical point, where there is scale invariance.
However, many realistic systems are not scale invariant in
the regime of interest, QCD being a prominent example. It
is then very interesting to study how the absence of scale
invariance influences the transport properties of such
systems in a controlled manner.
A simple class of models that allows this investigation is

Einstein gravity coupled to a dilaton with an exponential

potential ∝ eαϕ, for which analytical black hole solutions
are known [1]. We call the corresponding finite temperature
system the Chamblin-Reall (CR) plasma. The parameter α
determines the beta function of the dual theory and the
deviation from conformality. At α ¼ 0 we recover the
conformal theory. This form of the potential is a good
approximation for the IR behavior of a class of QCD-like
holographic models [2,3].
In a previous paper [4] we studied time-dependent

solutions of this model corresponding to boost-invariant
flow, and found that the system has a slower approach to
equilibrium than in the conformal case. In this article we
continue this investigation, focusing on the quasinormal
modes that contain information about the thermalization
processes that lead to equilibrium. We are interested in the
behavior of the modes as a function of the parameter α. For
α ¼ 0 the spectrum is well known [5]: the modes lie along
straight lines in the lower complex frequency half-plane.
We notice that there is a critical value αc ¼ 4=3 for

which the string frame geometry matches with the two-
dimensional dilatonic black hole geometry, the linear
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dilaton background (plus some extra flat coordinates). The
change in the geometry signals a phase transition, that can
be shown to be continuous, of the BKT type [6,7].
We have computed the spin-2 quasinormal spectrum

analytically in the vicinity of the phase transition (α → αc).
We will present the main findings in this article; the details
of the derivation and a more extensive presentation of the
results will be given elsewhere [8]. We concentrate here on
the results at zero momentum which actually apply to all
fluctuations of the model, not just spin-2. In summary, we
see that when we approach the critical point, the quasi-
normal modes become closely spaced and their imaginary
part decreases, until eventually they form a branch cut on
the real axis, even as the temperature remains finite at the
critical point. We argue that this behavior signals a break-
down of hydrodynamics, as there are modes that decay
more slowly than the hydrodynamic fluctuations. However,
it is not clear if there is a dual theory exactly at the critical
point (it has been suggested that it could correspond to an
order-disorder transition in a spin model [9]).
We can have a well-defined dual theory if we consider a

completion obtained by replacing part of the UV geometry
with a slice of AdS spacetime. Even after the gluing, the
whole spectrum of spin-2 modes can be described analyti-
cally. The gluing introduces a new scale, and even at the
critical point the modes are discrete; we observe that there
are two distinct sets of modes with different behavior. There
is a set which includes the lowest-lying modes, that are
related to those of the CR geometry; these modes approach
the modes of the pure CR geometry as the temperature is
lowered (or equivalently the scale of the UV completion is
increased). There is also another set of modes, starting at a
higher frequency whose imaginary part is only mildly
frequency-dependent, which we associate with the slice of
the AdS space.

II. QUASINORMAL MODES
OF THE CR PLASMA

We consider five dimensional Einstein-dilaton gravity

A ¼ 1

16πG5

Z
d5x

ffiffiffiffiffiffi
−g

p �
R −

4

3
ð∂ϕÞ2 þ V0eαϕ

�
: ð1Þ

Defining

fðr̂Þ ¼ 1 −
�
r̂
r̂h

�
ξ

; ξ ¼ 4ð1 − 9α2=64Þ
1 − 9α2=16

; ð2Þ

so that ξ → ∞ at the critical point αc ¼ 4=3, the exact CR
solution of the model is given in the Eddington-Finkelstein
coordinates as

ds2 ¼ e2A0 r̂−
2
3
ðξ−1Þ½−2l0dr̂dv − fðr̂Þdv2 þ δijdxidxj�

ϕ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðξ − 1Þðξ − 4Þ

p
log r̂ ð3Þ

where l0 ¼ e−A0ξ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1=ξ

p
=

ffiffiffiffiffiffi
V0

p
, and A0 is a constant. For

this geometry, the temperature reads

T ¼ ξ

4πr̂hl0 : ð4Þ

We now consider the spin-two fluctuations of the metric
with momentum k along the x1-direction (the excitations
being transverse to k). These can be shown to satisfy the
relatively simple equation

r̂fðr̂ÞΞ00ðr̂Þ þ ð2il0r̂ωþ fðr̂Þ − ξÞΞ0ðr̂Þ
− ðl02k2r̂þ ðξ − 1Þl0iωÞΞðr̂Þ ¼ 0: ð5Þ

All other fluctuations of the system also satisfy this same
equation in the limit k → 0.
Since the linear dilaton model is exactly solvable, we can

find analytical results for the location quasinormal modes
in a perturbation expansion in ξ−1 ∼ α − αc, which are
corroborated by the numerical results. In particular, we can
compute explicitly the analytic result for the correlator of
the transverse components of the energy-momentum tensor
to leading order in 1=ξ. In order to write down our result for
the correlator, we define the reflection amplitude

Rðϖ; qÞ ¼ −
Γð1þ iS̃ÞΓð1

2
ð1 − iϖ − iS̃ÞÞ2

Γð1 − iS̃ÞΓð1
2
ð1 − iϖ þ iS̃ÞÞ2 ; ð6Þ

where

S̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϖ2 − q2 − 1

q
ð7Þ

with ϖ ¼ ω=ð2πTÞ, q ¼ k=ð2πTÞ. This amplitude
describes the reflection of waves in the deep IR region
of the geometry and is the same as in the minisuperspace
studies of the two-dimensional black hole of the linear
dilaton model [10,11]. The final result for the correlator is,
however, more complicated due to a nontrivial interplay of
the fluctuations in the UV and in the IR. In terms of the
reflection amplitude the leading order result reads [8]

Greg ¼
2πξξr̂−ξh

Γðξ
2
ÞΓð1þ ξ

2
Þ

�ðϖ2 − q2Þ
16

�ξ
2

�
iþ

�
1þ iS̃

1− iS̃

�ξ
2 e−iξS̃

R

�−1

ð8Þ

for [12] Reϖ ≳ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

p
, and
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Greg ¼
2πξξr̂−ξh

Γðξ
2
ÞΓð1þ ξ

2
Þ

�ðϖ2 − q2Þ
16

�ξ
2

×

��
1þ S
1 − S

�ξ
2

e−ξSR − iθð−ImϖÞ
�

ð9Þ

for Reϖ ≲ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

p
. Here the subscript “reg” indicates that

we have subtracted a singular term which does not contain
any information on the quasinormal modes. We chose the
branches of the square root factors such that the solution for
negative ϖ2 − q2 − 1 is given by replacing S̃ ↦ iS where

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 −ϖ2 þ 1

q
; ð10Þ

which corresponds to analytic continuation through the
upper half of the complex ϖ-plane.
The former expression (8) has a series of poles corre-

sponding to the nonhydrodynamic quasinormal modes of
the system. The main result is that the quasinormal modes
become closely spaced and approach the real axis as
ξ → ∞. In the limit, they should create a branch cut on
the real axis running from ϖ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

p
to ϖ ¼ ∞ (see

[13] for a recent discussion in a different context). This can
be seen for the four lowest modes in Fig. 1. Notice that the
branch cut is gapped; i.e., it starts from a frequency strictly
larger than zero for any value of q.
The hydrodynamic quasinormal modes by contrast do

not scale with ξ: the imaginary part is fixed by the shear
viscosity/entropy ratio that is 1=4π independently of ξ.
This means that one can find infinitely many nonhydro
modes that are decaying slower than the hydro ones;
which may suggest a break down of hydrodynamics in
the limit ξ → ∞.

III. UV COMPLETION

However, the critical limit is subtle. It is not possible to
send ξ → ∞ in Eq. (8) because of wildly oscillating phases

in the denominator. Thus at the critical point we do not have
a well-defined prescription for computing correlators. This
can be understood as a consequence of the fact that the
geometry becomes asymptotically flat in the presence of a
linear dilaton; the asymptotic behavior of the fluctuations
allows instead to define a scattering S-matrix correspond-
ing to the reflection amplitude (6). The definition of the
boundary theory requires a UV regulator and the geometry
being asymptotically AdS. For this reason, and also
because the CR plasma is anyway only supposed to be
an accurate description in the IR, we turn to the question of
the robustness of our result when the theory is embedded
into a UV complete description.
In order to implement this completion, we should

consider dilaton potentials which admit a flow from AdS
geometry in the UV to the CR geometry in the IR. At large
ξ and small enough T the geometry has the structure
depicted in Fig. 2. The radial coordinate r is related to l0r̂
of the previous section by a shift that is needed to set the
boundary at r ¼ 0. There are three regions: an AdS in the
UV (0 < r ≪ l), the CR geometry in the IR (r ≫ l), and
an intermediate region where the linear dilaton approxi-
mation is valid (l ≪ r ≪ l0 with l0 ∼ lξ); the extent of the
middle region grows with ξ, so we expect that at least some
of the QNM of the CR geometry will approximate those of
the full geometry when ξ is large. However, in general, the
quasinormal modes now acquire a nontrivial dependence
on the temperature as well as on ξ, as we will demon-
strate below.
For simplicity, instead of changing the potential, we

adopt a prescription that consists in gluing the CR solution
to an AdS space in the UV, so that the transition region
around r ∼ l in Fig. 2 is replaced by a junction at some
arbitrary point r ¼ rc. In this approximation and to leading
order in 1=ξ, the spin-two correlator can again be found
analytically (but the expression is too complicated to
reproduce it in this article; it will be published in [8]).
The modes of the completed geometry extracted from the
analytic result are shown in Fig. 3 (left). They indeed
depend on the temperature and approach the modes of the
CR geometry only at low temperature. The cusps are
related to appearance of the second set of modes at higher
temperatures which we will discuss in more detail below.
As the temperature grows the horizon rh moves to the AdS
region, and the junction approximation breaks down. This
happens at T ¼ Tc where Tc ¼ ξ=4πl0 is the temperature
of the linear dilaton solution.
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FIG. 1. The dependence of the four lowest nonhydrodynamic
quasinormal modes on ξ at q ¼ 0. Thick lines were obtained
by directly solving the fluctuation equation (5) numerically for
4 ≤ ξ ≲ 20, and the thin lines are based on the analytic approxi-
mation in (8).

FIG. 2. The structure of the geometry for potentials asymp-
toting to CR behavior in the IR at small temperatures with
large ξ.
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FIG. 3. The dependence of the location of quasinormal modes on the location of the horizon at q ¼ 0 in the setup where AdS and CR
geometries were glued together. Left: The trajectories of the ten lowest QNMs on the complex ϖ-plane at ξ ≃ 26.77 as T grows from
T ¼ 0.2Tc to T ¼ 0.91Tc. The dashed curves were added to guide the eye, they are at constant T=Tc with values of the ratio indicated by
the labels. The markers are at T=Tc ¼ 0.2, 0.3, … 0.9 for all curves. Right: The trajectories of the QNMs at ξ ¼ ∞ on the complex
ϖ-plane as rh is varied from rh ¼ 1.2rc (lower end points of the curves) to rh ¼ 20rc (upper end points). The dots are the locations of
the QNMs for rh=rc ¼

ffiffiffi
2

p
, 2, 2

ffiffiffi
2

p
;…16. The dashed lines connect the locations at the same rh as indicated by the labels.

FIG. 4. The (logarithm of the) absolute value of the correlators of the energy-momentum tensor on the complex ϖ-plane in various
approximations. The plots are for ξ ¼ ∞ and q ¼ 0. The contours are at constant values of jG̃regj, with orange/yellow colors (mostly top
parts of the plots) indicating small values and blue/white colors (mostly bottom parts of the plots) indicating large values. Top left: the
“glued” correlator of (11) at rh=rc ¼ 2. Top right: the correlator of (11) at rh=rc ¼ 20. Bottom left: the large ϖ approximation of the
correlator with rh=rc ¼ 2 [8]. Bottom right: the limit of large black hole (12) of the glued correlator.
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IV. APPROACH TO CRITICALITY

In the UV-completed geometry we can take the critical limit ξ → ∞ as there is no issue with the boundary conditions. In
this limit, the transverse spin-two correlator simplifies to

G̃reg ¼ −
81iπμ̂4

512r4c

μ̂½1þ e3Sð1−
rh
rc
ÞR�Hð1Þ

1 ð3μ̂
2
Þ þ ½ðS − 1Þ − e3Sð1−

rh
rc
ÞðSþ 1ÞR�Hð1Þ

2 ð3μ̂
2
Þ

μ̂½1þ e3Sð1−
rh
rc
ÞR�J1ð3μ̂2 Þ þ ½ðS − 1Þ − e3Sð1−

rh
rc
ÞðSþ 1ÞR�J2ð3μ̂2 Þ

; ð11Þ

where μ̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϖ2 − q2

p
, Ji are Bessel functions, andH

ð1Þ
i are

Hankel functions of the first kind. The branch cut arising
from the square root in the definition of S cancels in this
expression: it is invariant under S ↦ −S (which implies
R ↦ R−1). Therefore the only singularities are poles due
to the quasinormal modes.
There is a subtlety regarding the temperature in the

critical limit. Namely, at any finite ξ the temperature is a
monotonic function of rh, but in the critical limit the
dependence of the temperature on the location of the
horizon disappears and it is fixed to Tc [4]. Our gluing
procedure works when rh ≫ rc.
The structure of the correlator is depicted in Fig. 4.We see

that at small rh there are two sets of poles: one set lying on an
approximately straight line, and another one for which the
imaginary part is almost frequency-independent. As rh is
increased the slope of the first set of modes decreases and
eventually reaches the real axis; for this reason we identify
these poles as being associated with the CR part of the
geometry, whereas the region with the other poles is pushed
to higher frequency and eventually these poles disappear.
We do not have a good understanding of the presence of the
second set of modes (having roughly constant Imϖ), but we
associate them with the AdS slice of the metric. The
trajectories of the quasinormal modes as rh varies are shown
in Fig. 3 (right). As we pointed out above the cusps in the
trajectories are related to the second set of modes: as rh
decreases some of the CR modes stop their evolution when
Reϖ ∼ rh=rc and join the line of the second set of modes.
The appearance of the branch cut in the limit of large

black hole can also be seen analytically by taking the limit
rh → ∞ of (11). We obtain

G̃reg → −
81iπμ̂4

512r4c

μ̂Hð1Þ
1 ð3μ̂

2
Þ þ ðS − 1ÞHð1Þ

2 ð3μ̂
2
Þ

μ̂J1ð3μ̂2 Þ þ ðS − 1ÞJ2ð3μ̂2 Þ
: ð12Þ

This expression is no longer invariant under S ↦ −S and
therefore we find a physical branch cut running from ϖ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

p
to ϖ ¼ ∞. This branch cut is visible in the plots

on Fig. 4 (right).

V. CONCLUSIONS

Our results should be compared to [14–17] who also
studied the dependence of the imaginary part of the lowest

QNM in systems with broken scale invariance, but found a
milder dependence on the scale-breaking parameter.
It would be very interesting to understand if it is possible

to make sense of the critical limit independently of the UV
completion, especially in light of possible condensed
matter applications, as we mentioned in the introduction.
In particular we wonder if there is a generic model with
infinitely many long lived excitations that we observe in
our system in the critical limit α ¼ 4=3.
Another interesting question is whether our result can

have phenomenological applications to the QCD quark-
gluon plasma. The role of the bulk viscosity, which should
be important close to the deconfinement transition, has
been discussed in this context (e.g. in [18]). A natural
direction for further research would be to try and build a
picture of how the long lived nonhydrodynamic modes
affect the long-time behavior of the system.
We also observe that the critical limit α ¼ 4=3 is similar

to the large D limit recently discussed in [19]. We find a
universal appearance of linear dilaton geometry (and its
finite horizon extensions) just as in that case [20]. Finally,
as discussed in [4] the black-hole solution we consider in
this paper can be embedded in a higher dimensional AdS
geometry where the number of internal dimensions diverge
as α → 4=3.
It is also worth mentioning, even though it is not directly

related to our work, that the structure of the quasinormal
spectrum that we found bears a resemblance to the results
of [21] who attempted to make holographic sense of the
quasinormal modes of 2d de Sitter space by completing it in
the UV with AdS2.
Even though we studied the fluctuations at nonzero

momentum, in this article we reported only on the modes at
zero momentum. The behavior of the quasinormal modes
as a function of q will be discussed in [8].
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