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Abstract The problem Max W -Light (Max W -Heavy) for an undirected graph is
to assign a direction to each edge so that the number of vertices of outdegree at most
W (resp. at least W ) is maximized. It is known that these problems are NP-hard even
for fixed W . For example, Max 0- Light is equivalent to the problem of finding a
maximum independent set. In this paper, we show that for any fixed constantW ,Max
W -Heavy can be solved in linear time for hereditary graph classes for which treewidth
is bounded by a function of degeneracy. We show that such graph classes include
chordal graphs, circular-arc graphs, d-trapezoid graphs, chordal bipartite graphs,
and graphs of bounded clique-width. To have a polynomial-time algorithm for Max
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W -Light, we need an additional condition of a polynomial upper bound on the number
of potential maximal cliques to apply the metatheorem by Fomin et al. (SIAM J Com-
put 44:54–87, 2015). The aforementioned graph classes, except bounded clique-width
graphs, satisfy such a condition. For graphs of bounded clique-width, we present a
dynamic programming approach not using the metatheorem to show that it is actually
polynomial-time solvable for this graph class too. We also study the parameterized
complexity of the problems and show some tractability and intractability results.

Keywords Orientation · Graph class · Width parameter · Parameterized complexity

1 Introduction

Let G = (V, E) be an undirected graph. An orientation of G is a function that maps
each undirected edge {u, v} ∈ E to one of the two possible directed edges (u, v)

and (v, u). For any orientation Λ of G, define Λ(E) = ⋃
e∈E {Λ(e)} and let Λ(G)

denote the directed graph (V,Λ(E)). For anyvertexu ∈ V , theoutdegree of u underΛ

is defined as d+
Λ(u) = |{(u, v) : (u, v) ∈ Λ(E)}|, i.e., the number of outgoing edges

from u in Λ(G). For any non-negative integer W , a vertex u ∈ V is called W -light
in Λ(G) if d+

Λ(u) ≤ W , and W -heavy in Λ(G) if d+
Λ(u) ≥ W .

For any fixed integer W ≥ 0, the following optimization problems (introduced
in [3], see also [4]) are defined, where the input is an undirected graph G = (V, E):

• Max W -Light: Output an orientation Λ of G
such that

∣
∣{u ∈ V : d+

Λ(u) ≤ W }∣∣ is maximized.
• Max W -Heavy: Output an orientation Λ of G
such that

∣
∣{u ∈ V : d+

Λ(u) ≥ W }∣∣ is maximized.

Symmetrically, we can consider the following problems:

• Min W -Light: Output an orientation Λ of G
such that

∣
∣{u ∈ V : d+

Λ(u) ≤ W }∣∣ is minimized.
• Min W -Heavy: Output an orientation Λ of G
such that

∣
∣{u ∈ V : d+

Λ(u) ≥ W }∣∣ is minimized.

Observe thatMaxW -Light (resp.,MaxW -Heavy) andMin (W +1)-Heavy (resp.,
Min (W −1)-Light) are supplementary problems in the sense that an exact algorithm
for one gives an exact algorithm for the other, though their approximability properties
and fixed-parameter tractability may differ. Since this paper mainly focuses on the
polynomial-time solvability, we consider onlyMax W -Light and Max W -Heavy.1

It is shown in [3] that Max W -Light is NP-hard for any fixed W ≥ 0, and Max
W -Heavy is NP-hard for any fixed W ≥ 3. They also show that for W ≤ 1 Max
W -Heavy can be solved in polynomial time. Recently Khoshkhah [28] has closed the
gap by showing that Max 2- Heavy can be solved in polynomial time.

For these problems, the same authors of [3] investigate the approximability [4].
They got comprehensive results on the approximability of the problems. Some of the
results are listed as follows:

1 We consider parameterized complexity in Sect. 5 where the equivalence does not hold.
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– For every fixedW ≥ 1,MaxW -Light cannot be approximated within (n/W )1−ε

in polynomial time, unless P=NP. On the positive side, there exists a polynomial-
time (n/(2W + 1))-approximation algorithm for Max W -Light.

– For every fixed W ≥ 1, Min W -Heavy cannot be approximated within 1.3606
in polynomial time, unless P = NP. On the positive side, they show that Min W -
Heavy can be approximated within a ratio of ln(W + 1) + 1 in polynomial time
for every fixed W ≥ 2.

– Min W -Light can be approximated within ln(W + 1) + 1 for any W ≥ 1. This
ratio is almost tight, because it was shown that, for sufficiently large values of W ,
Min W -Light is NP-hard to approximate within ln(W + 1) − O(log logW ).

– For sufficiently large values of W , Max W -Heavy is NP-hard to approximate
within (n/W )1/2−ε for any ε > 0. Note that the best known polynomial-time
approximation ratio for Max W -Heavy is W + 1 [3].

Due to the work mentioned above [3], the general (in)approximability of the prob-
lems is well understood. In this paper, we thus investigate the problem from another
aspect, that is, graph classes. For the two problems Max W -Light and Max W -
Heavy, we take similar but slightly different approaches.

The main tool for MaxW -Light is the metatheorem of Fomine et al. [19] that can
be seen as an extension of Courcelle’s theorem [1,13]. It provides a polynomial-time
algorithm for finding a maximum induced subgraph of bounded treewidth satisfying a
counting monadic second-order logic formula from a given graph with polynomially
many potential maximal cliques. We show that if a hereditary graph class has a poly-
nomial upper bound on the number of potential maximal cliques and has a function
depending only on degeneracy as an upper bound of treewidth, then the metatheorem
of Fomin et al. can be applied toMax W -Light.

Similarly, forMaxW -Heavy, we consider hereditary graph classes with treewidth
bounded by a function of degeneracy. However, we do not require polynomial upper
bounds on the number of potential maximal cliques.We first show that the problem for
graphs of bounded treewidth can be solved in linear time. Next we present a linear-time
reduction from graphs with a function of degeneracy as an upper bound of treewidth
to graphs of bounded treewidth. Combining these results, we obtain a linear-time
algorithm for Max W -Heavy on graph classes with the aforementioned property.

We then show that our algorithms can be applied to several well-known graph
classes. It is known that chordal graphs, circular-arc graphs, d-trapezoid graphs, and
chordal bipartite graphs have polynomial upper bounds on the number of potential
maximal cliques (see Sect. 4). We show that these hereditary graph classes have func-
tions of degeneracy as upper bounds on treewidth, and thus our algorithms can be
applied. Additionally, we observe that graphs of bounded clique-width admit a func-
tion of degeneracy as an upper bounded of treewidth, and thus Max W -Heavy can
be solved in linear time. To show that Max W -Light can be solved in polynomial
time for graphs of bounded clique-width, we present a dynamic programming based
algorithm.

We also consider the parameterized complexity of the problems. We show that for
any fixedW ,MaxW -Light isW[1]-complete, whileMaxW -Heavy admits a kernel
of O(Wk) vertices, where the parameter k is the solution size.
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1.1 Related Work

Graph orientations that optimize certain objective functions involving the resulting
directed graph or that satisfy some special property such as acyclicity [46] or k-
edge connectivity [11,40,44] have many applications to graph theory, combinatorial
optimization, scheduling (load balancing), resource allocation, and efficient data struc-
tures. For example, an orientation that minimizes the maximum outdegree [5,10,47]
can be used to support fast vertex adjacency queries in a sparse graph by storing each
edge in exactly one of its two incident vertices’ adjacency lists while ensuring that all
adjacency lists are short [10]. There are many optimization criteria for graph orien-
tation other than these. See [2] or Chapter 61 in [45] for more details and additional
references.

On the other hand, degree-constrained graph orientations [20,21,25,35] arise when
a degree lower boundWl(v) and a degree upper boundWu(v) for each vertex v in the
graph are specified in advance or as part of the input, and the outdegree of v in any valid
graph orientation is required to lie in the interval [Wl(v), . . . ,Wu(v)]. Obviously, a
graph does not always have such an orientation, and in this case, one might want to
compute an orientation that best fits the outdegree constraints according to some well-
defined criteria [2,3]. In case Wl(v) = 0 and Wu(v) = W for every vertex v in the
input graph, whereW is a non-negative integer, and the objective is tomaximize (resp.,
minimize) the number of vertices that satisfy (resp., violate) the outdegree constraints,
then we obtainMaxW -Light (resp.,Min (W +1)-Heavy). Similarly, ifWl(v) = W
andWu(v) = ∞ for every vertex v in the input graph, then we obtainMaxW -Heavy
and Min (W − 1)-Light.

Another related problem is to find a maximum vertex set that induces a subgraph
of bounded degeneracy. (See the next section for the definition of degeneracy.) This
problem can be seen as a variant of MaxW -Light, where we can use acyclic orienta-
tions only. This problem is studied in the context of parameterized [37] and exact [43]
computation. Concerning the computational complexity on restricted graph classes,
we can obtain a result similar to the one for Max W -Light as we observe in the final
section of this paper.

2 Preliminaries

We say two vertices u, v ∈ V (G) are adjacent in G if {u, v} ∈ E(G). Let NG(u) be
the set of all vertices that are adjacent to u in G, i.e., NG(u) = {v : {u, v} ∈ E}. The
degree of u in G is dG(u) = |NG(u)|. We define δ(G) = min{dG(u) : u ∈ V (G)}.
The degeneracy of a graph G, denoted by δ̂(G), is the maximum of the minimum
degrees over all induced subgraphs of G. Let (v1, . . . , vn) be an ordering on V (G)

such that dGi (vi ) = δ(Gi ), where Gi = G[{v j : j ≥ i}]. It is known that such an
ordering can be computed in linear time and that δ̂(G) = max1≤i≤n δ(Gi ) [38]. For
anyU ⊆ V (G), the subgraph induced byU is denoted byG[U ]. IfG[U ] is a complete
graph, thenU is a clique ofG. The size of a maximum clique inG is denoted byω(G).
Let ωb(G) be the maximum integer k such that G has a subgraph isomorphic to the
complete bipartite graph Kk,k . From the definition, ω(G) − 1 and ωb(G) are lower
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bounds of δ̂(G). A class C of graphs is hereditary if C is closed under taking induced
subgraphs. Namely, if G ∈ C , then all induced subgraphs of G belong to C .

For an integer W ≥ 0, an orientation of a graph is called a W -light orientation if
the maximum outdegree is at most W . If a W -light orientation exists, we say that the
graph isW -light orientable. By replacing “at most” with “at least” in these definitions,
we similarly define W -heavy orientations and W -heavy orientable graphs.

2.1 Minimal Triangulations and Potential Maximal Cliques

A tree-decomposition of a graph G = (V, E) is a pair ({Xi : i ∈ I }, T = (I, F))

such that each Xi , called a bag, is a subset of V , and T is a tree such that

– for each v ∈ V , there is i ∈ I with v ∈ Xi ;
– for each {u, v} ∈ E , there is i ∈ I with u, v ∈ Xi ;
– for i, j, k ∈ I , if j is on the i, k-path in T , then Xi ∩ Xk ⊆ X j .

The width of a tree-decomposition is the size of a maximum bag minus 1. A graph
has treewidth at most t if and only if it has a tree-decomposition of width at most t .
We denote the treewidth of G by tw(G).

A graph is chordal (or triangulated) if it has no induced cycle of length 4 or
more. A triangulation of a graph G = (V, E) is a chordal graph G ′ = (V, E ′) such
that E ⊆ E ′. A triangulation G ′ of G is minimal if no proper subgraph of G ′ is a
triangulation of G. It is known that the treewidth of G is the minimum integer t such
that there is a (minimal) triangulation H of G with the maximum clique size t + 1.
A vertex set P ⊆ V (G) is a potential maximal clique of G if P is a maximal clique
in some minimal triangulation of G. The set of all potential maximal cliques of G is
denoted by ΠG . A vertex set S ⊆ V (G) is an a, b-separator for a, b ∈ V (G) if a
and b are in different components in G − S. An a, b-separator is minimal if no proper
subset of it is an a, b-separator. A vertex set is a minimal separator if it is a minimal
a, b-separator for some pair a, b. The set of all minimal separators of G is denoted
by ΔG . By the following proposition, graphs have a polynomial number of minimal
separators if and only if they have a polynomial number of potential maximal cliques.

Proposition 2.1 (Bouchitté and Todinca [9])For every n-vertex graph G, it holds that
|ΔG |/n ≤ |ΠG | ≤ n|ΔG |2 + n|ΔG | + 1.

3 Metatheorems

In this section we present metatheorems for MaxW -Light andMaxW -Heavy. We
apply them to some well-studied graph classes in the next section.

3.1 MSO Expressibility

We now introduce the monadic second-order logic (MSO) of graphs. The syntax of
MSO of graphs includes (1) the logical connectives ∨, ∧, ¬, ⇔, ⇒, (2) variables for
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vertices, edges, vertex sets, and edge sets, (3) the quantifiers ∀ and ∃ applicable to
these variables, and (4) the following binary relations:

– u ∈ U for a vertex variable u and a vertex set variable U ;
– d ∈ D for an edge variable d and an edge set variable D;
– inc(d, u) for an edge variable d and a vertex variable u, where the interpretation
is that d is incident with u;

– equality of variables.

To express edge orientations in MSO for graphs of bounded treewidth, we use the
following observation [7,27] (see also [14]). First observe that a graph of treewidth at
most k has a proper k + 1 coloring. Now an orientation of a graph G = (V, E) with
treewidth at most k can be represented by a proper coloring γ : V → {1, . . . , k + 1}
and an edge set F ⊆ E as follows: edge e = {u, v} is oriented as (u, v) if and only if
either γ (u) < γ (v) and e ∈ F , or γ (u) > γ (v) and e /∈ F .

Lemma 3.1 For any fixed W, Max W-Heavy and Max W-Light for graphs of
bounded treewidth can be expressed in an optimization version of MSO and thus
solved in linear time.

Proof Let G = (V, E) be a graph of treewidth at most k. For vertex sets
V1, . . . , Vk+1 ⊆ V , one can easily express in MSO that V1, . . . , Vk+1 give a proper
k + 1 coloring of G. Let proper-coloring(V1, . . . , Vk+1) be such an MSO formula.

By a proper coloring (V1, . . . , Vk+1) and an edge set F ⊆ E , we represent an
orientation of G as described above. Now, for an edge e ∈ E and a vertex v ∈ V ,
there is an MSO formula that means e is an out-going edge from v. For example, we
can express it as follows:

outV1,...,Vk+1,F (e, v) := inc(e, v) ∧

∃u
⎛

⎝

⎛

⎝e ∈ F ∧
∨

i< j

(u ∈ Vi ∧ v ∈ Vj )

⎞

⎠ ∨
⎛

⎝e /∈ F ∧
∨

i> j

(u ∈ Vi ∧ v ∈ Vj )

⎞

⎠

⎞

⎠ .

Under the orientation represented by (V1, . . . , Vk+1) and F ⊆ E , W -heaviness and
W -lightness of a vertex can be expressed as follows:

W -heavyV1,...,Vk+1,F (v) := ∃e1, . . . , eW (distinct(e1, . . . , eW )

∧∀ei (outV1,...,Vk+1,F (ei , v))
)
,

W -lightV1,...,Vk+1,F (v) := ¬
(
(W + 1)-heavyV1,...,Vk+1,F (v)

)
,

where distinct(e1, . . . , eW ) means that the edges e1, . . . , eW are distinct. Hence the
problems are equivalent to finding a vertex set X of the maximum size in the following
formulas:

∃V1, . . . , Vk+1, ∃F
(
proper-coloring(V1, . . . , Vk) ∧ ∀v ∈ X

(
W -heavyV1,...,Vk+1,F (v)

))
,

∃V1, . . . , Vk+1, ∃F
(
proper-coloring(V1, . . . , Vk) ∧ ∀v ∈ X

(
W -lightV1,...,Vk+1,F (v)

))
.
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It is known that for a fixed MSO formula on a graph of bounded treewidth, one can
find in linear time a maximum vertex subset satisfying the formula (see [1,13]). ��
Corollary 3.2 For fixed W and k, the property of being W-light (or W-heavy) ori-
entable can be expressed in MSO for graphs of treewidth at most k.

3.2 MAX W -LIGHT

We can see that the problem of finding a maximum W -light orientable induced sub-
graph is polynomially equivalent to Max W -Light.

Lemma 3.3 A graph G has a W-light orientable induced subgraph of at least k
vertices if and only if the edges of G can be oriented so that at least k vertices
have outdegree at most W. Furthermore, if a maximum W-light orientable induced
subgraph of G can be found in O( f (m, n)) time, then Max W-Light can be solved
in O( f (m, n) + m1.5) time, where m and n are the numbers of edges and vertices in
G, respectively.

Proof To show the if part, assume that under an orientationΛ,G has at least k vertices
of outdegree at most W . Let L be such vertices. The graph G[L] is W -orientable as
we can orient the edges of G[L] as in Λ(G).

To show the only-if part, let H be a W -light orientable induced subgraph of G
with at least k vertices, and let Λ′ be a W -light orientation of H . We extend Λ′ to
an orientation Λ of G by orienting the edges between V (G)\V (H) and V (H) from
V (G)\V (H) to V (H), and the other edges completely in V (G)\V (H) arbitrarily.
The vertices in V (H) are still W -light under Λ.

For the second part of the lemma, first we find a maximum W -light orientable
induced subgraph H ofG in O( f (m, n)) time.We next compute aW -light orientation
Λ′ of H in O(m1.5) time [6]. Finally, we obtain the orientation Λ of G as described
above in linear time. By the characterization above, Λ is an optimal solution of Max
W -Light. ��

The counting monadic second-order logic (CMSO) of graphs is an extension of
MSO, with an additional sentence of checking the cardinality of a set modulo some
constant.2 Recently, Fomin et al. [19] have presented the following metatheorem.

Proposition 3.4 (Fomin et al. [19]) For any fixed t and a CMSO-expressible property
P , the following problem can be solved in polynomial time for any class of graphs
with a polynomial number of potential maximal cliques: Given a graph G, find a
maximum induced subgraph H of treewidth at most t that has the propertyP .

This metatheorem is quite powerful and allows us to solve many problems for
graphs with polynomially many potential maximal cliques. (See [19] for applications.)
However, we cannot apply it to our problem Max W -Light in general because W -
light orientable graphs may have large treewidth. For example, grid graphs are 2-light
orientable but have unbounded treewidth.

2 The ordinary MSO is enough for our purpose. We introduce CMSO to precisely state Proposition 3.4.
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In the following, we show that with an additional restriction to graph classes, we
can apply the metatheorem of Fomin, Todinca, and Villanger toMax W -Light.

Lemma 3.5 Every W-light orientable graph has degeneracy at most 2W.

Proof We prove the contrapositive. Let G be a graph with δ̂(G) > 2W . There is a
subgraph H of G such that δ(H) > 2W . Since the average degree 2|E(H)|/|V (H)|
of H is at least δ(H), we have |E(H)|/|V (H)| > W . Thus for any orientation Λ of
G,

max
u∈V (G)

d+
Λ(u) ≥ max

u∈V (H)
d+
Λ(u) ≥

∑

u∈V (H)

d+
Λ(u)/|V (H)| ≥ |E(H)|/|V (H)| > W.

This implies that G is not W -light orientable. ��
Theorem 3.6 For any fixed W,MaxW-Light can be solved in polynomial time for a
hereditary graph classC with a polynomial number of potential maximal cliques if the
treewidth of each graph in C is bounded from above by a function of its degeneracy.

Proof Let f be a function such that tw(G) ≤ f (δ̂(G)) for eachG ∈ C . ByLemma3.5,
aW -light orientable graph in C has treewidth at most f (2W ). Since C is hereditary, a
maximumW -light orientable induced subgraph of a graph in C can be found in poly-
nomial time by Proposition 3.4 and Corollary 3.2. Now, by Lemma 3.3, the theorem
follows. ��

3.3 MAX W -HEAVY

UnlikeMax W -Light, the problem Max W -Heavy is not equivalent to the problem
of finding a maximum orientable induced subgraph. We here present a way of directly
finding an orientation with as many W -heavy vertices as possible for graphs with
treewidth bounded by a function of degeneracy.

Proposition 3.7 ([4]) Every graph of minimum degree at least 2W + 1 is W-heavy
orientable and a W-heavy orientation of it can be found in linear time.

Theorem 3.8 For any fixed W, Max W-Heavy can be solved in linear time for a
hereditary graph class C if the treewidth of each graph in C is bounded from above
by a function of its degeneracy.

Proof Let f be a function such that tw(G) ≤ f (δ̂(G)) for each G ∈ C . Let G ∈ C
be a graph with n vertices. Let (v1, v2, . . . , vn) be an ordering of V (G) such that for
each i , the vertex vi has the minimum degree in Gi , where Gi = G[{v j : i ≤ j ≤ n}].
Let h be the first index such that dGh (vh) ≥ 2W + 1. If there is no such index, we set
h = n + 1.

Let H = G[{v j : 1 ≤ j < h}]. Since C is hereditary, we have H ∈ C , and thus
tw(H) ≤ f (δ̂(H)) ≤ f (2W ). We obtain H ′ from H as follows: add a cliqueC of size
2W +1; for each vertex v in H , add edges from v to arbitrarily chosen dG(v)−dH (v)

vertices in C . It holds that tw(H ′) ≤ tw(H) + |C | ≤ f (2W ) + 2W + 1.

123



2168 Algorithmica (2018) 80:2160–2180

By Lemma 3.1, an orientation Λ′ of H ′ with the maximum number of W -heavy
vertices can be found in linear time. Note that all vertices in C are W -heavy under Λ′
even in H ′[C]. Otherwise, by Proposition 3.7, we can change the directions of edges
in H ′[C] so that all vertices in C become W -heavy. Since this modification does not
decrease the outdegree of any vertex in V (H), the new orientation has strictly more
W -heavy vertices than Λ′. This contradicts the optimality of Λ′.

Let Λ′′ be a W -heavy orientation of Gh = G[{vh, . . . , vn}]. By Proposition 3.7,
such an orientation can be found in linear time. We next construct an orientation Λ of
G fromΛ′ andΛ′′ as follows: for each edge in E(H) or E(Gh), we use the direction in
Λ′ or Λ′′, respectively; for each edge between V (H) and V (Gh), we use the direction
from V (H) to V (Gh). All vertices in V (Gh) are W -heavy in G under Λ. Under Λ,
each vertex in V (H) has at least as many out-neighbors as under Λ′. Thus a vertex in
V (H) is W -heavy in G under Λ if it is W -heavy in H ′ under Λ′.

Wenowshow the optimality ofΛ. Suppose to the contrary that there is an orientation
ΛOPT of G with strictly more W -heavy vertices than Λ. Let F and FOPT be the W -
heavy vertices in V (H) under Λ and ΛOPT, respectively. Since the vertices in V (Gh)

are W -heavy under Λ, we have |F | < |FOPT|. Now let Λ′
OPT be an orientation of H ′

such that the edges in H are oriented as in ΛOPT, the edges between V (H) and C are
oriented from V (H) toC , and the edges in H [C] are oriented so that all the vertices in
C becomeW -heavy. Then, at least |C |+ |FOPT| > |C |+ |F | vertices areW -heavy in
H ′ under Λ′

OPT. This contradicts the optimality of Λ′ since at most |C |+ |F | vertices
are W -heavy in H ′ under Λ′. ��

4 Graph Classes

In this section, we show that Theorems 3.6 and 3.8 can be applied to several important
graph classes. More precisely, we show the following theorems.

Theorem 4.1 For any fixed W, Max W-Light can be solved in polynomial time
for the classes of chordal graphs, d-trapezoid graphs, circular-arc graphs, chordal
bipartite graphs, and graphs of bounded clique-width.

Theorem 4.2 For any fixed W, Max W-Heavy can be solved in linear time for the
classes of chordal graphs, d-trapezoid graphs, circular-arc graphs, chordal bipartite
graphs, and graphs of bounded clique-width.

Figure 1 is a diagram of graph classes related to our results.
To prove Theorems 4.1 and 4.2, we show for each graph class that it satisfies

conditions of Theorems 3.6 and 3.8 in the following subsections. To solve Max W -
Light for graphs of bounded clique-width, we present a direct solution as we cannot
apply themetatheorem.Note that all graph classes studied in this section are hereditary.

4.1 Chordal Graphs

It is well known that a chordal graph of n vertices has at most n maximal cliques
(see [26]). Since a chordal graph is the unique minimal triangulation of itself, the

123



Algorithmica (2018) 80:2160–2180 2169

Fig. 1 Graph classes with polynomially many potential maximal cliques

number of potential maximal cliques is at most n for every n-vertex chordal graph.
From the definition of chordal graphs, the following equality follows.

Proposition 4.3 (Folklore) For every chordal graph G, tw(G) = δ̂(G) = ω(G)−1.

4.2 d-Trapezoid Graphs

The co-comparability graph of a partial order (V,≺) is a graph with the vertex set
V in which two vertices u and v are adjacent if and only if they are incomparable,
that is, u ⊀ v and v ⊀ u. A partial order (V,≺) is an interval order if each element
v ∈ V can be represented by an interval [lv, rv] such that u ≺ v if and only if ru < lv .
A graph is a d-trapezoid graph if it is the co-comparability graph of a partial order
defined as the intersection of d interval orders [8].

It is known that every d-trapezoid graph of n vertices has at most (2n − 3)d−1

minimal separators [34].
Habib and Möhring showed in the proof of Theorem 3.4 in [24] that for every d-

trapezoid graph G, tw(G) ≤ 4d · ωb(G) − 1. This gives the following fact as a direct
corollary.

Proposition 4.4 ([24]) For every d-trapezoid graph G, tw(G) ≤ 4d · δ̂(G) − 1.

4.3 Circular-Arc Graphs

A graph is a circular-arc graph if it is the intersection graph of arcs on a circle. Every
n-vertex circular-arc graph has at most 2n2−3nminimal separators [31]. A graph is an
interval graph if it is the intersection graph of intervals on a line. From the definition,
every interval graph is a circular-arc graph. Also, every interval graph is a chordal
graph [36].

Lemma 4.5 For every circular-arc graph G, tw(G) ≤ 2δ̂(G).

Proof Let p be a point on the circle in a circular-arc representation of G, and Sp be
the vertices that correspond to the arcs containing p in the representation. Assume
that we chose p so that |Sp| is minimized. The set Sp is a (possibly empty) non-
maximal clique, and thus |Sp| ≤ ω(G) − 1 ≤ δ̂(G). Let G ′ = G − Sp. Since
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G ′ has a circular-arc representation in which the arcs do not cover the entire circle
(especially they do not cover the point p), G ′ is an interval graph. By Proposition 4.3,
tw(G ′) = δ̂(G ′) ≤ δ̂(G). Since a removal of a vertex can decrease treewidth by at
most 1, we can conclude that tw(G) ≤ tw(G ′) + |Sp| ≤ 2δ̂(G). ��

4.4 Chordal Bipartite Graphs

A bipartite graph is a chordal bipartite graph if it has no induced cycle of length 6 or
more. Every chordal bipartite graph has O(m + n) minimal separators [32]. We show
in this subsection that for every chordal bipartite graph G, tw(G) ≤ 2δ̂(G) − 1.

Let G = (X,Y ; E) be a chordal bipartite graph. We call (A, B) with A ⊆ X and
B ⊆ Y a biclique if G[A ∪ B] is a complete bipartite graph. A biclique (A, B) is
maximal if there is no other biclique (A′, B ′) satisfying A∪ B � A′ ∪ B ′. LetMb(G)

be the set of maximal bicliques (A, B) of G with min{|A|, |B|} ≥ 2.
Two maximal bicliques (A1, B1) and (A2, B2) cross if either A1 � A2 and B1 �

B2, or A1 � A2 and B1 � B2. If c : Mb(G) → 2V (G) is a mapping such that
c(A, B) ∈ {A, B} for each (A, B) ∈ Mb(G), then we call the family C = {c(A, B) :
(A, B) ∈ Mb(G)} a biclique coloring of G. A biclique coloring C is feasible if for
each pair (A1, B1), (A2, B2) ∈ Mb(G) that cross with A1 � A2 and B1 � B2, not
both A1 and B2 are in C .

For a family of vertex setsS ⊆ 2V (G), we denote by GS the graph obtained from
G by making each S ∈ S a clique.

Proposition 4.6 (Kloks and Kratsch [30]) If C is a feasible biclique coloring of a
chordal bipartite graph G, then GC is chordal.

Let Cmin(G) be a family that contains a smaller one of A and B for each (A, B) ∈
Mb(G). That is, Cmin(G) = {argminC∈{A,B} |C | : (A, B) ∈ Mb(G)}, where the ties
in argmin are broken arbitrarily.

Note that if (A, B) and (A, B ′) are bicliques, then (A, B ∪ B ′) is also a biclique.
Hence, if (A, B) and (A′, B ′) are distinct elements of Mb(G), then A �= A′ and
B �= B ′. Thus, for each (A, B) ∈ Mb(G), A ∈ Cmin(G) implies |A| ≤ |B|.
Lemma 4.7 Cmin(G) is a feasible biclique coloring for every chordal bipartite graph
G.

Proof Suppose to the contrary that

1. (A1, B1), (A2, B2) ∈ Mb(G) cross with A1 � A2 and B1 � B2, and
2. A1, B2 ∈ Cmin(G).

The first assumption gives |A1| > |A2| and |B1| < |B2|, and the second gives |A1| ≤
|B1| and |B2| ≤ |A2|. They cause a contradiction |A1| ≤ |B1| < |B2| ≤ |A2| < |A1|.

��
Proposition 4.8 (Kloks and Kratsch [30]) Let C be a feasible biclique coloring of
a chordal bipartite graph G = (X,Y ; E). Let K be a maximal clique in GC with
|K | > 2. Let KX = K ∩ X and KY = K ∩ Y . If |KX | ≥ 2, then one of the following
two cases holds:
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1. |KY | = 1 and there exists (A, B) ∈ Mb(G) such that KX = A and A ∈ C .
2. |KY | > 1 and there exist (A1, B1), (A2, B2) ∈ Mb(G) with A1, B2 ∈ C such

that KX ⊆ A1 and KY ⊆ B2.

Lemma 4.9 Let G = (X,Y ; E) be a chordal bipartite graph and C = Cmin(G).
Then ω(GC ) ≤ 2 · ωb(G).

Proof By Lemma 4.7, C is a feasible biclique coloring of G. Let K be a maximal
clique in GC with |K | > 2. Let KX = K ∩ X and KY = K ∩Y . Assume without loss
of generality that |KX | ≥ 2. Now by Proposition 4.8, one of the following two cases
holds:

1. |KY | = 1 and there exists (A, B) ∈ Mb(G) such that KX = A and A ∈ C .
2. |KY | > 1 and there exist (A1, B1), (A2, B2) ∈ Mb(G) with A1, B2 ∈ C such

that KX ⊆ A1 and KY ⊆ B2.

In the first case, |A| ≤ |B| holds, and thus |K | = |A| + 1 ≤ ωb(G)+ 1. In the second
case, |A1| ≤ |B1| and |B2| ≤ |A2| together imply that |K | ≤ |A1|+ |B2| ≤ 2 ·ωb(G).

��
By Proposition 4.6,GC is chordal ifC = Cmin(G). Proposition 4.3 and Lemma 4.9

imply that tw(G) ≤ 2 · ωb(G) − 1 holds for every chordal bipartite graph G. Since
ωb(G) ≤ δ̂(G), we have the following corollary.

Corollary 4.10 For every chordal bipartite graph G, tw(G) ≤ 2 · δ̂(G) − 1.

4.5 Graphs of Bounded Clique-Width

A k-expression is a rooted binary tree such that

– each leaf has label ◦i for some i ∈ {1, . . . , k},
– each node with one child has a label ρi, j or ηi, j (i, j ∈ {1, . . . , k}, i �= j), and
– each node with two children has a label ∪.

Each node in a k-expression represents a vertex-labeled graph as follows:

– a ◦i -node represents a graph with one vertex of label i ;
– a ∪-node represents the disjoint union of the labeled graphs represented by its
children;

– a ρi, j -node represents the labeled graph obtained from the one represented by its
child by relabeling the label-i vertices with label j ;

– an ηi, j -node represents the labeled graph obtained from the one represented by its
child by adding all edges between the label-i vertices and the label- j vertices.

A k-expression represents the graph represented by its root. The clique-width of a
graphG, denoted by cw(G), is the minimum integer k such that there is a k-expression
representing a graph isomorphic to G.

It is known that graphs of bounded treewidth have bounded clique-width [12]. The
converse is not true in general. For example, the complete graph Kn (n ≥ 2) has
clique-width 2 and treewidth n − 1. On the other hand, the following bound is known
for graphs with no large complete bipartite subgraphs.
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Fig. 2 A graph with n vertices, 2(n−2)/2 minimal a, b-separators, and a 3-expression

Proposition 4.11 (Gurski andWanke [23])For every graph G of clique-width at most
k, tw(G) ≤ 3k · ωb(G) − 1.

The proposition above with Theorem 3.8 imply thatMaxW -Heavy can be solved
in linear time for graphs of bounded clique-width. However, we cannot apply Theo-
rem 3.6 since graphs of bounded clique-width may have a super-polynomial number
of potential maximal cliques. The n-vertex graph in Fig. 2 has at least 2(n−2)/2 minimal
a, b-separators. Hence the graph has at least 1

n · 2(n−2)/2 potential maximal cliques.
On the other hand, the 3-expression in Fig. 2 represents the graph, and thus it has
clique-width at most 3.

In the rest of this section, we directly show thatMaxW -Light is polynomial-time
solvable for graphs of bounded clique-width. A k-expression of a graph is irredundant
if for each edge {u, v}, there is exactly one node ηi, j that adds the edge between u and
v. We will show that:

Theorem 4.12 Given a graph with an irredundant k-expression,Max W-Light can
be solved in time O(n2k(W+2)+4 log n).

For a graph of clique-width k, one can compute a (23k − 1)-expression of it in
O(n3) time [41] (see also [42]), while exact computation of the clique-width and
a corresponding k-expression is NP-hard [18]. A k-expression of a graph can be
transformed into an irredundant one with O(n) nodes in linear time [16]. Now the
following is a corollary to Theorem 4.12.

Corollary 4.13 For graphs of clique-width at most k, Max W-Light can be solved
in time O(n2(2

3k−1)(W+2)+4 log n).

We now prove Theorem 4.12. Let G be an n-vertex graph and T be an irredundant
k-expression of G with O(n) nodes. We denote by r the root of T . For each node t in
T , let Gt be the graph represented by t with Vt := V (Gt ). For each i ∈ {1, . . . , k},
let V i

t be the set of label-i vertices in Gt .
For a node t in T , a k × (W + 2) integer matrix A = (Ai, j )i∈{1,...,k}, j∈{0,...,W+1} is

an outdegree signature of Gt if there is an orientation Λ of Gt such that for each i ∈
{1, . . . , k} and j ∈ {0, . . . ,W }, Ai, j is the number of label-i vertices with outdegree
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j in Gt under Λ, and for each i ∈ {1, . . . , k}, Ai,W+1 is the number of label-i vertices
with outdegree at leastW+1 inGt underΛ. Theweightw(A)of an outdegree signature
A ofGt is |V (Gt )|−∑

i∈{1,...,k} Ai,W+1. Note that there are at most nk(W+2) outdegree
signatures for each node in T .

Observation 4.14 The optimal value of Max W -Light for G is maxA w(A), where
the maximum is taken over all outdegree signatures A of Gr = G.

By Observation 4.14, if we have all possible outdegree signatures for all nodes in
T , then we can obtain the optimal value of MaxW -Light. We compute the outdegree
signatures by a bottom-up dynamic programming over the k-expression T . In a stan-
dard way, we can modify the dynamic programming to compute an optimal solution
as well.

Computing outdegree signatures for the leaf, ∪-, and ρp,q -nodes is fairly straight-
forward.

Lemma 4.15 For a leaf node, its outdegree signature can be computed in O(1) time.

Proof Let t be a leaf nodewith label ◦i . The graphGt has only one outdegree signature
A such that Ai,0 = 1 and all other entries are 0. ��
Lemma 4.16 For a∪-node, its outdegree signatures can be computed in O(n2k(W+2))

time from the outdegree signatures of its children.

Proof Let t be a ∪-node with the children t ′ and t ′′. An orientation of Gt ′ with
outdegree signature A′ and an orientation of Gt ′′ with outdegree signature A′′
can be combined into an orientation of Gt with outdegree signature A such that
Ai, j = A′

i, j + A′′
i, j for any i and j . As there is no other way to construct an orientation

of Gt , we can construct all outdegree signatures of it by merging all combinations of
outdegree signatures of Gt ′ and Gt ′′ in O(1) time for each. ��
Lemma 4.17 For a ρp,q -node, its outdegree signatures can be computed in
O(nk(W+2)) time from the outdegree signatures of its child.

Proof Let t be a ρp,q -node with the child t ′. An orientation ofGt is also an orientation
of Gt ′ and vice versa. The corresponding outdegree signatures A and A′ satisfy that
Ap, j = 0 and Aq, j = A′

p, j + A′
q, j for all j , and Ai, j = A′

i, j for all i /∈ {p, q}
and for all j . Because each outdegree signature of Gt ′ corresponds to one outdegree
signature of Gt and the corresponding signature can be computed in O(1) time, the
lemma holds. ��

To compute outdegree signatures for ηp,q -nodes, we need the following result.3

Proposition 4.18 (Asahiro et al. [2])Given an undirected n-vertexm-edge graphG =
(V, E) with lower and upper bounds (l(v),u(v)) ∈ {0, . . . , n − 1} × {0, . . . , n − 1}
for each v ∈ V , it can be decided in O(m1.5 log n) time whether there is an orientation
Λ such that l(v) ≤ d+

Λ(v) ≤ u(v) for each v ∈ V .

3 The result is presented in a more general way in the original paper (see [2, Theorem 1]).
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Fig. 3 The new orientation Λ′′ swaps the outdegrees of u and v

Lemma 4.19 For an ηp,q -node, its outdegree signatures can be computed in time
O(n2k(W+2)+3 log n) from the outdegree signatures of its child.

Proof Let t be an ηp,q -node with the child t ′. By the definition of k-expression,
V i
t = V i

t ′ for all i . Recall that T is irredundant. Hence there is no edge between V p
t

and V q
t in Gt ′ , while Gt has all possible edges between V p

t and V q
t .

Let Λ′ be an orientation of Gt ′ and A′ the corresponding outdegree signature. We
say that A′ can be extended to an outdegree signature A of Gt if there is an orientation
Λ of Gt that corresponds to A such that Λ(e) = Λ′(e) for every e ∈ E(Gt ′).

Claim 4.20 If A′ can be extended to A, then there is an orientation Λ of Gt that
corresponds to A such that d+

Λ′(u) < d+
Λ′(v) implies d+

Λ(u) ≤ d+
Λ(v) for u, v ∈ V i

t
and i ∈ {p, q}.
Proof (Claim 4.20) Let Λ be an orientation of Gt that corresponds to A. A pair of
vertices u and v is reversed in Λ if d+

Λ′(u) < d+
Λ′(v), d+

Λ(u) > d+
Λ(v), and either

u, v ∈ V p
t or u, v ∈ V q

t . We assume that Λ is chosen so that the number of reversed
pairs is minimized. Let u, v be a reversed pair with d+

Λ′(u) < d+
Λ′(v). We assume

without loss of generality that u, v ∈ V p
t .

Let X be the set of vertices in V q
t that have arcs from u but not from v underΛ. Since

d+
Λ′(u) < d+

Λ′(v), we have |X | > d+
Λ(u) − d+

Λ(v). Let Y be a subset of X such that
|Y | = d+

Λ(u)−d+
Λ(v). We denote by Λ′′ the orientation obtained fromΛ by reversing

the directions of the edges between u, v and Y (see Fig. 3). Since d+
Λ′′(u) = d+

Λ(v),
d+
Λ′′(v) = d+

Λ(u), and d+
Λ′′(w) = d+

Λ(w) for any other w /∈ {u, v}, the new orientation
Λ′′ also gives the outdegree signature A. Note that the pair u, v is not reversed in Λ′′.

Assume that for a vertexw ∈ V p
t , the pair u, w is reversed inΛ′′ but not inΛ. Since

d+
Λ′′(u) < d+

Λ(u) and d+
Λ′′(w) = d+

Λ(w), we have d+
Λ′(w) < d+

Λ′(u), d+
Λ(w) ≤ d+

Λ(u),
and d+

Λ′′(u) < d+
Λ′′(w). Observe that d+

Λ′(u) < d+
Λ′(v) implies that d+

Λ′(w) < d+
Λ′(v).

Next, d+
Λ(v) = d+

Λ′′(u) and d+
Λ′′(w) = d+

Λ(w) together imply that d+
Λ(v) < d+

Λ(w).
Now d+

Λ′′(w) = d+
Λ(w) and d+

Λ(u) = d+
Λ′′(v) give that d+

Λ′′(w) ≤ d+
Λ′′(v). Thus the

pair v,w is reversed in Λ but not in Λ′′. In an almost the same way, we can show that
if pair v,w is reversed in Λ′′ but not in Λ, then pair u, w is reversed in Λ but not in
Λ′′.

Therefore, Λ′′ has strictly less reversed pairs than Λ. This contradicts the assump-
tion that Λ has the minimum number of reversed pairs. ��

Let A be a candidate of an outdegree signature of Gt . That is, A is a k × (W + 2)
integer matrix A = (Ai, j )i∈{1,...,k}, j∈{0,...,W+1}. For i ∈ {p, q}, let (di,1, . . . , di,|V i

t |)
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be the nondecreasing sequence such that for each j ∈ {0, . . . ,W + 1}, the value j
appears exactly Ai, j times. From A′, we define (d ′

i,1, . . . , d
′
i,|V i

t |) in the same way. For

i ∈ {p, q} and h ∈ {1, . . . , |V i
t |}, we define the lower bound li,h and the upper bound

ui,h as follows:

li,h = di,h − d ′
i,h,

ui,h =
{
di,h − d ′

i,h if di,h ≤ W,

n − 1 if di,h = W + 1.

Now let B = (Wp,Wq ; EB) be the complete bipartite graph, where Wi = {wi,h : i ∈
{p, q}, h ∈ {1, . . . , |V t

i |}} for i ∈ {p, q}.
Claim 4.21 A′ can be extended to A if and only if there is an orientation ΛB of B
such that for each vertex wi,h , it holds that li,h ≤ d+

ΛB
(wi,h) ≤ ui,h .

Proof (Claim 4.21) ( �⇒ ) To show the only-if part, assume that A′ can be extended to
A. By Claim 4.20, we can assume that there is an orientationΛ of Gt that corresponds
to A such that d+

Λ′(u) < d+
Λ′(v) implies d+

Λ(u) ≤ d+
Λ(v) for u, v ∈ V p

t and u, v ∈ Vq
t .

For i ∈ {p, q}, let ≺i be the partial ordering on V i
t such that u ≺i v if and

only if either d+
Λ′(u) < d+

Λ′(v) or d+
Λ′(u) = d+

Λ′(v) and d+
Λ(u) < d+

Λ(v). Let
(vi,1, vi,2, . . . , vi,|V i

t |) be a linear extension of ≺i for each i ∈ {p, q}.
Let i ′ ∈ {p, q}\{i}. By the assumption of Λ, a vertex vi,h has exactly di,h − d ′

i,h

neighbors in V i ′
t if di,h ≤ W , and at least di,h − d ′

i,h neighbors in V
i ′
t if di,h = W + 1.

Now we can obtain ΛB by orienting each edge {wp,h, wq,h′ } in the same way as
{vp,h, vq,h′ } in Λ.

( ⇐� ) To show the if part, assume that ΛB exists. We construct a bijection
fi : V i

t → Wi for each i ∈ {p, q} in such a way that wi,h becomes the image of a
vertex v that satisfies d+

Λ′(v) = d ′
i,h if d

′
i,h ≤ W , and d+

Λ′(v) ≥ W +1 otherwise. Such
a bijection exists for each i ∈ {p, q} from the definition of B.

Now we extend Λ′ by orienting the edges between V p
t and V q

t using ΛB . For
all u ∈ V p

t and v ∈ Vq
t , we orient the edge {u, v} using the direction of the edge

{ f p(u), fq(v)} in ΛB . We denote the obtained orientation of Gt by Λ.
Let fi (v) = wi,h for i ∈ {p, q}. If di,h ≤ W , then d+

Λ(v) = d+
Λ′(v) + d+

ΛB
(wi,h) =

d ′
i,h + (di,h − d ′

i,h) = di,h . If di,h = W + 1, then d+
Λ(v) = d+

Λ′(v) + d+
ΛB

(wi,h) ≥
d ′
i,h + (di,h − d ′

i,h) = di,h = W + 1. This implies that Λ corresponds to the outdegree
signature A. ��

For each candidate A, we construct B from A and A′. We also compute the lower
and upper bounds of outdegree as described above. Then we check orientability under
these bounds. By Proposition 4.18, it can be done in time O(|EB |1.5 log |Wp ∪ Wq |).
We can bound this by O(n3 log n), and thus the lemma holds. ��

We have proved that for each node in T , we can compute its outdegree signatures
in O(n2k(W+2)+3 log n) time. This completes the proof of Theorem 4.12.
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5 Parameterized Complexity

In this section, we study the parameterized complexity of the problems. See the recent
textbook [17] for standard concepts in the field of parameterized complexity. The
parameter is the number of vertices of outdegree at most (at least)W inMaxW -Light
(resp.MaxW -Heavy). We call it the solution size. We show that when parameterized
by the solution size,Max W -Light is W[1]-complete, whileMax W -Heavy admits
a kernel of size O(Wk).

5.1 MAX W -LIGHT is W[1]-Complete

A graph property is a collection of graphs. A graph property is nontrivial if it is
nonempty and does not include all graphs. A nontrivial graph propertyΠ is hereditary
if G ∈ Π implies that every induced subgraph of G is also in Π .

For a graph property Π , the problem P(G, k,Π) is defined as follows: given a
graph G and a parameter k ∈ Z, find a subset S ⊆ V (G) with |S| = k such that
G[S] ∈ Π .

Proposition 5.1 (Khot and Raman [29]) LetΠ be a hereditary property that includes
all edgeless graphs but not all complete graphs. Then the problem P(G, k,Π) isW[1]-
complete.

Corollary 5.2 For any fixed integer W ≥ 0, Max W-Light is W[1]-complete when
parameterized by the solution size.

Proof Let Π be the graph property that includes all W -light orientable graphs. An
edgeless graph is 0-light orientable and thus inΠ , while a complete graph of 2W+2 or
more vertices is not in Π by Lemma 3.5. The property Π is hereditary because every
induced subgraph of a W -light orientable graph is W -light orientable as one can just
use the same (induced) orientation of the induced subgraph. Therefore, P(G, k,Π) is
W[1]-complete by Proposition 5.1. By Lemma 3.3, P(G, k,Π) is equivalent toMax
W -Light parameterized by the solution size. Hence the corollary follows. ��

5.2 A Kernel for MAX W -HEAVY

Let (G, k) be an instance of the parameterized version of Max W -Heavy, where the
parameter k is the solution size. We show the following theorem.

Theorem 5.3 Max W-Heavy parameterized by the solution size k admits a kernel
with at most (2W + 4)k + W − 2 vertices.

In the following, we assume that W ≥ 3 since otherwise the problem can be solved
in polynomial time [3,28].

Let A ⊆ V (G) be the set of vertices of degree at least W , and let B = V (G)\A.
We first bound the number of vertices in A.

Lemma 5.4 If |A| ≥ k · (W + 1), then (G, k) is a yes-instance.
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Proof We prove the lemma by constructing an orientation. We first mark all vertices
as ‘unused.’ The mark ‘unused’ means that none of the incident edges is oriented.
Now we repeat the following process until all vertices in A are marked as ‘used’:

1. pick an unused vertex v in A;
2. select W neighbors of v, and orient the edges from v to the neighbors;
3. mark v and the selected neighbors as ‘used.’

In each iteration, one vertex becomes W -heavy in the partial orientation, and at most
W + 1 vertices are newly marked as ‘used.’ Since |A| ≥ k · (W + 1), we can repeat
the process above at least k times and have k or more W -heavy vertices in the partial
orientation.We then complete the partial orientation arbitrarily. This final process does
not decrease the number of W -heavy vertices. Thus the lemma holds. ��

By the lemma above, we can assume that |A| < k · (W + 1). On the other hand,
the size of B is not bounded in general. To further reduce the instance size, we use the
following lemma.

Lemma 5.5 Let G ′ be a graph with A = V (G ′) ∩ V (G) and B ′ := V (G ′)\V (G)

such that G ′[A] = G[A], and |NG ′(v)∩ B ′| = min{|NG(v)∩ B|,W } for all v ∈ A. If
degG ′(v) < W for all v ∈ B ′, then (G, k) is a yes-instance if and only if so is (G ′, k).

Proof Observe that the vertices in B and B ′ cannot be W -heavy in any orientation of
G and of G ′, respectively, since they have degree less than W in both graphs. Hence
we may assume without loss of generality that in any orientation, the edges between
A and B (A and B ′) are oriented from A to B (resp. A to B ′).

To show the only-if part, let Λ be an orientation of G. We orient each edge of G ′
with both endpoints in A as inΛ. We call this orientationΛ′. Since a vertex v ∈ A has
the same out-neighbors in A under both Λ and Λ′, it suffices to compare the number
of neighbors in B and B ′. If |NG(v) ∩ B| ≥ W , then v is W -heavy under both Λ

and Λ′. Otherwise, v has the same number of neighbors in B and B ′. Therefore, v is
W -heavy under Λ if and only if it is W -heavy under Λ′.

To show the if part, let Λ′ be an orientation of G ′. We orient each edge of G with
both endpoints in A as in Λ′. We then arbitrarily orient each edge of G with both
endpoints in B. The rest is almost the same as the one for the only-if part. ��

From G, we obtain G ′ satisfying the assumptions in Lemma 5.5 as follows:

1. remove all vertices of B from G;
2. add an independent set B ′ of size �|A| · W/(W − 1)� + W − 2;
3. for each v ∈ A, repeat the following process:

(a) find min{|NG(v) ∩ B|,W } vertices in B ′ that have degree at most W − 2 in
the current graph;

(b) add the edges between v and the vertices chosen.

Since W ≥ 3, it holds that (W + 1)W/(W − 1) ≤ W + 3, and thus |B ′| ≤ k(W +
3) + W − 2. This implies that |V (G ′)| = |A| + |B ′| ≤ k(2W + 4) + W − 2.

Note that the step 3a is always possible. To see this, observe that before an execution
of the step 3a, at most W (|A| − 1) edges between A and B ′ are added. On the other
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hand, if there are at mostW − 1 vertices of degree at mostW − 2 in B ′, then there are
at least (W −1)(|B ′|− (W −1)) ≥ (W −1)(|A| ·W/(W −1)+W −2− (W −1)) =
W (|A| − 1) + 1 edges between A and B ′.

By Lemma 5.5, G ′ is a kernel we claimed in the statement of Theorem 5.3.

6 Concluding Remarks

We have presented metatheorems to show linear-time and polynomial-time solvability
of Max W -Heavy and Max W -Light, respectively. The metatheorems are applied
to several important classes of graphs.

Webelieve ourmetatheorems canbe applied tomanyother graph classes. It is known
that the classes ofweakly chordal graphs, circle graphs, and polygon circle graphs have
polynomial upper bounds on the number of potential maximal cliques (see [19]). It is
known that some of them have functions on the maximum degree as upper bounds of
treewidth [22]. It would be interesting to investigate whether we can strengthen these
upper bounds to functions on degeneracy.

A graph is k-chordal if it does not have an induced cycle of length more than k.
For example, the chordal graphs are exactly the 3-chordal graphs, and d-trapezoid
graphs and weakly chordal graphs are 4-chordal graphs. It can be easily seen that
k-chordal graphs for k ≥ 4 have a superpolynomial number of potential maximal
cliques. On the other hand, it is known that their treewidth is upper bounded roughly
by k · Δ [33], where Δ is the maximum degree. It would be interesting to study
our problems for k-chordal graphs with k ≥ 4. Even for 4-chordal graphs, it is not
known whether Maximum Independent Set (= Max 0- Light) can be solved in
polynomial time [39].

As the final remark, we present a result similar to Theorems 4.1 and 4.2 for the
problem of finding a maximum induced subgraph with bounded degeneracy.

Theorem 6.1 For any fixed W, the problem of finding a maximum set of vertices that
induces a subgraph of degeneracy at most W can be solved in polynomial time for
the classes of chordal graphs, d-trapezoid graphs, circular-arc graphs, and chordal
bipartite graphs, and in cubic time for graphs of bounded clique-width.

Proof Wefirst show that the property of having degeneracy atmostW can be expressed
in MSO without edge or edge set variables. In such a subclass of MSO, inc(d, u) is
replaced by adj(u, v) that means vertices u and v are adjacent. It is known that a
problem that can be expressed in this restrictedMSO is cubic-time solvable for graphs
of bounded clique-width [15,41]. The following formula expresses that a vertex u has
degree more than W in the subgraph induced by Y :

degree>W (Y, u) := ∃v1, . . . , vW+1 ∈ Y (distinct(v1, . . . , vW+1) ∧ ∀vi (adj(u, vi ))) .

Now we can express the property of G[X ] having degeneracy at most W as follows:

W -degenerated(X) := ∀Y ⊆ X, ∃u ∈ Y,¬degree>W (Y, u).
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As we showed in Sect. 4, bounded degeneracy means bounded treewidth for chordal
graphs, d-trapezoid graphs, circular-arc graphs, and chordal bipartite graphs. Thus we
can apply Proposition 3.4 and have the theorem. ��
Acknowledgements The authors thank the anonymous reviewers for constructive comments that improved
the presentation of the paper.
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