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Informative hypotheses are increasingly being used in psychological sciences because they

adequately capture researchers’ theories and expectations. In the Bayesian framework,

the evaluation of informative hypotheses often makes use of default Bayes factors such as

the fractional Bayes factor. This paper approximates and adjusts the fractional Bayes

factor such that it can be used to evaluate informative hypotheses in general statistical

models. In the fractional Bayes factor a fraction parameter must be specified which

controls the amount of information in the data used for specifying an implicit prior. The

remaining fraction is used for testing the informative hypotheses. We discuss different

choices of this parameter and present a scheme for setting it. Furthermore, a software

package is described which computes the approximated adjusted fractional Bayes factor.

Using this software package, psychological researchers can evaluate informative

hypotheses by means of Bayes factors in an easy manner. Two empirical examples are

used to illustrate the procedure.

1. Introduction

One of the objectives of psychological studies is to test hypotheses that represent

scientific expectations. The main tool available for this purpose is null hypothesis

significance testingwhere the goal is to falsify a null hypothesis of ‘no effect’. On the other

hand, psychologists may expect, for example, that the learning ability of children is

stronger than the learning ability of adolescents, which in turn is stronger than the

learning ability of adults, or it is expected that a patient’s psychological disease would

decrease after the first therapy, and decrease further after subsequent therapies. These

expectations cannot be formulated by the traditional null hypothesis. Instead, such
expectations can be translated to so-called informative hypotheses which assume a

specific structure of the model parameters (Hoijtink, 2012). An informative hypothesis

consists of equality and/or inequality constraints among the parameters of interest in a

statistical model. For example, three equal parameters can be represented by an equality

constrained hypothesis H1 : h1 ¼ h2 ¼ h3, and three ordered parameters can be repre-

sented by an inequality constrained hypothesisH2 : h1\h2\h3. This class of informative
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hypotheses covers a much broader range of scientific expectations than the class of

standard null hypotheses. In addition, by testing competing informative hypotheses

directly against each other a researcher obtains a direct answer as to which scientific

theory is most supported by the data. The interested reader is referred to http://inf
ormative-hypotheses.sites.uu.nl/ for an overview of psychological research in which

informative hypotheses were used.

Informative hypothesis testing has drawn a lot of attention both in frequentist statistics

(Barlow, Bartholomew, Bremner, & Brunk, 1972; Silvapulle & Sen, 2004) and in Bayesian

statistics (Hoijtink, 2012). In the frequentist framework, hypothesis testing with

inequality constraints has been studied for over 50 years, starting with (Bartholomew,

1959). Some recent contributions can be found in van de Schoot, Hoijtink, and Dekovi�c
(2010), and Klugkist, Bullens, and Postma (2012). Bayesian evaluation of informative
hypotheses by means of the Bayes factor is relatively new. A decade ago, Klugkist, Laudy,

and Hoijtink (2005) started using Bayes factors to evaluate inequality constrained

hypotheses in ANOVA models. Follow-up research appeared in Klugkist and Hoijtink

(2007) for Bayesian testing of inequality and about equality constrained hypotheses, in

Mulder, Klugkist, van de Schoot, Meeus, Selfhout, and Hoijtink (2009) for Bayesian

informative hypothesis testing in repeated measures models, in Klugkist, Laudy, and

Hoijtink (2010) for Bayesian evaluation of equality and inequality constrained hypotheses

in contingency tables, and in Mulder, Hoijtink, and Klugkist (2010) for Bayesian model
selection of equality and inequality constrained hypotheses in the context of multivariate

normal linearmodels. Developments in the use of Bayes factors for informative hypothesis

testing are summarized in Hoijtink (2012). However, these studies are limited to assessing

informative hypotheses in specific models and cannot yet be applied in other models,

such as confirmatory factor analysis or logistic regression. More recently, van de Schoot,

Hoijtink, Hallquist, and Boelen (2012) have enabled researchers to test inequality

constrained hypotheses in structural equationmodels, Gu, Mulder, Dekovi�c, and Hoijtink
(2014) have shown how to evaluate inequality constrained hypothesis in general
statistical models, and B€oing-Messing, van Assen, Hofman, Hoijtink, and Mulder (2017)

have enabled researchers to test informative hypotheses on group variances. Further-

more, the usefulness of the Bayes factor for testing hypotheses in psychological research

has been highlighted in various studies in a special issue on the topic (Mulder &

Wagenmakers, 2016). Although these studies enable hypothesis testing in a large number

of statistical models using the Bayes factor, the available methods for testing hypotheses

with both equality constraints and inequalities are still limited.

The incessant debate between frequentist and Bayesian hypothesis testing (Wagen-
makers, 2007) has highlighted an advantage of the Bayes factor: it quantifies the relative

support in the data for one hypothesis against another (Kass &Raftery, 1995). This cannot

be done using classical p-values. Psychological researchers can quantify how much the

data favour a hypothesis relative to another hypothesis by means of the Bayes factor.

However, the popularity of the Bayes factor is limited for two reasons: the specification of

the prior can be a difficult task, especially when prior information is weak or completely

unavailable; and the computation can be very intensive when the statistical model is

complex. To overcome these barriers, Bayesian statisticians have presented several
default Bayes factors based on default priors. Default priors usually do not reflect

subjective prior beliefs and have distributional forms chosen such that the Bayes factor

can easily be computed. Examples of default Bayes factors are the JZS Bayes factor

(Jeffreys, 1961; Rouder, Speckman, Sun, Morey, & Iverson, 2009; Zellner & Siow, 1980),

partial Bayes factors (de Santis & Spezzaferri, 1999), the Bayes factor based on expected
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posterior priors (P�erez & Berger, 2002), the intrinsic Bayes factor (Berger & Pericchi,

1996) and the fractional Bayes factor (O’Hagan, 1995). The last two Bayes factors are

closely related to the partial Bayes factor.

In the partial Bayes factor the data are split into two parts: one part is used as a training
sample to update an improper non-informative prior distribution, and the remaining part

is used to compute the Bayes factor. The training sample is proper if it renders a proper

updated prior. Furthermore, the training sample is calledminimal if any of its subsets is not

proper (Berger & Pericchi, 2004). Both the intrinsic Bayes factor and the fractional Bayes

factor use the partial Bayes factor method (de Santis & Spezzaferri, 1997, 1999). The

intrinsic Bayes factor is an average of thepartial Bayes factors based on all possibleminimal

training samples. Because of the use of all possible minimal training samples, the

computation of the intrinsic Bayes factor can be intensive especiallywhen the sample size
and the size of the minimal training sample are large. Alternatively, the fractional Bayes

factor takes a small fraction b of the likelihood of the complete data (O’Hagan, 1995). The

updated proper prior in the fractional Bayes approach is then implicitly specified from a

non-informative prior and a fraction of full likelihood (de Santis & Spezzaferri, 1999; Gilks,

1995; Moreno, 1997; Mulder, 2014b). In this paper, we shall refer to updated priors

following from the fractional Bayes methodology as fractional priors. The remaining

fraction of the likelihood is then used for testing the hypotheses of interest. As will be

shown in this paper, the fractional Bayes factor is computationally easy. Recently,
Fouskakis, Ntzoufras, and Draper (2015) presented power expected posterior priors,

which are similar to fractional priors in the sense that both of them are specified using a

fraction of a likelihood function. The main difference is that the fractional prior comes

from a fraction of the likelihood of the observed data, whereas the power expected

posterior prior follows from a fraction of the likelihood of imaginary training data coming

from a prior predictive distribution.

In this paperwe focus on the fractional Bayes factor as it stands out for its convenience

of evaluating informative hypotheses (Mulder, 2014b). Recently, Mulder (2014b)
proposed an adjustment of the fractional Bayes factor where the fractional prior was

shifted around the null value. This approach resulted in an adjusted fractional Bayes factor

that converges faster to a true inequality constrained hypothesis. However, the current

applications of (adjusted) fractional Bayes factors in informative hypothesis testing are still

within the class of multivariate normal linear models.

This paper proposes an approximation of a fractional Bayes factor to extend its

applicability to testing informative hypotheses for more general models. These models

can be generalized linear (mixed) models (McCullogh & Searle, 2001) such as logistic
regression models and multilevel models, and structural equation models (Kline, 2011)

such as path models, confirmatory factor analysis models and latent class models. Due to

large-sample theory (Gelman, Carlin, Stern, & Rubin, 2004, pp. 101–107), the posterior

distribution of the parameters in each model can be approximated by a (multivariate)

normal distribution. This paper also approximates the implicit fractional prior with a

(multivariate) normal distribution as a general methodology to ensure a fast computation

of the (adjusted) fractional Bayesian factor. Based on these approximations, we can

approximate a fractional Bayes factor to evaluate informative hypotheses in general
statistical models. In addition, we discuss different choices of the fraction (Gu, Mulder, &

Hoijtink, 2016; O’Hagan, 1995), which is a tuning parameter in the fractional prior, and

provide a guideline for choosing this fraction. Furthermore, an important issue in Bayesian

hypothesis testing is the consistency of the Bayesian procedure. Previous studies have

discussed the consistency of the intrinsic Bayes factor (Casella, Giron, & Moreno, 2009),
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the fractional Bayes factor (de Santis & Spezzaferri, 2001; O’Hagan, 1997), and posterior

model probabilities (Moreno, Giron, &Casella, 2015). In this paper, the consistency of the

approximate adjusted fractional Bayes factor (AAFBF) will be elaborated and illustrated.

This paper is organized as follows. Section 2 introduces the informative hypothesis in
general statistical models, and illustrates how the informative hypothesis is constructed

based on researchers’ expectations by means of two empirical examples. Section 3

elaborates the specification of the adjusted fractional prior and the posterior distribution

usingnormal approximations. Basedon the specifiedprior andposterior distributions, the

AAFBF is derived and a software package is presented for the evaluation of informative

hypotheses in general statistical models. In Section 4 we discuss different choices of the

fraction, and conduct a sensitivity study for the fractional Bayes factorswith those choices.

Section 5 revisits the two empirical examples to show how to evaluate informative
hypotheses using the proposed fractional Bayes factors. Section 6 concludes.

2. Informative hypotheses in general statistical models

A statistical model is described by the likelihood function f ðXjh; fÞ, where X denotes the

data, h contains the parameters that are used to specify informative hypotheses, and f
contains the nuisance parameters. Informative hypotheses are constructed using equality

and/or inequality constraints based on the theories or expectations of researchers. The

general form of the informative hypothesis is given by

Hi : Ri0h ¼ ri0 ;Ri1h[ ri1 ; ð1Þ

whereRi0 and Ri1 are the restrictionmatrices for equality and inequality constraints inHi,
respectively, and ri0 and ri1 contain constants. Note that the number of rows inRi0 equals

the number of equality constraints, the number of rows in Ri1 equals the number of

inequality constraints, and the numbers of columns in Ri0 and Ri1 equal the length of h.
For example, hypothesis H1 : h1 ¼ 2h2 ¼ 3h3 [ 4h4\5 corresponds to

R10h ¼ 1 �2 0 0

0 2 �3 0

� � h1
h2
h3
h4

2
664

3
775 ¼ 0

0

� �
¼ r10 ;

R11h ¼ 0 0 3 �4

0 0 0 �4

� � h1
h2
h3
h4

2
664

3
775[ 0

�5

� �
¼ r11 :

Note that a range constraint, in which the parameters of interest are constrained

between two values, can be written as two inequality constraints. For example,

hypothesisH2 : 0\h\1 can be expressed byH2 : R21h[ r21 , where R21 ¼ ð1;�1ÞT and
r21 ¼ ð0;�1ÞT . This hypothesis can be seen as one where it is expected that h is

approximately equal to 0.5 with maximal deviation of 0.5, that is,

h � 0:5 , jh� 0:5j\0:5, where the maximal deviation of 0.5 should be specified

subjectively by the user.
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An informative hypothesis Hi can be tested against the unconstrained hypothesis

Hu : h is unconstrained; ð2Þ

against its complement

Hic : notHi; ð3Þ

which expresses what a researcher does not expect, or against another informative

hypothesis

Hi0 : Ri00h ¼ ri00 ;Ri01h[ ri01 : ð4Þ

It should be noted that when an informative hypothesis Hi contains at least one equality

constraint, the complement of Hi is the same as the unconstrained hypothesis Hu.

Before evaluating the informative hypotheses, the parameters of interest may need to

be standardized in some situations. The need for standardization depends on the statistical

model and informative hypothesis under evaluation. On the one hand, the parameters

have to be standardized when comparing, for example, coefficients in regression models
and factor loadings in confirmatory factor analysis. For example, testing whether the

regression coefficient h1 is larger than h2 requires the standardization of h1 and h2, because
a large coefficient can also result from a large scale of the corresponding predictor. On the

other hand, itmaynot benecessary to standardize theparameters h if they are compared to

constants, and it is undesirable to standardize the parameters h if they represent means.

For instance, testing whether a regression coefficient is larger than 0 or testing whether

the mean of group 1 is smaller than the mean of group 2 does not require standardization.

If standardization is required, Gu et al. (2014) discussed two ways to do this: (1)
standardize all observed and latent variables, or (2) use standardized parameters. In the

situation considered by Gu et al. (2014), there was little difference between the

performances of the two methods. Therefore, researchers can use either of them if

necessary.

In what follows, we will use two empirical examples to illustrate how researchers’

expectations can be expressed by informative hypotheses.

2.1. Example 1: Multiple regression

The first example concerns a multiple regressionmodel used in Guber (1999) to investigate

the relation between the educational costs of a school and the academic performance of the

students. Thedatawere collected in50US states (available atwww.amstat.org/publications/
jse/secure/v7n2/datasets.guber.cfm). The performance of the students is measured by the

average total SAT score yi, ranging from 400 to 1,600. Its predictors are the average public

school expenditure x1i, the percentage of students taking the SATexams x2i, and the average

pupil–teacher ratio x3i. The descriptives for the dependent variable yi and independent

variables x1i, x2i and x3i are shown in Table 1. The relationship between student

performance and its predictors is given in a regression model,

yi ¼ h0 þ h1x1i þ h2x2i þ h3x3i þ �i; ð5Þ

Bayesian informative hypothesis testing 233

http://www.amstat.org/publications/jse/secure/v7n2/datasets.guber.cfm
http://www.amstat.org/publications/jse/secure/v7n2/datasets.guber.cfm


where h0 is the intercept, h1, h2 and h3 are the regression coefficients, and ei ~ N (0, r2),
denotes the residuals, withr2 being their residual variance. For this regressionmodel, the

likelihood is

f ðXjh; fÞ ¼
Yn
i¼1

1

ð2pr2Þ1=2
exp � 1

2r2
ðyi � h0 � h1x1 � h2x2 � h3x3Þ2

� �
; ð6Þ

where n = 50 denotes the sample size, and h ¼ ðh1; h2; h3ÞT and f ¼ ðh0;r2Þ.
Guber (1999) theorized that higher education expenditures result in better student

performance in SAT exams, which implies that the coefficient h1 of the predictor x1i is

positive. In addition, in those states with a small percentage of students taking SATs, the

students are expected to dowell because they have self-selected into the SAT exam,which

is only required by universities with high prestige. This implies that the coefficient h2 of the
predictor x2i is negative. Furthermore, although a lower pupil–teacher ratio would be

associatedwithbetter performance, a school needs to spendmoremoney oneducation and

therefore thispredictor overlapswith the expenditures. This suggests that the coefficienth3
of predictor x3i is zero. Consequently, we specify the informative hypothesis

H1 : h1 [ 0; h2\0; h3 ¼ 0; ð7Þ

with R10 ¼ ð0; 0; 1Þ, R11 ¼ 1 0 0

0 �1 0

� �
, h ¼ ðh1; h2; h3ÞT , r10 ¼ 0, and r11 ¼ ð0; 0ÞT in

H1 : R10h ¼ r10 ;R11h[ r11 . Hypothesis H1 can be tested against its complement

H1c : notH1: ð8Þ

2.2. Example 2: Repeated measures ANOVA
Wereanalyse the exampleof the repeatedmeasuresANOVAused inHowell (2012, p. 462)

based on an experiment with relaxation therapy. The experiment investigated the

duration of nine patients’ migraine headaches before and after relaxation training. The

duration of headaches is measured by the number of hours per week. Our example uses

the data for the last 2 weeks of the baseline where patients received no training and the

last 2 weeks of training. Therefore, the data shown in Table 2 consists of four dependent

variables: the number of hours with a headache per week for nine patients in 4 weeks.

The random effects model for these dependent variables is (Hox, 2010, p. 83).

yij ¼ lþ gi þ sj þ �ij; ð9Þ

Table 1. Descriptives for variables in regression model

yi x1i x2i x3i

Mean 965.92 5.91 35.24 16.86

Standard deviation 74.82 1.36 26.76 2.27
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where yij, for i = 1, . . . , 9 and j = 1, . . . , 4, denotes the four dependent variables, l
denotes the grandmean,gi �Nð0;r2

gÞ denotes the random difference for person iwhich

is constant for different j, sj denotes the fixedmeasurement difference for week jwhich is

constant for different i, and �ij �Nð0;r2
� Þ is themeasurement errorwith respect to person

i and week j. To investigate the effect of relaxation training, we specify the individual

differences with a random effect and the treatment differences with a fixed effect. Thus,

the mean for each measurement is

hj ¼ lþ sj ð10Þ
and R4

j¼1sj ¼ 0.

The researchers expected a reduction of the duration of headaches after relaxation

training. Furthermore, it is reasonable to expect that the mean durations are equal in the

first 2 weeks of baseline and in the last 2 weeks of training to ensure that other factors do

not influence the duration of headaches. These expectations can be expressed by the

informative hypothesis

H2 : h1 ¼ h2 [ h3 ¼ h4; ð11Þ

withR20 ¼ 1 �1 0 0

0 0 1 �1

� �
,R21 ¼ ½0; 1;�1; 0�, h ¼ ðh1; h2; h3; h4ÞT , r20 ¼ ð0; 0ÞT , and

r21 ¼ 0 inH2 : R20h ¼ r20 ;R21h[ r21 .We compare this hypothesis to another informative

hypothesis that themean number of headache hours continually declines in the 4 weeks:

H20 : h1 [ h2 [ h3 [ h4; ð12Þ

which only contains inequality constraints R201h[ r201 with r201 ¼ ð0; 0; 0ÞT and

R201 ¼
1 �1 0 0

0 1 �1 0

0 0 1 �1

2
4

3
5:

The informative hypotheses constructed in these examples can be evaluated using

Bayes factors, which will be elaborated in the next section. We will revisit these

Table 2. Data in repeated measures ANOVA

Subject

Baseline Training

Week 1 Week 2 Week 3 Week 4

1 21 22 6 6

2 20 19 4 4

3 17 15 4 5

4 25 30 12 17

5 30 27 8 6

6 19 27 7 4

7 26 16 2 5

8 17 18 1 5

9 26 24 8 9
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examples in Section 5 to display the results of the evaluation of these informative

hypotheses.

3. Approximated adjusted fractional Bayes factors

TheBayes factor is the cornerstone of Bayesian hypothesis testing. It quantifies the relative

evidence in the data for one hypothesis against another. The Bayes factor of an informative

hypothesis Hi against another informative hypothesis Hi0 is defined by their marginal

likelihood ratio (Jeffreys, 1961; Kass & Raftery, 1995):

BFii0 ¼ mðXjHiÞ
mðXjHi0 Þ : ð13Þ

In Bayesian hypothesis testing, the Bayes factor has a direct interpretation as the

relative evidence from the data for one hypothesis against another. If BFii0 [ 1 (BFii0\1),

this implies that hypothesis Hi (Hi0) receives more support from the data. Specifically, if

BFii0 ¼ 5, then the support for Hi is five times larger than for Hi0 . For researchers who are

new to Bayes factors we recommend using the guidelines for their interpretation as

provided by Kass and Raftery (1995). The degree of evidence in favour of Hi can be
classified as unconvincing for 1\BFii0\3, positive for BFii0 [ 3, strong for BFii0 [ 20, and

very strong for BFii0 [ 150. However, these rules for interpreting Bayes factors are not

strict and can differ in different contexts.

The informative hypothesis Hi is nested in the unconstrained hypothesis Hu which

does not contain any constraints on h. When comparing Hi to Hu we can use the

encompassing prior approach of Klugkist et al. (2005)where a prior is constructed under

Hi via a truncation of the unconstrained (or encompassing) prior pu (h, f) under Hu. The

prior under Hi is then given by piðh; fÞ ¼ c�1
i puðh; fÞ1Hi

ðhÞ, where
ci ¼

RR
h2Hi

puðh; fÞdhdf is a normalizing constraint, and Hi ¼ fhjRi0h ¼ ri0 ;Ri1h[ ri1g
is the parameter space of h in agreement with the informative hypothesis Hi.

Consequently, the Bayes factor for the informative hypothesis against the unconstrained

hypothesis can be expressed as

BFiu ¼
RR

h2Hi
piðh; fÞf ðXjh; fÞdhdfRR

puðh; fÞf ðXjh; fÞdhdf

¼
ZZ

h2Hi

puðh; fÞf ðXjh; fÞ � c�1
iRR

puðh; fÞf ðXjh; fÞdhdf dhdf

¼c�1
i

ZZ
h2Hi

puðh; fjXÞdhdf

¼
RR

h2Hi
puðh; fjXÞdhdfRR

h2Hi
puðh; fÞdhdf ;

ð14Þ

where puðh; fjXÞ is the posterior distribution of h and f under Hu. For example, for

hypothesis H1: h1 > 0, h2 < 0, h3 = 0 in (7) with equality and inequality constraints,

where we denote h ¼ ðh1; h2; h3ÞT and f ¼ ðh0;r2ÞT , the Bayes factor of H1 against the

unconstrained alternative in (14) comes down to
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BF1u ¼
RR

h1 [ 0; h2 [ 0
puððh1; h2; 0ÞT ; fjXÞdhdfRR

h1 [ 0;h2 [ 0
puððh1; h2; 0ÞT ; fÞdhdf

¼
R
h1 [ 0;h2 [ 0

puðh1; h2jh3 ¼ 0;XÞpuðh3 ¼ 0jXÞdhR
h1 [ 0;h2 [ 0

puðh1; h2jh3 ¼ 0Þpuðh3 ¼ 0Þdh

¼ Prðh1 [ 0; h2 [ 0jh3 ¼ 0;XÞ
Prðh1 [ 0; h2 [ 0jh3 ¼ 0Þ

puðh3 ¼ 0jXÞ
puðh3 ¼ 0Þ :

ð15Þ

Note further that for a hypothesis with only equality constraints, such as H0:

h1 = h2 = h3 = 0, expression (14) is equal to the well-known Savage–Dickey density

ratio (Dickey, 1971; Wetzels, Grasman, & Wagenmakers, 2010),

BF0u ¼ puðh ¼ 0jXÞ
puðh ¼ 0Þ : ð16Þ

Finally, for a hypothesis with only inequality constraints, say, H2: h1 > h2 > h3 > 0,

expression (14) is equal to the ratio of posterior and prior probabilities that the inequality

constraints hold under Hu,

BF2u ¼ Pðh1 [ h2 [ h3 [ 0jXÞ
Pðh1 [ h2 [ h3 [ 0Þ : ð17Þ

Thus, in order to compute the Bayes factor the unconstrained prior and corresponding
unconstrained posterior need to be determined, and subsequently the unconstrained

prior and posterior need to be integrated over the constrained region under the

informative hypothesis. In this section we propose a novel and general approach using

normal distributions to approximate the unconstrained posterior and the unconstrained

fractional prior to compute default Bayes factors.

3.1. Fractional prior and posterior
To avoid ad hoc or subjective specification of the unconstrained prior, we

consider the approach of O’Hagan (1995), referred to as the fractional Bayes

factor. A proper default prior is automatically generated by updating a non-

informative improper prior pNu ðh; fÞ using a fraction b of the likelihood (Gilks,

1995). In the fractional Bayes factor the marginal likelihood of the hypothesis Hu

is defined by

mN
b ðXjHuÞ ¼ mNðXjHuÞ

mNðXbjHuÞ ¼
RR

puðh; fÞNf ðXjh; fÞdhdfRR
puðh; fÞNf ðXjh; fÞbdhdf

¼
ZZ

f ðXjh; fÞ1�b puðh; fÞNf ðXjh; fÞbRR
puðh; fÞNf ðXjh; fÞbdhdf

dhdf

¼
ZZ

f ðXjh; fÞ1�bpuðh; fjXbÞdhdf;

ð18Þ

where the proper default prior is defined by
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puðh; fjXbÞ ¼ puðh; fÞNf ðXjh; fÞbRR
puðh; fÞNf ðXjh; fÞbdhdf

: ð19Þ

We shall refer to (19) as the fractional prior. Note that the marginal likelihood in the

fractional Bayes factor in (18) is closely related to the marginal likelihood in the partial

Bayes factor, where a proper default prior is obtained by training a non-informative prior

with a small subset of the data, called a training sample, X(l), while the remaining part of
the data, say,X(�l), is used for computing themarginal likelihood. Themarginal likelihood

in the fractional Bayes factor also follows this idea, but takes a fraction b of the data,

denoted byXb, to train a non-informative prior and then uses the remaining fraction of the

data, X1–b, for computing the marginal likelihood in (18). The advantage of the fractional

Bayes factor is that it does not depend on the exact choice of the subset of the data because

a fraction of the complete data is used (de Santis & Spezzaferri, 1999; O’Hagan, 1995).

Following similar steps to (14) and integrating out the nuisance parameters, the

fractional Bayes factor of an informative hypothesis against the unconstrained hypothesis
is given by (Mulder, 2014b)

FBFiu ¼
R
h2Hi

puðhjXÞdhR
h2Hi

puðhjXbÞdh : ð20Þ

3.2. Normal approximations of the fractional prior and posterior distributions

Due to large-sample theory (e.g., Gelman et al., 2004, p. 101), the marginal posterior in

the numerator of (20) can be approximated using a normal distributionwhere themean is

equal to the maximum likelihood estimate and the covariance matrix is equal to the
inverse of the Fisher information matrix,

puðhjXÞ � Nðĥ; R̂hÞ; ð21Þ
where ĥ and R̂h denote the maximum likelihood estimate and covariance matrix of h,
respectively. Note that ĥ and R̂h can be obtained using statistical software such as Mplus

(Muth�en & Muth�en, 2010) or the R package lavaan (Rosseel, 2012). This will be further

elaborated when we return to the empirical examples in Section 5.

The fractional prior in the denominator of (20) is also centred around the maximum

likelihood estimate. However, it is based on a fraction b of the data, which implies an
approximated covariance matrix of R̂h=b. Consider, for example, a normally distributed

data set xi �Nðh;r2Þ with known r2. The posterior of h is given by puðhjXÞ ¼ Nðĥ; r̂2
hÞ,

where ĥ equals the sample mean �x and r̂2
h ¼ r2=n. In this setting the fractional prior of h

would be puðhjXbÞ ¼ Nðĥ; r̂2
h=bÞ ¼ Nð�x;r2=nbÞ. For this reason we propose to

approximate the fractional prior according to

puðhjXbÞ � Nðĥ; R̂h=bÞ: ð22Þ

3.3. Adjusting the prior mean

Various authors have suggested centring the prior distribution of h around the focal

point of interest; see, for example, Zellner and Siow (1980) and Jeffreys (1961, pp.

268–274) for null hypothesis testing, and Mulder (2014b) for testing informative
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hypotheses. Suppose, for example, we evaluate H1: h ≤ 0 against its complement H2:

h > 0. By constructing the priors for h under H1 and H2 as a truncation of an

unconstrained prior that is centred around the focal point 0, the prior distributions

for h under both hypotheses are essentially equivalent; the only difference is the sign.
Furthermore, by centring the prior at 0 it is assumed that small effects are more likely

a priori than large effects, which is often the case in practice. A more detailed

discussion on centring prior means can be found in Mulder (2014b). In this paper, we

adjust the prior in (22) as follows:

p�uðhjXbÞ ¼ Nðh�; R̂h=bÞ; ð23Þ

where the adjusted prior mean is given by h� 2 H�
i ¼ fhjRi0h ¼ ri0 ;Ri1h ¼ ri1g. For

each informative hypothesis, one can define a parameter space H�
i which contains

one or more h*. For example, H1 : h1 [ 2h2 [ 4 results in h� ¼ ð4; 2ÞT , and

H2 : h1 ¼ h2 results in h� 2 H�
i ¼ fh1; h2jh1 ¼ h2g in which h�1 ¼ h�2 can be any value.

Note the suggestion that the prior mean for parameters in a range constrained

hypothesis is in the middle of the range space (Mulder, Hoijtink, & de Leeuw, 2012),

because a range constraint basically implies an approximate equality, which in terms
of a restriction for the prior mean becomes an equality. For example, the range

constraint �0.2 < h < 0.2 corresponds to the approximate equality h � 0 with

maximal deviation of 0.2. Thus, the focal point is 0, and therefore we set the prior

mean to h* = 0. Below we will deal with the choice of h*.
The prior distribution proposed in (23) depends on the informative hypothesis under

evaluation, because the prior mean h* is located on the boundary of the constrained

region of the informative hypothesis. When two or more informative hypotheses are

under comparison, the intersection of their constrained regions must be non-empty so
that a common unconstrained prior mean h* exists to evaluate all informative hypotheses

against the unconstrained hypothesis. A set of informative hypothesesHi, i = 1, . . . , I, are
comparable if there exists at least one solution of h to the set of equations

R10

R11

� �
h ¼ r10

r11

� �
; . . . ;

RI0

RI1

� �
h ¼ rI0

rI1

� �
ð24Þ

(Mulder et al., 2010). The solution of h for these equations defines the parameter space

H�. Examples of comparable hypotheses are H1: h = 0 versus H2: h > 0 and H3:

h1 > h2 > h3 > 0 versus H4: h3 > h2 > h1. Hypotheses H5: h1 = h2 versus H6: h1 > h2 + 1

are not comparable because there is no solution of h1 and h2 for equations h1 = h2 and
h1 = h2 + 1. It should be noted that the hypothesis H7: h1 > 0, h2 > 0, h2 > h1�1 cannot
be properly evaluated yet because a solution does not exist for equations h1 = 0, h2 = 0,

and h2 = h1�1.

Adjusting the prior mean from ĥ to h* results in a slight change of the posterior for

h. In particular, the posterior mean of ĥ would be slightly shifted towards the prior

mean h*. Large-sample theory, however, dictates that the prior has a negligible effect

on the posterior for large samples. Therefore, we leave the approximated posterior

for h, given by Nðĥ; R̂hÞ, unaltered. Note that a similar argument is used in the

Bayesian information criterion approximation of the Bayes factor (Kass & Raftery,
1995; Schwarz, 1978).
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Based on the adjusted fractional prior distribution (23) and the posterior distribution

(21), the AAFBF for an informative hypothesis versus the unconstrained hypothesis can be

defined as

AAFBFiu ¼
R
h2Hi

puðhjXÞdhR
h2Hi

p�uðhjXbÞdh ; ð25Þ

where the parameter space Hi ¼ fhjRi0h ¼ ri0 ;Ri1h[ ri1g is in agreement with the

informative hypothesis Hi. The computation of the AAFBF will be elaborated next.

3.4. Bayes factor computation

To compute the AAFBF, we first need to determine the adjusted prior mean h* in (23).

Finding the parameter spaceH�
i can be difficult for complicated informative hypotheses

(Mulder et al., 2012). However, if we transform the parameters of interest using

b0 ¼ Ri0h� ri0 and b1 ¼ Ri1h� ri1 , then the informative hypothesis under consideration

becomesHi : b0 ¼ 0; b1 [ 0 such that we can simply specify the prior mean vector equal
to zero for the new parameter vector b ¼ ðbT0 ; bT1 ÞT . Note that the range constrained

hypothesis (e.g., H1: 0 < h < 1) is an exception because, as elaborated earlier, the prior

mean for h is centred at h* = 0.5, which requires b�11 ¼ h� ¼ 0:5 and b�12 ¼ 1� h� ¼ 0:5.
The specification of the prior mean for range constraints is given in Appendix A. This

parameter transformation was also used in Mulder (2016) for hypotheses with only

inequality constraints on correlations. Here we generalize it to equality and inequality

constraints on parameters in general statistical models. The parameter transformation of h
to b simplifies the form of the hypothesis without changing the expectation of
researchers. For instance, testing whether two parameters are equal (h1 = h2) is identical
to testing whether their difference is 0 (i.e., b0 = h1�h2 = 0). Consequently, the adjusted

fractional prior distribution and posterior distribution for the new parameter b are

given by

p�uðbjXbÞ ¼ Nð0; R̂b=bÞ ð26Þ

and

puðbjXÞ ¼ Nðb̂; R̂bÞ; ð27Þ

respectively, where b̂ ¼ Rĥ� r and R̂b ¼ RR̂hR
T with R ¼ ðRT

i0
;RT

i1
ÞT and r ¼ ðrTi0 ; rTi1ÞT .

Specifically, b̂ ¼ ðb̂T0 ; b̂T1 ÞT where b̂0 ¼ Ri0 ĥ� ri0 and b̂1 ¼ Ri1 ĥ� ri1 , and

R̂b ¼ R̂b0 R̂01

R̂10 R̂b1

" #
where R̂b0 ¼ Ri0 R̂hR

T
i0
and R̂b1 ¼ Ri1R̂hR

T
i1
.

This parameter transformation from h to b simplifies the computation of the AAFBF.

First, the AAFBF for an informative hypothesis with only equality constraints (i.e., Hi:

b0 = 0), compared to the unconstrained hypothesis, can be obtained using the Savage–
Dickey density ratio (Dickey, 1971;Mulder, 2014b;Wagenmakers, Lodewyckx,Kuriyal, &
Grasman, 2010):
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AAFBF0iu ¼ puðb0 ¼ 0jXÞ
p�uðb0 ¼ 0jXbÞ ; ð28Þ

where p�uðb0 ¼ 0jXbÞ and puðb0 ¼ 0jXÞ are the densities of the prior (26) and posterior

(27), respectively, for b0 at the point b0 = 0 under Hu. Second, the AAFBF for an

informative hypothesis with only inequality constraints (i.e., Hi: b1>0), compared to the

unconstrained hypothesis, is given by (Hoijtink, 2012; Mulder, 2014b)

AAFBF1iu ¼
R
b1[0 puðb1jXÞdb1R
b1[0 p

�
uðb1jXbÞdb1

; ð29Þ

where p�uðb1jXbÞ and puðb1jXÞ are the prior (26) and posterior (27), respectively, for b1.
Finally, the AAFBF for an informative hypothesis with both equality and inequality

constraints (i.e., Hi: b0 = 0, b1 > 0), compared to the unconstrained hypothesis, can be
obtained via

AAFBFiu ¼ puðb0 ¼ 0jXÞ
p�uðb0 ¼ 0jXbÞ �

R
b1[0 puðb1jb0 ¼ 0;XÞdb1R
b1[0 p

�
uðb1jb0 ¼ 0;XbÞdb1

; ð30Þ

where p�uðb1jb0 ¼ 0;XbÞ and puðb1jb0 ¼ 0;XÞ are the prior and posterior distributions of

b1 given b0 = 0, respectively. Note that p�uðb1jb0 ¼ 0;XbÞ ¼ Nð0; ðR̂b1 � R̂10R̂
�1
b0
R̂01Þ=bÞ

and puðb1jb0 ¼ 0;XÞ ¼ Nðb̂1 � R̂10R̂
�1
b0
b̂0; R̂b1 �R̂10R̂

�1
b0
R̂01Þ.

We let c0i ¼ p�uðb0 ¼ 0jXbÞ and c1i ¼ R
b1 [ 0 p

�
uðb1jXbÞdb1, which can be interpreted as

the relative complexities of the equality constrained hypothesis and inequality

constrained hypothesis, respectively, compared toHu under prior (26). Then, in general,

ci ¼ p�uðb0 ¼ 0jXbÞ �
Z

b1[0

p�uðb1jb0 ¼ 0;XbÞdb1 ð31Þ

represents the relative complexity of informative hypothesis Hi (Hoijtink, 2012; Mulder,

2014a),which is a relativemeasure of the size of theparameter spaceunder an informative

hypothesis in comparison to the unconstrained parameter space. For example, the

relative complexity of ‘h1 > h2, and h3 unconstrained’ is larger than the relative

complexity of ‘h1 > h2 > h3’. This can be understood from the fact that the parameter

space of the latter is a subset of the parameter space of the former. Similarly, the relative

complexity of ‘h1 = 0, h2 unconstrained’ is larger than the relative complexity of ‘h1 = 0,

h2 = 0’. It is interesting to note that the relative complexity c0i of an equality constrained

hypothesis Hi: b = 0 becomes smaller when the prior variance of b under Hu becomes

larger. The reason is that a larger variance of the unconstrained prior implies that a larger

region of the unconstrained parameter space is likely a priori, which means that Hi is

simpler relative to the unconstrained hypothesis. Furthermore, we let f 0i ¼ puðb0 ¼ 0jXÞ
and f 1i ¼ R

b1 [ 0 puðb1jXÞdb1,which canbe interpreted as themeasures of relative fit of the

equality constrained hypothesis and inequality constrained hypothesis, respectively,

compared to Hu. Then
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fi ¼ puðb0 ¼ 0jXÞ �
Z

b1[0

puðb1jb0 ¼ 0;XÞdb1 ð32Þ

expresses the relative fit ofHi (Hoijtink, 2012; Mulder, 2014a), which implies howwell a

hypothesis is supported by the data compared to the unconstrained hypothesis. The

relative complexity and fit in the AAFBF can be estimated based on a similar procedure

presented in Gu et al. (2014) which only considers inequality constraints. We generalize

the method to hypotheses with inequality as well as equality constraints to cover a very

large spectrum of informative hypotheses that can be tested.
The computation of the AAFBF is implemented in the software package BaIn (Bayesian

evaluation of informative hypotheses) available at http://informative-hypotheses.sites.uu.

nl/software/. A user manual for BaIn is given in Appendix B. The input of BaIn needs the

maximum likelihood estimate and covariance matrix of the parameters of interest, which

can be obtained using other software packages such as Mplus (Muth�en & Muth�en, 2010)
or the free R package lavaan (Rosseel, 2012). Executing BaIn renders the AAFBF for each

informative hypothesis Hi under evaluation.

The Bayes factor of an informative hypothesis Hi against its complement Hic is

AAFBFiic ¼
fi=ci

ð1� fiÞ=ð1� ciÞ ð33Þ

if Hi does not contain equality constraints. Otherwise AAFBFiic ¼ AAFBFiu because the

marginal likelihood of the complement of a hypothesis which contains equality

constraints is equal to the marginal likelihood of the unconstrained hypothesis. For the

comparison of two informative hypothesesHi andHi0 , the AAFBF forHi againstHi0 can be

obtained as

AAFBFii0 ¼ AAFBFiu

AAFBFi0u
: ð34Þ

Running BaIn for Hi and Hi0 renders AAFBFiu and AAFBFi0u such that AAFBFii0 can be

computed using (34).

4. Choices for b

This section discusses the choices of the fraction b for the specification of fractional

priors. We first show the influence of the choices of b on the AAFBF when evaluating

informative hypotheses because, as with the original fractional Bayes factor (Conigliani &

O’Hagan, 2000), the choice of the fraction b also plays a crucial in the AAFBF. Then we
present two traditional choices and one novel choice of b. At the end of this section, we

conduct a sensitivity study to investigate the approximation error of the AAFBF relative to

the actual adjusted fractional Bayes factor. It should be noted that this paper uses one

common fraction b of the likelihood for prior specification. For this reason the AAFBF

should only be used for testing hypotheses based on data that come from one population

or balanced data with equal group sizes in the case of multiple populations, similar to the

fractional Bayes factor (de Santis & Spezzaferri, 2001).
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4.1. The role of b in AAFBF

The influence of the fraction b on the AAFBF is different for the evaluation of equality

constraints Ri0h ¼ ri0 and of inequality constraints Ri1h[ ri1 . First of all, b is a very

influential parameter when evaluating equality constraints Ri0h ¼ ri0 . The underlying
reason is that a small (large) b implies a priorwith large (small) variance such that the prior

density evaluated at Ri0h ¼ ri0 or b0 ¼ 0 in (28) is small (large). This can be illustrated in

Figure 1 in which the solid line represents the density of prior distribution

p�uðhjxbÞ ¼ Nð0;r2
h=bÞ with r2

h ¼ 0:02 under (a) b = 0.05 and (b) b = 0.2. As can be

seen, when testing the hypothesis H1: h = 0 against Hu, the prior density at h = 0 is 0.63

under b = 0.05 in Figure 1a, half the value 1.26 under b = 0.2 in Figure 1b. Given an

estimate of ĥ ¼ 0:2, the resulting AAFBF for H1 against Hu under b = 0.05 is

AAFBF1u = 1.64,whereas under b = 0.2 it is AAFBF1u = 0.82 according to equation (28).
Secondly, for range constrained hypotheses the effect of b is similar to that for an

equality constrained hypothesis: a small (large) b implies a large (small) AAFBF for the

range constrained hypothesis against the unconstrained hypothesis. For example, the

shaded area in Figure 1 represents the prior probability in linewith the range constrained

hypothesis H2: �0.5 < h < 0.5, which implies that the absolute effect is expected to be
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Figure 1. Relative complexities under different values of b.
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smaller than 0.5. For a small b = 0.05 the prior probability of �0.5 < h < 0.5 shown in

Figure 1a is 0.57, whereas for a large b = 0.2 the prior probability in Figure 1b is 0.89.

Based on ĥ ¼ 0:2 and equation (29) the AAFBF for H2 against Hu under b = 0.05 is

AAFBF2u = 1.72, which is different from AAFBF2u = 1.11 under b = 0.2.
Thirdly, the AAFBF is independent of the choice of b for inequality constrained

hypotheses which do not contain range constraints. This property was proven in Mulder

(2014b) and can also be seen in Figure 1where the prior probability that the constraint of

H3: h > 0 holds under Hu is equal to 0.5 for both choices of b.

The influence of b on the AAFBF is illustrated in Figure 2when comparing the equality

constrained hypothesis H1: h = 0, the range constrained hypothesis H2: �0.5 < h < 0.5,

and the inequality constrained hypothesis H3: h > 0 to the unconstrained hypothesis Hu.

Given the estimate ĥ ¼ 0:2 and variance r̂2
h ¼ 0:02 for h, Figure 2 shows the AAFBF for

each informative hypothesis under various b 2 ð0; :5�. As can be seen, the AAFBF for H1

decreases as b increases, the AAFBF forH2 behaves similarly to that forH1, and the AAFBF

forH3 is stable as b changes. This illustrates that the fraction b has to be carefully specified

when equality constrained hypotheses and range constrained hypotheses are of interest

to the researcher, while any fraction b can be used when only inequality constrained

hypotheses without range constraints are formulated by the user. In what follows wewill

specify b in three different ways.

4.2. Traditional choices for b

Previous studies have recommended two choices for b for the fractional Bayes factor. The

first one comes fromBerger and Pericchi (1996) andO’Hagan (1995)who suggested using

the minimal training sample for prior specification to leave maximal information in the

data for hypothesis testing. This corresponds to b = m/n in the fractional prior, wherem

is the size of the minimal training sample that makes all parameters identifiable. For

example, for the one-sample t test ofH0: h = 0where the data are xi �Nðh;r2Þ, the actual
adjusted fractional prior distribution for h isp�uðhjxbÞ ¼ tð0; s2=ðnb� 1Þ;nb� 1Þ, that is, a
Student t density with mean 0, scale parameter s2/(nb�1), and degrees of freedom nb�1.

In this case, theminimalm is 2 becausem = 1 results inb = 1/n and degrees of freedom0,

which is not allowed.
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Figure 2. Influence of b on AAFBF.
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For the AAFBF we propose a similar approach to determine our first choice of b. To

estimate b (with length J)weneed at least J + 1observations. Therefore, our first choice of

the fraction equals

bmin ¼ ðJ þ 1Þ=n; ð35Þ

where J is the number of independent constraints in all the informative hypotheses under

investigation, that is, J equals the rank of R ¼ ðRT
10
;RT

11
; . . .;RT

I0
;RT

I1
ÞT for a set of

informative hypotheses Hi for i = 1, . . . , I. Thus, if H3: h1 = 0 and H4: h1 > 0, h2 > 0 are

under evaluation, for example, J = 2 when computing the AAFBF for each informative

hypothesis against the unconstrained hypothesis because there are two independent

constraints.

Formultiple regressionmodel (5) in Section 2, J = 3 becauseH1: h1 > 0, h2 < 0, h3 = 0
can be formulated using a vector b of length 3.With sample size n = 50, the first choice of

the fraction b can be set to bmin = 2/25. For repeatedmeasuresmodel (10), J = 3 based on

a vector b of length 3 inH2 : h1 ¼ h2 [ h3 ¼ h4 andH20 : h1 [ h2 [ h3 [ h4, and therefore
bmin = 1/9 based on sample size n = 36.

The second way of choosing b is (O’Hagan, 1995)

brobust ¼ maxfðJ þ 1Þ=n; 1= ffiffiffi
n

p g; ð36Þ

which is in general larger than the first choice. O’Hagan (1995) stated that a larger b can

reduce the sensitivity of the fractional Bayes factor to the distributional form of the prior.

Conigliani and O’Hagan (2000) further derived a measure of the sensitivity of the

fractional Bayes factor and proved that this measure is a decreasing function of b. The

second choice of b can also be applied to the AAFBF defined in (25). When setting a

larger b, the AAFBF becomes more similar to the non-AAFBF. Thus, the AAFBF is less

sensitive to the prior distribution given larger b. We will more to say on this topic in
Section 4.4. Given the sample size n = 50 in the regression model in Section 2,

brobust ¼ 1=
ffiffiffiffiffiffi
50

p
is specified to evaluate hypothesis H1. In the case of the repeated

measuresmodelwith sample size n = 36, one can set brobust ¼ 1=6 for the comparison

of H2 and H20 .

4.3. A frequentist choice for b

Gu et al. (2016) recently proposed anothermethod of specifying b by taking into account
the frequentist error probabilities. In Bayesian hypothesis testing, the probability of a

Bayes factor favouring Hu when Hi is true is

p1 ¼ PðBFiu\1jHiÞ ð37Þ

which corresponds to the Type I error probability ifHi is a traditional null hypothesis, and

the probability of a Bayes factor favouring Hi when Hu is true is

p2 ¼ PðBFiu [ 1jHuÞ: ð38Þ

which then corresponds to the Type II error probability. Gu et al. (2016) found that these

probabilities are often quite different when using traditional choices of b in the one-

sample t test. This may not be preferable from a frequentist point of view where the goal
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typically is to control the error probabilities. Herewe showhow to specifyb to control the

error probabilities under certain conditions. First, we shall use a one-sample t test to

illustrate the procedure for specifying b based on this method, and then apply it to the

AAFBF (28) for general statistical models. Finally, a rule for choosing b is proposed.

4.3.1. One-sample t test

Consider a one-sample t test for which data come from xi �Nðh;r2Þ, where h denotes the
population mean and r2 denotes the population variance, and the hypotheses under

consideration are H1: h = 0 against Hu: h. The AAFBF for H1 against Hu can be derived

using equation (28):

AAFBF1u ¼ b�1=2 exp � 1

2
nð�x=sÞ2

� �
; ð39Þ

where �x ¼ Pn
i¼1 xi=n and s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1ðxi � �xÞ2

q
. For this AAFBF the error probabilities

eqns (37) and (38) become

p1 ¼ PðAAFBF1u\1jH1Þ ¼ P j �x
s
j[

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� log b=n

p
jH1

� �

� 1

L

XL
l¼1

I j �x
ð1lÞ

sð1lÞ
j[

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� log b=n

p� � ð40Þ

and

p2 ¼ PðAAFBF1u [ 1jHuÞ ¼ P j �x
s
j\

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� log b=n

p
jHu

� �

� 1

L

XL
l¼1

I j �x
ð2lÞ

sð2lÞ
j\

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� log b=n

p� �
;

ð41Þ

where �xð1lÞ and sð1lÞ, for l = 1, . . ., L, are the mean and standard deviation of data x
ð1lÞ
i

sampled from H1, �x
ð2lÞ and sð2lÞ are the mean and standard deviation of data x

ð2lÞ
i sampled

from Hu, and Ið�Þ is the indicator function which is 1 if the argument is true and 0

otherwise.When sampling data fromHu, an expected standardized effect size, denoted by

be, needs to be specified under Hu, namely, Hu: h = ber, so that the scaled data are

sampled from yi �Nðbe; 1ÞunderHu,where yi = xi/r. Note that sampling �xð2lÞ=sð2lÞ based
on xi �Nðh;r2Þ, where h=r ¼ be, is identical to sampling the mean �yð2lÞ based on

yi �Nðbe; 1Þ. The specification of the standardized effect size be will be discussed in
Section 4.3.3.

In the one-sample t test, �x=s is the observed standardized effect size known as Cohen’s

d (Cohen, 1992). It has sampling distributions under H1 and Hu which can be obtained

using �xð1lÞ=sð1lÞ and �xð2lÞ=sð2lÞ, respectively. Figure 3 shows the distributions of �x=s under
H1: h = 0 (solid line) andHu: h = be (dashed line) givenr

2 = 1 and n = 20, where be = .5

is the pre-specified standardized effect size under Hu. Note that according to Cohen

(1992), be = .2, .5, and .8 correspond to small, medium, and large effects, respectively. If
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Figure 3. Sampling distributions of observed effect size �x=s in one-sample t test for n = 20 and

be = 0.5 under Hu.
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we use bmin = 2/n for the one-sample t test, the error probabilities in (40) and (41)

become p1 ¼ Pðj�x=sj[ :34jH1Þ ¼ :073 andp2 ¼ Pðj�x=sj\:34jHuÞ ¼ :241,whereas ifwe

specify brobust ¼ 1=
ffiffiffi
n

p
, the error probabilities are p1 ¼ Pðj�x=sj[ :27jH1Þ ¼ :122 and

p2 ¼ Pðj�x=sj\:27jHuÞ ¼ :159. These error probabilities are marked in Figure 3a for bmin

and Figure 3b for brobust, where the dark grey area represents p1 and the light grey area
represents p2. As can be seen, p1 < p2 under both bmin and brobust, which means that we

are more likely to incorrectly prefer H1 when Hu is true than incorrectly prefer Hu when

H1 is true.

In order to correct for this, Gu et al. (2016) showed how to choose b such that

p1 = p2 given sample sizen and effect sizebeunderHu. A directway of obtaining such ab

is proposed byMorey,Wagenmakers, and Rouder (2016) and illustrated in Figure 3c. As

can be seen, the distributions of �x=s underH1: h = 0 andHu: h = be are symmetric on be/

2. This implies that we can simply specify
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� log b=n

p ¼ be=2 or equivalently

b ¼ exp ð�nb2e=4Þ to attain equal error probabilities, because p1 ¼ Pðj�x=sj[ be=2jH1Þ
is equal to p2 ¼ Pðj�x=sj\be=2jHuÞ. For example, given n = 20 and be = .5 under Hu in

Figure 3c, the dark grey area for p1 is the same size as the light grey area for p2 when

setting b ¼ exp ð�nb2e=4Þ ¼ :287. The error probabilities under this setting are

p1 = p2 = .139.

4.3.2. General case

The method of choosing b based on equal error probabilities can be generalized to the

AAFBF of anyHi: b0 = 0 againstHu: b0 6¼ 0. Based on the adjusted fractional prior (26) and
approximated posterior (27), the AAFBF in (28) is

AAFBF0iu ¼ b�1=2 exp � 1

2
b̂R̂�1

b b̂T
� �

: ð42Þ

It is interesting to note that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b̂R̂�1

b b̂T
q

in (42) is the test statistic in the Wald test (Engle,
1984) which assumes that b is approximately normally distributed. The test statistic is not

only the cornerstone in frequentist hypothesis testing, but also important in default Bayes

factors. For example, the Bayes factor proposed by Rouder et al. (2009) for the t test is a

function of the t statistic, and the Bayes factor based on Zellner’s g prior (Zellner & Siow,

1980) in regression models is a function of the F statistic. The standardized effect size is

often defined as a test statistic divided by
ffiffiffi
n

p
to offset the influence of the sample size

(Cohen, 1992), because the effect size should not be affected by the sample size as it
expresses the degree to whichHu differs fromHi. Thus, the observed standardized effect

size in this case can be defined as

b̂e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b̂R̂�1

b b̂T=n
q

: ð43Þ

Then using the steps as in (40) and (41) for the one-sample t test, the error probabilities of

AAFBFs are defined as

p1 ¼ PðAAFBF0iu\1jHiÞ ¼ Pðb̂e [
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� log b=n

p
jHiÞ ð44Þ

and
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p2 ¼ PðAAFBF0iu [ 1jHuÞ ¼ Pðb̂e\
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� log b=n

p
jHuÞ: ð45Þ

The observed standardized effect size b̂e is usually within the interval [0,1] for equality

constrained hypothesis testing, because b̂e can be interpreted analogously as Cohen’s d or
Cohen’s f

2 (Cohen, 1992), which rarely exceeds 1. First, for a one-sample t test

xi �Nðh;r2Þ, and H1 : h ¼ 0 versus Hu: h, the maximum likelihood estimate of b = h is

b̂ ¼ �x and the standard deviation is r̂b ¼ s=
ffiffiffi
n

p
. Then the observed standardized effect

size (43) becomes b̂e ¼ ðb̂=r̂bÞ=
ffiffiffi
n

p ¼ �x=s which is the same as Cohen’s d. Second, we

consider the F test of H2 : h1 ¼ 0 against Hu : h1 in a simple linear regression model

yi ¼ h0 þ h1xi þ �i, where h0 is the intercept, h1 is the regression coefficient, and

�i �Nð0;r2Þ is the residual. The maximum likelihood estimate of b ¼ h1 is b̂ ¼ rxysy=sx
and the standard deviation is r̂b ¼ ðr=sxÞ=

ffiffiffi
n

p
, where sx and sy are the standard

derivations of xi and yi, and rxy is the correlation coefficient between xi and yi. Note that

r2xy is equal to the coefficient of determinationR2 in the case of the simple linear regression

model. Thus, because the coefficient of determination is equal to R2 ¼ 1� r2=s2y, the

observed standardized effect size in (43) becomes b̂e ¼ ðb̂=r̂bÞ=
ffiffiffi
n

p ¼ rxysy=r ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2=ð1� R2Þp

, which is the square root of Cohen’s f 2 ¼ R2= ð1� R2Þ.
Analogously to the effect size �x=s in the one-sample t test, the observed standardized

effect size b̂e also has sampling distributions under Hi and Hu, which are symmetric

around half of the pre-specified standardized effect size be underHu. Therefore, by settingffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� log b=n
p ¼ be=2, or equivalently

b ¼ exp ð�nb2e=4Þ; ð46Þ

the test for Hi against Hu using the AAFBF has equal error probability:

p1 ¼ Pðb̂e [ be=2jHiÞ ¼ Pðb̂e\be=2jHuÞ ¼ p2: ð47Þ

We now turn to how to specify be in (46).

4.3.3. A new rule for choosing b

Before presenting the new choice of b based on equal error probabilities, we need to deal

with two issues: the range of b for consistent Bayes factors and the specification of

standardized effect size be under Hu. The consistency of the Bayes factor is an important

property in Bayesian hypothesis testing. The Bayes factor forHi : b ¼ 0 againstHu : b 6¼ 0
is consistent if it goes to infinity as sample size goes to infinitywhenHi is true, and goes to 0

when Hu is true. Morey et al. (2016) found that the prior specification based on

frequentist error probabilities may result in inconsistent Bayes factors. Gu et al. (2016)
showed how to resolve this by restricting b to b� 2=n in the one-sample t test. As stated in

Section 4.2, b ¼ ðJ þ 1Þ=n is based on the minimal number of observations to specify

proper priors, and therefore we will always constrain b�ðJ þ 1Þ=n in the AAFBF.

Furthermore, we also suggest constraining b	 1=2 because b[ 1=2 implies that more

than half of the likelihood is used for prior specification, which is undesirable in Bayesian

tests (Berger& Pericchi, 1996). Consequently, the range of b is set to b 2 ½ðJ þ 1Þ=n; 1=2�.

Bayesian informative hypothesis testing 249



To obtain b in (46) for equal error probabilities, the standardized effect size be under
Hu has to be specified. Given any specific be, a fraction b in (46) can be obtained such that
p1 ¼ p2. However, in practice be is unknown. Therefore, a distribution for be is specified
that covers a range of realistic effect sizes (i.e., be 2 ½0; 1� as already discussed). Here we
consider a uniform distribution p�ðbeÞ ¼ Uð0; 1Þ in which every effect size from small to

large is equally likely within the interval [0,1] (Gu et al., 2016). Note that this choice for b

would be the same as when using p�ðbeÞ ¼ Uð�1; 1Þ because the choice of b is

independent of the sign of the effect.

Based on the distribution of effects p�ðbeÞ ¼ Uð0; 1Þ, the third choice for b for equal

error probabilities is given by

bfreq ¼ Ep�ðbeÞ½exp ð�nb2e=4Þ� ¼
Z 1

0

exp ð�nb2e=4Þdbe: ð48Þ

The integration in (48) canbe calculatednumerically (seeGu et al., 2016). Althoughbfreq
cannot always achieve equal error probabilities as we constrain b 2 ½ðJ þ 1Þ=n; 1=2� and
specify p�ðbeÞ ¼ Uð0; 1Þ, Gu et al. (2016) show that this choice results in error

probabilities that are often about equal for the one-sample t test. It was shown that the
difference between the Type I and Type II error probabilities was typically smaller for this

choice than when using the more traditional choices for b. We recommend the choice

bfreq when the sample size is small, because in this case the error probabilities p1 and p2
are relatively large and the difference between p1 and p2 can be quite severe. In the

following subsection, we will discuss the sensitivity of AAFBF based on different choices

of b.

4.4. Sensitivity to prior distributions

In Section 3 we specified the normal prior (26) for b in general statistical models.

However, the adjusted fractional prior for the parameters in a specific model is often not

normally distributed. Thus, when using a normal approximation of the fractional prior, as

in the case of the AAFBF, we may misspecify the prior distribution for the parameters of

interest. For example, if the parameter is a probability which is bounded in [0,1] in a

binomial model, the (implicit) fractional prior has a beta distribution. Therefore the use of

the AAFBF,where the fractional prior is approximated using a normal distribution,may be
different from the non-AAFBF. Thus, it is useful to investigate the sensitivity of the AAFBF

when the fractional prior is far from normally distributed.

O’Hagan (1995) argued that the sensitivity of the fractional Bayes factor depends on

the magnitude of b. This dependence was proved by Conigliani and O’Hagan (2000).

Increasingb reduces the sensitivity to the distributional formof the fractional prior. This is

also the case for the adjusted fractional Bayes factor (AFBF) of Mulder (2014b), because a

larger b implies that more information in the data is used for prior specification, which

makes the distribution of the adjusted fractional prior in the AFBFmore similar to a normal
distribution. This section will use two simple examples to illustrate howmuch difference

there is between theAAFBFusing the normal prior and theAFBFusing the actual fractional

prior. Furthermore, it is shown that the AAFBFs based on the different fractions show

consistent behavior. In these examples, we will only focus on equality constrained

hypotheses because, as explained earlier, the AFBF for inequality constrained hypotheses

is independent of b.
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The first example again concerns the one-sample t test, where data come from

xi �Nðh;r2Þ with unknown mean and variance, and the hypotheses under consideration

are H1 : h ¼ 0 against Hu : h. In the AAFBF, the default prior (26) for b ¼ h is

p�uðbjXbÞ ¼ Nð0; s2=nbÞ, while the actual adjusted fractional prior for a normal mean has
a t distribution p�uðbjXbÞ ¼ tð0; s2=ðnb� 1Þ;nb� 1Þ with mean 0, variance s2=ðnb� 1Þ,
and degrees of freedom nb� 1. It is well known that the t distribution has heavier tails than

thenormal distribution, such that thedensity at themodeb ¼ 0 from thenormal distribution

is larger than the density from the t distribution. Furthermore, as b increases, the degrees of

freedom nb� 1 increase such that the t distribution tð0; s2=ðnb� 1Þ;nb� 1Þ becomes

more similar to thenormal distributionNð0; s2=nbÞ. This implies that for a largerb theAAFBF

where the default prior has a normal distribution performsmore similarly to the AFBF under

the actual fractional prior. This is illustrated in Figure 4.
Figure 4 shows the logarithms of AFBFs and AAFBFs for H1 against Hu for different

observed effect sizes �x=s ¼ 0; 0:1; 0:2, and different fractions bmin, brobust, and bfreq.
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Figure 4. The logarithms of the adjusted fractional Bayes factor with a Student t prior (solid line)

and the AAFBF with a normal prior (dashed line). The black, red, and blue lines correspond to the

logarithms of Bayes factors for observed effect sizes �x=s ¼ 0, 0.1, and 0.2, respectively. [Colour

figure can be viewed at wileyonlinelibrary.com]
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The sample size n varies from 10 to 500. First, as can be seen in Figure 4a, based on bmin
the logarithms of AAFBFs under the normal prior distribution (dashed line) differ

substantially from the logarithms of AFBFs under the t prior distribution (solid line). This

difference does not decrease asn increases becausewhen settingbmin ¼ 2=n the degrees
of freedom in the t distribution are 1, which is independent of n. This suggests high

sensitivity to the functional form of the prior distribution. Second, Figure 4b shows that

based on brobust there is not much difference between the logarithms of AAFBFs and

AFBFs. This implies that the choice of brobust results in less sensitivity to the functional

form of the prior distribution than bmin. Third, Figure 4c shows the logarithms of AAFBFs

and AFBFs under bfreq. As can be seen, with bfreq there is no sensitivity either.

It is interesting to note that Figure 4 also illustrates the consistency of AAFBFs. The

consistency in this example requires that as sample size goes to infinity, the AAFBF for
H1 against Hu approaches infinity when the observed effect size is equal to 0 and goes to

zero when the observed effect size is not equal to 0. As can be seen in Figure 4, for an

observed effect size �x=s ¼ 0 the logarithm of the AAFBF (black lines) in each figure goes

to infinity as sample size n increases. Conversely, the logarithms of the AAFBF based on

an observed effect size of �x=s ¼ 0:1 (red lines) and �x=s ¼ 0:2 (blue lines) diverge to

minus infinity, which implies decisive evidence for the true unconstrained hypothesis as

the sample size goes to infinity.

Next, we consider a binomial model, where data come from x�Binðn; pÞ. The
hypothesesunderevaluationareH2 : p ¼ 0:4 againstHu : 0	 p	 1. SinceH2 isnested inHu,

wecanuse theAAFBF (28) toevaluateH2 againstHu.Givendatax�Binðn; pÞ, theestimateof

b ¼ p� 0:4 is b̂ ¼ x=n� 0:4 and the variance is r̂2
b ¼ xðn� xÞ=ðn2ðnþ 1ÞÞ, and therefore

thenormal adjusted fractional prior (26) isp�uðbjXbÞ¼ Nð0; bxðn� xÞ=ðn2ðnþ 1ÞÞÞ.On the
other hand, following the idea of adjusted fractional Bayes factors, the fractional prior has a

beta distribution, p ¼ bþ 0:4�Betað0:4nb; 0:6nbÞ, which has amean of 0.4 and thus b has
a prior mean of 0. Note that this prior is centred on the focal point of 0.4 in H2.

Figure 5 plots the logarithms of the AFBFs and AAFBFs forH2 againstHu as the sample
sizen increases from10 to 500. The observed data are x ¼ 0:4n; 0:5n; 0:6n. As can be seen
in Figure 5 there is a considerably smaller approximation error of the AAFBFwith respect

to the AFBF in comparison to the first example in Figure 4. Again, the difference is largest

for bmin because this fraction is always smaller than brobust and bfreq. Finally, note that

the AAFBFs show consistent behaviour for this testing problem.

These two examples include the evaluation of equality constrained hypotheses in both

continuous data and discrete data. Although the models used are simple, the results of the

sensitivity study of adjusted fractional Bayes factors can be applied in themultivariate normal
modelwhere theparameters (e.g., the groupmeans in the ANOVAmodel, the coefficients in

the regressionmodel) have amultivariate t distribution, and in themultinomialmodelwhere

the parameters (e.g., the probabilities in contingency tables) have a Dirichlet distribution,

which is the multivariate generalization of the beta distribution. Furthermore, in more

complicated settings such as structural equationmodels andgeneralized linearmodels, it can

be anticipated that the larger b will result in less sensitive AFBFs because this implies that

more data are used to specify the fractional prior such that the normal approximation to the

prior has better performance based on large-sample theory.
Based on the discussion in this section, we propose the following scheme for

specifying b in the AAFBF:


 Choose bmin ¼ ðJ þ 1Þ=n to have a default prior that is based on the idea of a minimal
training sample.
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 Choose brobust ¼ max fðJ þ 1Þ=n; ffiffiffi
n

p
=ng to ensure that the default prior is close to

normal.


 Choose bfreq ¼ R 1

0
exp ð�nb2e=4Þdbe to control the frequentist error probabilities

when testing an equality constrained hypothesis against the unconstrained alternative.

Note thatn and J denote the sample size and the number of independent constraints for all

the informative hypotheses, respectively.

5. Results for empirical examples

Let us revisit the examples introduced in Section 2 to illustrate how theAAFBF can be used

to evaluate informative hypotheses. In the regression model, three parameters with

respect to the regression coefficients are considered in the informative hypothesis

H1 : h1 [ 0; h2\0; h3 ¼ 0. The first step is to specify the prior and posterior
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Figure 5. The logarithms of the adjusted fractional Bayes factorwith a beta prior (solid line) and the

AAFBFwith a normal prior (dashed line). The black, red, and blue lines correspond to the logarithms

of Bayes factors under observed effect sizes �x=s ¼ 0:4n, 0.5n, and 0.6n, respectively. [Colour figure

can be viewed at wileyonlinelibrary.com]
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distributions in (26) and (27),which needs the estimates ĥ and covariancematrix R̂h of the

parameters. These can be obtained by analysing the regression model with the data in

Table 1 using a number of statistical software packages, such as Mplus (Muth�en &

Muth�en, 2010) and R package lavaan (Rosseel, 2012). Note that we do not need to

standardize the three coefficients as they are compared with zero. Analysis of the data in

lavaan gives the maximum likelihood estimates of the parameters, ĥ1 ¼ 11:01,
ĥ2 ¼ �2:85, ĥ3 ¼ �2:03, and the covariance matrix

R̂h ¼
18:236 �0:500 2:812
�0:500 0:043 �0:004
2:812 �0:004 4:481

2
4

3
5:

To obtain the AAFBF forH1 againstH1c , the fraction b has to be specified. Based on the

sample size ofn = 50 and the length of vector b of J = 3 in this example, the three choices

of fraction are bmin ¼ :080, brobust ¼ :141, and bfreq ¼ :216. Running BaIn with the

estimates and covariance matrix of parameters of interest yields the AAFBF displayed in
Table 3. As can be seen, AAFBF11c is greater than 3 under each choice of b, which implies

positive evidence in the data forH1 againstH1c according to Kass and Raftery (1995) rule.

The hypothesis in the repeatedmeasures ANOVAmodel consists of four parameters of

which the estimates are ĥ1 ¼ 22:33, ĥ2 ¼ 22, ĥ3 ¼ 5:78 and ĥ4 ¼ 6:78, and the covariance
matrix is

R̂h ¼
5:18 4:86 2:61 2:86
4:86 5:13 2:90 3:03
2:61 2:90 1:93 1:97
2:86 3:03 1:97 2:39

2
664

3
775:

Given sample size n = 36 and length of vector b of J = 3, three choices of b are

automatically specified in BaIn as bmin ¼ :111, brobust ¼ :167, and bfreq ¼ :255. Based

on these specifications, BaIn renders the AAFBFs AAFBF2u forH2 versusHu and AAFBF20u
for H20 versus Hu. The results are shown in Table 4. As can be seen, AAFBF20u is

independent of b because the AAFBF for inequality constrained hypotheses is invariant to
the choice of b. Then the AAFBF AAFBF220 for H2 versus H20 can be computed by

AAFBF2u=AAFBF20u which is shown in the last row inTable 4. The result of AAFBF220 in the

last row suggests positive evidence in the data for H2 against H20 .

Table 3. Result for regression model example

bmin ¼ :080 brobust ¼ :141 bfreq ¼ :216

AAFBF11c 6.04 4.46 3.55

Table 4. Result for repeated measures ANOVA example

bmin ¼ :111 brobust ¼ :167 bfreq ¼ :255

AAFBF2u 4.60 3.07 2.01

AAFBF20u 0.24 0.24 0.24

AAFBF220 19.2 12.8 8.38

254 Xin Gu et al.



6. Conclusion

This paper has presented a new approximate Bayesian procedure for the evaluation of
informative hypotheses that can be used for virtually any model. The methodology is

based on the prior adjusted default Bayes factor of Mulder (2014b). Furthermore, normal

approximations were used to ensure fast computations. Numerical results showed that

the approximation is close to the prior adjusted fractional Bayes factor. This implies that

the proposed AAFBF provides an accurate quantification of the relative evidence between

informative hypotheses. Furthermore, different choices were given for the fraction b,

similar as in the fractional Bayes factor of O’Hagan (1995). The first choice relies on the

concept of priors containing minimal information. The second choice uses a robustness
argument resulting in a default prior distribution that is close to normal. The third choice is

based on a frequency argument to control the classical error probabilities. The choice can

be made by the user depending on the property which he/she finds most important. By

computing the AAFBF for each choice of bwe get a complete picture howmuch support

there is in the data between two hypotheses when taking into account different

philosophies.

We provide a software package BaIn, with a user manual in Appendix B, to evaluate

the informative hypotheses which only needs the maximum likelihood estimates and
covariancematrix of the parameters of interest, denoted by h in this paper. BaIn computes

the AAFBF for an informative hypothesis against an unconstrained hypothesis. By

computing these quantities for each informative hypothesis against the unconstrained

hypothesis, psychology researchers can straightforwardly compute the relative support

in the data for pairs of informative hypotheses.

The study in this paper contributes to the quantitative techniques in psychology

research in three respects. First, the proposed Bayesian test stimulates psychologists to

translate scientific expectations into informative hypotheses that can be tested with the
data in a direct manner. Second, the approximate Bayesian procedure allows psychol-

ogists to test their informative hypotheses in virtually any statistical model. Third, the

software package allows psychologists to apply the newmethodology to their own data in

an easy manner.
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Appendix A: Adjusting the prior mean for range constraints

The specification of the prior mean for b1 ¼ Ri1h� ri1 in range constrained hypotheses

consists of two steps:

1. Find the range constraints in the hypotheses under investigation. A hypothesis
contains range constraint(s) if there exist lines in Ri1 of which the sum is the zero

vector. If there is more than one range constraint in the same hypothesis, then there

are multiple sets of two or more lines that are added to zero. For example, the

hypothesisH1 : 0\h1\h2\1withRi1 ¼
1 0

�1 1

0 �1

2
4

3
5 and ri1 ¼ ð0; 0;�1ÞT contains

a range constraint, because ðP3
k¼1 Ri1ðk; 1Þ;

P3
k¼1 Ri1ðk; 2ÞÞ ¼ ð0; 0Þ.

2. Specify the prior mean of b1 ¼ Ri1h� ri1 for the range constraints. b1 contains the
elements related to the range constraints and other inequality constraints. The prior

means for those elements of b1 that represent the edges of a range constraint are

specified asb�1 ¼ �PK
k¼1 ri1ðkÞ=2whereK is the number of lines inRi1 for each range

constraint and ri1ðkÞ is the constant for this range constraint,whereas the priormeans
for other elements of b1 are 0, which is not different from that for equality and

inequality constrained hypotheses. For example, for the hypothesis

H1 : 0\h1\h2\1 the edges of the range constraint are b11 ¼ h1 [ 0 and

b13 ¼ 1� h2 [ 0. Thus, b11 and b13 have prior means of .5, whereas b12 ¼ h2 � h1
has a prior mean of 0.

Appendix B: BaIn user manual

The software package BaIn is written in Fortran 90 with the IMSL 5.0 numerical library. It

computes Bayes factors to evaluate any informative hypotheses (Section 2) and compare

pairs froma set of informativehypotheses if they are comparable (Section 3.3). BaIn canbe

freely downloaded from the website http://informative-hypotheses.sites.uu.nl/software/

bain/. The downloaded folder consists of an executable file (BaIn.exe), an input file
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(Input.txt), and an output file (Output.txt). Running BaIn.exe with Input.txt located in

the same folder produces Output.txt. This appendix shows how to fill in Input.txt so that

BaIn.exe can properly read the information. Input.txt mainly contains the estimates and

covariancematrix of parameters h for prior and posterior specification, and the restriction
matrix and constant vector for each informative hypothesis.

The repeated measures ANOVA example in Section 2.2 is used to illustrate the valid

specification of input file. We will first display and then explain the context below from

Input.txt when evaluating the informative hypotheses H2 (11) and H20 (12).

The input text has strictly fixed structure. There are annotation lines starting with #
below which the corresponding information (numbers) has to be given. The first line is

the annotation for the number of structural parameters, number of informative

hypotheses, and sample size, which means we need to write three numbers in the

second line (i.e., 4, 2 and 9). Because the number of structural parameters is 4, four

numbers for the estimates of parameters are presented in line 4, and a 4 9 4 covariance

matrix is written in lines 6–9. Furthermore, because the number of informative

hypotheses is 2, two hypotheses are specified. For the first hypothesis, line 11 specifies

2 and 1 for the numbers of equality and inequality constraints, respectively. Therefore, the
augmented restriction matrix with constant vector for equality constraints has two rows

shown in lines 13 and 14, and one row for inequality constraints in line 16. For the second

hypothesis, the numbers of equality and inequality constraints are 0 and 3 given in line 18,

respectively. As can be seen, there is no line with numbers immediately after line 19

because this hypothesis does not contain any equality constraints. In lines 21–23 the

augmented restriction matrix for three inequality constraints is displayed.
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The estimates and covariance matrix of structural parameters can be obtained from

other statistical software, such as Mplus (Muth�en & Muth�en, 2010) and R package lavaan

(Rosseel, 2012), and the augmented restriction matrix (R0|r0) and (R1|r1) can be

specified based on the informative hypotheses under evaluation. Executing BaIn.exewith
this information renders the relative complexities, fits and Bayes factors for informative

hypotheses under different choices of b in Output.txt. The results for the repeated

measures ANOVA example are as follows:
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The results contain the relative fits and complexities for both equality and inequality

constraints, as well as the Bayes factors under different bs in each hypothesis. For equality

constraints, the relative fit and complexity are the normal posterior and prior densities in

(28), and thus can be directly computed. However, the computation of relative fit and
complexity for inequality constraints is often difficult and needs to sample from the

posterior and prior distributions using Markov chain Monte Carlo methods (Gu et al.,

2014). BaIn uses an efficient algorithm, which requires fewer iterations (displayed below

fit and complexities) in the Markov chains to accurately estimate the relative fit and

complexity. Note that the Bayes factor for informative hypothesis H1 against H2 can be

computed using (34) with BF1u and BF2u.
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