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A B S T R A C T

Background: One of the potential mechanisms linking air pollution to health effects is through changes in DNA-
methylation, which so far has mainly been analyzed globally or at candidate sites.
Objective: We investigated the association of personal and ambient air pollution exposure measures with
genome-wide DNA-methylation changes.
Methods: We collected repeated 24-hour personal and ambient exposure measurements of particulate matter
(PM2.5), PM2.5 absorbance, and ultrafine particles (UFP) and peripheral blood samples from a panel of 157
healthy non-smoking adults living in four European countries. We applied univariate mixed-effects models to
investigate the association between air pollution and genome-wide DNA-methylation perturbations at single CpG
(cytosine-guanine dinucleotide) sites and in Differentially Methylated Regions (DMRs). Subsequently, we ex-
plored the association of air pollution-induced methylation alterations with gene expression and serum immune
marker levels measured in the same subjects.
Results: Personal exposure to PM2.5 was associated with methylation changes at 13 CpG sites and 69 DMRs. Two
of the 13 identified CpG sites (mapped to genes KNDC1 and FAM50B) were located within these DMRs. In
addition, 42 DMRs were associated with personal PM2.5 absorbance exposure, 16 DMRs with personal exposure
to UFP, 4 DMRs with ambient exposure to PM2.5, 16 DMRs with ambient PM2.5 absorbance exposure, and 15
DMRs with ambient UFP exposure. Correlation between methylation levels at identified CpG sites and gene
expression and immune markers was generally moderate.
Conclusion: This study provides evidence for an association between 24-hour exposure to air pollution and DNA-
methylation at single sites and regional clusters of CpGs. Analysis of differentially methylated regions provides a
promising avenue to further explore the subtle impact of environmental exposures on DNA-methylation.
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1. Introduction

Air pollution is now the world's largest single environmental health
risk, leading to approximately 9 million deaths in 2015 alone (16% of
all deaths worldwide) (Landrigan et al., 2017). The death burden re-
lates mostly to the risk of cardiovascular and respiratory diseases
(Brunekreef and Holgate, 2002; Hoek et al., 2013) and to lung cancer
(Loomis et al., 2013). Oxidative damage, inflammation, and endothelial
dysfunction have been suggested as potential underlying mechanisms
(Demetriou et al., 2012; Pettit et al., 2012), though the identity and the
role of potentially involved biological pathways are far from clear. It
has been proposed that systemic effects of air pollution might be de-
tected through assessing variation in epigenetics which can provide
further mechanistic insights in air-pollution-health associations
(Baccarelli et al., 2009; Herceg et al., 2017; Nawrot and Adcock, 2009).
The most studied and best understood epigenetic modification is DNA-
methylation, the covalent addition of a methyl group to a cytosine
primarily in the context of a cytosine-guanine dinucleotide (CpG)
(Bellavia et al., 2013; De Prins et al., 2013).

Early studies have provided indications for an impact of air pollu-
tion on peripheral blood global methylation using repetitive elements in
long (LINE-1) and short (ALU) interspersed nuclear element (Baccarelli
et al., 2009; Bellavia et al., 2013; De Prins et al., 2013). Furthermore,
sequence-specific analyses have yielded evidence for differential me-
thylation in regions of genes such as inducible nitric oxide synthase
(iNOS), tissue factor intercellular adhesion molecule 1, toll-like re-
ceptor 2, interferon-y, and interleukin-6 (Bind et al., 2014; Madrigano
et al., 2012; Tarantini et al., 2009; Wang et al., 2016).

In recent years, several cohort studies have conducted peripheral
blood methylome-wide association studies of air pollution using the
Illumina 450 BeadChip platform (Gruzieva et al., 2016; Panni et al.,
2016; Plusquin et al., 2017). The KORA F3, F4 cohort (N= 2300 in-
dividuals), the Normative Aging Cohort (N= 657 individuals), the
Multi-Ethnic Study of Atherosclerosis (MESA) (N=1207 individuals),
and the EPIC study (N=613 individuals) identified several sets of CpG
sites at which levels were associated with exposure to air pollution (Chi
et al., 2016; Panni et al., 2016; Plusquin et al., 2017). In addition, a
meta-analysis of multiple European and North American studies iden-
tified a set of three CpGs for which methylation levels in children were

related to air pollution exposure (NO2) of the mother during pregnancy
(Gruzieva et al., 2016). To estimate exposure to air pollution, these
methylome-wide studies used either spatially resolved models that
predict long-term (1 year) average levels (MESA, EPIC), or temporally
resolved (2-day, 7-day, and 28-day trailing averages) estimates based
on citywide monitoring data (KORA). The relation between 24-hour
personal measurements of air pollution and peripheral blood methy-
lome-wide changes is currently unknown.

Our study contributes to the existing literature by providing insight
into the relation between 24-hour personal measurements of particulate
matter (PM) smaller than 2.5 μm (PM2.5), PM2.5 absorbance (as a proxy
of black carbon and soot), and ultrafine-particulates (UFP) and genome-
wide changes in the peripheral blood methylome. For comparison
purposes, our study also incorporates modeled long-term average esti-
mates of the same pollutants.

Associations with air pollutants were identified through genome-
wide univariate screening of the peripheral-blood methylome and by
analyses of differentially methylated regions (DMRs). PM from different
pyrogenic sources may have toxicological similarities, we, therefore,
assessed the overlap between our results and a set of CpG sites pre-
viously reported to be associated with cigarette smoke. In addition, to
gain a better understanding of the functional role of differential me-
thylation at air pollutant related CpG sites, we investigated their asso-
ciation with expression data of closely located genes and a set of 13
immune markers measured in the same individuals.

2. Material and methods

2.1. Study population

Our study, which is part of the EXPOsOMICS project (Vineis et al.,
2016), was conducted in four European countries (Italy, Netherlands,
Switzerland, and United Kingdom) from December 2013 to February
2015. We aimed to recruit 40 individuals from each country of whom
half lived on busy roads (road with>10 K vehicles per day; house on
ground/first floor) and the other half on quiet roads (at least 100m
away from busy roads) in order to increase contrast in air pollutant
levels. 157 healthy never-smoking adults between 50 and 70 years old,
with no history of a pulmonary or cardiovascular disease, diabetes, or

Table 1
Characteristics of study participants.

Characteristic Italya Netherlandsa Switzerlanda United Kingdoma Pooledc

Session (N samples)b

1 43 41 48 23 155
2 42 40 44 20 146

Sex (N individuals)
Female 22 34 25 15 96
Male 21 7 23 8 59

Education (N individuals)
Secondary school 30 7 4 11 25
University 13 34 44 12 103

Age (years; median and P25–P75) 60 (56–63) 62 (56–68) 60 (53–68) 63 (57–65) 61 (55–66)
BMI (kg/m2; median and P25–P75) 24.8 (22.5–26.6) 24.6 (22.6–27.1) 25.1 (21.6–26.9) 26.8 (24.3–29.3) 25 (22.5–27.9)
Physical activity (MET; median and P25–P75)d 1.64 (1.5–1.7) 1.65 (1.5–1.7) 1.46 (1.4–1.6) 1.62 (1.5–1.8) 1.6 (1.5–1.7)
Season (N samples)
1: spring (21/3–20/6) 34 18 35 15 102
2: summer (21/6–20/9) 16 31 18 16 81
3: autumn (21/9–20/12) 0 32 7 12 51
4: winter (21/12–20/3) 35 0 32 0 67

a In Italy individuals lived in Turin, in the Netherlands individuals lived in Utrecht and Amsterdam, in Switzerland individuals lived in Basel, and in the United
Kingdom individuals lived in Norwich.

b Personal exposure monitoring and blood collection were performed twice for each individual. Session 1 and 2 were separated by a couple of months (in average
28 days (P25–P75): (20–37) between repeated sample collection).

c Our study population consisted of 157 non-smoking, healthy adults. Of which 144 individuals had two measurements and 13 individuals had one measurement.
In total, 301 samples were analyzed and included in the statistical analyses.

d Physical activity was measured using the accelerometer (Actigraph GT3X+) and expressed in the ‘The Metabolic Equivalent of tasks’ (MET).
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other acute or chronic health conditions participated in our study
(Table 1). Participants performed three personal exposure monitoring
(PEM) sessions in different seasons (summer, winter, and spring/au-
tumn) spread over one year (on average 28 days (P25–P75): (20–37)
between repeated sample collection). During each PEM session, air
pollution measurements and blood samples were collected for each
subject. Subjects performed their own daily routine and filled in a
questionnaire on food intake and time-activity. Blood samples from the
first two PEM sessions were analyzed. Ethics approval for each country
was obtained from local authorized review boards. All subjects signed
an informed consent before participation.

2.2. Exposure assessment

During each PEM session, participants carried a backpack con-
taining air pollution sensors to measure 24-hour personal air pollution
exposure and a belt to measure locations (GPS) and an accelerometer.
Simultaneously, with the personal measurements, 24-hour air pollution
was measured outdoor at the subject's home address.

2.2.1. PM2.5

For the personal measurements, 24-hour PM2.5 was sampled on a
2 μm pore size Teflon filter, using a BGI 400 pump unit and GK 2.05 SH
(BGI Inc., Waltham MA, USA) cyclone. Changes in filter weight (pre and
post-weighted) measured in a central lab were used to assess PM2.5

concentration. Ambient PM2.5 was collected via installing the same
devices as used for personal sampling, directly outside of the subject's
home in the garden or balcony. Filter reflectance was measured to as-
sess PM2.5 absorbance concentration (soot levels) in both personal and
home outdoor monitoring. Details on analytical procedures have been
published previously (Eeftens et al., 2012).

2.2.2. Ultrafine particles (UFP)
Ultrafine particles (UFP) were continuously monitored with a

MiniDiSC (Testo AG, Lenzkirch, Germany). The MiniDiSC operated at a
flow of 1000ml/min measuring particles from 10 to 300 nm at 1-
second intervals. We used the term UFP to refer to the median of par-
ticle number counts from the MiniDiSC over 24-hour PEM session.
Additionally, in The Netherlands and Switzerland ambient UFP was
collected over each 24-hour PEM session at the subject's home facade
using MiniDiSCs. Details on methods and quality control have been
published previously (van Nunen et al., 2017).

2.2.3. Average exposure and long-term modeled exposure
In addition to the main personal exposure metrics, reflecting ex-

posure to air pollution in the 24 h before blood collection, we calculated
the average of the 24-hour personal air pollution measurements across
the three PEM sessions as a proxy for long-term average personal ex-
posure. We also used estimated annual average ambient concentrations
of air pollution for each individual using the land-use-regression (LUR)
prediction models of the ESCAPE study (European study of cohorts for
air pollution effects) and EXPOsOMICS (Eeftens et al., 2012; van Nunen
et al., 2017) as a proxy for long-term modeled ambient exposure. Fur-
ther details are provided in the Supplemental materials ‘1’.

2.2.4. Physical activity
During each PEM session, physical activity was continuously mea-

sured with an accelerometer (Actigraph GT3X+, Pensacola FL, USA),
which was attached to the participant's belt. We estimated energy ex-
penditure in metabolic equivalent of task (MET) values from the raw
acceleration data to express participant's physical activity over 24 h
before blood collection (Ainsworth et al., 2000).

2.3. Biological sample collection

Biological samples were collected in the morning (9:00–11:00) after

each PEM session. Collected blood samples were processed, aliquoted,
and transferred to −80 °C within 2 h.

2.3.1. DNA-methylation measurements
Genome-wide DNA-methylation analyses were performed on per-

ipheral blood samples (buffy coats) using the Illumina Infinium
HumanMethylation450 BeadChip (HM450K), with optimized robotic
pipelines (Ghantous et al., 2014; Morris and Beck, 2015). The HM450K
array measures DNA-methylation at 485,512 cytosine positions across
the human genome (CpG). Samples were randomized within each
country. All laboratory procedures were carried out at the Epigenetics
Group, International Agency for Research on Cancer (IARC, Lyon,
France) according to manufacturers' protocols. CpG sites with>10%
missing methylation values were replaced by the average methylation
level of that particular CpG site. After quality control exclusions,
459,333 CpGs were selected for further analyses. The percentage of
methylation of a given cytosine (β-value) corresponds to the ratio of the
methylated signal over the sum of the methylated and unmethylated
signals. The M-value was calculated as the logit transformation of the β-
value. The M-value was used in the statistical analysis because it is less
heteroscedastic and performs better in differential methylation analysis
(Du et al., 2010). For each CpG, extreme values were considered as
outliers if they fell out of the interquartile range (IQR) (2.5th percentile
−3× IQR, 97.5th percentile +3× IQR) interval and were removed
from further analysis. The maximum percentage of outlier samples was
3.7% in<10% of methylation markers.

DNA-methylation sites were mapped to genes based on data pro-
vided by Illumina (Bibikova et al., 2011) (for the individual probes) and
on the February 2009 human reference sequence database (GRCh37)
using the UCSC genome browser (Meyer et al., 2013; Pedersen et al.,
2013) (both for the individual probes and the DMRs). Functional ana-
lyses of mapped genes that were identified in either the univariate
analysis or DMRs to be associated with air pollution were assessed using
NIH-DAVID bioinformatics resources (Huang et al., 2009).

2.3.2. Gene expression
Total RNA was isolated from stabilized blood specimens (400 μl of

whole blood and 1600 μl of RNA later) using RiboPureTM-Blood
(Ambion), according to the manufacturer's instructions. RNA from 301
samples was hybridized on Agilent 8×60 K Whole Human Genome
microarrays for mRNA. Raw data on pixel intensities were extracted
using Agilent Feature Extraction Software. After quality control exclu-
sion, a total of 23,557 probes were available for the subset (245 of 301)
samples. Further details are provided in the Supplemental materials ‘2’.

2.3.3. Immune markers assessment
A panel of 23 immune markers was measured in serum samples of

all subjects using an R&D Systems (Abingdon, UK) Luminex screening
assay. The panel included interleukins (IL) 1β, IL-4, IL-5, IL-6, IL-8, IL-
10, IL-13, IL-17, IL-25, tumor necrosis factor alpha (TNF-α), eotaxin,
IL1 receptor antagonist (IL1ra), CXC chemokine ligand 10 (CXCL10),
epidermal growth factor (EGF), fibroblast growth factor beta (FGF-β),
granulocyte colony-stimulating factor (G-CSF), melanoma growth sti-
mulatory activity/growth-related oncogene (GRO), chemokine (CeC
motif) ligand 2 (CCL2), CeC motif chemokine 22 (CCL22), macrophage
inflammatory protein-1 beta (MIP-1β), vascular endothelial growth
factor (VEGF), Myeloperoxidase (MPO), and periostin. In addition, C-
reactive protein (CRP) was assessed using the R&D System Solid Phase
ELISA. The panel of immune markers was a priori selected based on an
informal review of the literature on air pollution, asthma, CVD, colon
cancer, and lung cancer. This panel was applied in several studies part
of the EXPOSOMICS project (Vineis et al., 2016).

After quality control assessment, 13 immune markers remained for
further analysis. Immune markers were log-transformed as the dis-
tributions were skewed. Further details are provided in the
Supplemental material ‘3.1’.
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2.4. Data analysis

2.4.1. Univariate mixed-effects model
We used linear mixed effect models setting a random intercept (i)

for each subject, capturing the correlation among measurements within
the same subject (N= 2 observation per subject), (ii) for each micro-
titer plate (N= 37) and (iii) for the position of the sample on the chip
(N=12), capturing technically-induced variation potentially biasing
DNA-methylation measurements. To control for potential confounding,
models were adjusted for sex, age, body mass index (BMI) (kg/m2),
education (primary, secondary school, and university), country (Italy,
Netherlands, Switzerland, and United Kingdom), season and physical
activity expressed in MET-values. In addition, temperature and relative
humidity as proxies of meteorological conditions were included in all
models.

A number of sensitivity analyses were conducted. First, we ran a
minimally adjusted model (only age, sex, and BMI included as covari-
ates) and a model in which country was excluded from the primary set
of covariates. To explore the possible influence of country, we ran our
original model for each country separately and on the pooled set of data
leaving data from one country out one at the time. We explored the
stability of the methylation levels over time by using the random effects
part of the mixed model to estimate intra-class correlation coefficients
(ICC; the proportion of the total variance in the CpG sites that was due
to variation between subjects, and not due to variation between plates,
position on the plates, or error).

We also assessed the association between DNA-methylation and
long-term average personal exposures as well as long-term modeled
exposure to air pollution in two separate models with the same set of
covariates as were considered in the original model. Missing values in
covariate and exposure data were imputed using multivariate imputa-
tion by chained equations (MICE) in R (Buuren and Groothuis-
Oudshoorn, 2011). No covariate had> 4% missing data (except for
MET; 13%). In exposure data, 6.3% of personal PM2.5 and 5.6% of
ambient PM2.5 values were missing. Since the proportion of missing
data was low, only one imputation iteration was used in association
analysis.

White blood cell composition was estimated based on the DNA-
methylation data, using the Houseman algorithm (Houseman et al.,
2012). Potential confounding by white blood cell composition was
evaluated by assessing the association between white blood cell com-
position and the air pollutants using the linear mixed-models as de-
scribed above.

Multiple testing adjustments on the resulting p-values were per-
formed using the false discovery rate method of Benjamini-Hochberg
(BH-FDR) (Benjamini and Hochberg, 1995) at the level of 0.05. Uni-
variate mixed-effects models and imputation were conducted using R
version 3.0.2 (packages: lme4, mice (De Boeck et al., 2011; Buuren and
Groothuis-Oudshoorn, 2011)).

2.4.2. Differentially methylated regions (DMRs)
We identified DMRs using the comb-p package in Python (version

2.7.13) (Pedersen et al., 2012). p-Values for each probe generated by
the univariate linear mixed-effect models (ordered by chromosomal
location) were used as input. We set a window size of 300 bases and
restricted DMRs to those that included at least 2 probes. A Stouffer–-
Liptak–Kechris (SLK) and Šidák corrected p-value < 0.05 was used as
the statistical cut-off for significance. This resulted in regions of ad-
jacent probes with low p-values that stand up to genome-wide correc-
tion. Regions were annotated to nearest gene and CpG island from
human genome version “hg19” using the CruzDB software package
(Meyer et al., 2013; Pedersen et al., 2013). A further description of this
analysis is provided in Supplemental material ‘4’.

2.4.3. Overlap with CpG sites associated with cigarette smoking
We assessed the distribution of CpG sites associated with personal

PM2.5 exposure among a reference set of CpG sites associated with
“exposure to cigarette smoke” (Joehanes et al., 2016) using the gene set
enrichment methodology (Mostafavi et al., 2017; Subramanian et al.,
2005). A p-value < 0.05 was used as the statistical cut-off for enrich-
ment. A further description of these reference sets is provided in the
Supplemental materials ‘5.1’.

2.4.4. Impact of air pollution on immune markers
We assessed the association between air pollution measurements

and immune markers (n= 13) using univariate mixed-effects models.
We included random intercepts for each subject which captures the
correlation among measurements within the same subject and a random
intercept for each microtiter plate (N=9) which captures the nuisance
variation generated in the assessment of the immune markers in the
model. The same set of covariates as we defined in our primary uni-
variate methylation models were used to control for potential con-
founding variables. Moreover, the same sensitivity analysis as we de-
scribed in the methylation analysis was performed to assess the stability
of our findings to variation in the confounder models. A further de-
scription of these analyses is provided in the Supplemental materials
‘3.2’.

2.4.5. Functional readout of the impact of differential methylation at the
identified CpG sites

We assessed interrelationships between methylation levels at sig-
nificant CpG sites identified in the methylation analysis (both uni-
variate and DMRs analysis for each air pollutants separately; 415 CpG
sites), expression of mapped genes (n= 58 transcripts), and the im-
mune markers (n=13) incorporated in this study using the XMWAS
package (Uppal et al., 2017). We set the minimum pairwise correlation
threshold to 0.4 and used a canonical Partial Least Squares regression
(10 components) to generate pair-wise similarity matrices (González
et al., 2012). We used a clustering approach to address the paired
measurements in this analysis. Connections with a correlation< 0.4
were not shown in the figure. The correlation structure between the
three platforms was displayed using the Cytoscape software environ-
ment (Shannon et al., 2003).

3. Results

Baseline characteristics of the study participants are presented in
Table 1. Our study population consisted of 157 non-smoking, healthy
adults for whom 301 blood samples and air pollutant measurements
were collected across two sampling campaigns (144 participants with
two measurements and 13 participants with one measurement). About
61% of participants were female and> 65% of participants had a
university or college degree. The population had a median (P25–P75)
age of 61 (55–66) years.

In Fig. 1, we show the distribution of 24-h average personal and
ambient air pollution measurements by country. Highest air pollutant
levels were measured in Italy, followed by The Netherlands. Lower le-
vels were measured in the United Kingdom and in Switzerland (Fig. 1).

We observed a relatively high correlation between measured am-
bient and personal air pollution concentration measurements, espe-
cially for PM2.5 absorbance (r= 0.74). Correlations between short-term
measured air pollution concentrations and modeled long-term air pol-
lution concentrations were low. Correlations between UFP and the
other air pollutants were weak to moderate (r= 0.18; Fig. S1).

We did not observe any significant association between the air
pollutants and estimated white blood cell type composition (Table S2);
therefore, adjustment for white blood cell type composition was not
used in further analyses.

3.1. Univariate analyses

We identified 13 CpG sites (Mapped to 14 genes) at which
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Fig. 1. Box plots of air pollution concentrations by country. Each panel shows one air pollution marker; personal PM2.5; μg/m3, personal PM2.5 absorbance; m−1,
personal UFP; particles/cm3, ambient PM2.5; μg/m3, ambient PM2.5 absorbance; m−1, and ambient UFP; particles/cm3. Each box represents one country (Italy,
Netherlands, Switzerland, and the United Kingdom). Horizontal lines correspond to medians, and boxes to the 25th–75th percentiles; whiskers extend to data within
the interquartile range times 1.5, and data beyond this are plotted as dots.

Fig. 2. Manhattan plot showing fixed-effect p-values of association between personal PM2.5 measurements and DNA-methylation for fully adjusted model. Each dot
corresponds to the CpG methylation site. Horizontal lines correspond to adjusted p-value (FDR) at 0.05 level. 13 CpG sites above the line were considered statistically
significant.

Table 2
CpG sites significantly (at FDR 5%) associated with personal measurements of PM2.5.

Probe ID (CpG) βa p-Value FDR Chromosome Location Mapped gene (region)b Relation to CpG island Nearby genesc

cg26692818 0.23 4.1E−08 0.02 1 87,108,066 CLCA3P (gene body) OpenSea CLCA3P; LOC105378828
cg02556634 0.06 1.0E−07 0.02 4 6,449,000 PPP2R2C (gene body) OpenSea PPP2R2C
cg03873392 −0.13 2.4E−07 0.03 16 10,801,987 OpenSea TEKT5
cg07669973 −0.12 3.0E−07 0.03 10 135,029,365 KNDC1 (gene body) Island KNDC1
cg02508204 0.20 6.8E−07 0.04 11 39,367,436 OpenSea LINC01493
cg19850855 0.20 7.8E−07 0.04 5 93,333,655 FAM172A (gene body) OpenSea FAM172A
cg20673255 0.14 4.7E−07 0.04 19 5,787,465 DUS3L (gene body) N_Shore DUS3L
cg23468453 0.23 7.1E−07 0.04 10 73,906,532 ASCC1 (gene body) OpenSea ASCC1
cg26559703 0.24 6.1E−07 0.04 10 26,853,625 APBB1IP (gene body) N_Shelf APBB1IP
cg01905633 0.06 6.3E−07 0.04 6 3,849,391 FAM50B (TSS1500) Island FAM50B
cg03408122 0.13 1.3E−06 0.04 22 50,903,314 SBF1 (gene body) Island SBF1
cg05404940 −0.11 1.2E−06 0.04 11 1,446,911 BRSK2 (gene body) OpenSea BRSK2
cg20693615 0.23 1.2E−06 0.04 3 50,234,688 GNAT1 (3′UTR) S_Shelf GNAT1

a The coefficient estimate from a model with M values as the outcome.
b Annotations provided by Illumina (Bibikova et al., 2011).
c Annotation to nearest gene from human genome version hg19 with CruzDB package (Meyer et al., 2013; Pedersen et al., 2013).
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methylation levels were significantly associated (FDR < 0.05) with
personal exposure to PM2.5 (Fig. 2). For ten sites methylation increased
with increasing exposure to PM2.5, while for the remaining sites me-
thylation decreased (Table 2). Between subject intraclass correlation for

the 13 CpG sites was generally low (median 0.13), indicating con-
siderable within individual variation. No clear correlation patterns in
methylation levels were observed between the 13 CpG sites (Fig. S2).
No significant associations were identified with any of the other

Fig. 3. (A) Association between personal PM2.5 and methylation of 13 identified CpG sites for a different set of confounder adjustment including Model 1 (full model)
adjusted for sex, age, BMI, education, season, physical activity, temperature, relative humidity, and country. Model 2 adjusted for sex, age, BMI, and country. Model 3
adjusted for all variables of Model 1 except for country. (B) Association between personal PM2.5 and methylation of 13 identified CpG sites in pooled population and
stratified by country. (C) Association between personal PM2.5 and methylation of 13 identified CpG sites in pooled population and after leaving out countries one-by-
one. In Italy individuals lived in Turin, in the Netherlands individuals lived in Utrecht and Amsterdam, in Switzerland lived in Basel, and in the United Kingdom lived
in Norwich.
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personal or ambient air pollution measurements (Table S3). However,
coefficients for the 13 CpG sites associated with personal PM2.5 in the
models for the other air pollution markers were largely comparable
reaching often nominal statistical significance at the p < 0.05 level,
especially for personal PM2.5 absorbance and ambient PM2.5 (Table S4).

Sensitivity analyses indicated that the 13 associations found for
PM2.5 were robust to the set of confounders considered (Fig. 3A).
Stratified analyses using data from each country separately yielded
consistent effect size estimates in sign and magnitude (Fig. 3B). How-
ever, estimated strength of association was generally weakened upon
stratification and revealed some heterogeneity across countries.
Overall, of the 13 CpG sites identified in the pooled analysis, all were
significantly associated to personal PM2.5 in the Dutch population, 9 in
the Basel population, 4 in the Turin population, and one in the Norwich
population. The weakening of the strength of the associations can
partially be attributed to the smaller sample size due to stratification.
To account for this we ran a further sensitivity analysis excluding data
from each country one-by-one. Results confirmed consistent effect size
estimates with some evidence of stronger effects in The Netherlands for
some of the CpGs (Fig. 3C).

Nominally significant (p < 0.05) effect estimates from a model that
included the long-term average personal PM2.5 exposure were corre-
lated (r= 0.77; Fig. S3) to the nominally significant effect estimates
from our main model based on 24-h personal measurements for PM2.5,
though none of the associations identified in this analysis were genome-
wide significant. No correlation was observed with nominally sig-
nificant effect estimates from a model that included long-term modeled
exposure to PM2.5 (r= 0.02; Fig. S3) and no genome-wide significant
associations were identified.

3.2. Differentially methylated regions (DMRs)

We identified 162 DMRs (SLK-Sidak p-value < 0.05) of which 69
DMRs (containing 74 genes and 404 CpG sites) were significantly as-
sociated with personal exposure to PM2.5 (Table 3), 42 DMRs (42 genes
and 266 CpG sites) with personal exposure to PM2.5 absorbance, 16
DMRs (21 genes and 109 CpG sites) with personal exposure to UFP, 4
DMRs (4 genes and 12 CpG sites) with ambient exposure to PM2.5, 16
DMRs (19 genes and 142 CpG sites) with ambient PM2.5 absorbance
exposure, and 15 DMRs (20 genes and 125 CpG sites) with ambient
exposure to UFP (Table S5 and Supplementary excel-file Tables E1, E2).
Overlap of annotated genes across significant DMRs was observed be-
tween personal PM2.5 and personal PM2.5 absorbance (n=11), and
between personal PM2.5 absorbance and ambient PM2.5 absorbance
(n=10) while for other combinations overlap was less pronounced
(Table S5). Two of the significant CpGs identified in our univariate
analysis (Mapped to KNDC1 and FAM50B) were located within the
DMRs that were associated with PM2.5.

3.3. Overlap with CpG sites associated with cigarette smoking

Cigarette smoke is a source of particulate exposure with some si-
milar characteristics to ambient air pollution (but contributing to a
much higher exposure). To assess the overlap between our results and a
set of CpG sites previously reported to be associated to air pollution
(Joehanes et al., 2016), we conducted an approach comparable to gene
set enrichment (Subramanian et al., 2005). Hypermethylated CpG sites
that were associated with cigarette smoking were significantly enriched
(p-value < 0.01; Fig. S4A) among the most strongly hypermethylated
CpG sites in our analysis for PM2.5. A similar enrichment was observed
for smoking-related hypomethylated CpG sites in our analysis
(p < 0.01; Fig. S4B). Further description of these results is provided in
the Supplemental materials ‘5.2’.

3.4. Impact of air pollution on immune markers

We identified a significant association between ambient exposure to
PM2.5 absorbance and serum concentration of CCL22 (β=0.11;
FDR=0.03; Fig. S5A/B). The other pollutants yielded no significant
association with any of the immune markers. Some indications of an
association (FDR < 0.2) were observed between personal exposure
measurements of UFP and serum concentration of two additional im-
mune markers [CXCL10 (β=0.16; FDR=0.15) and G.CSF (β=0.32;
FDR=0.15)], which are nevertheless noteworthy as comparable ef-
fects were observed for these markers in an independent population
(PISCINA) that was part of the EXPOsOMICS project (Fig. S5A). The
observed associations in that study were in the same direction as in our
main study and significant (at FDR < 0.2) for G.CSF (0.25;
FDR=0.17) but not for CXCL10 (0.34; FDR=0.28). The observed
associations for CCL22, G.CSF, and CXCL10 were robust in a series of
sensitivity analyses (Fig. S6). Further description of these results is
provided in the Supplemental materials ‘3.3’.

3.5. Functional readout of the impact of differential methylation at the
identified CpG sites

Fig. 4 shows the interrelations between CpG sites significantly as-
sociated to personal PM2.5 (both in DMR (69 CpGs) and univariate
analysis (13 CpGs)), expression of mapped genes, and the immune
markers based on a similarity matrix generated using PLSR (González
et al., 2012). Though modest in absolute correlation (absolute range of
correlation was between 0.4 and 0.73), Fig. 4 illustrates a high degree
of interrelatedness between the selected set of markers: 240 markers
including 177 CpG sites (annotated to 56 unique genes), 55 expression
of mapped genes (annotated to 41 unique genes), and 8 immune mar-
kers. We identified two clusters of considerably correlated markers and
a very small weakly interrelated third cluster, which were primarily
driven by the direction of the correlation. Cluster one and two con-
tained 134 and 100 markers (nodes), respectively. Further information
about clusters and interrelatedness is provided in Excel-file Table E4.

4. Discussion

Our study provides evidence that measurements of personal ex-
posure to particulate air pollution, collected in a panel of healthy par-
ticipants from four European countries, were associated with DNA-
methylation changes in specific regions of the genome. Correlation
between methylation at these CpG sites and a set of immune markers
measured in peripheral blood was generally moderate, as was the cor-
relation with the expression of genes mapped to the identified CpG
sites. Several immune markers were independently associated with
some of the air pollution measurements. Our results do not replicate
findings from previous studies of short-term air pollution and blood
DNA-methylation (Bellavia et al., 2013; Panni et al., 2016; Wang et al.,
2018), though no consistent patterns have been observed in these stu-
dies. As we observed relatively low ICCs for the CpG sites that were
associated to the PM2.5 measurements, our study points towards (partly
reversible) short-term variation of DNA methylation in peripheral blood
in response to daily variation in PM2.5 levels. Due to the ubiquitous
presence of air pollution in our environment, studying the temporal
behavior of the DNA methylome in response to exposure to air pollution
in observational studies is a challenge.

A handful of experimental studies among both animals and humans
do indicate a short-term response to exposure to air pollution. In one
experimental study, demethylation of the interleukin-2 gene of lymph
node T cells was observed in vivo 20min after antigen presentation
(Bruniquel and Schwartz, 2003). Furthermore, in a bioassay conducted
by (Ding et al., 2017) methylation of LINE-1, iNOS, p16CDKN2A, and
APC, in both lung tissue as well as in peripheral blood, changed after
four hours of exposure to PM2.5. (Bellavia et al., 2013) observed global
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Table 3
DMRs associated with personal measurements of PM2.5 at an SLK-Sidak p value of< 0.05.

DMR Chromosome Start End No. of probes SLK-Sidak p value Mapped genea Relation to CpG island

1 1 26,231,347 26,231,585 2 9.1E−03 STMN1 Shore
2 1 167,408,509 167,409,199 7 5.6E−03 CD247 Island
3 1 240,656,217 240,656,668 5 4.4E−03 MIR1273E;GREM2 Island
4 1 153,599,479 153,600,157 8 1.8E−02 S100A13
5 1 92,414,221 92,414,911 8 3.1E−03 BRDT Island
6 1 244,952,269 244,952,395 3 3.2E−02 COX20
7 1 154,474,344 154,474,801 5 2.7E−02 SHE;TDRD10 Island
8 1 153,234,037 153,234,388 4 1.3E−02 LOR
9 10 135,029,294 135,029,462 3 4.5E−02 KNDC1 Island
10 10 14,051,636 14,052,029 6 9.6E−03 FRMD4A
11 10 70,321,554 70,321,960 6 2.1E−03 TET1 Shore
12 11 1,413,145 1,413,316 3 2.2E−02 BRSK2 Shore
13 11 1,456,891 1,457,347 4 7.0E−03 BRSK2
14 11 1,463,541 1,463,663 4 5.8E−04 BRSK2 Shore
15 11 19,736,150 19,736,334 5 1.6E−03 LOC100126784;NAV2 Shore
16 11 1,474,588 1,474,842 3 3.4E−02 BRSK2 Shore
17 12 95,945,120 95,945,385 4 9.2E−03 USP44 Shore
18 12 33,205,702 33,205,863 3 1.8E−02 PKP2
19 12 4,918,848 4,919,231 5 2.3E−02 KCNA6 Island
20 12 71,552,188 71,552,570 4 7.3E−03 TSPAN8
21 12 46,319,990 46,320,111 4 3.1E−02 SCAF11
22 12 47,219,626 47,220,093 11 1.5E−02 SLC38A4
23 12 6,649,733 6,649,995 4 9.3E−03 IFFO1 Island
24 15 83,240,550 83,240,792 7 2.5E−02 CPEB1
25 15 57,510,284 57,510,576 3 1.0E−02 TCF12
26 16 85,551,478 85,551,749 3 2.1E−02 GSE1 Island
27 16 84,691,498 84,691,851 3 2.8E−02 KLHL36 Island
28 16 89,408,076 89,408,568 6 3.0E−02 ANKRD11 Island
29 16 67,686,832 67,687,120 3 2.0E−03 CARMIL2 Island
30 17 33,759,484 33,760,250 10 7.9E−06 SLFN12
31 18 74,799,250 74,799,573 4 1.1E−03 MBP Island
32 19 45,448,959 45,449,302 5 4.7E−02 APOC4-APOC2
33 19 2,888,943 2,889,257 3 3.0E−03 ZNF556 Island
34 19 55,660,514 55,660,626 5 2.3E−02 TNNT1
35 19 57,742,112 57,742,445 9 1.1E−06 AURKC Island
36 19 23,941,207 23,941,768 7 6.2E−04 ZNF681 Island
37 19 11,649,462 11,649,702 5 2.2E−02 CNN1
38 19 45,975,694 45,976,196 5 4.2E−02 FOSB Island
39 19 38,281,047 38,281,560 5 9.4E−04 ZNF573 Island
40 2 239,983,744 239,984,106 4 5.6E−03 HDAC4
41 2 207,506,480 207,507,164 9 3.0E−02 FAM237A Island
42 2 38,892,846 38,893,252 6 4.8E−04 GALM
43 2 20,870,812 20,871,402 6 6.2E−07 GDF7 Island
44 2 64,868,515 64,868,711 2 1.9E−03 SERTAD2
45 2 242,763,794 242,763,983 2 8.7E−03 NEU4 Shore
46 2 236,506,413 236,506,614 2 2.3E−02 AGAP1 Island
47 2 20,870,087 20,870,363 3 1.1E−04 GDF7 Island
48 20 26,190,328 26,190,355 3 1.9E−02 MIR663AHG Island
49 22 38,092,643 38,093,208 11 4.7E−03 TRIOBP
50 3 39,321,710 39,322,104 3 3.6E−02 CX3CR1
51 3 116,163,694 116,164,243 6 6.1E−04 LSAMP
52 4 74,847,646 74,848,017 8 1.2E−04 PF4 Island
53 4 7,657,070 7,657,709 5 6.7E−03 SORCS2
54 4 174,429,263 174,429,542 6 4.0E−02 SCRG1 Shore
55 4 46,995,203 46,995,744 7 1.9E−03 GABRA4 Island
56 5 157,079,312 157,079,521 5 2.1E−02 SOX30 Island
57 5 140,719,008 140,719,303 4 3.1E−03 PCDHGA2;PCDHGA1 Island
58 5 1,962,311 1,962,555 3 9.1E−04 CTD-2194D22.4
59 6 31,938,984 31,939,547 12 5.5E−04 DXO;STK19 Shore
60 6 3,849,190 3,849,703 21 7.0E−04 FAM50B Island
61 6 30,038,791 30,039,901 39 3.2E−11 RNF39 Island
62 6 529,098 529,342 3 1.5E−02 EXOC2
63 6 126,080,132 126,080,724 4 3.9E−04 HEY2 Island
64 7 158,905,317 158,905,537 3 1.9E−02 VIPR2 Island
65 7 56,515,510 56,516,256 11 4.7E−02 LOC650226 Island
66 8 599,963 600,556 6 2.8E−06 ERICH1 Island
67 8 82,644,373 82,644,769 8 3.3E−02 CHMP4C Island
68 8 26,722,496 26,722,966 5 2.1E−02 ADRA1A Island
69 9 136,149,908 136,150,033 3 3.1E−03 ABO Island

a DMRs were annotated to nearest gene from human genome version hg19 with CruzDB package (Meyer et al., 2013; Pedersen et al., 2013).
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DNA demethylation after 130min of exposure to fine concentrated
ambient particles (Bellavia et al., 2013). (Chen et al., 2016) observed
significant reduction of both global and site-specific methylation after
48 h of exposure to PM2.5 (Chen et al., 2016). (Jiang et al., 2014) re-
ported significant changes in DNA methylation 6 h after exposure to
diesel exhaust (Jiang et al., 2014).

In addition to experimental evidence, several observational studies
identified significant associations between short-term changes in me-
thylation and exposure to air pollution. (Panni et al., 2016). observed
demethylation to be associated with average air pollution levels in the
two days before blood sampling (though a stronger signal was observed
with longer trailing averages (Panni et al., 2016), while (Wang et al.,
2018) observed demethylation within 12 h of exposure to PM2.5 (Wang
et al., 2018).

Combined, results from our and other studies suggest that the im-
pact of air pollution on the blood methylome is likely subtle and re-
quires high-quality exposure assessment and considerable statistical
power to be studied.

Strengths of our study include the application of a common study
protocol and standardized operating procedures applied across four
European countries. DNA-methylation, gene expression, and immune
markers were each analyzed in a single laboratory and blinded dupli-
cate samples were included for quality assurance. State-of-the-art per-
sonal exposure measurements of air pollution were conducted to reduce
the impact of measurement error and we repeated measurements
within a time period of a year to cover seasonal variation. High-quality
exposure assessment is resource intensive. Our study was, therefore,
necessarily modest in the number of individuals that could be included
in the study, which is a limitation. Another limitation of our study was
the fact that we were unable to identify an independent dataset in
which we could replicate the methylation findings of this study.
However, we did assess the robustness of the identified signals within
our dataset as much as possible.

In addition to univariate regression analysis, we applied two alter-
native approaches (gene set enrichment and DMR) that maximized the
information we could derive from our study. Both approaches overcome
statistical limitations in the assessment of perturbations by combining
information from multiple CpG sites rather than assessing sites one by
one. Enrichment of smoking-related CpG sites among the CpG sites most
strongly associated with air pollution points towards a shared biologic
pathway of the effects of cigarette smoke and air pollution on the
epigenome. This is of interest due to overlap between health outcomes
that have been related to tobacco smoking and air pollution (Wang
et al., 2015). We recently discovered a similar overlap in an analysis of
another air pollutant (NOx) and the peripheral blood transcriptome
(Mostafavi et al., 2017). We focused on DMRs in our analysis because
CpG sites mostly function in groups to regulate gene expression, rather
than independently (Breton et al., 2017). Similar to gene set enrich-
ment, our DMR analysis combined information from multiple CpG sites
rather than assessing sites one by one and therefore also increased the
statistical power to detect subtle perturbations in methylation patterns,
leading to a much richer signal in our DMR analysis than in our uni-
variate regression. Two CpG sites that were independently significantly
associated to PM2.5 were located within a DMR, which increased the
credibility of these two associations.

Acknowledging that the 450 K array chip was designed to inter-
rogate the methylation status of CpG sites in proximity to genes, a
potential approach to gain insight into the biological role of DMRs and
single CpG sites associated with air pollution involves mapping them to
nearby genes and conducting functional enrichment analysis on these
genes (Wright et al., 2016). Functional analysis of the identified CpG
sites at the mapped genes using the NIH-DAVID bioinformatics re-
sources (Huang et al., 2009) did not provide any insight into potentially
affected biologic pathways, likely due to the limited number of CpG
sites found in this study. Further functional interpretation of the iden-
tified CpG sites requires moving towards regulatory enrichment

Methyla�on 
Gene expression 
Immune markers

Fig. 4. Illustration of the interrelations between the three omics platform: Methylation (CpG sites significantly associated with personal PM2.5 (both in DMR (69
CpGs) and univariate analysis (13 CpGs)); Green rectangle), immune markers (Blue rectangle) and gene expression (expression of mapped genes; Red rectangle).
Three rings show different clusters (Cluster1 contained 134 omics markers and cluster 2 and 3, 100 and 6 omics markers, respectively. The connecting lines show
association (correlation) between different markers (with absolutes range between 0.4, 0.73) Positive in Red; negative in Blue). The color intensity and the thickness
of the lines both indicate the strength of the association (thicker lines indicate a correlation higher than 0.6). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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analysis, incorporating not only mapping of nearby genes, but also
acknowledging trans-acting effects of DNA-methylation on gene ex-
pression (Wright et al., 2016). In this study, we observe some evidence
for such complex interactions between DNA-methylation, gene ex-
pression, and immune markers by showing the correlations between
these markers. The existence of three correlation clusters could point
towards shared biological function, though further analyses are re-
quired to confirm this interpretation.

24-hour personal exposure measurements of PM2.5 were more
strongly associated with DNA-methylation than long-term modeled
exposure estimates of PM2.5. Plusquin et al., using a much larger study
among healthy adults, reported a similar absence of significant asso-
ciation of DNA-methylation in response to long-term PM2.5, NOx, NO2

(Plusquin et al., 2017). These observations could be an indication that
acute changes in methylation due to exposure to air pollution identified
in this study did not reflect a long-term association between air pollu-
tion and DNA-methylation. However, long-term modeled exposure es-
timates could also be much more affected by measurement error which
would have reduced the statistical power to detect significant associa-
tions.

24-h personal exposure measurements of PM2.5 were also more
strongly associated with DNA-methylation than ambient measurements
of PM2.5 and measurements of the other air pollutants. Measurements of
ambient PM2.5 and PM2.5 absorbance were likely more strongly affected
by measurement error. The weaker effect for personal PM2.5 absorbance
is surprising as PM2.5 absorbance has been reported to be a very good
marker for exposure to traffic-related particles (Cyrys et al., 2003).
Direct comparison of the results for PM2.5 with those for personal UFP
measurements is complex as these pollutants not only differ in particle
size but also in the way they were assessed (mass weight versus counts).
Differences in observed associations might, therefore, be due to mea-
surement error but might also have a biological interpretation related to
particle size. Further work is required to clarify this issue.

The optimal way to summarize continuous UFP measurements in an
aggregated metric is still an ongoing discussion (van Nunen et al.,
2017). Exposure to UFP appears to be primarily determined by peaks
and therefore summarizing exposure into a mean or median might not
optimally reflect the impact of 24-hour exposure to UFP on the human
system (van Nunen et al., 2017). The collected continuous UFP mea-
surements provide opportunities for further explorations of sensitive
time windows and the contribution of outdoor versus indoor sources to
the total UFP exposure received (van Nunen et al., 2017).

In this study, we assessed exposure in the 24 h before blood draw.
Limited information is available on the time-scale on which environ-
mental factors are expected to have an impact on changes in DNA-
methylation. Therefore the time-period over which exposure should be
assessed to maximize the power to assess potential associations is not
known. In a study by (Wang et al., 2016, 2018), personal monitoring of
PM2.5 was conducted 3 days before scheduled blood draw using a mi-
croPEM device. Based on this data different time lags were calculated,
of which the 0–24 h time lag was most closely related to differential
methylation. This result provides some support for the time window
included in our study.

Even though we did not observe any associations between exposure
to air pollution and estimated cell type composition, we repeated the
main analysis for PM2.5 correcting for the estimated cell type compo-
sition by including seven cell types (“Monocytes”, “B”, “CD4T”, “NK”,
“CD8T”, “Eosinophils”, “Neutrophils”). Results did not change sub-
stantially (Table S6) and were strongly correlated (r= 0.92) with the
effect estimates from our original model.

Our study also provides evidence for perturbation of serum con-
centration of three immune markers (CCL22, CXCL10, and G.CSF) in
association with air pollution (CCL22 with ambient PM2.5 absorbance;
CXCL10 and G.CSF with personal UFP). So far, these immune markers
have not been reported in association with air pollution markers in
other studies. However, previously published reports on the association

between short-term air pollutants and systemic inflammation in human
study populations were inconsistent (Hassanvand et al., 2017; Larsson
et al., 2013; Steenhof et al., 2014).

5. Conclusion

In conclusion, this study provide evidence for an association be-
tween 24-hour exposure to air pollution, in particular measurements of
PM2.5, and DNA-methylation both at single CpG sites and DMRs.
Analysis of DMRs provides a promising avenue to further explore the
subtle impact of environmental exposures on DNA-methylation.
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