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a b s t r a c t

Microbial subtyping is the most common approach for Salmonella source attribution. Typically, attri-
butions are computed using frequency-matching models like the Dutch and Danish models based on
phenotyping data (serotyping, phage-typing, and antimicrobial resistance profiling). Herewith, we crit-
ically review three major paradigms facing Salmonella source attribution today: (i) the use of genotyping
data, particularly Multi-Locus Variable Number of Tandem Repeats Analysis (MLVA), which is replacing
traditional Salmonella phenotyping beyond serotyping; (ii) the integration of case-control data into
source attribution to improve risk factor identification/characterization; (iii) the investigation of non-
food sources, as attributions tend to focus on foods of animal origin only. Population genetics models
or simplified MLVA schemes may provide feasible options for source attribution, although there is a
strong need to explore novel modelling options as we move towards whole-genome sequencing as the
standard. Classical case-control studies are enhanced by incorporating source attribution results, as in-
dividuals acquiring salmonellosis from different sources have different associated risk factors. Thus, the
more such analyses are performed the better Salmonella epidemiology will be understood. Reparame-
trizing current models allows for inclusion of sources like reptiles, the study of which improves our
understanding of Salmonella epidemiology beyond food to tackle the pathogen in a more holistic way.

© 2017 Elsevier Ltd. All rights reserved.
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1. Introduction

1.1. Scopes of source attribution

Source attribution of Salmonella, as well as of other zoonotic
pathogens of public health significance, is a subject area of epide-
miological research that is gaining momentum by incorporating a
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growing number of methodological approaches and data types.
Source attribution is defined as the process of inferring the relative
contributions of different animal, food and/or environmental
sources of infection to the human disease burden of a given path-
ogen. Therefore, the main goal of a Salmonella source attribution
analysis is typically the one of partitioning human salmonellosis
cases over a number of putative sources of infection representative
of the epidemiological context in question. Quantitative estimates
of the relative contributions of different sources to human salmo-
nellosis morbidity is crucial for risk managers to set priorities for
public health interventions, as well as to enable the measurement
of the impact of such interventions. A detailed overview of defini-
tions, terminology, and methodologies for source attribution has
been presented elsewhere (Pires, 2013; Pires et al., 2009). While
animals are usually defined as reservoirs or amplifying hosts, the
environment, food and direct contact with animals are examples of
transmission routes; meat, dairy, eggs, etc. are examples of expo-
sures (vehicles), whilst consumption of undercooked pork, unpas-
teurized dairy products, etc. are examples of risk factors. In practice,
however, the term “source” is used generically to refer to any point
across the transmission chain, from the original reservoir up to the
risk factor ultimately allowing for transmission of the pathogen to
humans.

There are several methodological approaches for source attri-
bution (Pires et al., 2009), and the best approach always depends on
the data availability and research question to be addressed (Pires,
2013). These approaches are listed as follows:

� Microbial subtyping (top-down approach), e.g. Barco et al.
(2013).

� Comparative exposure assessment (bottom-up approach), e.g.
Pintar et al. (2016).

� Case-control/cohort studies (traditional epidemiological
approach), e.g. Doorduyn et al. (2006).

� Analysis of outbreak investigations (meta-analytical approach),
e.g. Domingues et al. (2012); King et al. (2011).

� Intervention studies (“learning through experience” approach),
e.g. Sears et al. (2011); Tustin et al. (2011); van Pelt et al. (2004);
Vellinga and Van Loock (2002).

� Expert elicitations (“last resort”, when no empirical data is
available), e.g. Butler et al. (2015); Havelaar et al. (2008).

For Salmonella, source attribution based on microbial subtyping
is the approach that is mostly applied (Barco et al., 2013) and will
therefore be the focus of this paper. This approach requires sub-
typing of a representative collection of Salmonella isolates from
human cases and their putative sources of infection. Historically,
Salmonella subtyping for the purposes of source attribution has
mainly been based on phenotyping, i.e. serotyping, phage typing of
the common serotypes (e.g. S. Typhimurium and S. Enteriditis), and
antimicrobial resistance profiling. Yet, in recent years, genotyping
and particularly Multiple-Locus Variable Number of Tandem Re-
peats Analysis (MLVA) has become the fashion for Salmonella sub-
typing beyond serotyping (de Knegt et al., 2016; Mughini-Gras
et al., 2014c). Source attribution thus relies on the comparison of
distributions of pathogen subtypes between human and source
isolates through mathematical models that can infer probabilisti-
cally the likely sources of the human subtypes based on the dis-
tribution of these subtypes in the sources, assuming a
unidirectional transmission pathway from sources to humans.
Source attribution models can also incorporate epidemiological
(meta-)data, as well as data on prevalence, food consumption,
import-export flows, etc. as to better inform the attributions.
Moreover, source attribution models do not usually address the
contribution of anthroponotic sources (e.g. a-, pre- or post-
symptomatic carriers), thereby focusing on zoonotic transmission
only. This is because humans are usually “the endpoint” in the
transmission of the pathogens attributed, i.e. humans do not
represent reservoirs (amplifying hosts) for these pathogens, so a
negligible contribution of human-to-human transmission can be
assumed a priori. In any case, the contribution of anthroponotic
sources to human salmonellosis morbidity (i.e. secondary trans-
mission) can be best assessed in case-control studies (see Section
2.2.) by looking at the differences in exposure to gastroenteritis
patients between cases and controls. For instance, the population
attributable fraction (PAF) of “contacting people with gastroenter-
itis outside the household” has been estimated at 7% (95% confi-
dence interval 3e9%) for human salmonellosis (Mughini-Gras et al.,
2014b).
1.2. Brief overview of source attribution models

Looking at the “publication rate” of PubMed-indexed papers on
Salmonella source attribution (as given by the number of PubMed-
indexed papers on source attribution over the total number of
PubMed-indexed papers on Salmonella, Fig. 1), it is revealed that
this started increasing only by the second half of the nighties. In
1999, the so-called Dutch model was published (van Pelt et al.,
1999). The Dutch model and its adaptations have been described
in detail elsewhere (Barco et al., 2013; Mughini-Gras et al., 2014a,
2014b, 2014c; Mughini-Gras and van Pelt, 2014; Mullner et al.,
2009b; Vieira et al., 2016). Briefly, in its simplest form, this model
estimates the expected number of human cases caused by subtype i
originating from source j, denoted as lij, as follows:

lij ¼
rijP
jrij

� ei

where rij is the relative frequency of subtype i in source j and ei is
the observed frequency of human cases of subtype i. A sum over
subtypes gives the total number of cases attributable to reservoir j;
95% confidence intervals can be estimated by bootstrapping. While
the Dutch model always provides attributions in a rather propor-
tional and straightforward way, it makes the arguable assumption
of equal impact of the different subtypes and sources to the human
population. However, this assumption has been mitigated in
several modified versions of the Dutch model by incorporating
modelled subtype-specific prevalences (instead of just relative
frequencies of subtypes) and food consumption weights, including
both the overall amount of food consumed and its likelihood to be
consumed raw/undercooked by the population (Mughini-Gras
et al., 2014a, 2014b, 2014c; Mughini-Gras and van Pelt, 2014).

As showed in Fig.1, one of themainmilestones in the timeline of
source attribution research is certainly the development of the
Danish or Hald model, which was published in 2004 (Hald et al.,
2004). This model put a spotlight on the microbial subtyping
approach and it relies on the same type of data as the Dutch model,
but it uses a Bayesian approach to attribute stochastically human
cases to putative sources of infection, while accounting for differ-
ences in subtypes and sources to cause human infection. The
Danishmodel assumes that the expected number of human cases of
subtype i, denoted as li, is given by:

li � Poisson
�X

j

lij

�

lij ¼ pij �Mj � qi � aj

where pij is the prevalence of subtype i in source j,Mj is the amount



Fig. 1. Number of PubMed-indexed papers on source attribution over the number of PubMed-indexed papers on Salmonella per 1000 papers.
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of food consumed from source j, qi is the serotype-dependent factor,
which putatively accounts for differences in the success of subtype i
to infect humans (e.g. survivability, virulence and pathogenicity or
population partial immunity), and aj is the source-dependent fac-
tor, which putatively accounts for the ability of sources j to act as a
vehicle for Salmonella (e.g. differences in pathogen load, magnitude
of exposure, source characteristics influencing pathogen growth,
preparation/handling procedures, differences in sensitivity of sur-
veillance programs and randomness of sampling schemes). Poste-
rior distributions for the parameters of interest are obtained by a
Markov Chain Monte Carlo (MCMC) simulation. There have also
been several adaptations of the Danish model depending on the
data and epidemiological context in question. The most successful
and portable adaptation is perhaps the one proposed in 2009 by
Mullner et al. (2009a), the so-called “modified Hald model”, which
greatly improved model identifiability and helped handling un-
certainty in data of poorer quality, as well as data for pathogens
other than Salmonella. Although the Danish model and its modified
versions may sometimes be problematic in terms of computational
requirements, they have been widely applied to Salmonella source
attribution in many parts of the world, including several European
countries (David et al., 2013a, 2013b; de Knegt et al., 2016; Hald
et al., 2004, 2007; de Knegt et al., 2015; Mughini-Gras et al.,
2014a, 2014b; Pires and Hald, 2010; Ranta et al., 2011; Wahlstrom
et al., 2011), the United States of America (Guo et al., 2011), Australia
(Glass et al., 2016) and New Zealand (Mullner et al., 2009a).

A common trait between the Dutch and Danish models is that
they are both frequency-matching models, meaning that they rely
on the one-to-one matching of the same subtypes in humans and
sources. While this means that those human cases infected with
subtypes found only in humans cannot be attributed to sources, the
resulting non-attributable fraction may give some clues about how
many cases may be attributed to sources other than those included
in the models. However, the extent of such non-attributable frac-
tion strongly relies on the discriminatory power of the subtyping
method used (de Knegt et al., 2016), making it more likely to reflect
the characteristics inherent in the subtyping method itself rather
than a directly interpretable piece of outcome.
A much different source attribution modelling framework is the

one provided by population genetics models, such as the asym-
metric island model (Wilson et al., 2008). The asymmetric island
model is a coalescent-based model derived from a generalization of
the Wright's island model that incorporates a Bayesian approach
for reconstructing the genealogical history of the isolates using
their allelic profiles. By accounting formutation, recombination and
migration events, this model can cope with the occurrence of
(combinations of) novel alleles in isolates from humans that are not
found in sources (Wilson et al., 2008).

As shown in Fig. 1, from 2011 onwards, there has been an ex-
plosion of published articles on Salmonella source attribution. This
happened after a period of fervent activity on source attribution
(2004e2009), also thanks to the work-package 28 of the Med-Vet-
Net (European Network of Excellence for Zoonoses Research)
project, as several PhDs and researchers were appointed in
different countries to work on this topic. It was during this period
that most source attribution tools were developed, calibrated and/
or perfectioned (see, for example, David et al., 2013a, 2013b; Hald
et al., 2007; Mullner et al., 2009a, 2009b; Pires and Hald, 2010;
Pires et al., 2009). While all these advancements have definitely
paid off in terms of scientific output, novel paradigms are being
offered to source attributors.

2. Three new paradigms for Salmonella source attribution

There are at least three major challenges facing Salmonella
source attribution today, which can be summarized as follows:

1. The use of genotyping data for Salmonella source attribution,
particularly the use of MLVA data, a typing scheme that is
increasingly being used in Salmonella surveillance and outbreak
investigation.

2. The integration of epidemiological data into source attribution
to improve the identification and characterization of risk factors
and transmission routes for human Salmonella infection.
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3. The investigation of the role of non-food sources of human
salmonellosis, as typically Salmonella source attribution focuses
only on foods of animal origin.

This paper will critically review the current state-of-knowledge
for each of the aforementioned three points, trying also to delineate
the bottlenecks and ways forward for the years to come.

2.1. Salmonella source attribution using MLVA

MLVA is amongst the most popular genotyping methods used in
public health surveillance and outbreak investigation of Salmonella
(Hopkins et al., 2011; Lindstedt et al., 2013; Torpdahl et al., 2007).
The principle behind MLVA is a concurrent analysis of loci with
tandem repeated DNA sequences (Variable Number of Tandem
Repeats, VNTRs). An MLVA profile is usually expressed as a series of
numbers of length n representing the number of copies of repeated
sequences at each of a set of n loci under analysis. In Europe, two
standardized protocols are being used for MLVA of S. Typhimurium
(scheme STTR9/STTR5/STTR6/STTR10/STTR3) (Larsson et al., 2009)
and S. Enteritidis (scheme SE9/SE5/SE2/SE1/SE3) (Hopkins et al.,
2011), both based on a five (VNTR) loci scheme. For practical and
economic reasons, MLVA is replacing traditional phage typing in
routine surveillance activities for Salmonella in several countries
(Lindstedt et al., 2013). Tracing the sources of (sporadic) human
salmonellosis using MLVA data in the frequency-matching models
(i.e. the Dutch and Danish models) is problematic due to the high
variability of the MLVA profiles and the instability over space and
time of the genetic targets investigated (Hopkins et al., 2011;
Lindstedt et al., 2013). This makes the required one-to-one
matching of identical subtypes in humans and sources quite hard
to attain. Therefore, other modelling options need to be explored,
and at least two research teams in the Netherlands and Denmark
have performed this.

Using surveillance data from the Netherlands in 2005e2013,
Mughini-Gras et al. (2014c) attributed human S. Typhimurium/
4,[5],12:i:- and S. Enteritidis infections to four putative food-
producing animal sources (pigs, cattle, broilers, and layers/eggs)
using modified versions of the Dutch and Hald models based on
serotyping and phage typing data in comparison with the asym-
metric island model supplied with MLVA data. This allowed the
authors to corroborate whether MLVA-based Salmonella source
attribution using the asymmetric island model is able to provide
results comparable with those of the frequency-matching models
based on phenotyping information. As all the models provided very
similar results and no particular warning was prompted by their
empirical cross-validation, it was concluded that MLVA-based
source attribution using the asymmetric island model is a feasible
option, at least for S. Typhimurium/4,[5],12:i:- and S. Enteritidis,
and that enough information is contained in the five VNTR loci to
let this model make sound inferences. In general, the main
advantage of using such a population genetics approach is that it is
best suited to deal with genetic targets with a high discriminatory
level, without having to make any (somewhat questionable)
adjustment to such level to meet the requirements of the
frequency-matching models. This means that through the model-
ling of evolutionary relations among isolates, it is possible to infer
the sources of all these isolates, including those from humans
whose subtypes were not observed in the sources. However, the
use of the asymmetric island model with fast-changing and highly
variable genetic markers (i.e. MLVA) is also somewhat questionable,
as this is a modelling framework originally designed for use with
more conserved and slowly evolving genes in the core-genome, as
reflected by Multi-Locus Sequence Typing (MLST). MLST has
emerged in recent years as the standard for phylogenetic studies of
several bacterial species by characterizing isolates using DNA
sequence analysis of internal fragments of (usually) five to seven
housekeeping genes (Feil, 2004). For each housekeeping gene, the
sequences are given as alleles, and the allele numbers at the
different loci constitute the allelic profiles of the strains; sequences
differing at even a single nucleotide are assigned to different alleles.
While the large number of alleles that could potentially occur at
each locus has the potential to identify many different allelic pro-
files, the discriminatory power of MLST is naturally limited by the
slowness of accumulating nucleotide changes in the housekeeping
genes. This is why MLST is well suited to reconstruct the evolu-
tionary history and family relationships of relatively distant strains,
but it is less suited to discriminate among closely related strains in,
e.g., outbreak situations. In contrast, MLVA profiles change rapidly
enough to identify bacterial clones, e.g. to distinguish epidemic
strains from the endemic ones, offering a much higher discrimi-
natory alternative by indexing the variation in the number of tan-
dem repeats found mostly in noncoding genome segments. There
are therefore three fundamental differences between MLVA and
MLST: (1) the genetic information expressed in their profiles (allele
numbers for MLST vs. repeat copy numbers for MLVA), (2) the
magnitude and speed at which these profiles are expected to vary
(limited and slow for MLST vs. large and fast for MLVA), and (3) the
possible interpretation of such variations (evolutionary changes for
MLST vs. transitory clonal expansions for MLVA). Because of these
differences, it is apparent that MLVA data are not ideal for use with
the asymmetric island model.

Since a single mutation or recombination event may delete or
add either a single or multiple repeats at once, but the nature of the
underlying mechanisms is unknown, modelling MLVA profiles in
terms of number of different loci, rather than different repeats, is
most advisablewhen using the asymmetric islandmodel (Mughini-
Gras et al., 2014c). Moreover, mutation and recombination events
can generate either single- or multiple-locus variants, with
recombination potentially masking mutation and vice versa. To
discern recombination from mutation, the asymmetric island
model looks for the allele in question elsewhere in the data set,
assuming that such recombination event will result in an allele that
is already present in the pool. However, the frequency of recom-
bination is relatively low in Salmonella, and VNTR variation is more
likely to arise from mutation events such as slipped strand mis-
pairing. It follows, therefore, that the asymmetric island model's
assumption that an allele observed previously at a given locus in a
different allelic profile is due to recombination is the specific
assumption that does not apply to MLVA in the same way as it does
to MLST.

Moreover, currently the model cannot deal with serotypes other
than S. Typhimurium/4,[5],12:i:- and S. Enteritidis, and since
different loci are used for S. Typhimurium/4,[5],12:i:- and S.
Enteritidis, a model for each serotype is to be run. Finally, it appears
that sample size can really be a limiting factor in the successful
application of the asymmetric island model using MLVA. Indeed, an
Italian study on the sources of S. Typhimurium and its monophasic
variant (Barco et al., 2015) used a much smaller data set (268 hu-
man and 325 animal isolates) than the one used in the Dutch study
(4214 human and 1294 animal isolates) (Mughini-Gras et al., 2014c)
and noticed considerable uncertainty around the attributions for
sources other than the largest one (i.e. pigs), and only when
expanding the dataset with bootstrapping, this uncertainty was
reduced to reasonable levels. An alternative to the asymmetric is-
land model could be the use of the STRUCTURE algorithm
(Pritchard et al., 2000), one of the first model-based clustering
methods for using multilocus genotype data to infer population
structure and to assign individuals to populations. The model as-
sumes the existence of k populations, each of which is represented
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by the allele frequencies at each locus; isolates are then probabi-
listically assigned to these populations, or jointly to two or more
populations if their genotypes are admixed. The application of this
model for source attribution represents a special case in which a
model without admixture is usually specified, meaning that the
source isolates are assumed to belong to only one of the k pop-
ulations (i.e. sources in this case). The allelic frequencies at each
locus are then determined for each of the k sources, allowing for the
estimation of relative probabilities for the attributable isolates (e.g.
human cases) to originate from each of the k populations based on
the allelic profiles in question and the specific allelic frequencies at
each locus. The model does not assume a particular mutation
process, and it can be applied to most genetic markers. Yet, its
specific application on Salmonella MLVA data remained to be
explored. In Denmark, de Knegt et al. (2016) developed a modelling
framework for Salmonella source attribution based on the Hald
model using a combination of serotyping, MLVA, and antibiotic
resistance profiling data. Full and simplified MLVA schemes were
assessed in relation to model fit and robustness of results. Simpli-
fied MLVA schemes were composed by five (S. Enteritidis and S.
Typhimurium), four, and three VTNR loci (S. Typhimurium) to
create MLVA profiles with varying discriminatory power, thereby
allowing them to group under broader subtypes, as the standard
five VTNR loci scheme seemed to be too discriminatory for the
purposes of source attribution. The simplified MLVA schemes were
based on the assumption that because an unstable locus changes
more frequently than a stable one, a larger variety in VNTRs can be
expected therein, meaning that this would be more discriminatory
as it produces a larger number of different subtypes. Grouping
those subtypes that vary greatly at an unstable locus (e.g. STTR6 or
STTR5), while keeping the stable ones, reduces the number of
subtypes, i.e. decreases the discriminatory level, as observed in the
scheme STTR9/STTR10/STTR3. Conversely, grouping subtypes based
on a stable locus, while allowing more unstable loci to vary, results
in the formation of more subtypes, thus retaining the discrimina-
tory potential, as for the scheme STTR5/STTR10/STTR3. After per-
forming several simulations, the Danish authors concluded that the
MLVA schemes STTR5/STTR10/STTR3 for S. Typhimurium and SE9/
SE5/SE2/SE1/SE3 for S. Enteritidis could be best used in a Hald
model with an “adjusted discriminatory level” for use with MLVA
data (de Knegt et al., 2016). This approach has the advantage that
relies on a well-known (and largely empirically supported) model.
Moreover, the results do not seem to deviate from what can be
obtained by phage typing, and in the situations where they do,
model fit indicates that this is related to a higher specificity of MLVA
(de Knegt et al., 2016). Conversely, the main disadvantages are that
the simplification of the MLVA schemes entails some degree of loss
of information, and that a number of cases cannot be attributed to
sources, with such number being expected to be larger in scenarios
with a higher discriminatory level, as perfect matches between
subtypes in humans and sources are generally difficult to find. This
also means that this approach is far less scalable to even more
discriminatory typing schemes, such as extended MLST or Whole-
Genome Sequencing (WGS), which are increasingly being applied
and are highly likely to become the standard for pathogen sub-
typing in the near future.

WGS reveals the complete genetic make-up of an organism. The
biggest advantage of WGS for a pathogen like Salmonella is that its
typing can be performed at a much higher resolution than with
traditional molecular typing methods, including MLVA. The appli-
cation of WGS in Salmonella source attribution is still largely un-
explored. The reasons for this are debatable, but include the
generally scarce availability of modelling tools suitable for high-
throughput data that are produced at a rate much faster than that
with which source attribution modelling is able to cope, as well as
the issue of defining the optimal discrimination level for WGS-
based source attribution as to reflect the level of clonality and de-
gree of host association of Salmonella. This requires a way to define
host associations per locus, Single Nucleotide Polymorphism (SNP),
or groups of loci (i.e. genome-wide MLST) or SNPs. Innovative ap-
proaches, like machine-learning methods, need to be developed in
order to make full use of WGS in source attribution studies.

2.2. Combining case-control and source attribution data

Typically, case-control studies can only trace back the sources of
human Salmonella infections up to the level of risk factor (e.g.
consumption of specific food items, contact with animals, etc.),
which, however, may not point to the original reservoirs because of,
e.g., cross-contamination and alternative transmission pathways.
On the other hand, source attribution based onmicrobial subtyping
allows us to determine the relative contributions of different res-
ervoirs to the human disease burden, i.e. to attribute the human
cases up to the beginning of the transmission chain. Combining
source attribution and case-control data would allow us to recon-
struct the underlying transmission pathway, from a given reservoir
up to the point of risk factor, providing a more complete epide-
miological picture than when performing separate analyses. This
type of combined analysis is called “source-assigned case control
study” and has been explored for both Campylobacter (Mossong
et al., 2016; Mughini Gras et al., 2012) and Salmonella (Mughini-
Gras et al., 2014b), showing that the outcome of classical case-
control studies can be greatly enhanced by incorporating source
attribution data. The principle is to first attribute human cases
included in a case-control study to sources using the microbial
subtyping approach in order to determine their likely sources, and
then to compare the exposures of the attributed cases with those of
the controls to identify source-specific risk factors for infection, as
well as to infer the underlying transmission pathways.

In 2002e2003, a large case-control study was performed in the
Netherlands to identify risk factors for human salmonellosis
(Doorduyn et al., 2006). About ten years later, the same data were
re-analysed in combination with source attribution (Mughini-Gras
et al., 2014b). In total, 414 sero- and phage-typed human Salmonella
isolates included in the case-control study were attributed to pigs,
cattle, broiler, or layers using a modified version of the Dutch
model. The posterior source probabilities obtained from the source
attribution analysis were then used as weights in a logistic
regression analysis to study risk factors for salmonellosis of pig,
cattle, broiler or layer origin, using a total of 3165 controls as
common comparison group (Mughini-Gras et al., 2014b). In this
way, several (source-specific) risk factors were identified (Fig. 2).
For instance, eating habits like consuming raw or undercooked
meat, as well as substandard kitchen hygiene practices like
changing kitchen rags less often than once a week or not using a
chopping board for raw meat only, were specific risk factors for
infection with salmonellas originating from the meat-producing
animals under study, that is, pigs, cattle and broilers. Moreover,
consuming raw or undercooked eggs and products thereof were
specific risk factors for layer/egg-associated salmonellosis. Non-
food related risk factors, such as playing in sandpits, contact with
people with gastroenteritis outside the household, and contact
with canine puppies were significant risk factors for infection with
Salmonella strains originating from reservoirs other than layers.
Moreover, occupational exposure to farm animals appeared to be a
specific risk factor for cattle-associated salmonellosis. Altogether,
these findings suggest that the Salmonella strains originating from
the meat-producing animals are somewhat more likely to be
transmitted to humans via non-foodborne routes as well. Finally,
while using antibiotics was a risk factor for pig- and cattle-



Fig. 2. Schematic exemplification of the source-specific risk factors for human salmonellosis, adapted from Mughini-Gras and van Pelt (2014).
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associated salmonellosis, using proton-pump inhibitors increased
the risk of acquiring salmonellosis attributable to any reservoir. The
authors therefore concluded that individuals acquiring salmonel-
losis from different reservoirs have different associated risk factors,
suggesting that salmonellas may infect humans through various
transmission pathways depending on their original reservoirs, with
a clear distinction between a predominantly foodborne pathway
for salmonellas originating from layers and a substantial non-
foodborne component in the epidemiology of salmonellas origi-
nating from meat-producing animals (Mughini-Gras et al., 2014b).

It is conceivable that the more such combined studies will be
conducted, the more the epidemiology of salmonellosis will be
elucidated (as risk factors can be identified in amore nuancedway),
although regrettably there is still the tendency to perform case-
control studies for human salmonellosis independently of source
attribution and vice versa.

2.3. Investigating non-foodborne sources of human salmonellosis

While the contribution of the main food-related sources to
human salmonellosis is relatively well documented, limited
knowledge exists on the contribution of non-food related animal
sources like pets, including exotic pets. This is mainly due to the
lack of representative and routinely collected data for animals that
do not produce food, as well as for animals that are not considered
in the current legislation for Salmonella control in livestock. As a
consequence, a part of the complex Salmonella epidemiology is left
unexplored in most source attribution studies.
A recent study (Mughini-Gras et al., 2016) quantified and

examined trends in reptile-associated salmonellosis in the
Netherlands during a 30-year period (1985e2014). The authors
adapted the Dutch model to accommodate for non-food sources,
similar to the adaptations of the Hald model to allow for the in-
clusion of the environment as a potential source for human
Campylobacter infections (Mullner et al., 2009a,b). It was estimated
that 2% of all sporadic/domestic human salmonellosis cases re-
ported in the Netherlands during the study period (n ¼ 63718)
originated from reptiles, and that there was a significantly
increasing trend (þ19% each year) in reptile-associated salmonel-
losis cases. Besides this increase, a shift toward adulthood in the age
groups at highest risk was observed, with the proportion of reptile-
associated salmonellosis cases among the �4 year olds decreasing
by 4% annually and the proportion of cases aged 45e74 years
increasing by 20% each year. The authors hypothesized that these
findings may be the effect of the increased number and variety of
reptiles that are nowadays kept as pets, calling for further attention
to the issue of safe reptile-human interaction as to target and
reinforce current standing recommendations (Mughini-Gras et al.,
2016). This provides an example of the benefit of considering also
non-food sources in Salmonella source attribution analyses, as the
significant increase and changing epidemiology of reptile-
associated salmonellosis seen in the Netherlands would have
otherwise probably passed undetected or, even worse, become
apparent when the situation would have already been out of
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control. In situations where no typing data is available, which is
often the case for sources like reptiles, quantitative microbial risk
assessment (QMRA) may provide an alternative to perform source
attribution using a bottom-up approach. QMRA models incorpo-
rating prevalence for the different subtypes in the different sources
are difficult to build because of the data required as input and
because the number of hazards to be considered increases expo-
nentially with the number of types included, so the use of high
discriminatory (geno)typing methods in QMRA requires a para-
digm shift with respect to the current risk assessment framework
which is essentially based on phenotyping information.

3. Concluding remarks

While current population genetics models and ad hoc adjust-
ments of the discriminatory power of common genotyping data for
Salmonella like MLVA seem to provide feasible options to perform
source attribution, there is still a strong need to explore novel
modelling options for (molecular-based) Salmonella source attri-
bution. This is particularly relevant given the current “WGS revo-
lution” that will increase the acquisition of high-throughput data in
the years to come. Obviously, the use of newmodels and data types
requires a careful evaluation of the changes observed in the trends
over the years as to assess if they represent actual changes in the
epidemiology of Salmonella or mere artefacts due to the different
methods used.

It is clear that the outcome of classical case-control studies can
be enhanced by incorporating source attribution data, as in-
dividuals acquiring salmonellosis from different reservoirs have
different associated risk factors, which in turn indicates that sal-
monellas may infect humans through various transmission path-
ways depending on their original reservoirs. It is believed that the
more such studies will be performed the better the epidemiology of
Salmonella will be understood. In this regard, the proposed
approach provides a relatively simple way to analyse and re-
analyse case-control study data in light of the results of source
attribution for the benefits of the outcomes of both types of
analyses.

It has been shown that reparametrizing current source attri-
bution models for Salmonella allows for the inclusion of non-food
sources, such as reptile pets, but in principle also dogs and cats,
horses, etc., and even non-animal sources like vegetables and the
environment itself, provided that these data are available. This has
the ability to broaden our understanding of the non-foodborne side
of human salmonellosis as to tackle the disease in a more holistic
way.
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