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Abstract. We consider the problem of extending the drawing of a sub-
graph of a given plane graph to a drawing of the entire graph using
straight-line and polyline edges. We define the notion of star complexity
of a polygon and show that a drawing I'y of an induced connected sub-
graph H can be extended with at most min{h/2, 8 +log,(h) + 1} bends
per edge, where (3 is the largest star complexity of a face of 'y and h
is the size of the largest face of H. This result significantly improves the
previously known upper bound of 72|V (H)| [5] for the case where H is
connected.We also show that our bound is worst case optimal up to a
small additive constant. Additionally, we provide an indication of com-
plexity of the problem of testing whether a star-shaped inner face can
be extended to a straight-line drawing of the graph; this is in contrast
to the fact that the same problem is solvable in linear time for the case
of star-shaped outer face [9] and convex inner face [12].

1 Introduction

In this paper we study the problem of extending a given partial drawing of a
graph. In particular, given a plane graph G = (V| E), i.e. a planar graph with a
fixed combinatorial embedding and a fixed outer face, a subgraph H of G and
a planar straight-line drawing I'y of H, we ask whether I'y can be extended
to a planar straight-line drawing of G (see Fig.1). We study both the decision
question and the relaxed variation of using bends for the drawing extension.

It is known that a drawing extension always exists even if H = (V, ), where
each edge is represented by a polyline with at most 120n bends, here n = |V [14].
This bound was improved to 3n+2 by Badent et al. [1]. These upper bounds are
asymptotically optimal as there are instances that require 2(n) bends on Q(n)
edges [1]. In terms of the size of the pre-drawn graph H, Chan et al. [5] showed
that a drawing extension with 72|V (H)| bends per edge is possible for a general
subgraph H.

In order to pinpoint the source of multiple necessary bends for the drawing
extension we define the notion of a -star (resp. S-outer-star), a polygon where
(3 bends are necessary and sufficient to reach the kernel of the polygon (resp.
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Fig. 1. An embedding of a plane graph alongside a fixed drawing of an inner face (blue)
as a star-shaped polygon (gray). (Color figure online)

infinity). We study the upper bounds on the number of bends in a drawing
extension as a function of 3. We show that a drawing I'; of an induced connected
subgraph H can be extended with at most min{h/2, 5 + log,(h) + 1} bends per
edge if each face of H is represented in 'y as a [-(outer)-star and h is the size
of the largest face of H (Theorem 7). We show that this bound is worst case
optimal up to a small additive constant. We observe that in case both G and H
are trees a closer to optimal bound of 1+ 2[|V(H)|/2] bends per edge had been
provided by Di Giacomo et al. [7].

In case a planar embedding is not provided as a part of the input, it is NP-
hard to test whether a straight-line drawing extension exists [15]. The problem
is not known to belong to the class NP, as a possible solution may have coordi-
nates which can not be represented with a polynomial number of bits [15]. Very
recently, Lubiw et al. have studied a related problem of drawing a graph inside
a (not-necessarily simply connected) closed polygon [11]. They showed that this
problem can not be shown to lie in NP by the mean of providing vertex coor-
dinates, as these are sometimes irrational numbers. They have also shown that
the problem is hard for the existential theory of reals (3R-hard) even if a planar
embedding of the graph is provided as a part of the input. This problem would be
equivalent to partial graph drawing extendability, if the polygon would be open,
however this situation has not been investigated. Bekos et al. [2,3] have studied
the problem of extending a given partial drawing of bipartite graphs, where one
side of the bipartition is pre-drawn. They have shown that this problem lies in
NP if each free vertex is required to lie in the convex hull of its pre-drawn neigh-
bors. Regarding drawing extensions with bends, it is NP-hard to test whether a
drawing extension with at most k bend per edge exists [2,8].

Despite all the hardness results, it is long known that a straight-line drawing
extension always exists if H is the outer face and T'yy is a convex polygon [4,
16]; and H is a chordless outer face and 'y is a star-shaped polygon [9]. An
existence of a straight-line drawing extension can be checked by the mean of
necessary and sufficient conditions in case where H is an inner face and I'y is
a convex polygon [12]. As an extension of this work, and with the general goal
to better understand the boundary between the easy and the difficult cases, we
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investigated the question of testing whether a straight-line drawing extension
exists for an inner face H drawn as a star-shaped polygon I'y;. We observe
that one can not test whether such an extension exists by just checking each
vertex individually, as in the case for a convex inner face, and show that there
exists an instance such that the region where a vertex of V(G) \ V(H) can lie
to allow for a straight-line drawing extension is bounded by a curve of degree
29U HD (Theorem 8).

Contribution and Outline. We start with the necessary definitions in Sect. 2.
In Sect. 3, we show that a star-shaped drawing of an inner face can be extended
with at most 1 bend per edge. Section 4 is devoted to the study of generalizations
of stars. In Sect. 4.1, we start with a generalization of star-shaped polygons to
[-star and [-outer-star polygons (3 is referred to as star complexity), and show
that the number of bends per edge necessary for a drawing extension of an inner
face H with a star complexity ( is not bounded in terms of 5 (Theorems 2 and
3). Motivated by the proof of Sect. 3 we define the notion of planar-g-star and
planar-S-outer-star (this 3 is referred to as planar star complexity) and show that
the planar star complexity determines the number of bends per edge in a drawing
extension (Theorems 4 and 5). In Sect. 4.2, we study the planar star complexity
of an arbitrary simple polygon and the relationship between the star complexity
and the planar star complexity of a polygon. In particular, we show that every
[-star with n vertices is a planar- + d-star where ¢ < log,(n) (Theorem 6). In
Sect. 5, we state the implications of Sect. 4 to the drawing extension of (induced)
connected subgraphs. In particular, we prove that a drawing I'y; of an induced
connected subgraph H can be extended with at most min{h/2, 3 +log,(h) + 1}
bends per edge if the star complexity of 'y is 3 and h is the size of the largest
face of H (Theorem 7). Last but not least, in Sect. 6 we provide an indication
of complexity of the problem of testing whether a star-shaped inner face H
admits a straight-line drawing extension. In particular, we prove that there exists
an instance such that the region where a vertex of V(G) \ V(H) can lie to
allow a straight-line drawing extension is bounded by a curve of degree 22(H0D
(Theorem 8). All omitted proofs can be found in the full version [13].

2 Preliminaries

Basic Geometric Terms. The segment (resp. line) induced by two points a and
b is designated by s(a,b) (resp. l(a,b)). We denote a curve between a and b by
c(a,b). We refer to the ray along I(a,b) starting at a and (not) containing b as
r(a,b) (q(a,b)). For a polyline ¢, #¢ designates the number of bends on c.

Let P be a polygon. Two points a, b see each other if the open segment s(a, b)
does not intersect the boundary of P. A simple polygon P is convez if each pair
of points inside P see each other. A simple polygon P is star-shaped or a star if
there is a non-empty set of points K called the kernel inside the polygon such
that any point of the kernel can see any vertex of the polygon. By assuming that
the vertices of P are in general position, we have that a kernel of P contains an
open ball of positive radius.
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Graphs and Drawings of Graphs. A drawing T’ of a graph is a function that
assigns to each vertex a unique point in the plane and to each edge {a,b} a
curve connecting the points assigned to a and b. A drawing is straight-line (resp.
k-bend) if each edge is drawn as a segment (resp. a polyline with at most k
bends). A graph is planar if it has a planar drawing, i.e. a drawing without
edge crossings. A planar drawing I' subdivides the plane into connected regions
called faces; the unbounded region is the outer and the other regions are the
inner faces. The cyclic ordering of the edges around each vertex of I' together
with the description of the outer face of I' characterize a class of drawings with
the same combinatorial properties, which is called an embedding of G. A planar
graph G with a planar embedding is called plane graph. A plane subgraph H of
G is a subgraph of G together with a planar embedding that is the restriction of
the embedding of G to H. A plane graph G is (internally) triangulated if each
(inner) face of G is a triangle. For a given cycle, a chord is an edge between two
non-consecutive vertices of the cycle.

Let G be a plane graph and let H be a plane subgraph of G. Let 'y be
a planar straight-line drawing of H. We say that the instance (G,T'y) admits
a k-bend (resp. straight-line) extension if drawing I'y can be completed to a
planar k-bend (resp. straight-line) drawing ' of the plane graph G. We refer
to k as the curve complezity of the drawing I'g.

For a given graph G = (V, E), let N(v) = {w € V | {v,w} € E} be the
neighbors of v € V. For a plane graph G and a face F, let Np(v) = N(v) N F =
(w1, ws, ..., w) be the sequence of neighbors of v that belong to F. For v outside
F, let the list Np(v) be ordered clockwise around F' with w; chosen such that
the area delimited by the cycle C' composed of edges {v,w;}, {v,w,} and the
clockwise path H from w; to wy in F does not contain F' (see Fig. 2a). A vertex
z € V\ V(F) lying in the cycle C is said to be enclosed by vertex v.

Let F be a face of G and T'g its planar drawing. The feasibility area of
a vertex v € V \ V(F) is the set of all possible positions of v, such that the
implied straight-line drawing of F' U {v} can be extended to a planar straight-
line drawing of V(F) U {v} U Q,, where Q, is the set of all vertices enclosed
by v.

3 Star-Shaped Polygons

Let G be a plane graph with n vertices, F' be a chordless face of G with h vertices
and I'r a star-shaped drawing of F'. In this section we prove that the instance
(G,T'r) admits a 1-bend-extension. While the proof itself is rather straight-
forward, we still present it here as it motivates a specific way to generalize
star-shaped polygons by considering planarity issues.

In our construction we place vertices V' \ V(F') one by one with the property
that a vertex is placed only after all vertices enclosed by it have already been
placed. This property is achieved by a canonical ordering [10] that lists vertices
starting from the face F. The following lemma can be proven along the same lines
as the existence of a usual canonical ordering [10]. We say G \ F is triangulated
if each face of G is triangulated with the exception of the face F'.
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Lemma 1. Let G = (V,E) be a plane graph, |V| = n, and let F be an inner
face with h vertices of G, such that G \ F is triangulated. There is an ordering
J = (v1,...,vn—p) of the vertices of VAV (F'), such that for each j, 1 < j < n—h,
the following holds: (1) the graph G; induced by the vertices {vi,...,v;} U F is
biconnected, (2) G; \ F is internally triangulated, (3) v;y1 lies in the outer face
of G;, (4) vertices N(vjt1) N V(G;) belong to the outer face of G;.

v

w3

(a)

Fig. 2. (a) Yellow area contains vertices enclosed by v. (b) Proof of Theorem 1. (Color
figure online)

Theorem 1. Each instance (G = (V, E),I'r) where I'p is a star-shaped drawing
of a chordless inner face F' allows a 1-bend-extension.

Proof. We start with triangulating G by placing a vertex in each non-triangular
face and connecting it to the vertices of the face. We delete the added vertices and
edges after the triangulated graph has been drawn. We refer to the new graph
as G as well. Let J = (vy,...,v,_p) be an ordering of the vertices V' \ V(F) as
defined by Lemma 1. For 1 < j <n—h = |V(G)| — |V(F)]|, let G; be the graph
as defined by Lemma 1 and let F; be the outer face of G;. Additionally we set
Go=Fy=PF.

We prove the theorem by induction. Assume that for a 0 < j < n—h we have
a drawing of G, such that Fj forms a star-shaped polygon P; with kernel K.
This is true for j = 0. Let vj41 be the next vertex according to J and let p
be a point of the kernel of the already drawn star-shaped polygon P;. For each
w € Np,;(vj41) consider the ray ¢(p,w). Due to P; being star-shaped and due
to property (4) of Lemma 1, they all lie outside of P;. Since G; is biconnected,
vj11 has at least two neighbors, i.e. £ = [Np, (vj41)| > 2.

Now we consider the ray r’ that is the bisector of the clockwise angle formed
by the rays ¢(p, w1 ) and ¢(p, we), see Fig. 2b. If we place v;41 sufficiently far away
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from p on ', v;11 sees ¢(p,w1) and ¢(p, wy), i.e. Jax € ¢(p, w1),ar € q(p,we),
with s(vj41,a1) N P; = 0 = s(vj41,ar) N Pj. This is due to the fact that the
angles between ¢(p,w1) and r’ and between ¢(p,w,) and ' are strictly smaller
than 7.

Since vj41 is between ¢(p, w1) and q(p, we), v;+1 also sees a point a; on the
ray ¢(p,w;), i =2,...,0—1. For each i € {1,...,¢} we draw the edge {w;,v;11}
using the segments s(w;,a;) and s(a;, vj+1). Observe that the points a1,. .., as
should be chosen so that they appear around v;1 in a counterclockwise order.

The lines I(p,w1) and I(p, wy) separate the plane into four quadrants. The
new kernel K1 of the polygon Pj;, is the intersection of the old kernel K; and
the quadrant containing v;,1. Since the kernel K; was an open set, p could not
have been on the boundary of K, therefore K, is a non-empty open set. 0O

We observe that, according to the proof of Theorem 1, the class of the poly-
gons that allows a 1-bend-extension is wider than stars. In particular, these are
the polygons from the vertices of which we can shoot rays to infinity which nei-
ther intersect mutually nor intersect the polygon itself. We call such polygons
planar outer-stars. This gives the following:

Corollary 1. Each instance (G,T'r) where F is a chordless inner face and T' g
s a planar outer-star, allows a 1-bend-extension.

4 Generalization of Stars

In this section we generalize the notion of stars and planar outer-star polygons
and investigate the lower and upper bounds for the number of bends per edge
in the drawing extensions.

4.1 B-Stars

A simple polygon P is a f(-star if there is an open set of points K called the
kernel inside P with the following property: for each point p € K and for each
vertex v of P there is a polyline ¢(v) connecting v and p with at most 5 bends
such that ¢(v) touches P only at v. The smallest such 3 is referred to as star
complezity of the polygon P. This set of curves is referred to as curve-set C of
P and p is the center of C. In the literature this kernel is also known as the
link center of the polygon and it can be calculated in O(nlogn) time [6]. The
straight-forward extension of this definition to act “outside” the polygons is as
follows: a simple polygon P is a (-outer-star if for each vertex v of P there is
an infinite polyline ¢(v) outside of P starting at v with at most 3 bends. The
smallest such g is referred to as outer star complexity of the polygon P. Again,
C = {c(v) | v € P} is called curve-set. The center of this set is a point at infinity.
One can think about S-outer-star as of §-star with the kernel in infinity.

While g-star and (-outer-star are straight-forward ways to extend the notion
of a star inside and outside, and these definitions capture an inherent complexity
of the polygon, we can show that restricting the fixed inner face to be a 1-star
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is not sufficient to ensure a c-bend-extension for any constant ¢ (Theorem 2).
Even more, restricting the fixed inner face to a S-outer-star still does not imply
the existence of a ¢+ [-bend-extension for any constant ¢ (Theorem 3).

Theorem 2. There exist instances (G,I'r) where F is an inner face with h
vertices and ' is a 1-star such that any drawing extension of (G,T'r) contains
an edge with at least | "53] bends.

Theorem 3. There exist instances (G,I'r) where F is an inner face with h
vertices and U'p is a B-outer-star such that any drawing extension of (G,T'r)
has an edge with at least B + logy(%E2) + 1 bends.

The above lower bounds and the fact that a planar outer-star admits an
extension with one bend per edge guided us to extend definitions of -star and
(B-outer star to include planarity. A simple polygon P is a planar-3-star if there
is an open set of points K called the kernel inside P with the following property:
for a fixed point p € K and for each vertex v of P there is an oriented polyline
¢(v) inside P from v to p with at most 8 bends such that for any v and v', ¢(v)
and ¢(v') share the single point p.

A simple polygon P is a planar-3-outer-star if for each vertex v of P there
is an oriented infinite polyline c¢(v) outside of P starting at v with at most
bends such that for any v and v’, ¢(v) and ¢(v’) neither cross nor touch each
other. The smallest such § is referred to as planar (outer) star complexity of the
polygon P. The set of curves are referred to as planar curve-set centered at the
fixed point p. Due to these definitions the following two theorems can be proven.

Theorem 4. Each instance (G,I'r) where F' is a chordless outer face and I'p
s a planar-B-star allows a (-bend-extension.

Theorem 5. Fach instance (G,T'r) where F is a chordless inner face and T'p
s a planar-B-outer-star allows a B + 1-bend-extension.

4.2 Planar Star Complexity of Polygons

While planar (outer) star complexity nicely bounds the required number of bends
per edge in a drawing extension, it does not represent a simple and inherent
polygon characteristic. Thus, in the following we first provide an upper bound on
the planar (outer) star complexity of a polygon in terms of the size of the polygon
(Lemma 2). Then, after preliminary results, we provide an upper bound of a
planar (outer) star complexity in terms of (outer) star complexity (Theorem 6).

Lemma 2. A simple polygon with h vertices is a planar %—star and a planar

% -outer-star.

Proof. For the interior, we set a kernel K to be an intersection of the interior
of P with an e-ball around a vertex u of P. Let p be a point in K. Notice,
that by just following the boundary of the polygon it is possible to reach p from
any vertex v # u with a polyline ¢(v) with at most % bends. A set of such
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curves {c(v;)|v; € P}, drawn in an appropriate order in order to avoid mutual
intersections, represents a planar curve-set of P.

For the exterior, observe that by following the boundary of the polygon from
any vertex u of P it is possible to reach a vertex belonging to the convex hull of
P with a polyline c(u) with at most % bends because the convex hull contains
at least three vertices. A set of such curves, drawn in appropriate order in order
to avoid mutual crossing, augmented by infinite rays, result in a planar curve-set
of P with curve complexity at most % a

Observe that, in general, the planar star complexity of a polygon may be
much lower than % Thus, in the following we aim to bound the planar star
complexity in terms of the star complexity. We rely on the following definitions:
let C be a planar curve-set of a planar-3(-outer)-star. For a curve ¢(v) from C
and a point p on ¢(v), we denote by ¢,(p) the part of the curve split at p, not
containing v and by #c¢,(p) the number of bends on ¢,(p). Furthermore, c(v,p)
designates the part of the curve ¢(v) between v and p. An intersection between
the curves ¢(v) and c¢(w) of C at a point p is called avoidable if one of the curves
has more bends after the intersection than the other, i.e. if #c¢,(p) # #cw(p).
The term “avoidable” stems from the fact that if #c,(p) > F#cw(p), we can
modify ¢(v) by rerouting it along c¢(w) starting just before the point p and this
way eliminate the intersection without increasing the number of bends per curve.
Concerning said avoidable intersections the following holds:

Lemma 3. For a given 3(-outer)-star P there is a curve-set of P with at most
3 bends each without avoidable intersections.

In order to resolve all remaining intersections we consider pairs of curves a
and b intersecting at a point p, such that p is the first intersection for both a
and b. In that case we call p initial intersection. However, we first have to show
that if there are intersections, then there is always at least one initial intersec-
tion. We formalize this in the following definition and Lemma 4. A sequence of
vertices (wi,...,wy) of P, with respective curves (c(wi),...,c(wy,)) is called
cyclic ordering, if for each 1 < j < m, the first curve that c¢(w;) intersects is the
curve c(W(; mod m)+1)- We can prove the following:

Lemma 4. For a given polygon P with a curve-set {c(v) | v € V(P)} without
avoidable intersections there is no cyclic ordering.

Using Lemmas 3 and 4 we prove a relation between (-stars and planar-(-
stars.

Theorem 6. Every (-star (resp. outer-star) with n vertices is a planar-(5+9)-
star (resp. outer-star), where 6 < logy(h).

Proof. Let P be a [(-outer)-star with h vertices. By Lemma 3, P has a curve-
set with at most 8 bends per curve without avoidable intersections. Let p be
an initial intersection of two curves, which exists by Lemma 4. We resolve the
intersection p by adding a bend to one of the curves and rerouting it along and
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sufficiently close to the other to ensure that they have the same intersections
with other curves. We call such curves that follow each other after a resolved
intersection a group. We then repeat resolving intersections of groups until there
are no more intersections. As a final part of the proof we show that during this
process for each curve at most log,(h) bends have been added.

For a curve ¢, let #%c be the number of bends that were added to ¢ during this
algorithm. During the execution of the algorithm we maintain a set of groups
G. Each group Gr; € G is a set of curves. For each group Gr; let #%Gr; be
the maximum number of additional bends over all curves in Gr;, i.e. #%Gr; =
maxcegr, (#%¢). In the beginning each curve is in its own group, that means we
start with G = {{c(v)} | v € V(P)} and for each Gr; € G, #°Gr; = 0.

The following step is repeated until there are no more intersections. Let p be
an initial intersection of two groups Gr; and Gr;. We reroute the curves of one
of Gr; and Gr;. If we choose to reroute Grj, then we add a bend to each curve
of Gr; and then the curves of Gr; follow along the curves of Gr;, thus increasing
#%c by one for each ¢ € Gr;. Resolving the intersection p creates a new group
Gry, = Gr; U Gr;. In order to keep #“Gr), bounded we apply the following strategy:
if #°Gr; # #°Gr;, then we reroute the group with less additional bends and get
#°Gry, = max{#°Gr;, #°Gr;}. Otherwise, #°Gr; = #°Gr; and we arbitrarily
choose one of the groups, so #*Gry, = #°Gr; +1. With each resolved intersection
two groups are merged into one, thus the overall number of groups reduces by
one. As a result, after at most h — 1 resolved crossings between groups this
iteration stops.

After the above procedure no two curves intersect, thus P is a planar-G+
O-star (resp. outer-star) with 0 = maxg.cg(#%Gr). In the following we prove
by induction over the group size that for each group Gr it holds that #%Gr <
log,(|Gr]). For the induction base we observe that if |Gr| = 1 we have #%Gr = 0 =
log,(|Gr]). As an induction hypothesis, assume that for a & > 1 and each group Gr
with |Gr| < k, it holds that #%Gr < log,(|Gr|). Let Gr; be a group with |Gry| = k+
1, which is the result of merging two groups Gr; and Gr;. Since |Gr;|, |Gr;| < |Gri],
the induction hypothesis holds for both Gr; and Gr;. If #°Gr; # #°Gr;, we have
#4Gr; = max{#*Gri, #°Gr;} < logy(max{|Gr;|,|Gr;|}) < logy(|Gri|). Otherwise,
if #°Gr; = #°Gr;, lets assume w.l.o.g. |Gr;| > |Gr;|, and therefore |Gr;| > 2|Gr;|.
We have #00 = #90r; + 1 < logy(|Gr]) + 1 < logy(0nl/2) + logy(2) =
logy (107

Since for each v of P the curve ¢(v) appears in exactly one group, we have
that the maximum size of a group is h. It follows that P is a planar-§+d-star
(resp. outer-star) with § = maxgreg(#*Gr) < log,(h). O

5 Drawing Extensions of Connected Subgraphs

In this section we apply the results from the previous section to provide a tight
upper bound on the number of bends in a drawing extension of a connected
subgraph.
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Theorem 7. FEach instance (G,T ) where H is an induced connected subgraph
of G allows a min{h/2, f+log,(h)+1}-bend-extension, where h is the mazimum
face size of H and (3 is the mazximum (outer) star complexity of a face in T'y.
This bound is tight up to an additive constant.

Above theorem implies an upper bound on the number of bends in case of a
non-induced subgraph by simply subdividing the induced edges by dummy ver-
tices and removing them after construction. The tightness of the bound follows
from the fact that the lower bound proofs (Theorems 2 and 3) can easily be
adapted to work for chords.

Corollary 2. Each instance (G,T'y) where H is a connected subgraph of G,
allows a min{h + 1,20 + 2log, (h) 4+ 3}-bend-extension, where h is the mazimum
face size of H and (3 is the mazimum star complexity of a face in Ty . This bound
18 tight up to an additive constant.

6 Extending Stars with Straight Lines

Let G = (V, E) be a plane graph and F' a chordless face, fixed on the plane as a
star-shaped polygon I'p. In this section we study the question whether (G,T'r)
admits a straight-line extension. Note that for F' being the outer face of G, Hong
and Nagamochi [9] showed that (G,T'r) always admits a straight-line extension.
In the following F' is an inner face.

If F is an inner face fixed as a convex polygon I'r, Mchedlidze et al. [12]
showed that it can easily be tested if an instance (G,T'r) admits a straight-line
extension. In their case a necessary and sufficient condition for an extension to
exist is that for each vertex individually there is a valid position outside I'r. For
stars a comparable result is not possible. Even if each vertex could be drawn
individually this does not mean that the whole instance admits a straight-line
extension. Even more, testing whether pairs of vertices can be drawn together
would not be sufficient as the construction in Fig. 3 suggests.

D

Fig. 3. The drawing cannot be extended to a straight-line drawing of the entire graph,
even though this is not revealed when testing individual parts. (Color figure online)

In case of I'r being a convex inner face [12], the feasibility area of a vertex
adjacent to the fixed face is just a wedge, formed by the intersection of two half
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planes induced by two edges of I'p. In this section we show that the situation for
the star shaped inner face is dramatically different, thus there exists an instance
for which the feasibility area of a vertex is partially bounded by a curve of
exponential complexity.

Theorem 8. There is an instance (G,T'r) where T'r is a star-shaped inner face,
such that the feasibility area of some vertex v € G is partially bounded by a curve
whose implicit representation is a polynomial of degree 22V,

Sketch of Proof. A curve is i-exponentially-complex if it has a parametric repre-

sentation of the form {(28, z((?)) |teZ } where r, s and u are polynomials of

degree 2¢ and 7 is an interval. In the following we describe an instance (G,T'r),
for which a feasibility area of a vertex v is bounded by an 2°(IVD_exponentially-
complex curve. By slightly pertubing the positions of the vertices of I'r to achieve
points in general position we have that the implicit representation of this curve
is a polynomial of degree at least 22(IVD,

Let k > 1 be a fixed integer. Figure 4a displays the plane graph Gy, = (V, E)
and the drawing of its inner face as a star-shaped polygon. The vertices v; and
w; still need to be drawn. For 0 < ¢ < k, the feasibility area of v; is denoted
by A; and the boundary of A; is referred to as B;. We show that By contains a
2F_exponentially-complex curve. The proof is by induction on 0 < i < k.

Vo

Fig. 4. (a) Graph Gj3, the fixed face is drawn in gray. The vertices in the green area
are part of the base case. (b) The base case. The green curve Cp is on the boundary
By of the feasibility area Ag of vg. (Color figure online)

As the base of the induction we consider the boundary By of vertex vg as
shown in Fig. 4b. The feasibility area of vy is the upper quadrant formed by
the lines I(«, 8) and (v, 3). Let p = (—1/2,1) be a point on the left boundary
of Ag. Let Cy be the segment s(3,p) not containing the point p. It holds that
Co = {(7%, %) |t € Z=10,1)}. The curve Cy is 0-exponentially-complex. An
implicit equation of I(3,p) is y + 2z = 0.
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In the following we assume that the feasibility area A;_; of v;_; is partially
bounded by an ¢ — l-exponentially-complex curve satisfying additional invari-
ants and prove that the feasibility area A; of v; is partially bounded by an
i-exponentially-complex curve that also satisfies these invariants. The invariants
are given in three groups, the universal invariants, holding after each inductive
step, the even and the odd invariants holding after each even and odd step i > 0,
respectively. Below are the universal and even invariants, with the odd invariants
being symmetric.

Universal Invariants

UZ.1: A, is partially bounded by an i-exponentially-complex curve C; = {v;(t) =
(vE(t),vY(t)) | t € T}, where Z = [0, Ziax) and Zyax > 0,

UTZ.2: v!(t) is strictly increasing for ¢t € [0, Zyax)-

Even Invariants

ET.1: b}, <vf(0) < af , and v!(0) =0,
ETL.2: A; is on the right of C;,
EZ.3: Ray q(a;+1,v:(0)) intersects no point of A; to the left of v;(0).

We observe that universal and even invariants hold for the base case i = 0.

Let Ci—y = {vi_1(t) = (%, Z%) |t e I}. The position w;_1(t) of vertex

w;—1 is described as the intersection of the rays g(v;—1(t),b;) and g(d;, ¢;). The
position v;(t) of v; is described as g(a;, v;—1(t)) N g(e;, wi—1(¢)).

Using this we calculate the curve C;, i.e. we calculate the position of v;
as a function of ¢. This can be done by calculating the equation of the line
l(v;—1(t)), b;), the position of the vertex w;_1(¢) and then the equations if the
lines I(a;,v;—1(t)) and I(e;, w;—1(t)). The intersection of the latter lines is v;(t)
and we obtain C; = {(;((?), 27((?)) | t € I}, where each of 7;(t), s;(t), u;(t)
is quadratic in r(t), s(¢) and u(t). By induction hypothesis, C;_; is an i — 1-

exponentially complex curve, i.e. u(t), s(t), r(¢) contain terms 2", So the curve
C; is i-exponentially complex, provided that the coefficients of highest degree
do no cancel themselves out, which can be avoided by slightly perturbing the
position of vertex e;. This proves Invariant U4Z.1. A proof that the remaining
invariants hold after the induction step concludes the proof of the theorem. 0O

7 Conclusion

We have shown that a drawing 'y of an induced connected subgraph H can
be extended with at most min{h/2, 5 + log,(h) + 1} bends per edge if the star
complexity of I'yy is B and h is the size of the largest face of H and that this
bound is tight up to a small additive constant. In the event of a disconnected
subgraph H the known upper bound is 72|V (H)|. It is tempting to investigate
whether the constant 72 can be lowered and to provide a matching lower bound.
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We have proven that there is an instance (G,T'r) where ' is a star-shaped
inner face, such that the feasibility area of some vertex v € G is partially bounded
by an exponential degree curve. This is an indication that for a given instance
(G,T'p) it is difficult to test whether (G,T") admits a straight-line extension. It
would be interesting to establish the computational complexity of this problem.
We were not able to show the NP-hardness of the problem. Due to its similarity
with visibility and stretchability problems we conjecture that the problem is as
hard as the existential theory of reals.
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