
Chapter 2
A Continuous-Time Approach
to Intensive Longitudinal Data: What,
Why, and How?

Oisín Ryan, Rebecca M. Kuiper, and Ellen L. Hamaker

2.1 Introduction

The increased availability of intensive longitudinal data—such as obtained with
ambulatory assessments, experience sampling, ecological momentary assessments,
and electronic diaries—has opened up new opportunities for researchers to inves-
tigate the dynamics of psychological processes, that is, the way psychological
variables evolve, vary, and relate to one another over time (cf. Bolger and Lau-
renceau 2013; Chow et al. 2011; Hamaker et al. 2005). A useful concept in this
respect is that of people being dynamic systems whose current state depends on
their preceding states. For instance, we may be interested in the relationship between
momentary stress and anxiety. We can think of stress and anxiety as each defining
an axis in a two-dimensional space, and let the values of stress and anxiety at each
moment in time define a position in this space. Over time, the point that represents a
person’s momentary stress and anxiety moves through this two-dimensional space,
and our goal is to understand the lawfulness that underlies these movements.
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There are two frameworks that can be used to describe such movements: (1) the
discrete-time (DT) framework, in which the passage of time is treated in discrete
steps, and (2) the continuous-time (CT) framework, in which time is viewed as a
continuous variable. Most psychological researchers are at least somewhat familiar
with the DT approach, as it is the basis of the vast majority of longitudinal
models used in the social sciences. In contrast, CT models have gained relatively
little attention in fields such as psychology: This is despite the fact that many
psychological researchers have been advocating their use for a long time, claiming
that the CT approach overcomes practical and conceptual problems associated with
the DT approach (e.g., Boker 2002; Chow et al. 2005; Oud and Delsing 2010;
Voelkle et al. 2012). We believe there are two major hurdles that hamper the
adoption of the CT approach in psychological research. First, the estimation of CT
models typically requires the use of specialized software (cf. Chow et al. 2007;
Driver et al. 2017; Oravecz et al. 2016) or unconventional use of more common
software (cf. Boker et al. 2010a, 2004; Steele and Ferrer 2011). Second, the results
from CT models are not easily understood, and researchers may not know how to
interpret and represent their findings.

Our goal in this chapter is twofold. First, we introduce readers to the perspective
of psychological processes as CT processes; we focus on the conceptual reasons
for which the CT perspective is extremely valuable in moving our understanding
of processes in the right direction. Second, we provide a didactical description of
how to interpret the results of a CT model, based on our analysis of an empirical
dataset. We examine the direct interpretation of model parameters, examine different
ways in which the dynamics described by the parameters can be understood and
visualized, and explain how these are related to one another throughout. We will
restrict our primary focus to the simplest DT and CT models, that is, first-order
(vector) autoregressive models and first-order differential equations.

The organization of this chapter is as follows. First, we provide an overview
of the DT and CT models under consideration. Second, we discuss the practical
and conceptual reasons researchers should adopt a CT modeling approach. Third,
we illustrate the use and interpretation of the CT model using a bivariate model
estimated from empirical data. Fourth, we conclude with a brief discussion of more
complex models which may be of interest to substantive researchers.

2.2 Two Frameworks

The relationship between the DT and CT frameworks has been discussed extensively
by a variety of authors. Here, we briefly reiterate the main issues, as this is vital
to the subsequent discussion. For a more thorough treatment of this topic, the
reader is referred to Voelkle et al. (2012). We begin by presenting the first-order
vector autoregressive model in DT, followed by the presentation of the first-order
differential equation in CT. Subsequently, we show how these models are connected
and discuss certain properties which can be inferred from the parameters of the
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model. For simplicity, and without loss of generalization, we describe single-subject
DT and CT models, in terms of observed variables. Extensions for multiple-subject
data, and extensions for latent variables, in which the researchers can account for
measurement error by additionally specifying a measurement model, are readily
available (in the case of CT models, see, e.g., Boker et al. 2004; Driver et al. 2017;
Oravecz and Tuerlinckx 2011).

2.2.1 The Discrete-Time Framework

DT models are those models for longitudinal data in which the passage of time
is accounted for only with regard to the order of observations. If the true data-
generating model for a process is a DT model, then the process only takes on values
at discrete moments in time (e.g., hours of sleep per day or monthly salary). Such
models are typically applied to data that consist of some set of variables measured
repeatedly over time. These measurements typically show autocorrelation, that is,
serial dependencies between the observed values of these variables at consecutive
measurement occasions. We can model these serial dependencies using (discrete-
time) autoregressive equations, which describe the relationship between the values
of variables observed at consecutive measurement occasions.

The specific type of DT model that we will focus on in this chapter is the first-
order vector autoregressive (VAR(1)) model (cf. Hamilton 1994). Given a set of V

variables of interest measured at N different occasions, the VAR(1) describes the
relationship between yτ , a V × 1 column vector of variables measured at occasion
τ (for τ = 2, . . . , N) and the values those same variables took on at the preceding
measurement occasion, the vector yτ−1. This model can be expressed as

yτ = c + Φyτ−1 + ετ , (2.1)

where Φ represents a V ×V matrix with autoregressive and cross-lagged coefficients
that regress yτ on yτ−1. The V ×1 column vector ετ represents the variable-specific
random shocks or innovations at that occasion, which are normally distributed with
mean zero and a V ×V variance-covariance matrix Ψ . Finally, c represents a V × 1
column vector of intercepts.

In the case of a stationary process, the mean μ and the variance-covariance matrix
of the variables yτ (generally denoted Σ) do not change over time.1 Then, the
vector μ represents the long-run expected values of the random variables, E(yτ ),
and is a function of the vector of intercepts and the matrix with lagged regression

1The variance-covariance matrix of the variables Σ is a function of both the lagged parameters
and the variance-covariance matrix of the innovations, vec(Σ ) = (I − Φ ⊗ Φ)−1vec(Ψ ), where
vec(.) denotes the operation of putting the elements of an N × N matrix into an NN × 1 column
matrix (Kim and Nelson 1999, p. 27).
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coefficients, that is, μ = (I − Φ)−1c, where I is a V × V identity matrix (cf.
Hamilton 1994). In terms of a V -dimensional dynamical system of interest, μ

represents the equilibrium position of the system. By definition, τ is limited to
positive integers; that is, there is no 0.1th or 1.5th measurement occasion.

Both the single-subject and multilevel versions of the VAR(1) model have fre-
quently been used to analyze intensive longitudinal data of psychological variables,
including symptoms of psychopathology, such as mood- and affect-based measures
(Bringmann et al. 2015, 2016; Browne and Nesselroade 2005; Moberly and Watkins
2008; Rovine and Walls 2006). In these cases, the autoregressive parameters φii are
often interpreted as reflecting the stability, inertia, or carry-over of a particular
affect or behavior (Koval et al. 2012; Kuppens et al. 2010, 2012). The cross-
lagged effects (i.e., the off-diagonal elements φij for i �= j ) quantify the lagged
relationships, sometimes referred to as the spillover, between different variables
in the model. These parameters are often interpreted in substantive terms, either
as predictive or Granger-causal relationships between different aspects of affect or
behavior (Bringmann et al. 2013; Gault-Sherman 2012; Granger 1969; Ichii 1991;
Watkins et al. 2007). For example, if the standardized cross-lagged effect of y1,τ−1
on y2,τ is larger than the cross-lagged effect of y2,τ−1 on y1,τ , researchers may
draw the conclusion that y1 is the driving force or dominant variable of that pair
(Schuurman et al. 2016). As such, substantive researchers are typically interested in
the (relative) magnitudes and signs of these parameters.

2.2.2 The Continuous-Time Framework

In contrast to the DT framework, which treats values of processes indexed by
observation τ , the CT framework treats processes as functions of the continuous
variable time t: The processes being modeled are assumed to vary continuously with
respect to time, meaning that these variables may take on values if observed at any
imaginable moment. CT processes can be modeled using a broad class of differential
equations, allowing for a wide degree of diversity in the types of dynamics that are
being modeled. It is important to note that many DT models have a differential
equation counterpart. For the VAR(1) model, the CT equivalent is the first-order
stochastic differential equation (SDE), where stochastic refers to the presence of
random innovations or shocks.

The first-order SDE describes how the position of the V -dimensional system at a
certain point in time, y(t), relative to the equilibrium position μ, is related to the rate
of change of the process with respect to time (i.e., dy(t)

dt
) in that same instant. The

latter can also be thought of as a vector of velocities, describing in what direction
and with what magnitude the system will move an instant later in time (i.e., the
ratio of the change in position over some time interval, to the length of that time
interval, as the length of the time interval approaches zero). The first-order SDE can
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be expressed as

dy(t)

dt
= A(y(t) − μ) + G

dW (t)

dt
(2.2)

where y(t), dy(t)
dt

and μ are V × 1 column vectors described above, y(t) − μ

represents the position as a deviation from the equilibrium, and the V ×V matrix A

represents the drift matrix relating dy(t)
dt

to (y(t) − μ). The diagonal elements of A,
relating the position in a certain dimension to the velocity in that same dimension,
are referred to as auto-effects, while the off-diagonal elements are referred to as
cross-effects. The second part on the right-hand side of Eq. (2.2) represents the
stochastic part of the model: W (t) denotes the so-called Wiener process, broadly
speaking a continuous-time analogue of a random walk. This stochastic element has
a variance-covariance matrix GG′ = Q, which is often referred to as the diffusion
matrix (for details see Voelkle et al. 2012).

The model representation in Eq. (2.2) is referred to as the differential form as it
includes the derivative dy(t)

dt
. The same model can be represented in the integral

form, in which the derivatives are integrated out, sometimes referred to as the
solution of the derivative model. The integral form of this particular first-order
differential equation is known as the CT-VAR(1) or Ornstein-Uhlenbeck model
(Oravecz et al. 2011). In this form, we can describe the same system but now in
terms of the positions of the system (i.e., the values the variables take on) at different
points in time. For notational simplicity, we can represent y(t)−μ as yc(t), denoting
the position of the process as a deviation from its equilibrium.

The CT-VAR(1) model can be written as

yc(t) = eAΔtyc(t − Δt) + w(Δt) (2.3)

where A has the same meaning as above, the V ×1 vector yc(t −Δt) represents the
position as a deviation from equilibrium some time interval Δt earlier, e represents
the matrix exponential function, and the V × 1 column vector w(Δt) represents the
stochastic innovations, the integral form of the Wiener process in Eq. (2.2). These
innovations are normally distributed with a variance-covariance matrix that is a
function of the time interval between measurements Δt , the drift matrix A, and
the diffusion matrix Q (cf. Voelkle et al. 2012).2 As the variables in the model have
been centered around their equilibrium, we omit any intercept term. The relationship
between lagged variables, that is, the relationships between the positions of the
centered variables in the multivariate space, separated by some time interval Δt , is
an (exponential) function of the drift matrix A and the length of that time interval.

2Readers should note that there are multiple different possible ways to parameterize the CT
stochastic process in integral form, and also multiple different notations used (e.g., Oravecz et al.
2011; Voelkle et al. 2012).
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2.2.3 Relating DT and CT Models

It is clear from the integral form of the first-order SDE given in Eq. (2.3) that the
relationship between lagged values of variables is dependent on the length of the
time interval between these lagged values. As such, if the DT-VAR(1) model in
Eq. (2.1) is fitted to data generated by the CT model considered here, then the
autoregressive and cross-lagged effects matrix Φ will be a function of the time
interval Δt between the measurements. We denote this dependency by writing
Φ(Δt). This characteristic of the DT model has been referred to as the lag problem
(Gollob and Reichardt 1987; Reichardt 2011).

The precise relationship between the CT-VAR(1) and DT-VAR(1) effect matrices
is given by the well-known equality

Φ(Δt) = eAΔt . (2.4)

Despite this relatively simple relationship, it should be noted that taking the expo-
nential of a matrix is not equivalent to taking the exponential of each of the elements
of the matrix. That is, any lagged effect parameter φij (Δt), relating variable i and
variable j across time points, is not only dependent on the corresponding CT cross-
effect aij but is a nonlinear function of the interval and every other element of the
matrix A. For example, in the bivariate case, the DT cross-lagged effect of y1(t−Δt)

on y2(t), denoted φ21(Δt), is given by

a21

⎛
⎝e

1
2

(
a11+a22+

√
a2

11+4a12a21−2a11a22+a2
22

)
Δt − e

1
2

(
a11+a22−

√
a2

11+4a12a21−2a11a22+a2
22

)
Δt

⎞
⎠

√
a2

11 + 4a12a21 − 2a11a22 + a2
22

(2.5)

where e represents the scalar exponential. In higher-dimensional models, these
relationships quickly become intractable. For a derivation of Eq. (2.5), we refer
readers to Appendix.

This complicated nonlinear relationship between the elements of Φ and the time
interval has major implications for applied researchers who wish to interpret the
parameters of a DT-VAR(1) model in the substantive terms outlined above. In the
general multivariate case, the size, sign, and relative strengths of both autoregressive
and cross-lagged effects may differ depending on the value of the time interval used
in data collection (Deboeck and Preacher 2016; Dormann and Griffin 2015; Oud
2007; Reichardt 2011). As such, conclusions that researchers draw regarding the
stability of processes and the nature of how different processes relate to one another
may differ greatly depending on the time interval used.

While the relationship in Eq. (2.4) describes the DT-VAR(1) effects matrix we
would find given the data generated by a CT-VAR(1) model, the reader should note
that not all DT-VAR(1) processes have a straightforward equivalent representation
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as a CT-VAR(1). For example, a univariate discrete-time AR(1) process with a
negative autoregressive parameter cannot be represented as a CT-AR(1) process; as
the exponential function is always positive, there is no A that satisfies Eq. (2.4) for
Φ < 0. As such, we can refer to DT-VAR(1) models with a CT-VAR(1) equivalent
as those which exhibit “positive autoregression.” We will focus throughout on the
CT-VAR(1) as the data-generating model.3

2.2.4 Types of Dynamics: Eigenvalues, Stability,
and Equilibrium

Both the DT-VAR(1) model and the CT-VAR(1) model can be used to describe a
variety of different types of dynamic behavior. As the dynamic behavior of a system
is always understood with regard to how the variables in the system move in relation
to the equilibrium position, often dynamic behaviors are described by differentiating
the type of equilibrium position or fixed point in the system (Strogatz 2014). In
the general multivariate case, we can understand these different types of dynamic
behavior or fixed points with respect to the eigenvalues of the effects matrices A or
Φ (see Appendix for a more detailed explanation of the relationship between these
two matrices and eigenvalues). In this chapter we will focus on stable processes,
in which, given a perturbation, the system of interest will inevitably return to the
equilibrium position. We limit our treatment to these types of processes, because we
believe these are most common and most relevant for applied researchers. A brief
description of other types of fixed points and how they relate to the eigenvalues
of the effects matrix A is given in the discussion section—for a more complete
taxonomy, we refer readers to Strogatz (2014, p. 136).

In DT settings, stable processes are those for which the absolute values of
the eigenvalues of Φ are smaller than one. In DT applications researchers also
typically discuss the need for stationarity, that is, time-invariant mean and variance,
as introduced above. Stability of a process ensures that stationarity in relation to
the mean and variance hold. For CT-VAR(1) processes, stability is ensured if the
real parts of the eigenvalues of A are negative. It is interesting to note that the
equilibrium position of stable processes can be related to our observed data in
various ways: In some applications μ is constrained to be equal to the mean of
the observed values (e.g., Hamaker et al. 2005; Hamaker and Grasman 2015), while
in others the equilibrium can be specified a priori or estimated to be equal to some
(asymptotic) value (e.g., Bisconti et al. 2004).

3In general, there is no straightforward CT-VAR(1) representation of DT-VAR(1) models with
real, negative eigenvalues. However it may be possible to specify more complex continuous-time
models which do not exhibit positive autoregression. Notably, Fisher (2001) demonstrates how
a DT-AR(1) model with negative autoregressive parameter can be modeled with the use of two
continuous-time (so-called) Itô processes.
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We can further distinguish between dynamic processes that have real eigenvalues,
complex eigenvalues, or, in the case of systems with more than two variables, a
mix of both. In the section “Making Sense of CT Models,” we will focus on the
interpretation of a CT-VAR(1) model with real, negative, non-equal eigenvalues.
We can describe the equilibrium position of this system as a stable node. In the
discussion section, we examine another type of system which has been the focus
of psychological research, sometimes described as a damped linear oscillator (e.g.,
Boker et al. 2010b), in which the eigenvalues of A are complex, with a negative real
part. The fixed point of such a system is described as a stable spiral. Further detail
on the interpretation of these two types of systems is given in the corresponding
sections.

2.3 Why Researchers Should Adopt a CT Process
Perspective

There are both practical and theoretical benefits to CT model estimation over DT
model estimation. Here we will discuss three of these practical advantages which
have received notable attention in the literature. We then discuss the fundamental
conceptual benefits of treating psychological processes as continuous-time systems.

The first practical benefit to CT model estimation is that the CT model deals well
with observations taken at unequal intervals, often the case in experience sampling
and ecological momentary assessment datasets (Oud and Jansen 2000; Voelkle
and Oud 2013; Voelkle et al. 2012). Many studies use random intervals between
measurements, for example, to avoid participant anticipation of measurement
occasions, potentially resulting in unequal time intervals both within and between
participants. The DT model, however, is based on the assumption of equally spaced
measurements, and as such estimating the DT model from unequally spaced data
will result in an estimated Φ matrix that is a blend of different Φ(Δt) matrices for
a range of values of Δt .

The second practical benefit of CT modeling over DT modeling is that, when
measurements are equally spaced, the lagged effects estimated by the DT models
are not generalizable beyond the time interval used in data collection. Several
different researchers have demonstrated that utilizing different time intervals of
measurement can lead researchers to reach very different conclusions regarding the
values of parameters in Φ (Oud and Jansen 2000; Reichardt 2011; Voelkle et al.
2012). The CT model has thus been promoted as facilitating better comparisons of
results between studies, as the CT effects matrix A is independent of time interval
(assuming a sufficient frequency of measurement to capture the relevant dynamics).

Third, the application of CT models allows us to explore how cross-lagged effects
are expected to change depending on the time interval between measurements, using
the relationship expressed in Eq. (2.4). Some authors have used this relationship
to identify the time interval at which cross-lagged effects are expected to reach



2 A Continuous-Time Approach to Intensive Longitudinal Data: What, Why,. . . 35

a maximum (Deboeck and Preacher 2016; Dormann and Griffin 2015). Such
information could be used to decide upon the “optimal” time interval that should
be used in gathering data in future research.

While these practical concerns regarding the use of DT models for CT processes
are legitimate, there may be instances in which alternative practical solutions can be
used, without necessitating the estimation of a CT model. For instance, the problem
of unequally spaced measurements in DT modeling can be addressed by defining
a time grid and adding missing data to your observations, to make the occasions
approximately equally spaced in time. Some simulation studies indicate that this
largely reduces the bias that results from using DT estimation of unequally spaced
data (De Haan-Rietdijk et al. 2017).

Furthermore, the issue of comparability between studies that use different time
intervals can be solved, in certain circumstances, by a simple transformation of the
estimated Φ matrix, described in more detail by Kuiper and Ryan (2018). Given
an estimate of Φ(Δt), we can solve for the underlying A using Eq. (2.4). This is
known as the “indirect method” of CT model estimation (Oud et al. 1993). However
this approach cannot be applied in all circumstances, as it involves using the matrix
logarithm, the inverse of the matrix exponential function. As the matrix logarithm
function in the general case does not give a unique solution, this method is only
appropriate if both the estimated Φ(Δt) and true underlying A matrices have real
eigenvalues only (for further discussion of this issue, see Hamerle et al. 1991).

However, the CT perspective has added value above and beyond the potential
practical benefits discussed above. Multiple authors have argued that psychological
phenomena, such as stress, affect, and anxiety, do not vary in discrete steps over time
but likely vary and evolve in a continuous and smooth manner (Boker 2002; Gollob
and Reichardt 1987). Viewing psychological processes as CT dynamic systems has
important implications for the way we conceptualize the influence of psychological
variables on each other. Gollob and Reichardt (1987) give the example of a
researcher who is interested in the effect of taking aspirin on headaches: This
effect may be zero shortly after taking the painkiller, substantial an hour or so
later, and near zero again after 24 h. All of these results may be considered as
accurately portraying the effect of painkillers on headaches for a specific time
interval, although each of these intervals considered separately represents only a
snapshot of the process of interest.

It is only through examining the underlying dynamic trajectories, and exploring
how the cross-lagged relationships evolve and vary as a function of the time interval,
that we can come to a more complete picture of the dynamic system of study.
We believe that—while the practical benefits of CT modeling are substantial—the
conceptual framework of viewing psychological variables as CT processes has the
potential to transform longitudinal research in this field.
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2.4 Making Sense of CT Models

In this section, we illustrate how researchers can evaluate psychological variables as
dynamic CT processes by describing the interpretation of the drift matrix parameters
A. We describe multiple ways in which the dynamic behavior of the model in
general, as well as specific model parameters, can be understood. In order to aid
researchers who are unfamiliar with this type of analysis, we take a broad approach
in which we incorporate the different ways in which researchers interested in
dynamical systems and similar models interpret their results. For instance, Boker
and colleagues (e.g., Boker et al. 2010b) typically interpret the differential form
of the model directly; in the econometrics literature, it is typical to plot specific
trajectories using impulse response functions (Johnston and DiNardo 1997); in the
physics tradition, the dynamics of the system are inspected using vector fields (e.g.,
Boker and McArdle 1995); the work of Voelkle, Oud, and others (e.g., Deboeck and
Preacher 2016; Voelkle et al. 2012) typically focuses on the integral form of the
equation and visually inspecting the time interval dependency of lagged effects.

We will approach the interpretation of a single CT model from these four angles
and show how they each represent complimentary ways to understand the same
system. For ease of interpretation, we focus here on a bivariate system; the analysis
of larger systems is addressed in the discussion section.

2.4.1 Substantive Example from Empirical Data

To illustrate the diverse ways in which the dynamics described by the CT-VAR(1)
model can be understood, we make use of a substantive example. This example
is based on our analysis of a publicly available single-subject ESM dataset (Kos-
sakowski et al. 2017). The subject in question is a 57-year-old male with a history of
major depression. The data consists of momentary, daily, and weekly items relating
to affective states. The assessment period includes a double-blind phase in which
the dosage of the participant’s antidepression medication was reduced. We select
only those measurements made in the initial phases of the study, before medication
reduction; it is only during this period that we would expect the system of interest
to be stable. The selected measurements consist of 286 momentary assessments
over a period of 42 consecutive days. The modal time interval between momentary
assessments was 1.766 h (interquartile range of 1.250–3.323).

For our analysis we selected two momentary assessment items, “I feel down”
and “I am tired,” which we will name Down (Do) and Tired (T i), respectively.
Feeling down is broadly related to assessments of negative affect (Meier and Robin-
son 2004), and numerous cross-sectional analyses have suggested a relationship
between negative affect and feelings of physical tiredness or fatigue (e.g., Denollet
and De Vries 2006). This dataset afforded us the opportunity to investigate the
links between these two processes from a dynamic perspective. Each variable was
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Table 2.1 Parameter
estimates from the
substantive example

Parameter Value Std. error

a11 −0.995 0.250

a21 0.375 0.441

a12 0.573 0.595

a22 −2.416 1.132

q11 1.734 0.612

q21 −0.016 0.650

q22 4.606 1.374

standardized before the analysis to facilitate ease of interpretation of the parameter
estimates. Positive values of Do indicate that the participant felt down more than
average, negative values indicate below-average feelings of being down and likewise
for positive and negative values of T i.

The analysis was conducted using the ctsem package in R (Driver et al.
2017). Full details of the analysis, including R code, can be found in the online
supplementary materials. Parameter estimates and standard errors are given in
Table 2.1, including estimates of the stochastic part of the CT model, represented by
the diffusion matrix Q. The negative value of γ21 indicates that there is a negative
covariance between the stochastic input and the rates of change of Do and T i; in
terms of the CT-VAR(1) representation, there is a negative covariance between the
residuals of Do and T i in the same measurement occasion. Further interpretation
of the diffusion matrix falls beyond the scope of the current chapter. As the analysis
is meant as an illustrative example only, we will throughout interpret the estimated
drift matrix parameter as though they are true population parameters.

2.4.2 Interpreting the Drift Parameters

The drift matrix relating the processes Down (Do(t)) and Tired (T i(t)) is given by

A =
[−0.995 0.573

0.375 −2.416

]
. (2.6)

As the variables are standardized, the equilibrium position is μ = [0, 0] (i.e.,
E[Do(t)] = E[T i(t)] = 0). The drift matrix A describes how the position of
the system at any particular time t (i.e., Do(t) and T i(t)) relates to the velocity or
rate of change of the process, that is, how the position of the process is changing.
The system of equations which describe the dynamic system made up of Down and
Tired is given by

[
E

[
dDo(t)

dt

]
E

[
dT i(t)

dt

]
]

=
[−0.995 0.573

0.375 −2.416

] [
Do(t)

T i(t)

]
(2.7)
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such that

E

[
dDo(t)

dt

]
= −0.995Do(t) + 0.573T i(t) (2.8)

E

[
dT i(t)

dt

]
= 0.375Do(t) − 2.416T i(t) (2.9)

where the rates of change of Down and Tired at any point in time are both dependent
on the positions of both Down and Tired at that time.

Before interpreting any particular parameter in the drift matrix, we can determine
the type of dynamic process under consideration by inspecting the eigenvalues of A.
The eigenvalues of A are λ1 = −2.554 and λ2 = −0.857; since both eigenvalues
are negative, the process under consideration is stable. This means that if the system
takes on a position away from equilibrium (e.g., due to a random shock from the
stochastic part of the model on either Down or Tired), the system will inevitably
return to its equilibrium position over time. It is for this reason that the equilibrium
position or fixed point in stable systems is also described as the attractor point,
and stable systems are described as equilibrium-reverting. As the eigenvalues of the
system are real-valued as well as negative, the system returns to equilibrium with an
exponential decay; when the process is far away from the equilibrium, it takes on a
greater velocity, that is, moves faster toward equilibrium. We can refer to the type
of fixed point in this system as a stable node (Strogatz 2014).

Typical of such an equilibrium-reverting process, we see negative CT auto-
effects a11 = −0.995 and a22 = −2.416. This reflects that, if either variable
in the system takes on a position away from the equilibrium, they will take on
a velocity of opposite sign to this deviation, that is, a velocity which returns the
process to equilibrium. For higher values of Do(t), the rate of change of Do(t) is of
greater (negative) magnitude, that is, the velocity toward the equilibrium is higher. In
addition, the auto-effect of T i(t) is more than twice as strong (in an absolute sense)
as the auto-effect of Do(t). If there were no cross-effects present, this would imply
that T i(t) returns to equilibrium faster than Do(t); however, as there are cross-
effects present, such statements cannot be made in the general case from inspecting
the auto-effects alone.

In this case the cross-effects of Do(t) and T i(t) on each other’s rates of change
are positive rather than negative. Moreover, the cross-effect of T i(t) on the rate of
change of Do(t) (a12 = 0.573) is slightly stronger than the corresponding cross-
effect of Do(t) on the rate of change of T i(t) (a21 = 0.375). These cross-effects
quantify the force that each component of the system exerts on the other. However,
depending on what values each variable takes on at a particular point in time t ,
that is, the position of the system in each of the Do(t) and T i(t) dimensions, this
may translate to Do(t) pushing T i(t) to return faster to its equilibrium or to deviate
away from its equilibrium position and vice versa. To better understand both the
cross-effects and auto-effects described by A, it is helpful to visualize the possible
trajectories of our two-dimensional system.
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2.4.3 Visualizing Trajectories

We will now describe and apply two related tools which allow us to visualize the
trajectories of the variables in our model over time: impulse response functions and
vector fields. These tools can help us to understand the dynamic system we are
studying, by exploring the dynamic behavior which results from the drift matrix
parameters.

2.4.3.1 Impulse Response Functions

Impulse response functions (IRFs) are typically used in the econometrics literature
to aid in making forecasts based on a DT-VAR model. The idea behind this is to
allow us to explore how an impulse to one variable in the model at occasion τ will
affect the values of both itself and the other variables in the model at occasions τ +1,
τ +2, τ +3, and so on. In the stochastic systems we focus on in this chapter, we can
conceptualize these impulses as random perturbations or innovations or alternatively
as external interventions in the system.4 IRFs thus represent the trajectories of the
variables in the model over time, following a particular impulse, assuming no further
stochastic innovations (see Johnston and DiNardo 1997, Chapter 9).

To specify impulses in an IRF, we generally assign a value to a single variable
in the system at some initial occasion, yi,τ . The corresponding values of the other
variables at the initial occasion yj,τ , j �= i are usually calculated based on, for
instance, the covariance in the stochastic innovations, Ψ , or the stable covariance
between the processes Σ . Such an approach is beneficial in at least two ways:
first, it allows researchers to specify impulses which are more likely to occur in
an observed dataset; second, it aids researchers in making more accurate future
predictions or forecasts. For a further discussion of this issue in relation to DT-VAR
models, we refer the reader to Johnston and DiNardo (1997, pp. 298–300). Below,
we will take a simplified approach and specify bivariate impulses at substantively
interesting values.

The IRF can easily be extended for use with the CT-VAR(1) model. We can
calculate the impulse response of our system by taking the integral form of the
CT-VAR(1) model in Eq. (2.3) and (a) plugging in the A matrix for our system,
(b) choosing some substantively interesting set of impulses y(t = 0), and (c)
calculating y(t) for increasing values of t > 0. To illustrate this procedure, we will
specify four substantively interesting sets of impulses. The four sets of impulses
shown here include y(0) = [1, 0], reflecting what happens when Do(0) takes
on a positive value 1 standard deviation above the persons mean, while T i(0) is
at equilibrium; y(0) = [0, 1] reflecting when T i(0) takes on a positive value of
corresponding size while Do(0) is at equilibrium; y(0) = [1, 1] reflecting what

4Similar functions can be used for deterministic systems (those without a random innovation part);
however in these cases the term initial value is more typically used.
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happens when Do(0) and T i(0) both take on values 1 standard deviation above the
mean; and y(0) = [1,−1] reflecting what happens when Do(0) and T i(0) take on
values of equal magnitude but opposite valence (1SD more and 1SD less than the
mean, respectively). Figure 2.1a–d contains the IRFs for both processes in each of
these four scenarios.

Examining the IRFs shows us the equilibrium-reverting behavior of the system:
Given any set of starting values, the process eventually returns, in an exponential
fashion, to the bivariate equilibrium position where both processes take on a value
of zero.

In Figure 2.1a, we can see that when T i(t) is at equilibrium and Do(0) takes on
a value of plus one, then T i(t) is pushed away from equilibrium in the same (i.e.,
positive) direction. In substantive terms, when our participant is feeling down at a
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Fig. 2.1 Impulse response function for the model in Eq. (2.7) for four different sets of impulses;
red solid line = Do(t) and blue dashed line = T i(t). (a) Do(0) = 1, T i(0) = 0, (b) Do(0) =
0, T i(0) = 1, (c) Do(0) = 1, T i(0) = 1, (d) Do(0) = 1, T i(0) = −1
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particular moment, he begins to feel a little tired. Eventually, both Do(t) and T i(t)

return to equilibrium due to their negative auto-effects. The feelings of being down
and tired have returned to normal around t = 4, that is, 4 h after the initial impulse;
stronger impulses (|Do(0)| > 1) will result in the system taking longer to return to
equilibrium, and weaker impulses (|Do(0)| < 1) would dissipate quicker.

Figure 2.1b shows the corresponding reaction of Do(t) at equilibrium to a
positive value of T i(0). We can further see that the deviation of Do(t) in Fig. 2.1b
is greater than the deviation of T i(t) in Fig. 2.1a: a positive value of T i(t) exerts a
greater push on Do(t) than vice versa, because of the greater cross-effect of T i(t)

on Do(t). In this case this strong cross-effect, combined with the relatively weaker
auto-effect of Do(t), results in Do(t) taking on a higher value than T i(t) at around
t = 1, 1 h after the initial impulse. Substantively, when our participant is feeling
physically tired at a particular moment (Fig. 2.1b), he begins to feel down over the
next couple of hours, before eventually these feelings return to normal (again in this
case, around 4 h later).

Figure 2.1c further demonstrates the role of the negative auto-effects and positive
cross-effects in different scenarios. In Fig. 2.1c, both processes take on positive
values at t = 0; the positive cross-effects result in both processes returning to
equilibrium at a slower rate than in Fig. 2.1a, b. In substantive terms this means
that, when the participant is feeling very down, and very tired, it takes longer for the
participant to return to feeling normal. Here also the stronger auto-effect of T i(t)

than Do(t) is evident: although both processes start at the same value, an hour later
T i(1) is much closer to zero than Do(1), that is, T i(t) decays faster to equilibrium
than Do(t). In substantive terms, this tells us that when the participant is feeling
down and physically tired, he recovers much quicker from the physical tiredness
than he does from feeling down.

In Fig. 2.1d, we see that Do(0) and T i(0) taking on values of opposite signs
result in a speeding up of the rate at which each variable decays to equilibrium. The
auto-effect of Do(t) is negative, which is added to by the positive cross-effect of
T i(t) multiplied by the negative value of T i(0). This means that Do(0) in Fig. 2.1d
takes on a stronger negative velocity, in comparison to Fig. 2.1a or c. A positive
value for Do(0) has a corresponding effect of making T i(0) take on an even stronger
positive velocity. Substantively, this means that when the participant feels down,
but feels less tired (i.e., more energetic) than usual, both of these feelings wear
off and return to normal quicker than in the other scenarios we examined. The
stronger auto-effect of T i(t), in combination with the positive cross-effect of Do(t)

on T i(t), actually results in T i(t) shooting past the equilibrium position in the T i(t)

dimension (T i(t) = 0) and taking on positive values around t = 1.5, before the
system as a whole returns to equilibrium. Substantively, when the participant is
feeling initially down but quite energetic, we expect that he feels a little bit more
tired than usual about an hour and half later, before both feelings return to normal.
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2.4.3.2 Vector Fields

Vector fields are another technique which can be used to visualize the dynamic
behavior of the system by showing potential trajectories through a bivariate space.
In our case the two axes of this space are Do(t) and T i(t). The advantage of vector
fields over IRFs in this context is that in one plot it shows how, for a range of possible
starting positions, the process is expected to move in the (bivariate) space a moment
later. For this reason, the vector field is particularly useful in bivariate models with
complex dynamics, in which it may be difficult to obtain the full picture of the
dynamic system from a few IRFs alone. Furthermore, by showing the dynamics for
a grid of values, we can identify areas in which the movement of the process is
similar or differs.

To create a vector field, E[ dy(t)
dt

] is calculated for a grid of possible values for
y1(t) and y2(t) covering the full range of the values both variables can take on.
The vector field for Do(t) and T i(t) is shown in Fig. 2.2. The base of each arrow
represents a potential position of the process y(t). The head of the arrow represents
where the process will be if we take one small step in time forward, that is the
value of y(t + Δt) as Δt approaches zero. In other words, the arrows in this
vector field represent the information of two derivatives, dDo(t)/dt and dT i(t)/dt .
Specifically, the direction the arrow is pointing is a function of the sign (positive or
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Fig. 2.2 Vector field for Do(t) and T i(t), including blue and red nullclines
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negative) of the derivatives, while the length of the arrow represents the magnitude
of this movement and is a function of the absolute values of the derivative(s).

If an arrow in the vector field is completely vertical, this means that, for that
position, taking one small step forward in time would result in a change in the
system’s position along the T i(t) axis (i.e., a change in the value of Tired), but not
along the Do(t) axis (i.e., dDo(t)/dt = 0 and dT i(t)/dt �= 0). The converse is true
for a horizontal arrow (i.e., dDo(t)/dt �= 0 and dT i(t)/dt = 0). The two lines in
Fig. 2.2, blue and red, identify at which positions dDo(t)/dt = 0 and dT i(t)/dt =
0, respectively; these are often referred to as nullclines. If the nullclines are not
perfectly perpendicular to one another, this is due to the presence of at least one
cross-effect. The point at which these nullclines cross represents the equilibrium
position in this two-dimensional space, here located at Do(t) = 0, T i(t) = 0.
The crossing of these nullclines splits the vector field in four quadrants, each of
which is characterized by a different combination of negative and positive values for
dDo(t)/dt and dT i(t)/dt . The top left and bottom right quadrants represent areas
in which the derivatives are of opposite sign, dDo(t)/dt > 0 & dT i(t)/dt < 0
and dDo(t)/dt < 0 & dT i(t)/dt > 0, respectively. The top right and bottom left
quadrants represent areas where the derivatives are of the same sign, dDo(t)/dt < 0
& dT i(t) < 0 and dDo(t)/dt > 0 & dT i(t) > 0, respectively.

By tracing a path through the arrows, we can see the trajectory of the system
of interest from any point in the possible space of values. In Fig. 2.2, we include
the same four bivariate trajectories as we examined with the IRFs. Instead of the
IRF representation of two variables whose values are changing, the vector field
represents this as the movement of one process in a two-dimensional space. For
instance, the trajectory starting at Do(t) = 0 and T i(t) = 1 begins in the top
left quadrant, where dDo(t)/dt is positive and dT i(t)/dt is negative; this implies
that the value of Down will increase, and the value of Tired will decrease (as
can be seen in Fig. 2.1b). Instead of moving directly to the equilibrium along
the T i(t) dimension, the system moves away from equilibrium along the Do(t)

dimension, due to the cross-effect of T i(t) on Do(t), until it moves into the top right
quadrant. In this quadrant, dDo(t)/dt and dT i(t)/dt are both negative; once in this
quadrant, the process moves toward equilibrium, tangent to the dDo(t)/dt nullcline.
The other trajectories in Fig. 2.2 analogously describe the same trajectories as in
Fig. 2.1a, c, d.

In general, the trajectories in this vector field first decay the quickest along the
T i(t) dimension and the slowest along the Do(t) dimension. This can be clearly
seen in trajectories (b), (c), and (d). Each of these trajectories first changes steeply
in the T i(t) dimension, before moving to equilibrium at a tangent to the red ( dDo(t)

dt
)

nullcline. This general property of the bidimensional system is again related to
the much stronger auto-effect of T i(t) and the relatively small cross-effects. In
a technical sense, we can say that Do(t) represents the “slowest eigendirection”
(Strogatz 2014, Chapter 5).
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2.4.4 Inspecting the Lagged Parameters

Another way to gain insight into the processes of interest is by determining the
relationships between lagged positions of the system, according to our drift matrix.
To this end, we can use Eq. (2.4) to determine Φ(Δt) for some Δt . For instance,
we can see that the autoregressive and cross-lagged relationships between values of
competence and exhaustion given Δt = 1 are

Φ(Δt = 1) =
[

0.396 0.117
0.077 0.106

]
. (2.10)

For this given time interval, the cross-lagged effect of Down on Tired (φ21(Δt =
1) = 0.077) is smaller than the cross-lagged effect of Tired on Down (φ12(Δt =
1) = 0.117). However, as shown in Eq. (2.5), the value of each of these lagged
effects changes in a nonlinear way depending on the time interval chosen. To
visualize this, we can calculate Φ(Δt) for a range of Δt and represent this
information graphically in a lagged parameter plot, as in Fig. 2.3. From Fig. 2.3,
we can see that both cross-lagged effects reach their maximum (and have their
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maximum difference) at a time interval of Δt = 0.65; furthermore, we can see
that the greater cross-effect (a12) results in a stronger cross-lagged effect φ12(Δt)

for a range of Δt . Moreover, we can visually inspect how the size of each of the
effects of interest, as well as the difference between these effects, varies according
to the time interval. From a substantive viewpoint, we could say that the effect of
feeling physically tired has the strongest effect on feelings of being down around
40 min later.

While the shape of the lagged parameters may appear similar to the shapes
of the trajectories plotted in the IRFs, lagged parameter plots and IRFs represent
substantively different information. IRFs plot the positions of each variable in
the system as they change over time, given some impulse (y(t) vs t given some
y(0)). In contrast, lagged parameter plots show how the lagged relationships change
depending on the length of the time interval between them, independent of impulse
values (eAΔt vs Δt). The lagged relationships can be thought of as the components
which go into determining any specific trajectories.

2.4.5 Caution with Interpreting Estimated Parameters

It is important to note that in the above interpretation of CT models, we have treated
the matrix A as known. In practice of course, researchers should take account of the
uncertainty in parameter estimates. For example, the ctsem package also provides
lagged parameter plots with credible intervals to account for this uncertainty.

Furthermore, researchers should be cautious about extrapolating beyond the
data. For instance, when we consider a vector field, we should be careful about
interpreting regions in which there is little or no observed data (cf. Boker and
McArdle 1995). The same logic applies for the interpretation of IRFs for impulses
that do not match observed values. Moreover, we should also be aware that
interpreting lagged parameter plots for time intervals much shorter than those
we observe data at is a form of extrapolation: It relies on strong model-based
assumptions, such as ruling out the possibility of a high-frequency higher-order
process (Voelkle and Oud 2013; Voelkle et al. 2012).

2.5 Discussion

In this chapter we have set out to clarify the connection between DT- and CT-
VAR(1) models and how we can interpret and represent the results from these
models. So far we have focused on single-subject, two-dimensional, first-order
systems with a stable node equilibrium. However, there are many ways in which
these models can be extended, to match more complicated data and/or dynamic
behavior. Below we consider three such extensions: (a) systems with more than two
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dimensions (i.e., variables), (b) different types of fixed points resulting from non-
real eigenvalues of the drift matrix, and (c) moving from single-subject to multilevel
datasets.

2.5.1 Beyond Two-Dimensional Systems

In the empirical illustration, we examined the interpretation of a drift matrix in the
context of a bivariate CT-VAR(1) model. Notably, the current trend in applications
of DT-VAR(1) models in psychology has been to focus more and more on the
analysis of large systems of variables, as typified, for example, by the dynamic
network approach of Bringmann et al. (2013, 2016). The complexity of these models
grows rapidly as the number of variables is added: To estimate a full drift matrix for
a system of three variables, we must estimate nine unique parameters, in contrast to
four drift matrix parameters for a bivariate system. In addition, we must estimate a
three-by-three covariance matrix for the residuals, rather than a two-by-two matrix.

The relationship between the elements of A and Φ(Δt) becomes even less
intuitive once the interest is in a system of three variables, because the lagged
parameter values are dependent on the drift matrix as a whole, as explained earlier.
This means that both the relative sizes and the signs of the cross-lagged effects may
differ depending on the interval: The same lagged parameter may be negative for
some time intervals and positive for others, and zero elements of A can result in
corresponding non-zero elements of Φ (cf. Aalen et al. 2017, 2016, 2012; Deboeck
and Preacher 2016). Therefore, although we saw in our bivariate example that, for
instance, negative CT cross-effects resulted in negative DT cross-lagged effects, this
does not necessarily hold in the general case (Kuiper and Ryan 2018).

Additionally, substantive interpretation of the lagged parameters in systems with
more than two variables also becomes less straightforward. For example, Deboeck
and Preacher (2016) and Aalen et al. (2012, 2016, 2017) argue that the interpretation
of Φ(Δt) parameters in mediation models (with three variables and a triangular
A matrix) as direct effects may be misleading: Deboeck and Preacher argue that
instead they should be interpreted as total effects. This has major consequences for
the practice of DT analyses and the interpretation of its results.

2.5.2 Complex and Positive Eigenvalues

The empirical illustration is characterized by a system with negative, real, non-equal
eigenvalues, which implies that the fixed point in the system is a stable node. In
theory, however, there is no reason that psychological processes must adhere to
this type of dynamic behavior. We can apply the tools we have defined already
to understand the types of behavior that might be described by other types of drift
matrices. Notably, some systems may have drift matrices with complex eigenvalues,
that is, eigenvalues of the form α ± ωi, where i = √−1 is the imaginary number,
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Fig. 2.4 Vector field for a stable spiral corresponding to a drift matrix with negative real part
complex eigenvalues

ω �= 0, α is referred to as the real part, and ωi as the imaginary part of the eigenvalue.
If the real component of these eigenvalues is negative (α < 0), then the system
is still stable, and given a deviation it will return eventually to a resting state at
equilibrium. However, unlike the systems we have described before, these types of
systems spiral or oscillate around the equilibrium point, before eventually coming to
rest. Such systems have been described as stable spirals, or alternatively as damped
(linear or harmonic) oscillators (Boker et al. 2010b; Voelkle and Oud 2013).

A vector field for a process which exhibits this type of stable spiral behavior is
shown in Fig. 2.4, with accompanying trajectories. The drift matrix corresponding
to this vector field is

A =
[−0.995 0.573

−2.000 −2.416

]
(2.11)

which is equivalent to our empirical example above but with the value of a21 altered
from 0.375 to −2.000. The eigenvalues of this matrix are λ1 = −1.706 + 0.800i

and λ2 = −1.706 − 0.800i. In contrast to our empirical example, we can see that
the trajectories follow a spiral pattern; the trajectory which starts at y1(t) = 1,
y2(t) = 1 actually overshoots the equilibrium in the T i(t) dimension before
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spiraling back once in the bottom quadrant. There are numerous examples of
psychological systems that are modeled as damped linear oscillators using second-
order differential equations, which include the first- and second-order derivatives
(cf., Bisconti et al. 2004; Boker et al. 2010b; Boker and Nesselroade 2002; Horn
et al. 2015). However, as shown here, such behavior may also result from a first-
order model.

Stable nodes and spirals can be considered the two major types of stable fixed
points, as they occur whenever the real part of the eigenvalues of A is negative, that
is, α < 0. Many other types of stable fixed points can be considered as special cases:
when we have real, negative eigenvalues that are exactly equal, the fixed point is
called a stable star node (if the eigenvectors are distinct) or a stable degenerate node
(if the eigenvectors are not distinct). In contrast, if the real part of the eigenvalues
of A is positive, then the system is unstable, also referred to as non-stationary or
a unit root in the time series literature (Hamilton 1994). This implies that, given a
deviation, the system will not return to equilibrium; in contrast to stable systems,
in which trajectories are attracted to the fixed point, the trajectories of unstable
systems are repelled by the fixed point. As such we can also encounter unstable
nodes, spirals, star nodes, and degenerate nodes. The estimation and interpretation
of unstable systems in psychology may be a fruitful ground for further research.

Two further types of fixed points may be of interest to researchers; in the special
case where the eigenvalues of A have an imaginary part and no real part (α = 0), the
fixed point is called a center. In a system with a center fixed point, trajectories spiral
around the fixed point without ever reaching it. Such systems exhibit oscillating
behavior, but without any damping of oscillations; certain biological systems, such
as the circadian rhythm, can be modeled as a dynamic system with a center fixed
point. Such systems are on the borderline between stable and unstable systems,
sometimes referred to as neutrally stable; trajectories are neither attracted to or
repelled by the fixed point. Finally, a saddle point occurs when the eigenvalues
of A are real but of opposite sign (one negative, one positive). Saddle points have
one stable and one unstable component; only trajectories which start exactly on
the stable axis return to equilibrium, and all others do not. Together spirals, nodes,
and saddle points cover the majority of the space of possible eigenvalues for A.
Strogatz (2014) describes the different dynamic behavior generated by different
combinations of eigenvalues of A in greater detail.

2.5.3 Multilevel Extensions

The time series literature (such as from the field of econometrics) as well as the
dynamic systems literature (such as from the field of physics) tends to be concerned
with a single dynamic system, either because there is only one case (N = 1) or
because all cases are exact replicates (e.g., molecules). In psychology however, we
typically have data from more than one person, and we also know that people tend
to be highly different. Hence, when we are interested in modeling their longitudinal
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data, we should take their differences into account somehow. The degree to which
this can be done depends on the number of time points we have per person. In
traditional panel data, we typically have between two and six waves of data. In this
case, we should allow for individual differences in means or intercepts, in order
to separate the between-person, stable differences from the within-person dynamic
process, while assuming the lagged relationships are the same across individuals (cf.
Hamaker et al. 2015).

In contrast, experience sampling data and other forms of intensive longitudinal
data consist of many repeated measurement per person, such that we can allow
for individual differences in the lagged coefficients. This can be done by either
analyzing the data of each person separately or by using a dynamic multilevel model
in which the individuals are allowed to have different parameters (cf. Boker et al.
2016; Driver and Voelkle 2018). Many recent studies have shown that there are
substantial individual differences in the dynamics of psychological phenomena and
that these differences can be meaningfully related to other person characteristics,
such as personality traits, gender, age, and depressive symptomatology, but also to
later health outcomes and psychological well-being (e.g., Bringmann et al. 2013;
Kuppens et al. 2010, 2012).

While the current chapter has focused on elucidating the interpretation of a
single-subject CT-VAR(1) model, the substantive interpretations and visualization
tools we describe here can be applied in a straightforward manner to, for example,
the fixed effects estimated in a multilevel CT-VAR(1) model or to individual-specific
parameters estimated in a multilevel framework. The latter would however lead to
an overwhelming amount of visual information. The development of new ways of
summarizing the individual differences in dynamics, based on the current tools, is a
promising area.

2.5.4 Conclusion

There is no doubt that the development of dynamical systems modeling in the field
of psychology has been hampered by the difficulty in obtaining suitable data to
model such systems. However this is a barrier that recent advances in technology
will shatter in the coming years. Along with this new source of psychological
data, new psychological theories are beginning to emerge, based on the notion
of psychological processes as dynamic systems. Although the statistical models
needed to investigate these theories may seem exotic or difficult to interpret at first,
they reflect the simple intuitive and empirical notions we have about psychological
processes: Human behavior, emotion, and cognition fluctuate continuously over
time, and the models we use should reflect that. We hope that our treatment of
CT-VAR(1) models and their interpretation will help researchers to overcome the
knowledge barrier to this approach and can serve as a stepping stone toward a
broader adaptation of the CT dynamical system approach to psychology.
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Appendix: Matrix Exponential

Similar to the scalar exponential, the matrix exponential can be defined as an infinite
sum

eA =
∞∑

k=0

1

k!A
k

The exponential of a matrix is not equivalent to taking the scalar exponential of each
element of the matrix, unless that matrix is diagonal. The exponential of a matrix
can be found using an eigenvalue decomposition

A = V DV −1

where V is a matrix of eigenvectors of A and D is a diagonal matrix of the
eigenvalues of A (cf. Moler and Van Loan 2003). The matrix exponential of A is
given by

eA = V eDV −1

where eD is the diagonal matrix whose entries are the scalar exponential of the
eigenvalues of A. When we want to solve for the matrix exponential of a matrix
multiplied by some constant Δt , we get

eAΔt = V eDΔtV −1 (2.12)

Take it that we have a 2 × 2 square matrix given by

A =
[

a b

c d

]

and we wish to solve for eAΔt . The eigenvalues of A are given by

λ1 = 1

2

(
a + d −

√
a2 + 4bc − 2ad + d2

)

λ2 = 1

2

(
a + d +

√
a2 + 4bc − 2ad + d2

)
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where we will from here on denote

R =
√

a2 + 4bc − 2ad + d2

for notational simplicity. The exponential of the diagonal matrix made up of
eigenvalues multiplied by the constant Δt is given by

eDΔt =
[

e
1
2 (a+d−R)Δt 0

0 e
1
2 (a+d+R)Δt

]

The matrix of eigenvectors of A is given by

V =
[

a−d−R
2c

a−d+R
2c

1 1

]

assuming c �= 0, with inverse

V −1 =
[ −c

R
a−d+R

2R
c
R

−a+d+R
2R

]
.

Multiplying V eDV −1 gives us

eAΔt =
[

R−a+d
2R

eλ1Δt + R+a−d
2R

eλ2Δt b(−eλ1Δt+eλ2Δt )
R

c(−eλ1Δt+eλ2Δt )
R

R+a−d
2R

eλ1Δt + R−a+d
2R

eλ2Δt

]
(2.13)

Note that we present here only a worked out example for a 2 × 2 square
matrix. For larger square matrices (representing models with more variables), the
eigenvalue decomposition remains the same although the terms for the eigenvalues,
eigenvectors, and determinants become much less feasible to present.
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