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1 INTRODUCTION

Release Planning (RP) is the problem of determining the sets of requirements that should be in-
cluded in a set of upcoming releases of a software system. To plan the software release cycle, a
number of different conflicting objectives need to be taken into account. For example, the estimated
cost of implementing a requirement has to be balanced against the perceived value to the customer
of that requirement. There may be multiple stakeholders, and their different interpretations of cost
and value may lead to complex solution spaces for project managers.
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To help decision-makers navigate these complex solution spaces, meta-heuristic search has
been widely studied as a candidate solution technique (Bagnall et al. 2001; Ruhe and Greer 2003;
Zhang et al. 2007). This article has placed RP within the general area of Search-Based Software
Engineering (SBSE) (Harman and Jones 2001). Table 1 summarises the literature on search-based
RP, listing the meta-heuristic algorithms proposed and the datasets on which they have been
evaluated.

The different cost and value objectives for each stakeholder are typically measured along incom-
parable dimensions. To avoid the familiar problem of comparing apples with oranges, much of the
previous work on multi-objective RP has used Pareto optimal search. The result of such a search is
a Pareto front. Each element on this front is a candidate solution to the RP problem. All solutions
on the Pareto front are non-denominated: no other solution on the front is better according to all
objectives. The Pareto front thus represents a set of “best compromises” between the objectives
that can be found by the search-based algorithm.

The overview in Table 1 reveals that previous work has evaluated meta-heuristic algorithms on
very few real-world datasets. Much of the previous work presents results for only a single real-
world dataset. In the absence of real-world datasets, many authors have relied upon synthetically
generated data. While studies on synthetically generated data can answer experimental research
questions (Harman et al. 2012a), they cannot address the essential empirical question that will be
asked by any release planner: How well can I expect these techniques to behave on real-world data?

As a result, the state of the art is currently poorly understood: though a variety of different algo-
rithms have been proposed, there has been no empirical study across multiple different algorithms
and multiple different datasets. We wish to address this issue by providing a thorough empirical
study of optimised RP. We believe that this may help to understand the different strengths and
weaknesses of algorithms for RP and their performance on real-world datasets. We hope that our
article will also provide results against which future work can compare.

We report the results of an empirical study using 10 real-world datasets. We investigate multi-
objective RP with respect to these datasets, which we optimise using Hill Climbing (HC), Genetic
Algorithms (GA), and Simulated Annealing (SA).

As a sanity check, recommended for SBSE work (Arcuri and Briand 2011; Harman et al. 2012c),
we also report results for purely random search. Random search provides a baseline against which
to benchmark more “intelligent” search techniques. Our study also includes hyper-heuristic ver-
sions of HC, GA, and SA. Hyper-heuristics (Burke et al. 2013) are a more recent trend in search
methodologies, not previously used in any SBSE research. The findings we report here indicate
that they are promising for RP problems.

Overall, our study thus involves seven different algorithms. We assess solutions found using
these algorithms according to four different measures of solution quality, over each of the 10 real-
world datasets. We include standard, widely used measures of multi-objective solution quality:
convergence, hypervolume, and two different assessments of each algorithm’s contribution to the
Pareto front. We also measure diversity and speed. For algorithms that produce good quality solu-
tions, these are important additional algorithmic properties for decision-makers, because they need
quick answers that enable them to base their decisions on the full diversity of candidate solutions.

The primary contributions of the article are as follows:

(1) Comprehensive study: We provide a comprehensive study of the performance of global,
local, and hybrid meta-heuristic algorithms for RP problems on 10 real-world datasets.
The results facilitate detailed algorithm comparison and reveal that dataset specifics can
lead to important differences in study findings.

(2) Introduce hyper-heuristic search: We introduce and evaluate hyper-heuristic algorithms for
RP. We present evidence that they provide good solution quality diversity and speed.
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Table 1. Previous Meta-Heuristic Algorithm Studies

M/S
Author(s) [Article] Algorithm(s) Objective Dataset(s)

Bagnall et al. (2001) Hill Climbing Algorithm (HC),
Simulated Annealing (SA),
Greedy Algorithm

Single Synthetic

Feather and Menzies (2002),
Feather et al. (2004),
Feather et al. (2006)

SA Single NASA

Ruhe and Greer (2003),
Ruhe and Ngo-The (2004),
Amandeep et al. (2004),
Ruhe (2010)

Genetic Algorithm (GA) Single & Multiple Synthetic

Zhang et al. (2007) Non-Dominated Sorting Genetic Algorithm- II
(NSGA-II), Pareto GA

Multiple Synthetic

Durillo et al. (2009),
Durillo et al. (2011)

Multi-Objective Cellular Genetic Algorithm
(MOCell), Pareto Archived Evolution Strategy
(PAES), NSGA-II

Multiple Synthetic,
Motorola

Colares et al. (2009) NSGA-II Multiple Synthetic

Finkelstein et al. (2008),
Zhang et al. (2011)

NSGA-II, Two-Archive Algorithm Multiple Motorola

Zhang and Harman (2010),
Zhang et al. (2013)

NSGA-II, Archive-based NSGA-II Multiple Synthetic, RALIC

Del Sagrado and Del Águila (2009),
Del Sagrado et al. (2010)

Ant Colony Optimisation (ACO), SA, GA Single Synthetic

Jiang et al. (2010a),
Xuan et al. (2012)

Backbone Multilevel Algorithm Single Eclipse, Mozilla,
Gnome

Zhang et al. (2010) NSGA-II Multiple Ericsson

Jiang et al. (2010b) Hybrid ACO, ACO, SA Single Synthetic

Kumari et al. (2012) Quantum-Inspired Elitist Multi-Objective
Evolutionary Algorithm (QEMEA)

Multiple Synthetic

de Souza et al. (2011),
do Nascimento Ferreira and de Souza (2012)

ACO Single Synthetic

Brasil et al. (2012) NSGA-II, MOCell Multiple Synthetic

Cai et al. (2012),
Cai and Wei (2013)

Domination and Decomposition-Based
Multi-Objective Evolutionary Optimisation
(MOEA/DD), Strength Pareto Evolutionary
Algorithm-II (SPEA2), NSGA-II

Multiple Synthetic

Tonella et al. (2013) Interactive GA (IGA), Incomplete Analytic
Hierarchy Process (IAHP)

Single ACube

Paixão and de Souza (2013a),
Paixão and de Souza (2013b),
Paixão and de Souza (2015)

GA, SA Single Synthetic,
Eclipse, Mozilla

Li et al. (2014) NSGA-II Multiple Synthetic,
Motorola

Chaves-González and Pérez-Toledano (2015) Multi-Objective Differential Evolution (MODE) Multiple Synthetic

del Sagrado et al. (2015),
del Águila and Sagrado (2016)

Greedy Randomised Adaptive Search Procedure
(GRASP), NSGA-II, Multi-Objective ACO

Multiple Synthetic

Li et al. (2017) Cellular Algorithm Hybridised with Differential
Evolution (CellDE), Multi-Objective Particle
Swarm Optimisation (SMPSO), Alternating
Variable Method (AVM), GA, (1+1) EA, NSGA-II,
PAES, SPEA2

Single & Multiple Synthetic, a CPS
of energy domain

Karim and Ruhe (2014) NSGA-II Multiple MS Word,

Pitangueira et al. (2017) NSGA-II Multiple theme-based

Araújo et al. (2017) IGA Single RP datasets
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(3) Scalability assessment: We investigate the scalability of meta- and hyper-heuristic algo-
rithms on real-world datasets for the first time. The results provide evidence that hyper-
heuristics have attractive scalability and that random search is surprisingly unscalable for
RP.

The rest of the article is organised as follows. Section 2 sets our work in the context of related
work. Section 3 introduces our three hyper-heuristic RP algorithms. Section 4 explains our exper-
imental methodology. Section 5 presents the results and discusses the findings. Section 6 analyses
threats to validity. Section 7 concludes the article and lists some directions for future research.

2 THE CONTEXT OF OUR STUDY

Bagnall et al. (2001) first suggested the term next release problem and described various meta-
heuristic optimisation algorithms for solving it. Feather and Menzies (2002) were the first to use
a real-world dataset, but this dataset is no longer publicly available. Ruhe et al. (Amandeep et al.
2004; Ruhe and Greer 2003; Ruhe and Ngo-The 2004; Saliu and Ruhe 2005) introduced the soft-
ware RP process together with exact optimisation algorithms (Al-Emran et al. 2010; AlBourae
et al. 2006; Ruhe 2010; Ruhe and Saliu 2005) and meta-heuristics, such as GAs. Van den Akker
et al. (Li et al. 2010; Van den Akker et al. 2005a, 2005b, 2008) and Veerapen et al. (2015) also studied
exact approaches to single objective constrained requirements selection problems.

Zhang et al. (2007) introduced the Multi-Objective Next Release Problem formulation as a Pareto
optimal problem with a set of objectives. However, Feather et al. (2006, 2004) had previously used
Simulated Annealing to construct a form of Pareto front for visualisation of choices. Also, at
the same time, Saliu and Ruhe (2007) introduced a multi-objective searchbased optimisation to
balance the tension between user-level and system-level requirements. Subsequently, Finkelstein
et al. (2009) used multi-objective formulations to characterise different notions of fairness in the
satisfaction of multiple stakeholders with different views on the priorities for requirement choices.

Table 1 lists the previous meta-heuristic algorithm studies for selecting requirements for the
next release problem (NRP). The multi-objective formulations are used in many studies, thereby
adopting different multi-objective meta-heuristic algorithms to find good enough solutions.
Svahnberg et al. (2010) conduct a systematic review on RP models and find that there are a num-
ber of RP models proposed by using similar techniques. Several hard and soft constraints are also
considered as requirement selection factors. RP can also be used for the planning of requirements
(backlog items) based on the agile principles, such as Scrum sprints (Vlaanderen et al. 2011). Re-
cently, uncertainty analysis (Li et al. 2014) and risk handling (Pitangueira et al. 2016, 2017) in RP
are studied to identify the sensitive requirements and evaluate the robustness of the release plan
in the presence of uncertainty.

The multi-objective formulation subsumes previous single objective formulations: any single
objective formulation that has a single objective and no constraints is clearly a special case of a
multi-objective formulation for n objectives where n = 1. Furthermore, a constrained single objec-
tive formulation, in which there is a single optimisation objective and a set of constraints to be
satisfied, can be transformed into a multi-objective formulation in which the constraints become
additional objectives to be met.

The technical details of the various approaches used for constrained single objective formula-
tions and their multi-objective counterparts are, of course, different. However, in this article, we
want to study the most general setting in which requirements optimisation choices might be cast.
Therefore, we adopt the multi-objective paradigm.

In each formulation of the NRP or the RP problem in the literature, there is a slightly different
formulation. NRP considers only a single release, while RP considers a series of releases. NRP is
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thus a special case of the RP. Since RP is the more general case, this is the formulation we shall
study in this article.

In the RP process, software requirements prioritisation activity is interrelated with requirements
selection. Achimugu et al. (2014) and Pitangueira et al. (2015) describe existing prioritisation tech-
niques and their limitations. Some of these strategies arrange the requirements in a hierarchy;
some cluster the requirements into several groups by different priority levels using a verbal rank-
ing; some rely on relative values by pairwise comparison using a numerical ranking; some use
discrete values, the others use a continuous scale. One of the advantages of a numerical ranking is
that it can be sorted. These priority-based approaches usually assign a rank order or level to each
requirement from the “best” to the “worst.” Such a greedy-based approach sorts and provides a
single prioritised requirements list. The top n requirements on the list are selected for a release
plan according to resource availability. It only produces one single “best” solution. A single solu-
tion to a complex problem is less likely to reflect the actual scenarios when compared to the sets
of structured diverse optimal (or near optimal) solutions. Furthermore, the solutions produced by
a greedy algorithm are known to be suboptimal but not necessarily globally optimal. Therefore,
greedy solutions are not preferred due to their sub-optimality.

Compared with these priority-based methods, we can provide more than one (usually many)
optimal alternative solutions within a certain criterion. As such, the requirements engineer has
the opportunity to observe the impact of including or excluding specific requirements, and can use
this to choose the best from the different alternatives, without affecting the quality of solutions.
Furthermore, in the RP decision-making process, by identifying requirements and stakeholders’
properties (Section 2.1) and clarifying specific objectives (Section 2.2), the decisions can be made
in a proactive and rational manner, as opposed to just based on the intuition and experience.

2.1 Representation of Release Planning

Requirements management in RP is formulated as a combinatorial optimisation problem. Ap-
proaches to the NRP represent the solution as a bitset of requirements for the next release. The
RP formulation, being more general, is typically represented as a sequence of integers that denote
release sequence numbers.

It is assumed that for an existing software system, there is a set of stakeholders, C =
{c1, . . . , c j , . . . , cm } whose requirements are to be considered in the development of the releases
of the software. Each stakeholder may have a degree of importance for the project that can
be reflected by a weight factor. A more important stakeholder has a higher level of influence
on the project, thereby deserving greater weight. There are a number of techniques to priori-
tise lists of stakeholders (Lim 2010), which can be used to produce the weight set. The set of
relative weights associated with each stakeholder c j (1 ≤ j ≤ m) is denoted by a weight set,
Weiдht_Sta = {ws1, . . . ,wsj , . . . ,wsm }, where wsj ∈ [0, 1] and

∑m
j=1wsj = 1.

The set of requirements is denoted by� = {r1, . . . , ri , . . . , rn }. The study is based on the assump-
tion that the requirements represented in the article are at a similar level of abstraction. They are
not stated in too much detail nor on too high a level of abstraction. If the level differs among the
requirements, there might be difficulty in selecting the correct subset of requirements for RP. The
resources needed to implement a particular requirement can be denoted as cost terms and consid-
ered to be the associated cost to fulfil the requirement. The cost vector for the set of requirements
ri (1 ≤ i ≤ n) is denoted byCost = {cost1, . . . , costi , . . . , costn }. These cost are estimates of the de-
velopment effort and other resources required. Usually, not all requirements are equally satisfied
to a given stakeholder. The level of satisfaction can be denoted as a value to the stakeholders’ or-
ganisations. Each stakeholder c j (1 ≤ j ≤ m) assigns a value to requirement ri (1 ≤ i ≤ n) denoted
by v (ri , c j ), where v (ri , c j ) > 0 if stakeholder c j desires implementation of the requirement ri and
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0 otherwise. The satisfaction v (ri , c j ) for the stakeholder could be represented as different terms
in practice, such as revenue or the degree of importance.

There are S (S > 1) possible releases considered in the model, which allow us to look fur-
ther rather than just the next release. In each release s (1 ≤ s ≤ S ), a release plan vector
Plan = {p1, . . . ,pi , . . . ,pn } ∈ {0, . . . , S } determines the requirements that are to be implemented in
release s . In this vector,pi = s if requirement ri is delivered in release s and 0 if requirement ri is not
selected in the first s releases. The smaller the number of release s is, the earlier the requirement
ri is selected. In other words, the RP representation we used is an integer sequence in which
each index position denotes a requirement number. The value stored at this index denotes the
assignment of a release number into which the corresponding requirement will be deployed. For
example, a release plan has the three-release formulation (S = 3) with four requirements (n = 4)
Plan = {2, 0, 3, 1}. In other words, requirement r1 is selected in the second release; requirement r2

is not selected in any release; and so on.
The set of relative weights associated with each release s (1 ≤ s ≤ S ) is denoted by a weight set:

Weiдht_Rel = {wr1, . . . ,wrs , . . . ,wrS }. The weight setWeiдht_Rel represents the relative impor-
tance levels among consecutive (time periods) releases and denotes how much more important it is
to include a requirement ri in (a former time period) release s than in (a latter time period) release S .
In this article, we use the three-release formulation S = 3, withWeiдht_Rel = {5, 3, 1} for the first,
second, and third releases, respectively. When we consider the impact of release weight, the first
release is the most important with the highest weight and the third release is the least important.

The decision vector −→xi = {x1, . . . ,xn } ∈ {0, . . . , S } considers both release plan vector Plan and
the impact of release weight Weight_Rel on a release plan. As such, a release plan has the three-
release formulation (S = 3) with four requirements (n = 4) Plan = {2, 0, 3, 1} and the weight of
the releases is Weight_Rel = {5, 3, 1}. In this case, the decision vector of the release plan is −→xi =

{3, 0, 1, 5}. The decision vector will be used in the fitness functions defined in Section 2.2.
For this empirical study, the overriding concern was to use real-world datasets in an attempt to

overcome the limitations of previous studies, which have largely been forced to rely on synthetic
datasets due to the unavailability of real-world requirements data. The use of such real-world
datasets means that we have to work with the data available, rather than synthesising data to fit
the model. The advantage is that our results reflect those that could be attained from real-world
data, but the disadvantage is that some aspects of requirements models cannot be experimented
with. In particular, because our datasets do not contain requirements dependencies, nor release
capacity information, we are forced to abandon any attempt to study the impact of these aspects
on the results obtained. What we sacrifice in richness of models used, we gain in applicability of
results to real-world settings.

2.2 Fitness Functions

In any approach to SBSE it is necessary to choose the objectives, which define the fitness func-
tion(s) used to guide the search (Harman et al. 2012b, 2012c) .

The RP problem seeks a weighted assignment that optimises for a set of objectives. Each article
has its own formulation of the objectives to be met in arriving at solutions to the NRP/RP problem
considered. However, there are also some generalisations that can be undertaken for different
objectives, because all approaches to NRP/RP involve a set of objectives to be maximised and a set
of objectives to be minimised.

The overall value of a given requirement ri (1 ≤ i ≤ n), such as Revenuei can be calculated by

Revenuei =

m∑

j=1

wsj · v (ri , c j ). (1)
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The fitness functions are defined as follows:

Maximise f1 ( −→x ) =
n∑

i=1

Revenuei · xi , (2)

Minimise f2 (−→x ) =
n∑

i=1

Costi (i f xi > 0). (3)

The objectives of Revenue and Cost in the fitness functions can also be replaced by other ob-
jectives. The specific choice of objectives to be maximised or minimised are parameters to the
search-based optimisation algorithm used to search for requirement sets. The algorithms use these
objectives as fitness functions that guide the search. We can compare different algorithms across
different datasets, because the algorithm itself does not change, merely the fitness functions used
to guide the search.

3 HYPER-HEURISTIC SEARCH

Hyper-heuristics are “automated methodologies for selecting or generating heuristics to solve
computational search problems” (Burke et al. 2010). The main motivation is to reduce the need
for a human expert in the process of designing optimisation algorithms, and thus raise the level of
generality in which these methodologies operate. Hyper-heuristics (Burke et al. 2013) are search
methodologies, more recently introduced to the optimisation literature than the meta-heuristics
that have been enthusiastically adopted by the SBSE community (Harman et al. 2012b; Räihä 2010).
Hyper-heuristics are modern search methodologies successfully applied in operational research
domains such as timetabling, scheduling, and routing (Burke et al. 2013). In the optimisation litera-
ture, hyper-heuristics have been widely applied to single objective problem formulations, but there
have been very few attempts at tackling multi-objective problems. In the wider literature on en-
gineering and design in general (rather than software engineering in particular), hyper-heuristics
have been widely applied. However, even in this wider context, the design and engineering prob-
lems attacked using hyper-heuristics have tended to be single objective problems, with only a very
few previous attempts to apply hyper-heuristics to multi-objective problems (Burke et al. 2005;
McClymont and Keedwell 2011). This article is thus the first article in the requirements engineer-
ing literature to explore the use of hyper-heuristics and one of the few articles in the optimisation
literature to use multi-objective hyper-heuristics.

Hyper-heuristics differ from meta-heuristics because they search the space of heuristics or
meta-heuristics rather than the space of solutions. Some well-known meta-heuristics, such as GAs
(Holland 1975) and Genetic Programming (GP) (Poli et al. 2008), use a strategy or procedure to
guide and explore the solution space, so that they are able to come to an acceptable and reasonable
solution to a problem. Instead, hyper-heuristics encapsulate problem specific information using a
pool of low-level heuristics (known as search operators). The search space of hyper-heuristics is
the permutation of the designed search operators. Using hyper-heuristics, we seek the sequence of
operators and to find good-enough heuristics in a given situation rather than providing a solution
to the problem directly. Search operators can be of different kinds (mutation, recombination, etc).
For combinatorial optimisation problems such as NRP/RP, several variation operators, involving
swapping, inserting or deleting components according to different criteria are often used (Ochoa
et al. 2012). It is not easy to know beforehand which of these operators will be the best suited for
the problem at hand.

3.1 Heuristic Search Operators

We designed and implemented 10 search operators for hyper-heuristic RP, ranging from simple
randomised neighbourhoods to greedy and more informed and smarter procedures. These are
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Table 2. Description of 10 Search Operators

Operator Description
Random With uniform probability, select a requirement and change its

release number to another release version (uniformly
selected)

Swap Swap the release numbers of two requirements in the
sequence

Delete_Add With uniform probability, exclude a requirement from the
current release, and add it to another release (also selected
with uniform probability)

Delete_Add_Best With uniform probability, select a requirement, r , and an
objective o, replacing r with the best performing requirement
according to objective o

Delete_Worst_Add With uniform probability, select a requirement, r , and an
objective o, replacing r with the worst performing
requirement according to objective o

Delete_Worst_Add_Best With uniform probability, select an objective o, and a release
number, n, replacing the worst performing requirement
according to objective o at release n with the best performing
requirement (according to o)

Delay_Ahead With uniform probability, select two requirements r1 (for a
release other than the first) and r2 (for a release other than
the last). Move the release date of r1 to a later release number
(the number selected with uniform probability from those
that follow its current release position). Move the release
number of r2 forward to an earlier number (selected with
uniform probability from those that precede it). In other
words, r1 is “delayed” and r2 is “advanced”

Delay_Ahead_Best With uniform probability, select a requirement, r , and an
objective o. Delay r and advance the best requirement
according to objective o

Delay_Worst_Ahead With uniform probability, select a requirement, r , and an
objective o. Delay the release of the worst requirement
(according to objective o) and advance the release of r

Delay_Worst_Ahead_Best With uniform probability, select an objective o. Delay the
release of the worst requirement and advance the release of
the best (worst and best according to objective o)

explained in Table 2. The first two (random and swap) represent standard mutation operators (i.e.,
they perform a small change on the solution, by swapping or changing solution components), while
the remaining eight follow the so-called ruin-recreate (also known as the destruction-construction)
principle, which has proved successful in real-world optimisation problems (Pisinger and Ropke
2007). Ruin-recreate operators partly decompose (ruin) the solution and subsequently recreate it,
incorporating problem-specific reconstruction heuristics to rebuild the solutions from their de-
composed fragments.

The search space of hyper-heuristics is the permutation of the designed search operators.
When considering a pool of operators, a mechanism needs to be devised to select and apply them
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during the search process. Simple ways are to select operators uniformly at random or to follow
a fixed sequence. More interesting, adaptive selection mechanisms can be applied, which gather
information and learn from the search process, in the form of reward statistics from previous
steps, to inform the operator choice. Adaptive Operator Selection is a recently coined term given
to such approaches (Fialho et al. 2008, 2010), which is described below.

3.2 Adaptive Operator Selection

An adaptive operator selection scheme consists of two components, called the credit assignment

mechanism and the selection mechanism (Fialho et al. 2010). Credit assignment involves the attri-
bution of credit (or reward) to the hyper-heuristic’s operators, determined by their performance
during the search process.

Our hyper-heuristic release planners use the scheme proposed by Fialho et al. (2008), known
as “extreme value credit assignment,” which is based on the principle that infrequent, yet
large improvements in the objective score are likely to be more effective than frequent, small
improvements.

Therefore, it rewards operators that have had a recent large positive impact on the objective
score, whilst consistent operators that only yield small improvements receive less credit, and there-
fore have lower chances of selection.

The impact on the objective score is measured by the fitness improvement, concerning the qual-
ity (fitness value) of the offspring with those of its parents (Fialho et al. 2008). In the case of multi-
objective hyper-heuristic RP, there are multiple fitness values evaluated due to the multi-objective
fitness functions. In this article, the fitness improvement is calculated by the fitness hypervolume
differences between the offspring and its parents. Fitness hypervolume is the volume covered by
the solutions in the objective space (Zitzler and Thiele 1999).

Formally, an estimate of the current operator k credit is denoted as q̂k,t . The current fitness
improvement is added to a window in a first in, first out manner. The size of the window isW . The
fitness improvement observed at each iteration t is denoted as Δ(t ). ti denotes the time iteration
where operator k was selected. The best (maximal) fitness improvement observed in the sliding
window is rewarded for operator k . In other words, the credit assigned for operator k is calculated
as

q̂k,t = arдmax {Δ(ti ), i = 1, . . . ,W } . (4)

The credit assignment mechanism needs to be coupled with a selection mechanism that uses
the accumulated credits to select the operator to apply in the current iteration. Most operator
selection rules in the literature attach a probability to each operator and implement a randomised
process to select the operator according to these probabilities. We used the simplest of these rules,
called probability matching (Thierens 2005), which corresponds to the well-known roulette wheel
selection used by meta-heuristic SBSE work (Harman et al. 2012b).

More formally, let K denote the number of search operators. The probability matching selection
mechanism maintains a probability vector that is updated at each iteration t , (pk,t )k=1, ...,K . The
goal is to make pk,t proportional to q̂k,t .

An operator that performs poorly during a long period of the search will have its quality esti-
mate decreased to a low value (possibly even zero). To avoid such operators becoming completely
ignored (which may be undesirable since it would reduce diversity), we assign a minimal selection
probability pmin > 0. Equation 5 describes the probability matching rule we used

pk,t+1 = pmin + (1 − K ∗ pmin )
q̂k,t+1∑K

k=1 q̂k,t+1

. (5)
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4 EXPERIMENTAL SETUP

This section explains our experimental methodology. We motivate the choice of algorithms studied
(Section 4.1), the datasets to which we apply these algorithms (Section 4.2), the metrics we used to
assess quality, diversity and speed (Section 4.3), the inferential statistical techniques used to assess
differences and correlations (Section 4.4), and the research questions we answer (Section 4.5).

4.1 Algorithms

More than 15 different meta-heuristic algorithms have been used in SBSE research (Harman et al.
2012b). Many of these have also been used in research on the NRP/RP (as outlined in Table 1).
Indeed, all of these 15 (and many more meta-heuristics (Burke and Kendall 2005)) could be used,
in principle, since the formulation of the problem is sufficiently generic that any search-based
technique could be applied.

We chose to investigate the performance of six search techniques: three meta-heuristics, Hill
Climbing, Simulated Annealing, and the Nondominated Sorting Genetic Algorithm (NSGA-II),
which we denote as HC, SA, and GA respectively, together with hyper-heuristic versions of each of
the three meta-heuristics, which we denote as HHC, HSA, and HGA. The motivation for this choice
derives from the way in which computational search algorithms can be classified as either “local”
or “global.” Local search techniques, such as HC, tend to be fast, but they can become stuck in a lo-
cal optimum, thereby producing sub-optimal solutions. By contrast, global search techniques, such
as GAs, may be computationally more expensive, but they incorporate mechanisms to avoid local
optima confinement. In this study, HC is selected as a representative for local search algorithms.

Many techniques embody elements of both local and global search, with the local search facil-
itating “exploitation” in the search landscape, while the global search facilitates “exploration” of
the landscape (Crepinsek et al. 2013). One widely studied algorithm that does this is SA, which
augments the basic HC approach with a “cooling” coefficient that mimics cooling in annealing
processes (van Laarhoven and Aarts 1987). This process can enable the algorithm to escape local
optima. The probability that the search will accept and less fit neighbouring solution is directly
proportional to the temperature. This temperature decreases as the simulated annealing process
progresses until, in the limit, the search becomes a pure hill climb. In the SBSE literature, SA is the
most widely used compromise between global and local search (Harman et al. 2012b). Therefore,
SA is chosen to represent a local search with a “global strategy.”

The NSGA-II algorithm (denoted as GA in the article) is selected since it is the most widely used
global algorithm for the multi-objective optimisation problems. We also use purely random search
(R) to provide a baseline against which to benchmark more “intelligent” search techniques.

Our choice of the three meta-heuristic algorithms reflects our desire to sample from the set
of possible algorithm choices, three that, in some sense, “cover” the spectrum of algorithmic be-
haviours from local to global search. As Table 1 shows, all three of these meta-heuristic search
techniques have been proposed and studied for RP problems. We also wish to study the effect
of hyper-heuristics as well as meta-heuristics, motivating our choice of the three hyper-heuristic
variants of the three meta-heuristics we selected for study. Table 3 provides an overview of meta-
and hyper-heuristic algorithms used in the study.

In the hyper-heuristic algorithms (HGA, HSA, and HHC), only the neighbourhood-generating
operator of the meta-heuristic version (SA and HC, respectively) and the mutation operator of
GA are replaced by the adaptive operator selection mechanism outlined in Section 3.2. In other
words, HGA, HSA, and HHC search the space of the permutation of 10 search operators described
in Table 2. In the meta-heuristic algorithms, the mutation operator mutates each gene of a chro-
mosome with a certain mutation probability. The hyper-heuristic algorithms adaptively choose
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Table 3. Overview of Meta- and Hyper-Heuristic Algorithms Applied

Algorithm Mechanism
Move Strategy in the

Search Space Operator

R Random search Random (uniform
distribution)

—

HC

Local search

Neighbourhood-based Random generating
neighbourhood

HHC 10 search operators (Table 2)
generating neighbourhood

SA
Neighbourhood-based &
temperature controlling

Random generating
neighbourhood

HSA 10 search operators (Table 2)
generating neighbourhood

GA

Global search
Population &
sorting-based

Single-point crossover &
uniform mutation

HGA Single-point crossover & 10
search operators (Table 2)

different search operators based on credit assignment feedback and the probability matching se-
lection mechanism in the search process. The sequences of search operators generated are the
heuristics to mutate the chromosomes in the solution space, thereby generating the new offsprings
of solution chromosomes. The length of sequences of search operators can be fixed or adaptive.
The length of operator sequences is fixed to 1 in the experiment. In other words, one operator is
applied to mutate a chromosome at each time with a certain probability.

For SA, HC, HSA, and HHC, a random seeding is used for generating the initial population. 10%
of genes in a chromosome are randomly selected and mutated to generate the neighbourhood in SA
and HC. For the GA and HGA, we set the population size to 100 and the number of generations to
50. Single-point crossover is used for GA and HGA. The crossover probability is set to Pc = 0.8 and
mutation probability to Pm = 1/n (where n is the chromosome length of GA) is used. Regarding
parameter tuning, some recent work (Fu et al. 2016; Ugolotti and Cagnoni 2014) has shown its
importance and tuning parameters of the evolutionary algorithms could affect their performance.
In this article, our goal is to explore how the widely used algorithms compare to one another,
so it is important for us to use the standard parameter settings widely used in the literature for
the meta-heuristic algorithms. The hyper-heuristic algorithms are adaptive algorithms and are
able to automatically choose different search operators based on credit assignment feedback and
the probability matching mechanism, so they are internally tuning the selection probabilities of
operators. Parameters are not fixed, but vary adaptively across the search process. Therefore, the
hyper-heuristic algorithms have higher opportunities to perform better than the meta-heuristic
algorithms as they adapt to the characteristics of underlying instance.

To ensure a fair comparison, SA, HSA, HC, HHC, and R were all given the same number of
fitness evaluations as GA and HGA. The non-dominated solutions in the population based on
multiple objectives are selected as the best solutions for each algorithm. All the algorithms were
implemented in Python by the authors.

4.2 Datasets

We used 10 datasets, of which 7 are drawn from real-world requirements selection problems in a
variety of different organisations. Of these, five have been used in separate previous studies in the
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Fig. 1. The 10 datasets used and their number of requirements (R), stakeholders (SH), and objectives to be

maximised (Max) and minimised (Min). Those datasets with accompanying citations are taken from previous

studies; those without citations are used in this article for the first time.

literature and two (StoneGate and MS Word) are newly introduced for the first time in the article.1

The other three datasets contain bug fixes requested for Eclipse, Mozilla, and Gnome. They might
be regarded as “pseudo real world”; they are taken from real-world applications but it is debatable
whether they truly denote “requirements.”

We include these three in the study since they have previously been used to act as surrogates
for real-world datasets. Their use in previous work was motivated by the need to overcome the
difficulty of finding sufficiently many real-world datasets on which to evaluate (Xuan et al. 2012).
A summary of each dataset studied in this article can be found in Figure 1.

Previous studies have included at most two real-world requirements datasets (or all three of the
bug-fixing pseudo-real-world datasets), often augmenting these with synthetic data to compensate
for the lack of real-world data. Our study is therefore the most comprehensive study of meta-
heuristics for RP so far reported in the literature. Our use of these 10 datasets is sufficient to allow
us to ask an important research question that has, hitherto, eluded the research community: How
well do the algorithms scale with respect to the size of the real-world requirements problem to
which they are applied?

Baan dataset is extracted from the 5.2 release plan of an ERP product developed by about 600
software engineers and staff located in the Netherlands, India, Germany, and the United States.
StoneGate is a dataset stemming an industrial software security RP project with 100 features, in-
cluding 91 resources and five different resource types considered for planning. Motorola dataset
concerns a set of requirements for handheld communication devices and the stakeholders are mo-
bile service providers in the UK. RalicP and RalicR datasets are extracted from RALIC (Replacement
Access, Library, and ID Card) project at University College London, which initiated to replace the
existing access control system at UCL and consolidate the new system with library access and
borrowing. According to two different requirements priority measurements, RalicP and RalicR
datasets were collected. Ericsson dataset is extracted from questionnaire forms for test manage-
ment tools from Ericsson, which were completed by the groups of Ericsson software engineers to
measure how important each requirement is. RP Benchmark dataset is a (synthetic) benchmark

1http://www0.cs.ucl.ac.uk/staff/Yuanyuan.Zhang/TOSEM/datasets.html.
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problem and included 198 features, eight stakeholders, and 30 different resource types. MS Word
dataset is for planning 50 features considered for RP of a text editing system. Eclipse, Mozilla, and
Gnome datasets are the RP instances of the bug repositories for Eclipse (which is an integrated
development environment), Mozilla (which is an open source project including a set of web appli-
cations), and Gnome (which is a desktop environment and development platform).

When reviewing the datasets, we speculated that “revenue” and “sales value” were likely to
be similar objectives. However, they come from different datasets that originated from different
organisations, so it is likely that different terminology and possibly slightly different definitions
would be pertinent to each. From an optimisation point of view, all that matters is to have a quan-
tification of each objective, since this is the input to the search.

The choice of the objectives to be considered in any multi-objective NRP/RP instance is governed
by the specifics of the dataset and scenario for which the search-based optimiser seeks requirement
sets. In the 10 datasets used in this article, the objectives are to maximise our Revenue, Sales Value,

and Importance, while those to be minimised are Cost and effect on Urgency. All that we require of
the dataset is the identification of the objective is to be minimised and maximised. The estimates of
requirements are provided by the stakeholders of projects. Figure 1 provides descriptive statistics
that characterise the datasets, their sources, and the requirement optimisation objectives pertinent
to each dataset.

In all but one case, the problem is a bi-objective problem in which there is a single objective
to be maximised (such as revenue) and a single objective to be minimised (such as cost). The ex-
ception is the Ericsson dataset. It has two “importance” objectives to be maximised: one for the
present and one for the future. The third objective is to minimise the cost. The Ericsson dataset
includes questionnaire forms for test management tools, which were completed by 14 stakehold-
ers (each stakeholder was a software testing sub-organisation within Ericsson) (Zhang et al. 2010).
To complete the questionnaires, the 14 stakeholders measured how important each requirement
is to them in two ways. One is to evaluate the degree of importance for today, the other is the
importance for the future. This approach was adopted by Ericsson and not suggested by the au-
thors. Each measurement was graded using four levels: ignore, low, medium, or high. However,
the quality of these estimates might be inaccurate or uncertain, thereby leading to one possible
threat to construct validity. The issue will be discussed in Section 6.

4.3 Performance Metrics

We use four quality metrics to compare the performance of each of the six search-based optimisa-
tion algorithms (and random search). In most multi-objective optimisation problems, the globally
optimal Pareto front is unobtainable. RP is no exception to this. In such situations, it is custom-
ary to construct a “reference” front. The reference front is defined to be the largest nondominated
subset of the union of solutions from all algorithms for all the runs studied. As such, the reference
front represents the best current approximation available to the true location of the globally op-
timal Pareto front. Three of the quality metrics we use (Contribution, Unique Contribution, and
Convergence) are computed in terms of each algorithm’s distance from or contribution to this
reference front.

Contribution (denoted Contrib in our results tables) for algorithm A is the number of solutions
produced by A that lie on the reference front. This is the simplest (and most intuitive) quality
metric. It assesses how many of the best solutions found overall are found by algorithm A.

Unique Contribution (denoted UContrib in our results tables) for algorithm A is the number of
solutions produced by A that lie on the reference front and are not produced by any algorithm
under study exceptA. This is a variant of the Contribution metric that takes account of the fact that
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an algorithm may contribute relatively few of the best solutions found, but may still be valuable
if it contributes a set of unique best solutions that no other algorithm finds.

Convergence (denoted Conv in our results tables) for algorithm A is the Euclidean distance be-

tween the Pareto front produced by A and the reference front. More formally, C =
∑N

i=1 di

N
, where

N is the number of solutions obtained by an algorithm and di is the smallest Euclidean distance of
each solution i to the reference Pareto front. The smaller the calculated value of C, the better the
convergence. This metricC = 0 if the obtained solutions are exactly on the reference Pareto front.
In this article, the reported value of Conv is normalised and maximisedConv = 1 − normalised (C ),
so the higher numbers of Conv mean better convergence.

Hypervolume (denoted HVol in our results tables) is the volume covered by the solutions in
the objective space. HVol is the union of hypercubes of solutions on the Pareto front (Zitzler
and Thiele 1999). For each solution i , a hypercube vi is formed with the solution i and a refer-
ence point R. The reference point is usually a vector of the worst fitness values. More formally,
HVol = volume (

⋃N
i=1vi ). The larger the value of HVol, the better the hypervolume. The normalised

fitness values are used for calculating HVol. By using a volume rather than a count (as used by the
contribution metrics), this measure is less susceptible to bias when the numbers of points on the
two compared fronts are very different.

Quality of solutions is clearly important, but diversity is also an important secondary criterion
for algorithms that exhibit acceptable solution quality. We measured the diversity using a standard
metric introduced by Deb (2001).

Diversity measures the extent of distribution in the obtained solutions and spread achieved be-

tween approximated solutions and the reference front (Deb 2001). Δ =
∑M

k=1 dk+
∑N−1

j=1 |dj−d |
∑M

k=1 dk+(N−1)d
, where

k (1 ≤ k ≤ M ) is the number of objectives for a multi-objective algorithm. dk is the Euclidean dis-
tance to the extreme solutions of the reference Pareto front in the objective space. N denotes the
number of solutions obtained by an algorithm.dj (1 ≤ j ≤ N − 1) is the Euclidean distance between

consecutive solutions, d is the average of all the distance dj . The smaller the value of Δ, the better
the diversity.

Finally, to assess the compensation or effort required to produce the quality and diversity of
solutions observed, we measure the computational effort (speed).

Speed is measured in terms of the wall clock time required to produce the solutions reported,
averaged over 30 executions. All experiments were carried out on a desktop computer with a 6-core
3.2GHz Intel CPU and 8GB memory.

To facilitate a more easy comparison of the six overall metrics used in our study, we normalise
all of them to lie between 0.0 and 1.0 and convert all of them to “maximising metrics” (such that
higher values denote superior performance). For example, speed (to give it a name that captures
its “maximising form”) is computed as 1 −T , where T is the normalised wall clock time. Thus, in
all tables of data presented in this article (including the correlation analyses), the reader can safely
assume higher means better. We normalise a value x , drawn from a set of observed values, ranging
from xmin to xmax , using the standard normalising equation: x−xmin

xmax−xmin
.

Our algorithms are executed 30 times each to cater for their stochastic natures, so the normalised
metric values reported are averaged (using mean and median) over these 30 runs. Averaging means
that there is often no value reported in our results that happens to be exactly 1.0 or exactly 0.0,
despite normalisation using maxima and minima.

4.4 Statistical Testing

The selection of appropriate statistical techniques that provide robust answers to the research
questions we seek to address is vital to the construct validity of our investigation. Therefore, we
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explain and motivate the statistical testing techniques used to investigate the research questions
in our study. We need to take account of the stochastic nature of each algorithm due to their
partial reliance on randomisation. This is a well-known phenomenon for which it is widely advised
(Arcuri and Briand 2011; Harman et al. 2012c) that inferential statistical testing should be used as
an appropriate way to compare algorithm performance. The pseudo random number sequence
used by the algorithms is the cause of uncertainty. We are therefore sampling over the population
of pseudo random number sequences (Harman et al. 2012c).

We use inferential statistical testing techniques to draw inferences about the population of all
possible executions of the algorithm on a particular instance, based on a sample of these executions.
In our experiments we set our sample size to 30. In other words, each of the seven algorithms is
executed 30 times on each of the 10 datasets. The null hypothesis is that all seven algorithms
have the same performance. Rejection of the null hypothesis can tell us whether the algorithms
performance are significantly different to one another.

We use nonparametric statistical techniques, because we had no knowledge of the distribution
of the population from which we sample executions, thereby increasing the robustness of our sta-
tistical inferences (Arcuri and Briand 2011; Ferguson 1965; Harman et al. 2012c). Many widely used
nonparametric statistical techniques, such as the Mann and Whitney (1947) (and closely related
Wilcoxon (1945)) test, and the Kruskal-Wallis test (Kruskal and Wallis 1952), make fewer assump-
tions than parametric tests do, nevertheless assume that variance is consistent across all populations
(Zimmerman 2000). In our experiments, we can make no such assumption about our data. There-
fore, we use Cliff’s method (Cliff 1996) for assessing statistical significance. Cliff’s method is not
only nonparametric, but it is also specifically designed for ordinal data. Our research questions
are ordinal and our measurement scales are ordinal (Shepperd 1995). Furthermore, Cliff’s method
makes no assumptions about the variance of the data, thereby making it more robust.

We use the Vargha-Delaney Â12 metric for effect size (as recommended by Arcuri and Briand
(2011)). Vargha-Delaney Â12 also makes few assumptions and is highly intuitive: Â12 (A,B) is simply
the probability that algorithm A will outperform algorithm B in a head-to-head comparison.

Most statistical tests produce a test statistic, the value of which must exceed a certain threshold
for the observed mean to lie outside the confidence interval defined by the experimenter’s chosenα
level. The α level is the experimenter’s tolerance for Type I errors (the error of incorrectly rejecting
the null hypothesis). Often, the test statistic computation is expressed as a so-called p value; the
value of which must be less than the chosen α level for the experimenter to claim “statistical
significance.” We have set our α level to the widely used standard value of 0.05. Each comparison
of a p value with the chosen α level is essentially a claim about probability; the probability of
committing Type I error (the error of incorrectly rejecting the null hypothesis). However, if the
experimenter conducts a series of tests, then the chances of committing a Type I error increase,
potentially quite dramatically, unless some adjustment (or “correction”) is made.

One popular (but not necessarily ideal) adjustment is the Bonferroni correction, which was first
used to control for multiple statistical inferences by Dunn (1961). More recent techniques have
been developed that retain the property of the Bonferroni correction (avoiding Type I errors),
while simultaneously reducing its tendency to increase Type II errors. In our work, we use just
such a technique, the Hochberg’s method (Hochberg 1988) for controlling multiple hypothesis
testing. This method ranks the statistical tests applied, adjusting the α level for each successive
test. It is a less conservative adjustment in the Bonferroni correction, while retaining its ability to
avoid Type I errors (Bejamini and Hochberg 1995).

Overall, given that we know little about the distribution of the populations of executions of
the algorithms studied in this article, we believe that the use of Cliff’s method with the Hochberg
correction provides the most robust and appropriate statistical testing available.
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As well as investigating the quality of solutions produced by each algorithm, we also want to
investigate the correlation between the size of the problem instance and the behaviour of each
algorithm. Though we believe there may be correlations of interest, we have no reason to believe
that they will be linear. Furthermore, since our data is measured on an ordinal scale, the use of the
Pearson correlation (Galton 1889; Pearson 1895; Salkind 2007) is inappropriate; we need to choose
an ordinal correlation method. To ensure robustness of our conclusions, we chose to use both
Kendall’s τ (Kendall 1948) and Spearman rank correlation (Salkind 2007; Spearman 1904), both of
which are nonparametric, rank-based assessments of correlation.

4.5 Research Questions

This section explains and motivates the five research questions we ask in our article. When com-
paring different algorithms for RP problems, a natural question to ask is the quality of the solutions
produced, according to the standard measures of multi-objective solution quality. Our first research
question therefore investigates solution quality:

RQ1: Quality. According to each of the four quality measures, and on each of the 10 datasets,
which algorithm performs best?

To answer this question we use the Cliff’s inferential statistical comparison, as explained in
Section 4.4, to determine which algorithms significantly outperform others and the Â12 measure
of effect size in each case.

Quality of solutions is important, but from the release planner’s point of view, a wide diversity
of candidate solutions may also be important. In the most extreme case, a degenerate Pareto front
(containing only a single solution) may have maximum quality but will have no diversity and
will thus offer the release planner no choice at all. We therefore also investigate the diversity of
solutions produced by each algorithm.

RQ2: Diversity. What is the diversity of the solutions produced by each algorithm?
We used Cliff’s method to report on statistically significant differences in diversity and Â12 to

assess the effect size of any such differences observed.
Naturally, the computational effort required to produce these solutions is also important. An

algorithm that produces slightly lower quality solutions, but which does so almost instantaneously
will have different applications to one that produces better quality solutions, but takes several
minutes to produce them. The former can be used in a situation where the release planner wants
to repeatedly investigate “what if” questions, rebalancing estimates of cost and value in real time.
In this scenario, speed trumps quality, provided quality is sufficient to be acceptable for what-if
analysis. The latter will be more useful in scenarios where requirements optimisation provides
decision support for an important overall choice about RP. In this situation, quality trumps speed,
provided a solution can be found in reasonable time (which might be hours or even days).

RQ3: Speed. How fast can the algorithms produce the solutions?
An algorithm that produces good solutions with acceptable diversity in reasonable time for

small problems may scale less well to larger problems. In RP problems, scalability is not merely a
question of the increased computational effort required for a larger problem; it is to be expected
that computational effort will be directly proportional to problem size.

However, perhaps more importantly, there may also be some degradation solution quality and/or
diversity as the size of the problem scales up. We therefore investigate scalability from the point
of view of all of the metrics we collected in our answers to the foregoing three research questions.

RQ4: Scalability. What is the scalability of each of the algorithms with regard to solution quality,
solution diversity and speed?
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To answer this question, we report the rank of correlation between the size of the problem
(measured in terms of the number of requirements in the dataset) and each of the metrics for
quality, diversity, and speed.

Since each algorithm is executed 30 times to facilitate statistical comparisons, we report cor-
relations between the number of requirements and each of the mean, median, and best case for
quality, diversity, and speed. As explained in Section 4.4, we use Kendall’s τ and Spearman rank
correlation to assess the degree of correlation between the quality, diversity, and speed metrics
and the size of the problem (measured as the number of requirements).

RQ5: Inclusion. Is there any correlation between requirements inclusion in solutions on the
Pareto front and requirement characteristics?

To aid decision-making support and understand the characteristic of large solution sets, we
investigate which attributes of a requirement are correlated with inclusion in Pareto optimal so-
lutions. This research question could help a decision maker to identify trends and patterns in the
solutions on the Pareto front. For example, if some particular requirements have the same inclu-
sion hehaviours, they could be clustered together to reduce information overload. Requirements
inclusion information can also be used to identify similarity and variability among sets of solu-
tions and help decision makers in understanding how similar or different solutions are, based on
the same (or similar) objective attainment levels.

We calculate the number of inclusions on the Pareto front for each requirement over 30 execu-
tions of algorithms. We rank the requirements according to their inclusion and we use Kendall’s
τ to statistically describe the correlation between the inclusion ranking of a requirement and its
attributes.

5 RESULTS AND ANALYSIS

This section presents the results of the empirical study of meta- and hyper-heuristic search tech-
niques for multi-objective RP.

RQ1: Quality. Table 5 presents the mean and median values of the metrics for quality, diversity
and speed for each of the seven algorithms on each of the 10 datasets. The results in the table are
highlighted in dim grey, dark grey, and light grey colours, which represent the best, the second,
and the third order in terms of the performance of the algorithms.

Table 6 presents the results of the inferential statistical tests. Since we need to compare seven
different algorithms with each other, this yields 21 pairwise comparisons (and thus 21 columns of
data). Each of these columns contains the Vargha-Delaney Â12 effect size measure where the result
is significant (at the 0.05 α level), and is left blank where the result is not significant. The column
heading indicates which algorithm is being compared with which others, in groups of 6, 5, 4, 3, 2,
and 1 pairwise comparisons (6 + 5 + 4 + 3 + 2 + 1 = 21 pairwise comparisons in total).

For example, in the pair of columns headed by the title HHC
HC | R , the HHC algorithm is compared

against each of the HC and R algorithms. The value 1.00 is highlighted in dark grey and the values
between 0.51 and 0.99 are highlighted in light grey. The value 1.00 in the first row under the first
of these two columns indicates the following: HHC outperforms HC significantly for its contri-
bution to the Baan dataset’s reference front (because the entry is not blank) and the probability
of this observation being made is 1.00. In other words, HHC always beats HC for its contribution
to the Baan dataset reference front in our sample of 30 runs. The fifth row of data in this same
column contains the effect size measure 0.06, which, being nonblank, indicates a significant result.
However, this time the probability of HHC beating HC is 0.06, so the HC algorithm significantly
outperforms the HHC algorithm on the metric assessed (diversity for the Baan dataset).
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From these two entries in the table of results we can see that, for the Baan dataset, HHC con-
tributes far more strongly to the reference front than HC, but HC is far more diverse. As can be
seen, the other three quality metrics for the comparison of HHC and HC on the Baan dataset also
strongly favour HHC. Based on these observations we would prefer HHC to HC, since diversity is
only interesting if the algorithm’s quality is strong; a highly diverse set of sub-optimal solutions
is easy to achieve and is of little value to the release planner.

The forgoing discussion indicates the density of information contained in Table 6. Some general
observations do emerge: From Table 5, we can see that three hyper-heuristic algorithms (HGA,
HSA, and HHC) outperform their meta-heuristic counterparts (GA, SA, and HC) according to all
four quality measures. In other words, HSA and HHC each significantly outperform both SA and
HC on all 10 datasets with high effect size in every case, while HGA significantly outperforms GA
on 9 out of the 10 datasets with high effect size. HGA is beaten by its meta-heuristic counterpart
only on the Ericsson dataset.

Both HGA and HSA show good performance on the three larger datasets. HGA clearly
offers the best performance over all datasets, algorithms and quality metrics: It significantly out-
performs the other algorithms in 85% (205/240) of the pairwise algorithm quality comparisons.
However, though HGA performs strongest in terms of solution quality, it would be a mistake to
conclude that is the only algorithm that should be used. HSA outperforms the HGA for contribu-
tion in 4 of the 10 datasets and, perhaps more importantly, for unique contribution in three cases.
Even HHC significantly outperforms HGA in terms of contribution in one case.

Looking at the results for the three meta-heuristic algorithms (GA, SA, and HC), we see that GA
performs best overall for quality on smaller datasets, while SA performs noticeably better on the
three larger datasets (Eclipse, Mozilla, and Gnome). This highlights the risk of drawing conclusions
based on too narrow a selection of real-world datasets. SA, HC, and R make few contributions to
the reference front: R contributes in two cases, while the other two algorithms only manage a
contribution in a single case: the Ericsson dataset. Even when these three search strategies do
make a contribution to the reference front, they contribute only a tiny proportion of solutions (no
more than 2%).

We also observe further evidence that suggests that results from one dataset may not generalise
to others. The most extreme example of this is the Ericsson dataset, for which all of the algorithms
behaved very differently (when compared to each other) than they did for the other datasets. HSA
and HHC have closely equivalent behaviours and outperform other algorithms in terms of quality
metric. Several factors may influence the performance of the algorithms. One aspect is the Eric-
sson dataset is the only dataset with three objectives as Importance for Today, Importance for the

Future, and Cost. When the number of objectives increases, the performance of the algorithms
might behaviour differently. For example, NSGA-II (denoted by GA here) has much worse perfor-
mance when the number of objectives is greater than two. The other factor is the character of the
Ericsson dataset itself. Based on a previous study (Zhang et al. 2010) on the dataset, the require-
ments’ importance for today and for the future graded by the stakeholders have a strong positive
correlation. In other words, solutions have the property that Importance for Today does not differ
greatly from Importance for the Future. Therefore, the narrowed search space might make local
search algorithms (HSA and HHC) more effective than GA and HGA.

RQ2: Diversity. As might be expected, random search performs very well in terms of diversity.
From Table 6, we can see that it outperforms almost every other algorithm for almost every dataset
and often does so significantly and with a large effect size.

However, we know from the answer to RQ1 that random search only contributes to the reference
front for 2 of the 10 datasets, and even then it only contributes at most 1% of the unique solutions.
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We therefore conclude that the diversity exhibited by the random search is largely suboptimal;
any solutions it offers (diverse or otherwise) are likely to be dominated by solutions found by one
of the other algorithms (if not all of them).

Of the three hyper-heuristic algorithms (which were competitive for the quality metrics), HGA
exhibits the best diversity. It significantly outperforms HSA in 9 of the 10 datasets and HHC in
8 of the 10. As with the quality metrics studied in answer to RQ1, we observe that the Ericsson
dataset also produces very different behaviour in terms of Diversity. The NSGA-II algorithm (on
which both GA and HGA algorithms are based) was designed to promote diversity and so we might
expect that it should perform best, both its meta- and hyper-heuristic versions.

Even the meta-heuristic version (GA) outperforms the hyper-heuristic versions of simulated
annealing (HSA) and HHC with respect to diversity for 9 of the 10 datasets. However, there is no
evidence that it outperforms its own hyper-heuristic version (HGA) with respect to diversity. In
other words, GA significantly outperforms HGA for one dataset (Ericsson), while HGA signifi-
cantly outperforms GA on two datasets (Mozilla and Gnome). In all other cases, neither signifi-
cantly outperforms the other.

RQ3: Speed. The values of speed of 10 datasets reported in Table 5 are normalised independently
within each dataset. Therefore, the numbers are comparable within one dataset but not across all
datasets. For example, the wall clock time spent of speed 0.99 in Baan dataset is different from the
wall clock time of speed 0.99 in Mozilla dataset. Nevertheless, the two algorithms with speed 0.99
in both datasets have better performance (higher rank) than others with lower speed. We could
interpret these values as the rank of performance, namely higher numbers mean higher ranks.

One might expect that a random search would be fast, since it is such a simple algorithm. How-
ever, we find (quite surprisingly) that the speed of random search is worse than all other algorithms
studied for the larger datasets. We studied these results further and found that the explanation lies
in the cost of invalid solutions: As the problem scale increases, a randomly constructed solution
to the RP problem is increasingly likely to be invalid. For example, it is increasingly likely to con-
tain gaps in the release plan. The computational effort of random search becomes dominated by
repairing such invalid release plans as the problem scale increases.

By contrast, meta-heuristic and hyper-heuristic algorithms spend most of their time adapting
existing release plans. This makes them more scalable than random search, even though they are
more sophisticated. Interestingly, HGA is fastest overall: it significantly outperforms its rival in
70% (42/60) of the pairwise comparisons.

On the largest dataset, Mozilla, which has more than 4,000 requirements, each of the executions
of random search took more than 13 minutes to complete, while each HGA execution took just
over 3 minutes. Neither of these durations makes a big difference to the kind of RP applications
that could be undertaken.

For the smaller datasets (with fewer than 200 requirements), each HGA executions completed
in fewer than 10 seconds (sometimes merely 1 or 2 seconds). This puts HGA tantalisingly close to
the threshold at which it could be used to investigate what-if scenarios; the release planner could
modify the available requirements and/or their attributes and explore the impact of such changes
in real time.

RQ4: Scalability. Figure 2 highlights a scalability problem for meta-heuristic NSGA-II (denoted
GA in the tables): as the number of requirements increase, GA’s contributions to the reference
front decrease. This observation remains consistent whether we measure the mean, median or
the best performance of each algorithm and also holds whether we use Kendall’s or Spearman’s
correlation.
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Fig. 2. Correlations of metrics for quality, diversity, and speed with size of problem. Perhaps surprisingly,

the speed of random search (labelled R in the table), widely believed to be fast but low quality does not scale

well (indicated by a negative correlation). Also we observe that while the quality of meta-heuristic NSGA-II

(labelled GA) tends to degrade with size, the quality of hyper-heuristic NSGA-II (labelled HGA) does not.
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Figure 2 also reveals a negative correlation between the number of requirements and conver-
gence of meta-heuristic NSGA-II and the best performance of meta-heuristic NSGA-II for hypervol-
ume. Taken together, these negative correlation results for meta-heuristic NSGA-II quality metrics
suggest that the quality of solutions it produces tend to decrease as the problem size increases.

We also observe a slightly less strong, but positive, correlation between the number of require-
ments and diversity of solutions produced by meta-heuristic NSGA-II. This suggests meta-heuristic
NSGA-II increases its diversity with scale. However, since its contribution and quality tend to de-
crease as the scale of the problem increases its diversity is of considerably lesser value; it is simply
producing a wider range of increasing sub-optimal solutions as the problem scales.

Fortunately, the other algorithms found to perform well in answer to RQ1 do not exhibit any
such evidence for negative correlation between problem size and solution quality. In particular,
hyper-heuristic NSGA-II exhibits no such correlation. Even more encouraging for this algorithm,
we find consistent evidence, across all six correlation values, that it increases its diversity as the
scale of the problem increases.

We find that there is a positive correlation between Speed and the number of requirements for
a few algorithms, such as HSA and HHC.

“Speed” in Figure 2 is the Median, Best , and Mean of the normalised values (in Table 5) of all
datasets, not the absolute wall clock time. Therefore, a positive correlation between the Median,
Best and Mean normalisedspeed and the number of requirements indicates that when the number
of requirements increase, the rank of (speed) performance of one specific algorithm also increase.
It means that such an algorithm (such as HHC) has worse performance (lower speed rank) than
others for the smaller datasets and better performance for the larger ones.

RQ5: Inclusion. Table 4 shows the correlation between the attributes of requirements and their
inclusion rankings. As illustrated in the table, the name given to these attributes in the 10 datasets
are different. They are the names provided by the stakeholders, including revenue, sales value,
cost, importance, and so on that correspond to costs and values for the specific dataset considered.
Attribute A/B represents a requirement’s A-to-B ratio.

The results of Kendall’s tau (τ ) correlation analysis reveal that, in general, the requirement’s
A-to-B ratios, such as R/C, S/I, IT/C, IF/C and R/U have strong correlation with its likelihood of
inclusion for the smaller datasets. For Baan and Motorola datasets, requirement inclusion is also
correlated with the Cost of requirements. For the large datasets, there is no correlation between
the attributes of a requirement and its inclusion.

RQ5 attempts to help decision makers understand the large solution space and possible ten-
sion between the multiple objectives and attributes. Such analysis allows us to identify useful
information about solution sets, how the solutions’ composition and which requirements tend to
be selected. In general, the requirements with higher A-to-B ratios have higher probability to be
present on the Pareto front according to the correlation analysis. In other words, the search pro-
cess tends to balance multiple conflicting objectives, so such requirements are more favourable in
the solution sets. What we can conclude from the results of large datasets is that the space search
is considerably large to explore for finding the optimal solutions.

Actionable findings. Our results are based on only 10 datasets. This is considerably larger than
any previous empirical study of RP. These datasets are obtained from open source as well as closed
source, system tools as well as enterprise applications, and have sizes varying from 35 to 4,000
requirements. Nevertheless, it remains insufficient to generalise to every type of project in every
scenario. Indeed, we have seen evidence in our results that algorithms can behave very differently
with respect to different datasets.
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Table 4. Kendall Correlation Between the Attributes of Requirement and Its Ranking of Inclusion

Data
Attributes

HGA GA HSA SA HHC HC RSets

τ p-Value τ p-Value τ p-Value τ p-Value τ p-Value τ p-Value τ p-Value

Baan

Revenue 0.43 <0.00 0.47 <0.00 0.50 <0.00 0.45 <0.00 0.49 <0.00 0.45 <0.00 0.47 <0.00

Cost 0.66 <0.00 0.62 <0.00 0.59 <0.00 0.61 <0.00 0.60 <0.00 0.62 <0.00 0.60 <0.00

R/C 0.89 <0.00 0.90 <0.00 0.80 <0.00 0.77 <0.00 0.79 <0.00 0.79 <0.00 0.74 <0.00

Stone-

Sales Value 0.26 <0.00 0.29 <0.00 0.24 <0.00 0.23 <0.00 0.18 0.01 0.24 <0.00 0.25 <0.00

Gate

Impact 0.34 <0.00 0.32 <0.00 0.36 <0.00 0.32 <0.00 0.40 <0.00 0.28 <0.00 0.31 <0.00

S/I 0.80 <0.00 0.85 <0.00 0.76 <0.00 0.68 <0.00 0.70 <0.00 0.63 <0.00 0.71 <0.00

Motorola

Revenue 0.05 0.66 0.00 1.00 0.06 0.63 0.05 0.65 0.07 0.57 0.07 0.54 0.11 0.37

Cost 0.85 <0.00 0.81 <0.00 0.71 <0.00 0.77 <0.00 0.71 <0.00 0.75 <0.00 0.70 <0.00

R/C 0.95 <0.00 0.97 <0.00 0.83 <0.00 0.90 <0.00 0.85 <0.00 0.90 <0.00 0.84 <0.00

RalicP

Revenue 0.57 <0.00 0.45 <0.00 0.37 <0.00 0.35 <0.00 0.37 <0.00 0.37 <0.00 031 <0.00

Cost 0.19 <0.00 0.34 <0.00 0.40 <0.00 0.37 <0.00 0.36 <0.00 0.36 <0.00 0.40 <0.00

R/C 0.65 <0.00 0.62 <0.00 0.50 <0.00 0.48 <0.00 0.49 <0.00 0.50 <0.00 0.43 <0.00

RalicR

Revenue 0.51 <0.00 0.47 <0.00 0.51 <0.00 0.38 <0.00 0.49 <0.00 0.41 <0.00 0.40 <0.00

Cost 0.46 <0.00 0.51 <0.00 0.42 <0.00 0.48 <0.00 0.42 <0.00 0.50 <0.00 0.48 <0.00

R/C 0.83 <0.00 0.85 <0.00 0.75 <0.00 0.64 <0.00 0.70 <0.00 0.68 <0.00 0.63 <0.00

Ericsson

Importance for 0.31 <0.00 0.46 <0.00 0.59 <0.00 0.49 <0.00 0.64 <0.00 0.49 <0.00 0.47 <0.00

Today (IT)

Importance for 0.33 <0.00 0.48 <0.00 0.61 <0.00 0.49 <0.00 0.65 <0.00 0.50 <0.00 0.47 <0.00

the Future (IF)

Cost 0.30 <0.00 0.45 <0.00 0.40 <0.00 0.51 <0.00 0.34 <0.00 0.50 <0.00 0.53 <0.00

IT/C 0.43 <0.00 0.75 <0.00 0.78 <0.00 0.83 <0.00 0.74 <0.00 0.84 <0.00 0.87 <0.00

IF/C 0.44 <0.00 0.75 <0.00 0.78 <0.00 0.84 <0.00 0.73 <0.00 0.83 <0.00 0.86 <0.00

MS

Revenue 0.34 <0.00 0.28 <0.00 0.27 <0.00 0.43 <0.00 0.27 <0.00 0.39 <0.00 0.42 <0.00

Word

Urgency 0.47 <0.00 0.42 <0.00 0.41 <0.00 0.56 <0.00 0.41 <0.00 0.51 <0.00 0.55 <0.00

R/U 0.80 <0.00 0.82 <0.00 0.79 <0.00 0.67 <0.00 0.79 <0.00 0.70 <0.00 0.71 <0.00

Eclipse

Importance 0.13 <0.00 0.14 <0.00 0.14 <0.00 0.09 <0.00 0.09 <0.00 0.08 <0.00 0.07 <0.00

Cost 0.12 <0.00 0.13 <0.00 0.13 <0.00 0.14 <0.00 0.11 <0.00 0.14 <0.00 0.07 <0.00

I/C 0.17 <0.00 0.19 <0.00 0.17 <0.00 0.15 <0.00 0.13 <0.00 0.14 <0.00 0.09 <0.00

Mozilla

Importance 0.14 <0.00 0.13 <0.00 0.11 <0.00 0.08 <0.00 0.07 <0.00 0.07 <0.00 0.07 <0.00

Cost 0.15 <0.00 0.13 <0.00 0.10 <0.00 0.11 <0.00 0.06 <0.00 0.08 <0.00 0.06 <0.00

I/C 0.21 <0.00 0.18 <0.00 0.15 <0.00 0.13 <0.00 0.09 <0.00 0.10 <0.00 0.10 <0.00

Gnome

Importance 0.15 <0.00 0.18 <0.00 0.14 <0.00 0.10 <0.00 0.08 <0.00 0.07 <0.00 0.09 <0.00

Cost 0.19 <0.00 0.23 <0.00 0.18 <0.00 0.14 <0.00 0.15 <0.00 0.14 <0.00 0.11 <0.00

I/C 0.21 <0.00 0.25 <0.00 0.20 <0.00 0.14 <0.00 0.13 <0.00 0.12 <0.00 0.11 <0.00

Therefore, as with other experimental/empirical SBSE work (Harman et al. 2012a), this finding
suggests that the use of synthetic datasets in experimental work on RP should be augmented with
the study of real-world datasets most likely to share the characteristics of the problem domain to
which the proposed algorithms are to be applied.

6 THREATS TO VALIDITY

We set out threats to potential validity, indicating how they might affect the degree to which it
is possible to generalise the results. We also provide some mitigation strategies to eliminate these
threats.

Construct Validity. In this article, the objects studied are sets of requirements, stakehold-
ers, and their attributes. Their attributes are the measurements associated with each require-
ment, which come from estimates from the stakeholders. Before the proposed techniques can be
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Table 5. Performance (Mean and Median) of the Seven Algorithms for the 10 Datasets

Note: All metrics reported in this table are normalised and maximising so the reader can assume that higher numbers mean
better performance in adataset. Unsurprisingly, the results show that random search tends to produce low-quality solutions.
A little more surprisingly, the meta-heuristic algorithms (HC and SA) also contribute little to the best solutions found (as
assessed by the metrics Contrib and UContrib in the table). The results also show that the Ericsson dataset occasions very
different behaviour from the algorithms compared to the other datasets, indicating that the dataset studied really does
matter in empirical studies of release planning.
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applied, the information of these estimates associated with requirements and stakeholders must
be at hand.

Our assumption is that an initial set of requirements has been collected and the stakeholders
have been identified using a requirements elicitation process. The task of quantifying requirements
is usually regarded to be a challenging and hard problem in itself. The quantifying process may be
time-consuming and the information collected may not be accurate. Nevertheless, there are still
several feasible approaches in previous work that address this problem (Gilb 2005; Karlsson and
Ryan 1997; Lim 2010). The benefits of using quantified requirements include better support for
budget estimates and feedback, and improved communication of the requirements.

The results of optimisation and analysis rely on the quality of these estimates. However, this
might lead to one possible construct validity issue when the estimates are inaccurate or uncer-
tain. To mitigate the impact of uncertainty, sensitivity analysis and uncertainty handling could be
carried out during or after optimisation search process, which is one direction of our future work.

In addition, the release planing model used in this study does not take account of all the fac-
tors that reflect every real-world scenario. Some simplifications have been introduced to match
the available data. For example, 8 of the 10 datasets we collected did not have information of de-
pendencies between requirements. Therefore, requirement dependencies are not considered in the
model. We also do not handle other hard and soft constraints in this study as well as the situa-
tion where the estimated costs change over time. However, providing such a fine-grain RP model
should be entirely achievable as future work. Therefore, we argue that this study models the RP
problem at a reasonable level of granularity and the model can be extended and flexible to more
fine-grained real-world scenarios.

Furthermore, as the global optimal Pareto front is unobtainable, we construct a reference front
as a close and reasonable approximation of global optimal Pareto front. However, in theory, a
global Pareto front could contain a large number points. This might lead to one possible construct
validity issue when an approximate solution only contain a limited number of them in practice.

Besides, we have attempted to control another potential threats to construct validity by the
use of ordinal inferential statistical techniques which make no assumptions about distribution
(including variance). For correlation analysis we use two different nonparametric correlations to
increase confidence in our findings.

Internal Validity. The primary comparison tests for statistically significant results concerned the
relative performance of the algorithm. The dependent variables measured are standard, widely
used convergence, hypervolume, diversity, and speed, and two assessments of each algorithm’s
contribution to the Pareto front. The findings suggest that hyper-heuristics are an attractive new
direction for RP optimisation and that, in particular, hyper-heuristic NSGA-II (the algorithm la-
belled HGA) is highly attractive: it typically outperforms the other algorithms studied in terms
of quality, diversity, and speed. Furthermore, it appears that it scales well compared to its meta-
heuristic counterpart and other algorithms studied. Another potential threat to internal validity
concerns the algorithmic parameter tuning. In this article, the results presented are based on the
same parameter setting for all the algorithms. Performance of the algorithms could have been
improved by individual fine tuning empirically or through systematic experimentation.

External Validity. The results presented are based on the study of 10 real-world datasets to sup-
port the claim, but it is initial evidence that hyperheuristics are able to dynamically select search
operators for different instances and provide good-quality solutions to support decision-making.
It would be too strong to claim that it will generalise the results with other problem instances or
datasets with different characteristics or structures.
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7 CONCLUSION AND FUTURE WORK

We have presented a comprehensive study of meta-heuristic and hyper-heuristic RP on 10 real-
world datasets. Overall, we found that hyper-heuristic NSGA-II performs the best in terms of qual-
ity, diversity, speed and scalability. However, our results also indicate that the hyper-heuristic ver-
sions of SA and HC make some contribution to the best solutions found and are relatively scalable.

This finding suggests that if only a single algorithm is to be used, then it should be hyper-
heuristic NSGA-II, but if resources allow, it may be advantageous to combine its results with those
from other hyper-heuristic algorithms.

Furthermore, we found that algorithm behaviour can differ greatly from one dataset to another,
indicating that research on synthetic datasets needs to be augmented with analysis of appropri-
ate real-world datasets. Meanwhile, based on five RQs and the results discussed on real-world
datasets, the overall results of quality, diversity, scalability, and inclusion have a similar trend as
the prior work using synthetic datasets. The exception is the results of speed for the large real-
world datasets. Due to the computational repairing cost of invalid solutions, the performance of
random search is not good as expected.

As future work, we will provide a fine-grained RP model to consider dependencies between
requirements, the different hard and soft constraints, and also try to handle the situation where
the estimated costs of requirements change over time. To mitigate the impact of uncertainty of
requirements’ estimates, sensitivity analysis, uncertainty handling, and risk awareness could be
carried out during or after optimisation search process, which is one direction of our future work.

Regarding the algorithms, we will observe each operator’s efficiency and effectiveness at dif-
ferent search stages. New search operators will be incorporated and we will investigate for the
learning ability at the hyper-heuristic approach. We will also look at different parameter settings
for the algorithm to scale to large problem instances.

In terms of RP and search-based requirement selection in general, overcoming the scalability
challenges of the techniques in non-trivial software projects is critically important. Furthermore,
the future work should also aim to manage different kinds of uncertainties, such as, requirements
uncertainty, algorithmic uncertainty, uncertainty in resource constraints, uncertainty and dynam-
ics in development time. Finally, more empirical investigations need to be carried out to assess the
applicability of the proposed solutions in a real-world context.
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