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Microscopic Features of Bosonic Quantum Transport
and Entropy Production

Mihail Mintchev,* Luca Santoni, and Paul Sorba

The microscopic features of bosonic quantum transport in a nonequilibrium
steady state, which breaks time reversal invariance spontaneously, are
investigated. The analysis is based on the probability distributions, generated
by the correlation functions of the particle current and the entropy production
operator. The general approach is applied to an exactly solvable model with a
point-like interaction driving the system away from equilibrium. The quantum
fluctuations of the particle current and the entropy production are explicitly
evaluated in the zero frequency limit. It is shown that all moments of the
entropy production distribution are non-negative, which provides a
microscopic version of the second law of thermodynamics. On this basis a
concept of efficiency, taking into account all quantum fluctuations, is
proposed and analyzed. The role of the quantum statistics in this context is
also discussed.

1. Introduction

This paper focuses on the basicmicroscopic properties of the par-
ticle and heat transport and the relative entropy production in
nonequilibrium bosonic quantum systems of the type shown in
Figure 1. The bulk of the system consists of two semi-infinite
leads Li , which are attached at infinity to two heat reservoirs
(baths) Ri . The latter are both sources and sinks of particles and
have large enough capacities, so that the particle emission and ab-
sorption do not change the (inverse) temperature βi ≥ 0 and the
chemical potential μi of Ri . The contact between the two leads
at x = 0 represents a point-like impurity described by a unitary
scattering matrix S.
The bosonic junction, shown schematically in Figure 1, can

be engineered by using ultracold Bose gases,[1–3] which attract
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recently much experimental and theo-
retical attention. The remarkable control
over the interactions and the geometry
of the samples in such experiments,
as well as the absence of uncontrolled
disorder, allow to explore unique aspects
of many-body quantum physics. The
advance in this rapidly developing area
opens new horizons, including the pos-
sibility to create[4–6] bosonic analogues
of the conventional mesoscopic elec-
tronic devises like diodes and transistors
(atomtronics).
Coming back to the system in Fig-

ure 1, one can imagine that the reservoirs
Ri contain ultracold atoms and are con-
nected by two 1D traps, which are im-
plemented by confining electromagnetic

fields and form the leads. The contact point between the two
traps realizes the impurity represented at the theoretical level by
the scattering matrix S. If the associated transmission probabil-
ity |S12|2 does not vanish, the system is away from equilibrium
provided that the temperatures and/or chemical potentials of the
two heat baths are different.
The departure from equilibrium gives origin of incoming and

outgoing matter and energy flows from the reservoirs Ri . Some
decades ago Landauer[7] and later Büttiker[8] proposed an efficient
method for studying these flows. The Landauer–Büttiker (LB)
approach is based on the scattering matrix S and goes beyond
the linear response approximation, thus representing an essen-
tial tool of modern quantum transport theory. The LB framework
has been further generalized in refs. [9–11] and finds nowadays
various applications, ranging from the computation of the noise
power[12–19] to the full counting statistics.[20–27] Most of the quoted
studies have been performed for fermionic systems. Triggered by
the growing experimental activity with ultracold Bose cases, the
investigation below is devoted to the bosonic case. In the Section
2 we propose a general and universal approach to quantum trans-
port at the microscopic level. In Sections 3– 5 we illustrate this
approach at work, studying in detail an exactly solvable model.
The role of the statistics is discussed in Section 6. Finally, Section
7 collects our conclusions and ideas for future investigations on
the subject.

2. General Framework and Strategy

The basic observables, which characterize the quantum transport
in the junction, are the particle current j (t, x, i ) flowing in the
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Figure 1. Two-terminal junction with bosonic heath baths connected with
1D traps and a contact defect.

lead Li and the entropy production Ṡ(t, x) in the whole system.
They provide local and global information, respectively, concern-
ing the transport and its irreversibility. This information is codi-
fied in the correlation functions

wn[ ji ](t1, x1, . . . , tn, xn) = 〈 j (t1, x1, i ) · · · j (tn, xn, i )〉LB (1)

and

wn[Ṡ](t1, x1, . . . , tn, xn) = 〈Ṡ(t1, x1) · · · Ṡ(tn, xn)〉LB (2)

where the expectation value 〈· · · 〉LB is computed in the LB state.[28]

Following the standard approach[18–27] to full counting statistics,
it is instructive to investigate the zero-frequency limitsWn[ ji ] of
wn[ ji ] and Wn[Ṡ] of wn[Ṡ], integrating the quantum fluctuations
over long periods of time. In this limit, the dependence on the 2n
space–time variables in (1) and (2) drops out and one arrives at
the following integral representations

Wn[ ji ] =
∫ ∞

0

dω
2π

Mn[ ji ](ω) (3)

Wn[Ṡ] =
∫ ∞

0

dω
2π

Mn[Ṡ](ω) (4)

Here ω is the energy and Mn[ ji ] and Mn[Ṡ] are the moments of
two probability distributions �[ ji ](ω) and �[Ṡ](ω), which govern
the quantum fluctuations of the particle current and the entropy
production, respectively. The derivation of these distributions is
a fundamental point of our approach. In fact, it turns out that
�[ ji ] and �[Ṡ] control, respectively, the elementary processes of
emission and absorption of particles from the reservoirs and the
associated entropy production. More precisely, �[ ji ] provides the
quantum probabilities {pk(ω) : k = 0, ±1, ±2, . . .} for the afore-
mentioned processes, whereas �[Ṡ] gives the values {σk(ω) : k =
0, ±1, ±2, . . .} of the associated entropy production.
In order to illustrate the above concepts at work, we propose

and analyze in the paper an exactly solvable model. In this case,
we derive pk(ω) and σk(ω) and show that they fully characterize
the quantum transport and its efficiency at the microscopic level.
A fundamental achievement of the paper is the explicit form of
the probabilities pk(ω) in terms of the Bose distributions di (ω) of
the heat reservoirs Ri .
The results about �[ ji ] and �[Ṡ] shed new light on various

central aspects of nonequilibrium quantum systems. First of all,
they clarify the deep role of the statistics. The analysis in ref. [27]
demonstrated that for fermions the Pauli exclusion principle im-
plies pk(ω) = 0 for all k different from 0 and ±1. We show be-
low that this is not the case for bosons, where pk(ω) �= 0 for all
k = 0,±1, ±2, .... This feature is the microscopic origin of the
different quantum transport properties of fermionic and bosonic
systems.

Another key aspect of our investigation concerns a remarkable
feature of the entropy production distribution �[Ṡ]. We prove be-
low that all moments of this distribution are non-negative

Mn[Ṡ](ω) ≥ 0, ∀ n = 1, 2, . . . (5)

The bound (5) extends to the bosonic case our previous result[30]

for fermions and can be interpreted as a quantum counterpart
of the second law of thermodynamics for the nonequilibrium
bosonic system in Figure 1. On this groundwe propose an analog
εI I of the concept of second law efficiency[31] from macroscopic
thermodynamics. The knowledge of the distribution �[Ṡ] allows
to separate at the fundamental level the processes with positive
and negative entropy production and to extract from this infor-
mation the coefficient εI I , which takes into account the quantum
fluctuations and characterizes in an intrinsic way the transport
in the system.
In this paper we consider systems where the particle number

and the total energy are conserved. These symmetries imply the
existence of a conserved particle current j (t, x, i ) and energy cur-
rent ϑ(t, x, i ). The heat current is the linear combination

q (t, x, i ) = ϑ(t, x, i )− μi j (t, x, i ) (6)

Under this very general assumption about the symmetry content,
one can prove[29] that the junction in Figure 1 operates as energy
converter. To be more explicit, let us consider the operator

Q̇ = −
2∑

i=1
q (t, 0, i ) (7)

and let 	 be any state of the system. Then, if 〈Q̇〉	 < 0 the junc-
tion transforms heat to chemical energy. The opposite process
takes place if instead 〈Q̇〉	 > 0. For a detailed study of this phe-
nomenon of energy transmutation we refer to ref. [29].
An essential role in the general setup is played by the time

reversal transformation

T j (t, x, i )T−1 = − j (−t, x, i ) (8)

where T is an anti-unitary operator. We will show below that in
the LB representation

〈 j (t, x, i )〉LB �= −〈 j (−t, x, i )〉LB (9)

which implies that the LB state 
LB is not invariant under time
reversal, T
LB �= 
LB . Consequently, the time reversal symme-
try is spontaneously broken in the LB representation. The quan-
tum transport process in the system is therefore irreversible,
which gives rise to nontrivial entropy production described by
the operator[32–34]

Ṡ(t, x) = −
2∑

i=1
βi q (t, x, i ) (10)

It is worth mentioning that the currents depend on the lead Li

where they are flowing, thus providing local information. The
entropy production operator concerns instead the global system.
Accordingly, the correlation functions (1) refer to a single lead,
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whereas (2) take into account all the interference effects between
the heat currents in the two different leads L 1 and L 2.

3. Exactly Solvable System

3.1. The Model

The above considerations have a very general validity. In order
to obtain concrete results however, one should fix the dynamics.
In choosing among various possibilities, our guiding principle
will be to focus on an exactly solvable model, where the zero fre-
quency correlation functionsWn[ ji ] andWn[Ṡ] can be derived in
explicit form for all n. For this purpose we consider the bosonic
Schrödinger junction with a point-like defect. This system has al-
ready been shown[27–29] to be a remarkable laboratory for testing
general ideas about quantum transport. The dynamics along the
oriented leads Li is fixed by the Schrödinger equation (the natural
units � = c = kB = 1 are adopted throughout the paper)

(
i∂t + 1

2m
∂2x

)
ψ(t, x, i ) = 0, x < 0, i = 1, 2 (11)

and the canonical commutator

[ψ(t, x1, i1), ψ∗(t, x2, i2)] = δi1i2 δ(x1 − x2) (12)

where ∗ stands for Hermitian conjugation. The defect at x = 0,
which generates the interaction driving the system out of equi-
librium, is fixed by the boundary condition

lim
x→0−

2∑
j=1

[
λ(I − U)i j + i(I + U)i j ∂x

]
ψ(t, x, j ) = 0 (13)

where I is the identity matrix, U is a generic 2× 2 unitary ma-
trix, and λ > 0 is a parameter with dimension of mass. Equa-
tion (13) defines the most general contact interaction between
the two leads, which ensures[35,36] unitary time evolution (self-
adjointness of the bulk Hamiltonian). The associated scattering
matrix is[35,36]

S(k) = − [λ(I − U)− k(I + U)]
[λ(I − U)+ k(I + U)]

(14)

k being the particle momentum. More explicitly

S(k) =

⎛
⎜⎜⎝
k2 + ik(η1 − η2) cos(ϑ)+ η1η2

(k − iη1)(k − iη2)
−ieiϕk(η1 − η2) sin(ϑ)
(k − iη1)(k − iη2)

−ie−iϕk(η1 − η2) sin(ϑ)
(k − iη1)(k − iη2)

k2 − ik(η1 − η2) cos(ϑ)+ η1η2

(k − iη1)(k − iη2)

⎞
⎟⎟⎠ (15)

where ϕ and ϑ are arbitrary angles and

ηi = λ tan(αi ) (16)

(e2iα1 , e2iα2 ) being the eigenvalues of U. The boundary bound
states are the poles of (15) located in the upper half plane. We

deduce from (16) that there are at most two bound states. The
energy is bounded from below by

ωmin = min
{
0, −θ (η1)

η21

2m
,−θ (η2)

η22

2m

}
(17)

where θ is the Heaviside step function.
In the absence of bound states, the general solution of (11)–

(13) involves only the scattering component

ψ(t, x, i ) =
2∑
j=1

∫ ∞

0

dk
2π

e−iω(k)t �i j (k; x)a j (k) (18)

where ω(k) = k2

2m is the dispersion relation

�(k; x) = [
e−ikx

I + eikx S
∗(k)

]
, k ≥ 0 (19)

and the operators {ai (k), a∗
i (k) : k ≥ 0, i = 1, 2} generate a stan-

dard canonical commutation relation algebra A. If bound states
are present, the solution (18) involves an additional term estab-
lished in ref. [17]. As explained there, this term contributes to the
correlation functions (1) and (2), but not to their zero frequency
limits (3) and (4), we are focusing on in this paper. For this rea-
son, a potential bound state contribution in (18) can be safely ne-
glected below.

3.2. Basic Observables

Equations (11)–(13) are invariant under U(1)-phase transforma-
tions and time translations, which imply particle number and to-
tal energy conservation. The associated conserved currents are

j (t, x, i ) = i
2m

[
ψ∗(∂xψ)− (∂xψ∗)ψ

]
(t, x, i ) (20)

and

ϑ(t, x, i ) = 1
4m

[(∂tψ∗) (∂xψ)+ (∂xψ∗) (∂tψ)

− (∂t∂xψ∗)ψ − ψ∗ (∂t∂xψ)](t, x, i ) (21)

respectively. In order to derive the correlation functions
(1) and (2), one should express jx(t, x, i ) and Ṡ(t, x) in terms of
the generators {ai (k), a∗

i (k)} of the algebra A. Plugging the solu-
tion (18) in (20) and (10) one obtains
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j (t, x, i ) = i
2m

∫ ∞

0

dk
2π

∫ ∞

0

dp
2π

eit [ω(k)−ω(p)]

2∑
l ,m=1

a∗
l (k)A

i
lm(k, p, x)am(p) (22)

Ṡ(t, x) = i
4m

∫ ∞

0

dk
2π

∫ ∞

0

dp
2π

eit [ω(k)−ω(p)]

2∑
i,l ,m=1

βi [2μi − ω(k)− ω(p)]a∗
l (k)A

i
lm(k, p, x)am(p) (23)

with

A
i
lm(k, p, x) ≡

�∗
l i (k; x) [∂x�im] (p; x) − [

∂x�
∗
l i

]
(k; x)�im(p; x) (24)

The next step toward the derivation of the correlation functions
(1), (2) is to fix a representation of the algebra A.

3.3. Correlation Functions in the LB Representation

Studying the physical setup in Figure 1 in a quantummechanical
context, Landauer[7] and Büttiker[8] suggested a nonequilibrium
generalization of the Gibbs representation ofA (see e.g., ref. [28])
to systems, which exchange particles and energy with more then
one heat reservoir. In what follows we call this generalization the
LB representation and refer to ref. [28] for a field theoretical con-
struction of the associated Hilbert space. For deriving the expec-
tation values of (22) and (23) in the LB representation it is enough
to compute the 2n-point function

〈a∗
l1
(k1)am1 (p1) · · · a∗

ln (kn)amn (pn)〉LB (25)

Let us introduce for this purpose the n × nmatrix

Bi j =
{
2πδ(ki − p j )δli m j dli [ω(ki )], i ≤ j
2πδ(ki − p j )δli m j

(
1+ dli [ω(ki )]

)
, i > j

(26)

where

dl (ω) = 1
eβl (ω−μl ) − 1

(27)

is the familiar Bose distribution. Now, using the algebraic con-
struction of the LB representation in ref. [28], one can show that
the correlation function (25) is the permanent of the matrix B

〈a∗
l1
(k1)am1 (p1) · · · a∗

ln (kn)amn (pn)〉LB = perm[B] (28)

It is perhaps useful to recall the explicit form

perm[B] =
∑
σi∈Pn

n∏
i=1

Biσi (29)

where Pn is the set of all permutations of n elements.

By means of (28) and (29) one easily derives the one-point cur-
rent correlation function

〈 j (t, x, i )〉LB =
∫ ∞

0

dω
2π

2∑
l=1

(
δil − |Sil (

√
2mω)|2

)
dl (ω) (30)

The right hand side of (30) implies (9), establishing a basic
characteristic feature of the LB representation—the spontaneous
breakdown of time reversal invariance. Let us observe in this re-
spect that the dynamics (11) is time reversal invariant. The same
holds for the boundary condition (13), provided that besides be-
ing unitary the matrixU is also symmetric.
We would like to comment at this stage on the range of the

chemical potentials μi . In order to avoid singularities, indicating
condensation phenomena, we assume that the particle density
dl (ω) in the reservoir Rl is positive for allω ≥ 0. Thereforeμl < 0
in what follows.

3.4. The Zero Frequency Limit

Since at this point the correlation functions (1) and (2) can
be treated in the same way, we introduce the notation {wn[ζ ] :
ζ = ji , Ṡ; n = 1, 2, . . .}. Time translation invariance implies that
wn[ζ ] depend actually only on the time differences

t̂k ≡ tk − tk+1, k = 1, . . . , n − 1 (31)

which allows to introduce for n ≥ 2 the frequency ν via the
Fourier transform

Wn[ζ ](x1, . . . , xn; ν) =
∫ ∞

−∞
dt̂1 · · ·

∫ ∞

−∞
dt̂n−1

e−iν(t̂1+···̂tn−1)wn[ζ ](t1, x1, . . . , tn, xn) (32)

Following the classical studies[12–16] of the fermionic quantum
noise, which have been extended in ref. [24] to the current cumu-
lants with n > 2 and applied in the framework of full counting
statistics,[18–27] we perform the zero frequency limit

Wn[ζ ] = lim
ν→0+

Wn[ζ ](x1, . . . , xn; ν) (33)

In the limit (33) the quantum fluctuations are integrated over the
whole time axes and it turns out that the position dependence
drops out. Because of this relevant simplification, the zero fre-
quency regime is intensively explored also in experiments.
The derivation ofWn[ ji ] andWn[Ṡ] in explicit form is straight-

forward but long. For this reason we summarize below only the
main steps of the procedure:

(i) using (22), and (24) and (28) one first obtains a representa-
tion of the correlation function wn[ζ ](t1, x1, . . . , tn, xn), in-
volving n integrations over ki and n integrations over p j ;

(ii) by means of the delta functions in (26) one eliminates all n
integrals in p j ;

(iii) plugging the obtained expression in (32), one performs all
(n − 1) integrals in t̂l ;
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(iv) at ν = 0 the latter produce (n − 1) delta functions, which
allow to eliminate all the integrals over ki except one, for
instance that over k1 = k;

(v) since now the matrix (24) must be evaluated at k = p, the
x dependence drops out and one finds

A
i
lm(k, k, x) = −2k[δl iδi j − Sl i (k)S j i (k)] (34)

the bar indicating complex conjugation;
(vi) switch to the variable ω = k2/2m in the integral over k;
(vii) introduce the 2× 2 matrix

J11(ω) = −J22(ω) = |S12(
√
2mω)|2 ≡ τ (ω) (35)

J12(ω) = J21(ω) = −S11(
√
2mω)S12(

√
2mω) (36)

where τ (ω) is the transmission probability;
(viii) introduce finally the n × nmatrix

Di j (ω; l1, . . . , ln)

=
{

Jl j li (ω)dl j (ω), i ≤ j
Jl j li (ω)dl j (ω)

[
1+ dli (ω)

]
, i > j

(37)

and define the sum of permanents

Kn(ω) =
2∑

l1,...,ln=1
perm[D(ω; l1, . . . , ln)] (38)

Using the matrix (37) and the definition (29) of permanent,
one can explicitly derive each term of the sequence {Kn(ω) : n =
1, 2, . . .}, which will play an important role in what follows. The
first few terms are

K1(ω) = τ (ω)c1(ω)

K2(ω) = τ (ω)
[
c2(ω)+ 2c21(ω)τ (ω)

]
K3(ω) = τ 2(ω)c1(ω)

[
1+ 6c2(ω)+ 6c21(ω)τ (ω)

]
(39)

where ci are the frequently used below combinations

c1(ω) = d1(ω)− d2(ω) (40)

c2(ω) = d1(ω)+ d2(ω)+ 2d1(ω)d2(ω) (41)

Performing the above eight steps, one obtains for the particle
current the integral representation (3) with

Mn[ j1] = Kn(ω) (42)

Mn[ j2] = (−1)nKn(ω) (43)

and for the entropy production (4) with

Mn[Ṡ] = [γ21(ω)]nKn(ω) (44)

where

γi j (ω) = (βi − β j )ω − (βiμi − β jμ j ) (45)

As already observed in the introduction,Mn[ ji ] andMn[Ṡ] given
by (42)–(44), are the moments of the probability distributions
�[ ji ] and �[Ṡ]. The goal of the next section is to reconstruct these
distributions from the moments and uncover the physical infor-
mation codified therein.

4. Probability Distributions

4.1. Moment Generating Functions

The general problem now is to find a function �[ζ ] such that

Mn[ζ ] =
∫ ∞

−∞
dσ σ n�[ζ ](σ ), n = 0, 1, . . . (46)

whereMn[ζ ] are given for n ≥ 1 by (42)–(44) and

M0[ζ ] = 1 (47)

is a normalization condition. As is well known,[37] �[ζ ] is given by
the Fourier transform

�[ζ ](σ ) =
∫ ∞

−∞

dλ
2π

e−iλσ χ [ζ ](λ) (48)

of the moment generating function

χ [ζ ](λ) =
∞∑
n=0

(iλ)n

n!
Mn[ζ ] (49)

We will proceed therefore by determining first χ [ζ ] from the cor-
responding moments, given by (42)–(44), and after that perform-
ing the Fourier transform (48).
For deriving the moment generating function χ [ j1](λ) in ex-

plicit form we apply to our case the technique, developed by
Glauber in quantum optics for the counting statistics of photons
(see e.g., ref. [38]). First we introduce two auxiliary bosonic oscil-
lators {a∗

i , ai , : i = 1, 2}, satisfying the commutation relations

[ai , a∗
j ] = δi j , [a∗

i , a
∗
j ] = [ai , a j ] = 0 (50)

Using these oscillators one can generate the sum of permanents
in the right hand side of (38). In fact, setting

K (ω) =
2∑

i=1
a∗
i Ki j (ω)ai , J (ω) =

2∑
i, j=1

a∗
i Ji j (ω) a j (51)

where

Ki j (ω) = βi (ω − μi )δi j (52)

and J(ω) is given by (35) and (36), one can verify by means of (50)
that

2∑
l1,...,ln=1

perm[D(ω; l1, . . . , ln)] =
Tr

[
e−K (ω) J (ω)n

]
Tr [e−K (ω)]

(53)
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Equations (38), (42), (49), and (53) now imply the following trace
representation for the moment generating function

χ [ j1](λ) = Tr
[
e−K (ω)eiλJ (ω)

]
Tr [e−K (ω)]

(54)

Observing that

[K (ω), J (ω)] =
2∑

i, j=1
a∗
i ([K, J])i j a j (55)

one can apply the result of ref. [23] for traces of the type (54) and
obtain the alternative determinant representation

χ [ j1](λ) = det
[
1− eK(ω)

]
det

[
1− eK(ω)eiλJ(ω)

]

= 1

det
[
1− (1− eK(ω))−1 eK(ω) (eiλJ(ω) − 1)

] (56)

which is more manageable. Indeed, using that

[(
1− eK(ω))−1

eK(ω)
]
i j

= di (ω)δi j (57)

and once again the explicit form (35) and (36) of the matrix J(ω),
one finally gets

χ [ j1](λ) = 1
1− ic1

√
τ sin(λ

√
τ )− c2[cos(λ

√
τ )− 1]

(58)

For conciseness we omit here and in what follows the depen-
dence of τ and ci on the energy ω.
Analogously, for the entropy production generating function

one finds

χ [Ṡ](λ) = 1
1− ic1

√
τ sin(λγ21

√
τ )− c2[cos(λγ21

√
τ )− 1]

(59)

According to (48) the probability distributions �[ j1] and �[Ṡ],
we are looking for, are obtained by performing the Fourier trans-
form of (58) and (59).

4.2. Particle Current Distribution

Since the right hand side of (58) is a periodic functionwith period
2π/

√
τ , the generating function has the Fourier expansion

χ [ j1](λ) =
∞∑

k=−∞
pk eikλ

√
τ (60)

The coefficients {p±n : n = 0, 1, . . .} can be deduced from (58)
and read

p±n = cn±
1+ c2

∞∑
j=0

(
2 j + n

j

)
(c+c−) j (61)

where

c± = (c2 ± c1
√

τ )
2(1+ c2)

(62)

Using μi < 0 and 0 ≤ τ ≤ 1 one can show that

c2 > 0, c± > 0, c± < 1, c+c− < 1/4 (63)

which imply that the series (61) is convergent and pk > 0 for
all k. Indeed, in closed form one has the Gauss hypergeometric
function

p±n = cn±
1+ c2

2F1

[
1+ n
2

,
2+ n
2

, n + 1, 4c+c−

]
> 0 (64)

From (60) one deduces that the probability distribution �[ j1] is
the Dirac comb function

�[ j1](ξ ) =
∞∑

k=−∞
pk δ(ξ − k

√
τ ) (65)

where the weights pk are given by (64) and satisfy

∞∑
k=−∞

pk = 1 (66)

In fact, (58) implies on the one hand

∫ ∞

−∞
dξ�[ j1](ξ ) = χ [ j1](0) = 1 (67)

On the other hand, integrating (65) one gets

∫ ∞

−∞
dξ�[ j1](ξ ) =

∞∑
k=−∞

pk (68)

which completes the argument. Summarizing, since in addition
pk > 0, the coefficients pk represent probabilities, whose physical
meaning will be uncovered below.
Finally, using (43) one concludes that

χ [ j2](λ) = χ [ j1](−λ) (69)

which implies in turn that

�[ j2](ξ ) = �[ j1](−ξ ) (70)

Equivalently, �[ j1] and �[ j2] are related by

pk �→ p−k (71)

4.3. Entropy Production Distribution

Employing (59), a straightforward extension of the analysis in the
previous subsection leads to

�[Ṡ](σ ) =
∞∑

k=−∞
pk δ(σ − k γ21

√
τ ) (72)
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Figure 2. The smeared distribution �ν with ν = 200, γ1 = 1, γ2 = 0.1 and
τ = 1/2.

with the same probabilities p±n given by (64). This property
is the first indication that the probabilities {p±n : n = 0, 1 . . .}
carry universal and fundamental information about the quantum
transport at the microscopic level. We postpone the detailed dis-
cussion of this issue to the next subsection, focussing here on the
possibility to illustrate graphically the behavior of the distribution
(72). For this purpose it is convenient to introduce the δ-sequence

δν (σ ) = ν√
π
e−ν2σ 2 , ν > 0 (73)

and the smeared distribution

�ν [Ṡ](σ ) =
∞∑

k=−∞
pk δν (σ − k γ21

√
τ ) (74)

As is well known, for ν → ∞ one has �ν → � in the sense of
generalized functions. The plot of �ν , reported in Figure 2, nicely
illustrates the physics discussed in the next subsection.

4.4. Physical Interpretation of the Probabilities pk

It is instructive in this section to restore the electric charge e in
the current (20) by j �→ e j . The distribution (65) now takes the
form

�[ j1](ξ ) =
∞∑

k=−∞
pk δ(ξ − ke

√
τ ) (75)

where the parameter ξ measures the charge which is transferred
between the two reservoirs. Without loss of generality we can as-
sume that ξ is positive if the particles are emitted from R2 and
absorbed by R1 and is negative for the process in the opposite
direction. The argument of the delta function in (75) suggest a
simple interplay between the transport on the one hand and the
processes of emission and absorption on the other hand. Sup-
pose that R2 emits in the system the charge ke . Because of the
defect, the part ke

√
τ is transmitted and absorbed by R1. The

rest ke(1− √
τ ) is reflected by the defect and reabsorbed by R2.

This is a purely quantum scattering effect. For τ = 1 the defect
is fully transparent and the charge emitted from one reservoir
is totally absorbed by the other one. Finally, the term k = 0 in
(75) describes the emission and absorption of particles by the
same reservoir, thus corresponding to a vanishing charge trans-
fer ξ = 0.
Summarizing, the probabilities pk fully characterize the ele-

mentary processes of particle emission and absorption by the
heat reservoirs, which provide in turn the common basis for all
types of transport in the junction. In fact, the probability distri-
butions for the energy and heat currents ϑ1 and q1 in the lead L 1

are obtained from (75) by the substitution

e �−→
{
ω, for �[ϑ1]
ω − eμ1, for �[q1]

(76)

which confirms the universal character of the the probabili-
ties pk .

4.5. Microscopic Quantum Version of the Second Law

From (74) one infers for the entropy production the values {σk =
kγ21

√
τ : k = 0, ±1, ±2, . . .}. Suppose now that γ21 > 0. Accord-

ingly, we call R2 the “hot” reservoir and R1 the “cold” one. In this
case we deduce from (72) that pk with k > 0 are associated with
the transmission from the hot reservoir to the cold one, leading to
positive entropy production σk = kγ21

√
τ > 0. For k < 0 instead,

pk correspond to the transport from the cold to the hot reservoir,
which generates negative entropy production σk = kγ21

√
τ < 0.

For k = 0 there is no particle exchange between the two reservoirs
and consistently the entropy production vanishes.
Analyzing c±, given by (62), it is easy to show that for k > 0

γ21 > 0 =⇒ c+ > c− =⇒ pk > p−k (77)

The processes with positive entropy production thus dominate
that with the negative one. This feature is illustrated in Figure 2
and suggests that as in the fermionic case[30] all moments (44) of
the probability distribution (72) are non-negative (5). For proving
this bound we denote by �(λ) the denominator of χ [Ṡ](λ), given
by (59), and observe that

�(−iλ) = 1− c1
√

τ sinh(λγ21
√

τ )− c2[cosh(λγ21
√

τ )− 1]

=
∞∑
n=0

λnan (78)

where

an =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, n = 0

− γ 2k−1
21 τ k

(2k − 1)!
c1, n = 2k − 1

−γ 2k
21 τ k

(2k)!
c2, n = 2k

(79)
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On the other hand

χ [Ṡ](−iλ) =
∞∑
n=0

λnbn, bn = Mn[Ṡ]
n!

(80)

and using the identity

�(−iλ)χ [Ṡ](−iλ) = 1 (81)

one gets for n ≥ 1 the recursive relation

bn = −an − an−1b1 − an−2b2 − · · · − a1bn−1 (82)

with

b0 = M0[Ṡ] = 1 (83)

At this point the inequality Mn[Ṡ] ≥ 0 follows from (82) by in-
duction, observing that μi < 0 implies that

γ21c1 ≥ 0, c2 ≥ 0 =⇒ an ≤ 0, ∀ n ≥ 1 (84)

For the even moments M2k [Ṡ] this feature is a direct conse-
quence of the fact that (72) is a probability distribution (0 < pk <

1), but for the odd ones M2k−1[Ṡ], this is not at all automatic
and represents a characteristic feature of the distribution �[Ṡ],
governing the entropy production fluctuations. Since M1[Ṡ] is
the mean value of the entropy production, the bound (5) can
be interpreted[30] as a quantum counterpart of the second law of
thermodynamics for a system in a fixed steady state, which im-
plements the contact with two heat reservoirs as shown in Fig-
ure 1. We would like to mention in this respect that a quantum
version of the second law, relative to the transition between dif-
ferent states of a system in contact with one heat bath, has been
proposed in refs. [39,40]. In that case there is actually a whole
family of “second laws,” each of them enforcing a specific physi-
cal constraint on the thermodynamic evolution.
We conclude this section by an observation concerning the in-

fluence of a hypothetical classical measuring devise on the sys-
tem under consideration. The simplest way to implement such
a devise is to introduce[21–25] in (11) a minimal coupling i∂x �−→
i∂x + A(x) with a suitable classical external field A(x). The study
of this new setup can be performed following mutatis mutandis
the above analysis and is beyond the scope of this paper, focussed
exclusively on the quantum behavior. In the fermionic case the
impact of a classical field A(x) ∼ δ(x) on �[ ji ] and �[Ṡ] has been
discussed in detail in refs. [22] and [27], respectively.

5. Efficiency

At the quantum level the question of efficiency has been
addressed in the past mainly by studying the mean value
〈q (t, x, i )〉LB of the heat currents in the two leas Li . Unfortu-
nately, 〈q (t, x, i )〉LB does not keep trace of the quantum fluctu-
ations, which are expected to affect the quantum efficiency and
whose presence is actually the relevant novelty with respect to the
classical case.

Our main objective here is to introduce and study a suitable
quantity, which describes the transport efficiency at the micro-
scopic level and captures the quantum fluctuations. To this end
we use the set of probabilities {pk : k = 0, ±1, ±2, . . .} derived
above and take advantage of the fact that our formalism provides
the values of the positive and negative entropy productions σ tot

±
separately and not only the value of their sum σ tot

+ + σ tot
− . In fact,

the probability distribution (72) implies that for γ21 > 0 the prob-
abilities pn≥1 and pn≤−1 correspond to positive and negative en-
tropy productions, respectively. For γ21 < 0 one has that pn≥1 and
pn≤−1 exchange their role. Therefore

σ±(ω) = ±θ (γ12)γ12
√

τ

∞∑
n=1

n p∓n ± θ (γ21)γ21
√

τ

∞∑
n=1

n p±n (85)

give the positive and negative entropy productions at energy ω.
Consequently, the total positive/negative entropy production in
the system is

σ tot
± =

∫ ∞

0
dω σ±(ω) (86)

Because of (77) one has

σ+(ω) > −σ−(ω) > 0 =⇒ σ tot
+ > −σ tot

− > 0 (87)

Themain idea now is to extend and adapt the concept of second
lawmacroscopic efficiency (see e.g., ref. [31]) for heat engines to
our case. In order to recall briefly this concept, let us consider for
a moment a classical heat engine in contact with two heat baths
as shown in Figure 1. Let us denote the work transfer rate of the
engine by Ẇ > 0.Moreover, let Ẇrev be the value of Ẇ in the limit
of reversible operation. Then, the second law efficiency is defined
by[31]

ηII = Ẇ
Ẇrev

(88)

It is perhaps useful to recall also that the more familiar first law
efficiency ηI is given in terms of ηII by[31]

ηI = ηII(1− r ), r ≡ β1

β2
, β2 ≥ β1 (89)

The second law of thermodynamics states that Ẇ ≤ Ẇrev, imply-
ing ηII ≤ 1. The value ηII = 1 is reached in the limit of reversibil-
ity. This is the fundamental property we would like to preserve
when introducing a concept of efficiency for the quantum trans-
port in the junction in Figure 1, where instead of the work trans-
fer rates Ẇ and Ẇrev, we know the entropy productions σ tot

± . At
this point the quantum second law in the form (87) suggests to
consider the quantity

εII = −σ tot
−

σ tot+
(90)

which satisfies 0 ≤ εII ≤ 1 and has the desired reversibility limit

σ tot
+ + σ tot

− = 0 =⇒ εII = 1 (91)
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Figure 3. The efficiencies εII (left panel) and εI (right panel) forμ1 = −0.1 andμ2 = −0.5 (blue line) andμ1 = −0.4 andμ2 = −0.2 (red line) at β1 = 2
and τ = 0.2. The black line is the Carnot efficiency.

In addition, setting

εI = εII(1− r ) = −σ tot
−

σ tot+
(1− r ) (92)

we conclude that, as in the case of heat engines, εI can not exceed
the familiar Carnot efficiency ηC = 1− r , recovered in the regime
(91) of reversibility.
The analytic study of (90) and (92) for generic values of the

heat bath parameters is rather complicated. Fortunately however,
numerics works quite well. This fact is illustrated in Figure 3,
where εII and εI are plotted for different values of μi . The blue
and red lines display the typical behaviour for μ2 < μ1 < 0 and
μ1 < μ2 < 0, respectively.
Finally, we would like to stress that the efficiency εII applies to

both regimes of operation of the quantum junction as a converter
of heat to chemical energy or vice versa.

6. Role of Statistics—Comparison with Fermions

In the fermionic case, the Pauli exclusion principle simplifies the
picture. In fact, the n ≥ 2 emission/absorption processes with
the same energy are forbidden and the fermionic distribution
�f [ j1] involves three terms only.

�f [ j1](ξ ) =
1∑

k=−1
pfk δ(ξ − k

√
τ ) (93)

The three “teeth” of the Dirac comb (93) are

pf±1 = 1
2

(
c f2 ∓ c f1

√
τ
)
, pf0 = 1− c f2 (94)

where

c f1 ≡ d f1 − d f2, c f2 ≡ d f1 + d f2 − 2d f1d
f
2 (95)

and

d fi (ω) = 1
eβi (ω−μi ) + 1

(96)

is the Fermi distribution. It is easily seen that

pf−1 + pf0 + pf1 = 1, pf±1 ∈ [0, 1], pf ∈ [0, 1] (97)

which imply that �f [ j1] is a true probability distribution.
In terms of the probabilities (94) the fermionic entropy pro-

duction distribution takes the form[30]

�f [Ṡ](σ ) =
1∑

k=−1
pfk δ(σ − k γ21

√
τ ) (98)

The relative moments (k = 1, 2, ...)

Mf
2k−1[Ṡ] = τ kγ 2k−1

21 c f1 (99)

Mf
2k [Ṡ] = τ kγ 2k

21 c
f
2 (100)

are much simpler than the bosonic ones (38) and (44) and satisfy
the boundMf

n[Ṡ] ≥ 0 implementing the second law.
The difference between the nonequilibrium transport of

bosons and fermions emerges also by comparing the relative ef-
ficiencies. From (98) one infers the entropy productions

σ f
±(ω) = ±θ (γ12)γ12

√
τ pf∓1 ± θ (γ21)γ21

√
τ pf±1 (101)

Substituting (101) in (86) one obtains the fermionic versions εfI
and εfI I of the first and second law efficiencies, which differ from
the bosonic ones. Figure 4 displays a comparison between εfI I and
its bosonic counterpart εI I at the same heat bath parameters. In
the left panel εfI I exceeds εI I . For the same chemical potentials,
but at higher temperature 1/β1 in the right panel there is an in-
terval in r for which εI I > εfI I .

7. Discussion

The main goal of the present paper is to develop a microscopic
approach to nonequilibrium transport, which takes into account
in a systematic way the quantum fluctuations at any order. The
basic idea is to use the probability distributions �[ ji ] and �[Ṡ],
generated respectively by the n-point correlation functions of the
particle current and entropy production operators for all n ≥ 1.
We have shown that these distributions determine a sequence
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Figure 4. The fermionic efficiency εfII (red line) and the bosonic efficiency εII (blue line) for μ1 = −20, μ2 = −1, and τ = 0.2 at β1 = 0.1 (left panel)
and β1 = 0.01 (right panel).

of probabilities {pk(ω) : k = 0, ±1, ±2, . . .} associated with the
fundamental microscopic processes of emission and absorption
of particles from the heat reservoirs, driving the system away
from equilibrium. It turns out that these probabilities fully de-
scribe the particle, energy, and heat transport. Moreover, they de-
termine the quantum entropy production and characterize the
efficiency at the microscopic level, thus providing universal in-
formation about the system.
The above general ideas, which have been illustrated in the

paper on the example of an exactly solvable model, suggest dif-
ferent promising directions for further research. First of all, it
will be interesting to lift the zero frequency condition and eval-
uate the distributions �[ ji ] and �[Ṡ] in general. In this respect,
the study[27] of the second moment M[ ji ] at arbitrary finite fre-
quency indicated for instance the relevant impact of bound states
on the particle transport. This result implies that the recent ex-
perimental progress[41–43] in finite frequency quantum transport
can provide a new valuable tool for bound state spectroscopy.
A further challenging question in the above context concerns

the interactions. Since our exactly solvable system involves only
a boundary interaction at the junction, one may wonder about
the role of bulk interactions. In this respect the analysis of ref.
[44] represents a starting point for the study of the nonequilib-
rium Luttinger liquid. Another recently investigated[45] example
is the Lieb–Linigermodel with contact repulsive interactions. The
results of ref. [45] concern the probability distribution �[ψ∗ψ ],
generated by the particle density operator ψ∗ψ , and are obtained
in a specific nonequilibrium regime. It is worth mentioning that
also in that case �[ψ∗ψ ] is a Dirac comb distribution, whose co-
efficients are the counterparts of our probabilities (64). It will be
interesting to study the entropy production in the Lieb–Liniger
case, exploring the influence of the bulk interactions on the pos-
itivity of the mean entropy production and the higher moments
of the associated distribution.
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