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Dzyaloshinskii-Moriya interaction (DMI) is investigated in a 2D ferromagnet (FM) with spin-
orbit interaction of Rashba type at finite temperatures. The FM is described in the continuum limit by
an effective s-d model with arbitrary dependence of spin-orbit coupling (SOC) and kinetic energy
of itinerant electrons on the absolute value of momentum. In the limit of weak SOC, we derive a
general expression for the DMI constant D from a microscopic analysis of the electronic grand potential.
We compare D with the exchange stiffness A and show that, to the leading order in small SOC
strength αR, the conventional relation D ¼ ð4mαR=ℏÞA, in general, does not hold beyond the Bychkov-
Rashba model. Moreover, in this model, both A and D vanish at zero temperature in the metal regime
(i.e., when two spin sub-bands are partly occupied). For nonparabolic bands or nonlinear Rashba
coupling, these coefficients are finite and acquire a nontrivial dependence on the chemical potential that
demonstrates the possibility to control the size and chirality of magnetic textures by adjusting a gate
voltage.
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Chiral magnetic structures have attracted a great deal of
interest in recent years with the observation of novel exotic
magnetic phases such as Skyrmion lattices [1], single
Skyrmions [2–4], chiral domain walls [5–7], chiral mag-
nons [7–9], and helimagnets [10]. The source of chiral
symmetry breaking, required for the formation of such
structures, is the asymmetric exchange interaction that is
referred to as Dzyaloshinskii-Moriya interaction (DMI)
[2,11–17]. DMI originates from spin-orbit coupling (SOC)
in magnetic systems with broken inversion symmetry,
e.g., in noncentrosymmetric crystals or at surfaces and
interfaces of thin magnetic films. The latter, effectively
low-dimensional systems, which are of particular interest
for applications, are in the focus of our study.
Recently, both bulk and interfacial DMI have been

measured by employing Brillouin light scattering and,
indirectly, using spin-polarized electron energy-loss spec-
troscopy [18–29]. On the other hand, for calculation of
DMI in realistic materials, there exist effective computa-
tional techniques that provide decent agreement with
certain experimental data [30–33]. A comprehensive under-
standing of the asymmetric exchange in generic systems
requires model studies as well.
A widely used strategy for addressing DMI in systems

with magnetic order is to utilize an s-d type model approach
with noninteracting itinerant electrons mediating magnetic

interactions. Within this ideology, the authors of Ref. [34]
derived formulas for the asymmetric exchange between two
single magnetic ions embedded in a 1D- or 2DEG with
Rashba SOC. A decade later, their result was generalized by
allowing for finite uniform magnetization [35].
As far as smooth noncollinear magnetic structures are

concerned (e. g., domain walls or Skyrmions), it is more
convenient to describe a magnet in the continuum limit by
sending the lattice spacing to zero in the first place. In this
paradigm, Berry phase type expressions for the asymmetric
exchange have been recently derived [36] and the relation
between DMI and ground-state spin currents has been
pointed out [37,38]. Surprisingly, though, the only 2D
ferromagnet (FM) model for which DMI has, so far, been
calculated in the continuum limit refers to the system of a
FM deposited on top of a topological insulator [39–41].
In this Letter, we focus on a less exotic model that

captures the effects of both Rashba SOC and the s-d type
exchange interaction between localized FM spins and
2DEG. The following Hamiltonian of one conduction
electron is considered:

H ¼ ξðpÞ þ αRζðpÞ½p × σ�z þ JsdS nðr; tÞ · σ; ð1Þ
where ξðpÞ and ζðpÞ are arbitrary functions of the absolute
value of momentum that parametrize free electron
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dispersion (kinetic energy) and momentum dependent
Rashba SOC, respectively. The last term stands for the
effective s-d exchange interaction with strength Jsd.
We assume that the system is deep in the FM phase and
the temperature is far below the corresponding Curie
temperature; hence the localized spins of the absolute
value S can be described by the continuous vector field
nðr; tÞ with the constraint jnj≡ 1. We also assume the
dynamics of itinerant electrons to be much faster than that
of FM spins and treat the field n as time independent. The
notation σ refers to a vector of Pauli matrices.
The model of Eq. (1) describes a generic FM layer

coupled to 2DEG with spin-orbit interaction of Rashba
type. One possible realization of such a system is a
LaAlO3=SrTiO3 interface [42]. The model might also be
used to describe a SrRuO3=SrIrO3 interface, which has
recently gained considerable attention in the context of
the so-called topological Hall effect—the phenomenon
intrinsically linked to DMI [43,44].
In the continuum limit, DMI (or the antisymmetric

exchange) is recognized as a contribution ΩD½n� to the
micromagnetic free energy density that is linear with
respect to the first spatial derivatives of the vector field n.
The symmetric exchange, on the other hand, is associated
with a contribution ΩA½n� that is quadratic with respect to
the first spatial derivatives of n. The ratio between the
two contributions plays a key role in formation of chiral
magnetic structures, affecting their stability and size.
Relation between ΩD½n� and ΩA½n� for the model of
Eq. (1) is interesting for one more, historical, reason.
Standard symmetry analysis shows [17] that in an isotropic
2D FM system, one has

ΩA½n� ¼ A½ð∇xnÞ2 þ ð∇ynÞ2�; ð2Þ

where A is the exchange stiffness. For a particular choice,
ξðpÞ ¼ p2=2m and ζðpÞ≡ 1 in Eq. (1), which is referred to
below as the Bychkov-Rashba model [45], the authors of
Ref. [46] argued that, in the limit of weak SOC, the form of
Eq. (2) necessarily leads to

ΩD½n� ¼ Dn · ½ðez × ∇Þ × n� ð3Þ

and, moreover, to D ¼ ð4mαR=ℏÞA. Unfortunately, the
actual calculation of ΩD½n� has been performed neither
in Ref. [46] nor, to the best of our knowledge, anywhere
else even for the particular case of the Bychkov-
Rashba model.
Below, we undertake an accurate microscopic treatment

of the model of Eq. (1) in the leading order with respect to
small αR and, under rather general assumptions on ξðpÞ and
ζðpÞ [47], directly derive Eqs. (2) and (3). Furthermore, we
report that the exchange stiffness A and the DMI constantD
are given by remarkably concise expressions, namely,

A ¼ Δsd

32π

∂
∂Δsd

�Z
∞

0

dp
p½ξ0ðpÞ�2

Δsd
ðf− − fþÞ

�
; ð4Þ

D ¼ αRΔsd

8πℏ
∂

∂Δsd

�Z
∞

0

dp
p2ζðpÞξ0ðpÞ

Δsd
ðf− − fþÞ

�
; ð5Þ

where Δsd ¼ jJsdjS is half of the exchange splitting,
ξ0ðpÞ ¼ ∂ξ=∂p and f� ¼ f(ξðpÞ � Δsd) are expressed
via the Fermi-Dirac distribution

fðεÞ ¼ ð1þ exp ½ðε − μÞ=T�Þ−1; ð6Þ

with the chemical potential μ and temperature T.
We would like to draw the reader’s attention to the fact

that the result of Eq. (4) is well-known, though, in a
different form [see, e.g., Eq. (70) in Ref. [48]]. It is,
however, useful to cast A in the form of Eq. (4) in order
to compare the symmetric and asymmetric exchange for
several particular choices of ξðpÞ and ζðpÞ as we do later in
the text.
We have checked that the DMI constant of Eq. (5) can

also be obtained either by evaluation of ground-state spin
currents [37,38] or by using the formalism of Ref. [36].
We have also checked that one may restore both Eqs. (4)
and (5) by calculation of spin density of conduction
electrons s [49] followed by an integration of the relation
n × ðδΩ=δnÞ ¼ JsdS n × s, as it was done in Ref. [39] for
DMI in the Dirac model. It must also be possible to
compute A and D from an effective action [41,50].
Nevertheless, we believe that the most natural and

straightforward way to derive Eqs. (4) and (5) is to extract
ΩA½n� andΩD½n� from the electronic grand potential density
Ω. In this approach, there is no need to assume a priori the
symmetry form of the final result as it is often done in the
literature. Using the standard formulation of statistical
physics, we express the grand potential density at r ¼ r0 as

Ω ¼ −
T
2πi

Tr
Z

dε gðεÞ½GAðr0; r0Þ − GRðr0; r0Þ�; ð7Þ

where GAðRÞ ¼ ðε ∓ i0 −HÞ−1 is the advanced (retarded)
Green’s function for the model of Eq. (1), Tr stands for the
matrix trace, and the notation

gðεÞ ¼ ln ð1þ exp ½ðμ − εÞ=T�Þ; ð8Þ

is employed.
Now, let us show how Eq. (7) can be used to obtain the

DMI contribution to micromagnetic free energy density.
First, one should Taylor expand nðrÞ around nðr0Þ and use
the result to generate the Dyson series
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Gðr0; r0Þ ¼ Gðr0 − r0Þ þ JsdS
Z

dr0Gðr0 − r0Þ

×

�X
βγ

ðr0 − r0Þβ∇βnγðr0Þσγ
�
Gðr0 − r0Þ; ð9Þ

where G is the Green’s function of a homogeneous system
with fixed nðrÞ≡ nðr0Þ. In Eq. (9), we have disregarded
all the gradients of n but the first, which is only accounted
for in the linear order. The second term in Eq. (9) is
precisely the one that determines the asymmetric exchange.
Substituting it into Eq. (7), we switch to momentum
representation and symmetrize the result to obtain the
general formula

ΩD½n� ¼
X
βγ

ΩDMI
βγ ∇βnγ; ð10Þ

with the DMI tensor defined as

ΩDMI
βγ ¼ T

JsdS
2πℏ

Im
Z

dε gðεÞ
Z

d2p
ð2πÞ2

× TrðGRσγGRvβGR −GRvβGRσγGRÞ; ð11Þ

where v ¼ ∂H=∂p is the velocity operator. Note that we
have dropped the argument of nðr0Þ in Eq. (10) and
further, below.
Evaluation of Eq. (11) for the present model is performed

with the help of the momentum-dependent Green’s
function

GRðAÞ ¼ ε − ξðpÞ þ αRζðpÞ½p × σ�z þ JsdS n · σ
½ε − εþðpÞ � i0�½ε − ε−ðpÞ � i0� ; ð12Þ

where we introduce the spectral branches ε�ðpÞ ¼
ξðpÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJsdSÞ2 þ ½αRpζðpÞ�2 − 2αRJsdSpζðpÞ sin θ sinϕ

p
,

the angle θ stands for the polar angle of n with respect to
the z axis, while ϕ is the angle between the momentum p
and the in-plane projection of the vector n. We substitute
Eq. (12) into Eq. (11), calculate the matrix trace, expand the
integrands to the linear order in αR, and straightforwardly
integrate over ϕ. This results in the following form of the
DMI tensor:

ΩDMI
βγ ¼ D

X
ij

niϵijγϵjzβ; ð13Þ

where ϵq1q2q3 denotes the three-dimensional Levi-Civita
symbol, while

D ¼ αRΔ2
sd

2π2ℏ
T
Z

∞

0

pdp
Z

∞

−∞
dε gðεÞ

× Im

�
2ζðpÞ þ pζ0ðpÞ

½ε − εþ0 ðpÞ þ i0�2½ε − ε−0 ðpÞ þ i0�2
�
; ð14Þ

where ζ0ðpÞ ¼ ∂ζ=∂p and ε�0 ðpÞ ¼ ξðpÞ � Δsd. From
Eqs. (13) and (14), it is already evident that, up to the
linear order in αR, the asymmetric exchange does, indeed,
have the form of Eq. (3) with the DMI constant D which is
totally independent of the direction of magnetization.
Integration over ε in Eq. (14) leads to

D ¼ αRΔsd

8πℏ
T
Z

∞

0

dp
g0− − g0þ
Δsd

∂½p2ζðpÞ�
∂p

−
αRΔsd

8πℏ
T
Z

∞

0

dp
g− − gþ
Δ2

sd

∂½p2ζðpÞ�
∂p ; ð15Þ

where g0� ¼ ∂g�=∂Δsd and g� ¼ g(ξðpÞ � Δsd) [51].
Eventually, the above two integrals are combined to form
a full derivative with respect to Δsd. Partial integration
concludes the derivation of the DMI constant D of Eq. (5)
once the identity ∂gðεÞ=∂ε ¼ −fðεÞ=T is used.
The symmetric exchange can be treated similarly. In

order to derive Eqs. (2) and (4), one should take αR ¼ 0 and
extract all terms proportional to ∇βnγ∇β0nγ0 and ∇β∇β0nγ
in Eq. (7). We relegate the details of the calculation to the
Supplemental Material [47].
In the rest of the Letter, we apply the general expres-

sions of Eqs. (4) and (5) to three particular cases. All
further analytical results are presented in Table I, and the
corresponding plots are given in Figs. 1–3.
To begin with, we return to the Bychkov-Rashba (BR)

model characterized by ξðpÞ ¼ p2=2m and ζðpÞ≡ 1. As
can be immediately seen from Eqs. (4) and (5), the relation
DBR ¼ ð4mαR=ℏÞABR, indeed, holds, and the prediction of
Ref. [46] is validated. Furthermore, in the limit of zero
temperature, one finds from Eq. (5) that

DBR ¼ ΔsdmαR

8πℏ

�
1 − ðμ=ΔsdÞ2; jμj < Δsd

0; μ > Δsd

: ð16Þ

Thus, if SOC is weak, both A and D are finite in the
Bychkov-Rashba model at T ¼ 0 only in the half-metal
regime jμj < Δsd.

FIG. 1. Dzyaloshinskii-Moriya interaction constant D in the
Bychkov-Rashba model as a function of the chemical potential μ
at different temperatures T. Both μ and T are normalized by half
of the exchange splitting Δsd ¼ jJsdjS.
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In fact, DMI in this model vanishes identically in the
metal regime μ > Δsd irrespective of the SOC strength.
At larger αR, the asymmetric exchange ceases to have the
simple symmetry of Eq. (3) in the form of Lifshitz
invariants. However, contributions from the two Fermi
surfaces still cancel each other within each component of
the DMI tensor ΩDMI, no matter what the SOC strength is
[52–54]. A nonperturbative in SOC study of DMI in the
model of Eq. (1) will be presented elsewhere.
Next, it is instructive to see how the deviations from

parabolic dispersion, a common property of, e. g., narrow
gap semiconductors and quantum wells [55–57], affect A
and D and the relation between them. To model non-
parabolicity (NP) we use ξðpÞ ¼ ðp2=2mÞð1þϒp2=2mÞ
and ζðpÞ≡ 1 with the parameter ϒ quantifying the
deviation from the parabolic band. We shall assume that
ξðpÞ is an increasing function even for negative values
of ϒ; i.e., our choice of ξðpÞ is understood as an appro-
ximation at small values of p. Temperature is set to zero.
We find, in this case, that the DMI constant and the

exchange stiffness remain finite for all values of μ.
Moreover, the NP corrections to D and ð4mαR=ℏÞA are
of different signs, but have equal magnitudes,

DNP −DBR ¼ −ð4mαR=ℏÞðANP − ABRÞ; ð17Þ

independently of the sign of ϒ (see Fig. 2 and Table I).
This leads, in the metal regime, to a particularly unexpected
relation

DNP ¼ −ð4mαR=ℏÞANP; μ > Δsd; ð18Þ

[cf. the relation DBR ¼ ð4mαR=ℏÞABR for the Bychkov-
Rashba model].
For ϒ < 0, the exchange stiffness becomes negative in

the metal regime, which may eventually make the FM
phase unstable. Of course, within our study, we do not
consider direct contributions to magnetic exchange that
may remain sufficiently large to be overcome by negative
ANP. Nevertheless, the reduction of the direct exchange in
nonparabolic FM layers may have a serious impact on
the size of noncollinear magnetic textures. In a particular
case of a single Skyrmion, a simple estimate of its size is
∝ A=D [58]. We note that, for ϒ < 0, the DMI constant is
enhanced; hence, the deviations from parabolicity may
reduce the size of magnetic Skyrmions leading to minia-
turization of Skyrmion-based technology. In general, non-
trivial dependence of A and D on the chemical potential
shown in Fig. 2 clearly demonstrates the possibility to
control the size of Skyrmions by means of a gate voltage.
Finally, motivated by theoretical [59], computational

[60], and experimental [61] demonstrations of generally
nonlinear (NL) dependence of Rashba SOC on momentum,
we model the effect of the latter on the asymmetric
exchange. Since Rashba spin splitting is usually reported
[59–61] to either saturate or decrease with increasing p, we
use ζðpÞ ¼ 1=ð1þ λp2=2mÞ with positive parameter λ and
ξðpÞ ¼ p2=2m. At zero temperature, we then find a finite
DMI constant DNL for any value of the chemical potential
(see Fig. 3 and Table I). Moreover, DNL exhibits a sign
change around μ ¼ Δsd. This demonstrates that a gate
voltage can also be used to manipulate chirality of magnetic
order in 2D FM.

FIG. 3. Dzyaloshinskii-Moriya interaction constant D as a
function of the chemical potential μ at zero temperature for
different values of nonlinearity coefficient λ. Both μ and 1=λ are
normalized by half of the exchange splitting Δsd ¼ jJsdjS.

FIG. 2. Dzyaloshinskii-Moriya interaction constant D and
“normalized” exchange stiffness ð4mαR=ℏÞA as functions of
the chemical potential μ at zero temperature for different values
of nonparabolicity coefficient ϒ. Both μ and 1=ϒ are normalized
by half of the exchange splitting Δsd ¼ jJsdjS.
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Tuning of DMI has, so far, been realized by different
approaches to interface engineering [62,63]. The ambition
to manipulate the stability parameter, size, and density of
Skyrmions was very recently achieved as well, by means of
similar methods [64]. Based on our findings, we argue that
a gate voltage variation may add yet another important and
flexible tool for controlling chiral magnetic domains,
paving the way towards novel material design.
To conclude, we considered the asymmetric exchange in

generalized 2D Rashba FM. In the weak SOC limit, we
established the full form of the corresponding contribution
to micromagnetic free energy density and derived a general
formula for the DMI constant. We showed that, to the
leading order in small αR in the Bychkov-Rashba model, a
linear relation between the exchange stiffness A and the
DMI constant D, indeed, holds, while at zero temperature,
both vanish once the two spin sub-bands are partly
occupied. At the same time, deviations from the
Bychkov-Rashba model prevent this cancellation. There
is no general linear dependence between A and D. In
particular, the relation D ¼ ð4mαR=ℏÞA for the Bychkov-
Rashba model is replaced at zero temperature by the
relation D ¼ −ð4mαR=ℏÞA in the metal regime of the same
model if nonparabolicity of the kinetic term is taken into
account. For nonparabolic bands or nonlinear Rashba
coupling, both A and D acquire a nontrivial dependence
on the chemical potential that demonstrates the possibility
of controlling the size and chirality of magnetic textures by
adjusting a gate voltage.
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Devolder, J.-V. Kim, S. M. Cherif, A. Stashkevich, and A.
Thiaville, Phys. Rev. B 91, 180405(R) (2015).

[22] H. S. Körner, J. Stigloher, H. G. Bauer, H. Hata, T.
Taniguchi, T. Moriyama, T. Ono, and C. H. Back, Phys.
Rev. B 92, 220413(R) (2015).

[23] K. Di, V. L. Zhang, H. S. Lim, S. C. Ng, M. H. Kuok, J. Yu,
J. Yoon, X. Qiu, and H. Yang, Phys. Rev. Lett. 114, 047201
(2015).

[24] H. Yang, A. Thiaville, S. Rohart, A. Fert, and M. Chshiev,
Phys. Rev. Lett. 115, 267210 (2015).

[25] H. T. Nembach, J. M. Shaw, M. Weiler, E. Jué, and T. J.
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