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Tests based on the Classical Test Theory often use the standd error of measurement
(SEm) as an expression of (un)certainty in test results. Adtugh by convention a

single SEm is calculated for all examinees, it is also posdé to (1) estimate a
person-speci ¢ SEm for every examinee separately or (2) a calitional SEm for groups of
comparable examinees. The choice for either of these SEms giends on their underlying

assumptions and the trade-off between their unbiasedness lad estimation variance.

These underlying assumptions are discussed in the presentricle, together with a

mathematical expression of the bias and estimation variarcof each of the SEms. Using
a simulation study, we furthermore show how characteristig of the test situation (i.e.,

test length, number of items, number of parallel test partsoverall reliability, relationship
between “true” score and true (un)certainty in test resulteand rounding/truncation)

in uence the SEm-estimates and impact our choice for one of he SEms. Following

the results of the simulation study, especially rounding ggears to hugely affect the

person-speci ¢ and—to a lesser extent—the conditional SEm. herefore, when a test

is small and an examinee is only tested once or a few times, & safer to opt for a single

SEm. Overall, a conditional SEm based on coarse grouping apgars to be a suitable

compromise between a stable, but strict estimate (like theisgle SEm) and a lenient, but
highly variable estimate (like the person-speci ¢ SEm). Me practical recommendations

can be found at the end of the article.

Keywords: standard error of measurement, classical test theo
error of measurement, parallel test parts

ry, intra-individual variation, conditional standard

INTRODUCTION

Within the Classical Test Theory (CTT), the Standard Erronmasurement (SEmi]) is often
used as an expression of (un)certainty of test results in &tilut, psychological assessment and
health related research. Tests based on CTT usually repertréditional “single” SEm, which
brie y works as follows. The test is administered once to augref persons from the desired
population (i.e., the “norm population”) and one CTT-based SEnme&imated forall future
examineedhence the term “single”1f4]. Another possibility is the estimation of a person-speci ¢
SEm, which is calculated—as the name implies-ef¥ery examineseparately. This person-speci ¢
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SEm is usually seen as an intermediate step in the estimation Conventionally, CTT test makers and test users have “blindly
of the conditional SEm (seé]), but as we show it can also be adopted the single SEm for individual inferences. We propose
used on its own. When the expected value is taken of the persois not base this decision on convention, but on a deliberate
speci ¢ SEm over all examinees with the same (expected) “tru€bnsideration of characteristics of the test, its norm popata
test score, it yields a SEm for evgnpup of examinesgparately and assumptions one is willing to make and their in uence
called the conditional SEm (see, for instanég). [ on the trade-o between unbiasedness and estimation vagan
The choice for either of the three SEms depends on th&o aid this deliberate consideration, this paper rst discusses
assumptions that each of these SEms make about measurem#rg Classical Test Theory and how the single SEm, the person-
(un)certainty. The single SEm, for instance, can only belusespeci c SEm and the conditional SEm t in this framework.
when two strict assumptions are med][ First, all persons must In this discussion, dierences in the estimation of the three
be measured with the same accuracy; i.e., the measuremé&fEms are shown and underlying assumptions are highlighted.
error variance must beconstant Second, the person's intra- Then, we zoom in on the trade-o between unbiasedness and
individual variation in measurements must equal the inter-estimation variance of the three SEms, which is followed by a
individual variation in measurement of the norm-population simulation study. In this simulation study, we investigdtew
examinees; i.e., intra-individual variation and intedimidual  characteristics of the test and its norm population (i.e., fnemof
variation must beinterchangeabl¢?7]. Multiple authors have repeated testtakes, number of items, overall reliabilitjisibility
questioned the reasonableness of these assumptions.&fiism in parallel test parts, anticipated relationship between trest
for instance, writes: “... there is no reason whatsoevessome score and SEm and whether the scores are continuous or ralinde
that the propensity distributions of di erent persons must be and truncated) in uence the trade-o between unbiasednasd
identical to one another and to the between-person distiifaut  estimation variance. Based on this simulation study, weitfal
based on single-administration data” (p. 118). With “propéysi a set of practical recommendations when to use each of the SEms.
distribution” Sijtsma p] refers to the hypothetical distribution
of repeated measurements of single examinees. When picturi
a class of—in many aspects—di erent examinees, it is hard t LASSICAL TEST THEORY
imagine that the test result of each of these examinees erges Throughout this paper, we built on the ideas and notation of

by the same underlying propensity distribution. Furthermore Classical Test Theoly(CTT; [1—4]). CTT comprises a set of

it seems unlikely that these propensity distributions equal a ;5 mptions and conceptualizations that make it possible to
aggregated, between-person distribution calculated orb#®s 4o measurement error4[ 11]. In this section, we discuss
of a single test take. Molenaaf][concludes: *(CTT) giVes o fndamentals of CTT. In the next section, we discuss how
rise to serious questions regarding its applicability to indiial respectively the single Standard Error of measurement (SEm), t

assessment’ (p. 203, also & [ erson-speci ¢ SEm and the conditional SEm t within this CTT
The two assumptions are relaxed when we move from th amework.

single to.the conditionaI.S'Em. Instegd of constant meaSBIHm In essence, CTT assumes that every person has a “true” overall
error variance, the conditional SEm is based on the moresiani test score. This “true” overall test score is assumed torbe ti

assumption ofhomogeneoumeasurement error variance (seeinvariant_ The dierence between the xed “true” score and

[°). This assnémptlor states that measurenjrint EITOr VanasCe yne goore obtained on a measurement is considered random
constant conditional on “true” test score. Thus, measureme | C\oo o

error variance is only assumed constant for examinees with
the same, underlying “true” test score. The same holds for &iD i X 1)
the second assumption; only within a group of examinees

with the same *“true” test score, intra-individual variaiio |, Equation 1,e; denotes persons measurement error on
and inter-individual variation in measurement are assumedneasurement occasiap ; refers to the person's “true”, overall
interchangea_lble. Finally, a move from the conditional tce_th test score and; to person'si obtained score on measurement
person-specic SEm leads to a drop of both assumptiongccasiory For this equation to hold, CTT assumes that person
altogether. _ . ~ ispart of awell-de ned population of persofs(i 2 } ) and that
Based on the assumptions above, one might be inclineghe speci ¢ test, let's call this teatis part of a well-de ned set of
to opt for a conditional SEm or even for a person-speci Cpossible test® (a2 R).
one. However, there is no free lunch. The increasingly lenien assume we can repeat the measurement of persuith test
assumptions with respect to measurement (un)certainty arg many times independently. In that case, the random variable
accompanied by increasingly stricter assumptions with reispeg . \yould contain all measurement erroes; of personi over
to the structure of a test and its items (we illustrate thistet q repeated measurements and the random variablewould
next sections). Furthermore, there is a trade-o betwee th contain all observed scores; of personi over G repeated
unbiasedness of SEm-estimates and their estimation vilyab measurements. Note the replacementgofith an asterisk to
For instance, if examinees have their own unique measurémen
(un).certalnty,. the person-speci ¢ S.Em will prowde_ us with .anlNote that over time, researchers have extended and revisedTfien@del for
unbiased estimate at the cost of being the most variablmatti gy erent purposes (seel[]). Here, we only discuss the most basic and common
of SEm. CTT-model.
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denote random measurements. in Equation 1 can then be Estimation

conceptualized as the expected valuX ¢f As mentioned in the introduction, the single SEm is estindate
based on a norm population. Since this norm population is
i D B[Xi]. (2) only tested once, the true-score varianc%(T ) is unknown

and the single SEm cannot be estimated dire(aly using Equation
7. In order to estimate Z(Eg ), and eventually  ?(Eg ), the

unobservable quantity 2(T ) must be rewritten in a potentially
E[Ei] DO, (3) observable quantity. CTT does this by splitting the single

) o ) ~ measurement of the norm population into twparallel parts.
where Ej is expected to be normally distributed with nite «parajiel” means that the items and/or scores in the parts have

variance ?(E i):? the same underlying true score variafile and experimentally

B independent errors with equal varianC(-?f(Eg )in} and every

Ei N, “(Ei)) (4) subpopulation off (see de nition 2.13.4,1]). “Experimentally

) o o independent” (de nition 2.10.1;1]) implies that the correlation
Where_ 2(E ;) here refers to intra-individual var|at|(_)n. Although between errors of the parts equals zero. From a practical point
Equations 1-4 are useful for the conceptualization of they view, parallel test parts can be constructed by matching

conditional and the person-specic standard error of o content and item characteristics over parts. Examples of
measurement later, they are not generally the focus of CTE,cp, item characteristics are item di culty—the proportiorf o

[9]. Rather, CTT shifts the focus from the repeated measuremeorsons of the norm population answering the item correctly—
of a single, specic examinee to the single measurement oy the reliability index, which is the point-biserial comébn
repeatedly, randomly selected examinegs 2. Given that payeen jtem and total score multiplied by the item standard
Equation 1 holds for a speci c examinggit also holds for any - yeyiation. Thus, even though items in a test are likely to
randomly sglected examinee. Therefore, if we _denote ther err i er in terms of di culty and reliability, the idea is to grow
random variable over randomly selected examinee&pythe  hem in such a way that the groups of items (the parallel test
trug score random variable By and the observed score random parts) are comparable. An example of an algorithm capable of
variable byXg , grouping items in an optimal way can be found in Sanders
Eg DT X () and Verschoor 4. In the remainder of this article, we use
K to denote the number of parallel test parts akdo refer
in} orany subpopulation of (note the substitution ofby to to a specic parallel part. Multiple coe cients exist based on
denote randomly selected examinees). AgBijn,is expected to the correlation betweelK parallel measurements, such as the

Since the expected valuexgf equals j, the expected value &;
is zero:

be normally distributed with nite variance 2(E; ): Spearman-Brown split half coe cientl[5, 16. These coe cients,
here denoted by xxo, are meant to estimate the reliability of
2
= N, 2(Eg)), (6) the test, i.e., the ratieﬁz% (see []) adjusting for the change
9
in test length and hence the single SEm can be estimated

where 2(Eg ) refers to inter-individual variation. As we explain
in the coming sections,Z(Eg ) in Equation 6 forms the basis for
the single SEm while 2(E ;) from Equation 4 is crucial to the
conditional and person-speci ¢ SEm.

using:

(E)D AK)  ATID k) 20)r)
SINGLE STANDARD ERROR OF Xg)
MEASUREMENT D 2(Xg)1  xx9. 8)

De nition
The single standard error cPf measurement, abbreviated helf the remainder, we will use the Spearman-Brown split
as single SEm, is de ned as 2(Ey ); the square root of the half coe cient (Equation 8). Note, however, that alternass

variance in measurement errors of randomly selected exaesin XISt for the estimation of reliability that are based on
(see Equation 6). Because of the linear relationship in Egua MOre lenient assumptions of parallelism. Test halves can, for
5 and zero correlation betweeB; and T , the variance in instance, be tau-equivalent, meaning that the true scomes i
measurement errors of randomly selected examinees is simghpth test parts are allowed to dier by a constant (equal

the di erence between the total variation in observed scames 0F all examinees) and that their error variances are albwe
true-score variance (for proof sed): to dier as well [17, 1§ (also see 19 for an overview of
reliability coe cients and their assumptions of paralleli3m

2 2 2 i [ i i i -equi
(Eg)D 2(Xg) (T). (7) From a practical point of view, items in tau equwal_ent
test parts do not have to be matched as strictly on item
“Note that there are also CTT-models in which dierent distribuiomse ~ Characteristics such as item di culty as is the case for datast
considered such as the binomial and beta-binomial (elg]).[ parts.
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PERSON-SPECIFIC STANDARD ERROR OF  persons' measurements are inherently more consistent than

MEASUREMENT others. Equation 9 shows that it is possible to aggrega(E ;)
. on the level of speci c examinees to reach an estimatez(]fg )
De nition on a population level, but not the other way around. Thus,

Whereas the single SEm is based on the variance in measuremgnye want to use Z(Eg ), on which the single SEm is based,
errors of randomly selected examinee$(E; ), see Equation to make inferences on an individual level, we need to assume
6, the person-specic SEm can be expressed a3(E ;); the that (1) every examinee has the same error variang ;)
square root of the variance in persals measurement errors and that this error variance equalsZ(Eg ); the assumptions
over repeated measurements (see Equation 4). As shown by Lartl constant measurement error and interchangeability of
and Novick [1], the single SEm and the person-speci ¢ SEm aréntra-individual and inter-individual variation discussl
related to one another: previously.

%(Ey) D EH 4Ej)], ©9)

indicating that the between person variance on which theESt”’nat.IOn _ o _
single SEm is based, is equal to the expected value of tHgStas with the single SEm, the estimation of the person-speci
within person error variance on which the person-speci ¢ errorSEM is based on splitting the test in parallel test parts. When a

Figure 1). In other words, the single SEm 2(E; ) is themean be estimated based on th?G variances within parallel test parts,

2
. . — = Xgki NK ki
2(E
standard error of measurement i [1]. Estimating (EH) 2(X \), operationalized 2! ~——whereRl; denotes the

fpr every person separately thus leads to a correct estimate 9f o of thekth parallel test part. Since the overall test SOGfEs

2(Ey ) on average while allowing the possibility that somethe sum over (lets for simplicity assume unit-weighted) reso

Single K

=

B { Conditional \ es
I
I
e _
L [
] [ B
[ |
A A
ol ' =
O Hn
E E - © HN
- W=
- =
-~ W=
_Person-speciﬁc Person-specific Person-speciﬁc— —Person-specific Person-specific Person-speciﬁ;

FIGURE 1 | lllustration of the relationship between the single, cond@nal and person-speci ¢ standard error of measurement. Thaows symbolize examineesN and
the columns parallel partsK. The different colors indicate different test scores for #aK parallel parts. E[] refers to the expectation over the vamaes between the
brackets.
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for each of the parallel parts, the error variancexgf can be For normally distributed parallel measurements, the between
expressed ad]. variance 2(Xgi) is known to follow a scaled chi-squared
X distribution (see 21])3. Therefore, the between varianc&X1 ;)
2Ei{/ D 2XiD 2 x Wil at a speci c test take can also be perceived as a random sample of
X ) kD1 the scaled chi-squared distribution of a xed, unknows(E ;)
C2 o "X Xopi) (10a)  of personi.
) ) Xk CONDITIONAL STANDARD ERROR OF
.Ei/ D .X il D Xl - (10b)

MEASUREMENT
In other words, the variance of the composite test scrje  De nition

and thus 2(E ), is a function of the (unit-weighted) within 5, a¢ the person-speci ¢ SEm, the conditional SEm is based
variances of the parallel parts and their covariance. Sinee ﬂbn Equation 4. This conditional SEm can simply be expressed

parallel parts are gxperimentally independent, these.covrz'ae'fan as the expected value of the person-speci c SEms of examinees
equal zero (Equation 10b, see Hu et a[for the estimation belonging to the same groyp

of the person-specic SEm in the context of many repeated
measurements). q ——

As stressed in Sijtsmag]] there generally is a “... practical i2j(E)) D Eigj [ %(E)]. (13)
impossibility to administer the same test to the same indiil$
repeatedly — even twice is nearly impossible” (p. 117). Thezefo Ideally, every examinee in grouphas the same “true” test
Equation 10 must be modi ed to accommodate a situation withscore. Since examinee's “true” scores are unknown, they are
only one test take. This is done by replacing thighin parallel typically grouped according to their total test scdreBuilding
parts variances, 2.X i/, with the variancebetweenparallel on Equation 9, the relationship between the conditional inel

kD1

parts, 2 Xgi: single SEm can be described as follows (for a graphical dltistr
seeFigure 1):
2 EilD 2.Xi/DX “ 2y i DK 2Xgi. (12)
o1 9 ’ 2(Eg)DEL (E], (14)
This replacement is justied since, Fif we operationalize they,a; i when we take the expected value over all the error
Xgii kg i 2 variances in groupg, we nd the between person variance

variance between parallel parts #8'————where % on which the single SEm is based. Estimating(E ) for
denotes the mean of thgth measurement, the expected valueeyery group separately thus leads to a correct mean estinfiate o
of this between variance equals the expected value of thdedaral 2(Ey ) while allowing the possibility that low-scoring, average-
parts' within variance, calculated across repeated measures scoring and/or high-scoring examinees have measuremaats t
E 2Xo DE 2 X (12) are inherently more or less consistent. Equation 13 shows th.at
Ak 9! whereas the conditional SEm can be estimated by aggregating
The proof for this is straightforward: the person-speci ¢ SEms, it does not \(vork the othgr way around.
Thus, if we want to useizzj(E i), on which the conditional SEm
2 f _ 23 is based, to make inferences on an individual level, we need t
Xgki  Xg i assume that every examinee within groupas the same error
E K %(Xgi) D KE E kD1 K1 Z variance; this is the homogeneous measurement error vegian
assumption discussed previously.
m 2 Estimation
Many procedures have been proposed in the literature to estimat
gD1 the conditional SEm, including but not restricted to the bmial
G 1 procedure P3, the compound binomial procedure2f] the
Feldt-Qualls procedure Z(); for a comparison of this procedure
and and the procedures previously mentioned se€]), the item
) 14 le Xgki X ki : 3The rationale is as follows. Since parallel measurements have experimentally

2 = .
ngi X ki
gng

w

— 1T independent errors, the joint distribution function over all (péled) parts factors
z D K kD1 into the score distributions for each of the parallel parts separaté]ydg nition
K 1 2.10.1). Sampling scores one by one from tlieirespective distributions is thus
stochastically the same as sampling from the joint distribution aotfror normal
distributions such as this joint distribution, it is known byo€hran's theorem that
. Lo the variance 2(Xg i) follows a scaled chi-squared distribution.
In other words, the expected variance between and within pral 4Grouping by total score instead of “true” score introduces some, biasending

parts is the same.. on the reliability of test. Se€f].

: 2 ) :
E K “(X) D KE G 1
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response theory procedure by Wang et aljfand the bootstrap Variance

procedure advocated by Colton et akg. In the present Looking at the variance rst, the following (in)equalitieseaat
article, we focus on the Feldt and Qual§ procedure, since play:

this procedure is very similar to the procedure for estimating

the person-specic SEm discussed previously. The Feldt anulel.variancginge VarianConditional  VarianCerson specic
Qualls p] procedure extends the original method proposed by

Thorndike [29J, where a test is Sp“t in two para”e| ha|ves_The jUSti cation for this rule is as follows. As discusseddﬂe,
Thorndike [29 showed that the di erence between two half- the variance between parallel parts of a person follows a scaled
test scores equa|s the di erence between their two errors (uﬁhi-squared distribution. The variance of this diStribmieqUalS:

to a constant, when the half tests are essentially tau-atgnv

instead of classically parallel). With the assumption that tivo 2
errors are independent, the variance of the di erence betwhen

two half-test scores equals the error variance we are isiede

in. Feldt and Qualls g generalize this nding of Thorndike Since the estimate of the person-speci c error varianéeE ;/

[29 to a situation with more than two parallel (or essentially Simply follows by muiltiplying (Xg i) by K (see Equation 11),
tau-equivalent) parts: the estimation variance of2.E i/ is:

P o 2* 2 2Ey DK? 2 2Xg; (20)

K
2 kD1 Xgki  Xg i
.Ei/ D K , 15
i K 1 (15)

2
2E 2 Xgi

2
Xqi D
9! K 1

(19)

(see Feldt and Quallss]). By rules of error propagation, we

) ) o know that the variance ofy independent examinees equals
whereK in Equation 15 corrects for test length. That is, since the® 2 2 ¢ Vi

division of tests in parallel parts shortens the test by a fato — —z —~ and thus the variance of the conditional SEm can
we multiply byK to obtain an estimate for tests with the original be expressed as:

test length p]. Note that Equation 15 is equal to Equation 11 =

discussed earlier. To obtain the conditional SEm, the exgkct 2 K2 2 2 Xgi

2. i
value needs to be taken over the result in Equation 15 for all i2j(Ei) D (1)
examinees in a certain grogipThe person-speci ¢ SEm can thus

also be perceived as a special case of the conditional SEm whdre variance of the conditional SEm thus also depends on

2
n;

nj D 1: the size of groups thé groups. Finally, since the single error
* v p #e variance 2 E; D E[ 2(E)]is usually computed for all future
2 K51 Xgki g i 2 examinees, it is a constant and therefore its variance squab:
i2j(Ei) D BEgj K . (16)

K1 2 2g po. 22)
When the parts are (essentially) tau-equivalent instead

. . . 0CEom aring Equations 21 and 22, we see that Equation 2bul
classically parallel, Equation 15 can be replaced with: barng =qual W quat Bn

equal Equation 22 when the numerator of Equation 21 results

"P K o oo H in zero. SinceK? cannot equal zeroK has to be at least 2),
2Ei/D K K1 gk %gi *gi *g (17) the expression 2 2 Xgi has to become zero, which means
K 1 that there is no variation in the between variance$ Xg i .

When this is true, also Equation 20 results in zero, explanin
where the partXgi Xg accounts for di erences in means of why the conditional and person-speci ¢ estimation variances a
the parallel parts¥g  denotes the “grand” mean over all parallel jargeror equal to the estimation variance of the single SEm. On
test parts) for the person-speci c SEm withD 1 and Equation  top of the situation in which 2 2 Xgi D 0, Equation 20

16 can be replaced with: and 21 result in the same value when D 1 (in this case,
P _ _ ottt Equation 21 simpli es into Equation 20). In other instancéss
2(E)D Ep K i Xgki  Xgi Xgi X person-speci ¢ SEm always exceeds the estimation variance of
S 2 K 1 the conditional SEm.
(18) Figure 2 illustrates Rule 1 graphically (see the R le
for the conditional SEm witim; > 1. “Figure 2.R” on the OSF page https://osf.io/6km3z/ for dethile
information about this plot). The at, mint colored surfacbews
BIAS-VARIANCE TRADE-OFF the estimation variance of the single SEm and the tiltedivairt

surface illustrates the estimation variance of the personigpec
Ultimately, we want the estimate of SEm to be as re ective 06Em. The darkest colored surface belongs to the estimation
the examinee's error variation as possible. Keeping in mirad th variance of the conditional SEm. All three surfaces touctenvh
the examinee is tested once, there are two factors that imcee there is no variation in test score variance over test takefs (
the adequacy of the estimated SEm for the examinee: (1) ttside x-axis). The surface of the person-specic SEm and the
(un)biasedness of the estimate and (2) its estimation naga conditional SEm also touch whem equals one (right side of
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Estimation m
Person-specific SEm

Varys> Varg

BAC\CSS
" = Estimation variance

Conditional SEm

\ave

Estimation variance
Single SEm

FIGURE 2 | Relationship between the estimation variance of the persoespeci ¢ -, conditional,- and single error variance, for a cional examineei.

the y-axis). Other than at these two touching points, the dark} . This is either the case when all examinees have the same
colored surface lies above the mint-colored surface, imglyi error variance or when examingehappens to have an error
that the estimation variance of the conditional SEm excekds variance that equals the mean error variance of the population
estimation variance of the single SEm, whereas the surface Einally, based on Equation 16, the expected value of the atiim

conditional SEm. I A ] ) )
scores. 2 . E i/ is thus only an unbiased estimator fof . E i/

Bias when the 2.Ei/ of examineei equalsEp; 2.Ei/ over
Turning to the (un)biasedness, the following rule holds: all examinees in group. Again, this occurs when either all
examinees in group have the same error variance or when the
Rule. biasingle, biaSonditonal  Di@Serson speci ¢ error variance of examineieequals the mean error variance of

the group. It is impossible to know whethef . E i/ of examinee

The rationale for this rule is as follows. Using Equationsabl i happens to be closer to the population meah Eg orthe

12, it is easy to show that the expected value of the estimatgpoup mean 2\|2j 'E i/ and therefore the bias for the single- and

2 E equals 2.E/: conditional SEm are separated by a comma in RulEigure 3
illustrates Rule 2 graphically (for more detailed information
E 2E/ DKE 2 Xgi DKE 2.X,/ D 2.Ej/. how Figure3was constructed, see the R le “Figure 3.R" on
(23) OSF page https://osf.io/6km3z/). The x-axes vary the truererr
Thus, in the long run the error variance of examiriéecorrectly ~ variance of ctional examineéand the y-axes the variation in
estimated. Other estimators are either as unbiasetPa& ;/ or U error variances within group(n; D 100) where examinee
more biased. Using Equation 8, we see that the expected valu@€longs to.Figure 3A illustrates the bias (estimate of error
] v 5 ] variance—true error variance) of the single-, conditionand
of the estimator * E; equals © Ey . As Equation 9 shows,

: i : 2 g
e Ey is only an unbiased estimator for <.E i/ when the  5ssome pias will be introduced in the conditional SEm resulting froasibg the
2 E i/ of examined equals E 2.E;/ over all examinees in groupsj on observed rather than true test scores (SEB]
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case (B,C), the bias of the conditional SEm increases rapidly, with irreasing variance over the error variances within group(y-axis). The single SEm (tilted vertical
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person-speci ¢ SEm over 10,000 ctional test takes whérE i/

of examined equals the group meak; 2 Eil , Figure 3B
the bias when 2.E j/ is one standard deviation removed from
Eo; 2.Ei/ and Figure 3C the bias when 2.E i/ is two
standard deviations removed froiy; 2 E i/ . The (almost)
at surface for the person-speci ¢ SEm in all three plots illaggs

that the person-speci ¢ SEm is unbiased regardless of the true

error variance and variation of true error variances in gogu

The tilted vertical surface for the single SEm shows thag thi

SEm is only unbiased wher?..E i/ collides with the ¥ £
As the rst plot shows, when 2.E i/ equalsEp; 2.Ei/ , both
the conditional and person-speci ¢ SEm are unbiased (altfoug

the surface of the conditional SEm is “bumpier” due to the

introduction of variation over the 100 group members). When

that is not the case (second and third plot), bias quickly sise
when the variance in personal error variances within grqup ©)

increases.
Although Rules 1 and 2 andigures 2 3 provide insight

into the estimation variance and (un)biasedness of the eéhre

estimators, it is hard to choose one of the three looking asth
two gures separately. Ideally, we would want to choose betwe

the person-speci c-, conditional-and single SEm based on the

(un)biasedness and variance simultaneously. A measurehwhi
naturally ts the need to balance bias and estimation vaciis

the mean squared error (MSE), which can be expressed as the

sum of the bias squared and the estimation variance. In thé ne

sections, we show how to use the MSE to choose between the
single, conditional and person-speci ¢ SEm in di erent tegfin (

situations.

SIMULATION
Simulation Design

To compare the single, conditional and person-specic SEm,

we

simulated item and test scores for 1,000 examinees and

10,000 repeated test takes (see the annotated R le on the OSF

page https://osf.io/6km3z/). Six characteristics of the tesl

the norm population were varied: (1) whether the parallel test

scores are continuous and unrestricted or rounded to intege

and truncated, (2) the number of repeated test takes, (3) the

number of items of the test, (4) the number of parallel test part
K, (5) the relationship between the 1,000 “true” examinegesco
and their error variances and (6) the overall reliability tbie

test.Figure 4 summarizes these six characteristics. Each of theig)
characteristics is also brie y discussed below.

@

Continuous vs. rounded and truncated scores. As candre se
in Figure 4, all of the other ve characteristics are varied for
a scenario with continuous item-, parallel-, and total ssore
and a scenario with rounded and truncated scores. In the
“rounded and truncated” scenario (see lower paigure 4),
each item can be answered correctly (item sddrd) or
incorrectly (item scored 0), leading to a total score with a
possible range between 0 (every item answered incorrectly)
and the maximum number of items considered (every item
answered correctly). In the “continuous” scenario (see upper
part Figure 4), the item- and total scores are on a similar

scale as the “rounded and truncated” ones, but these scores
are not restricted or rounded. Note that the Classical Test
Theory and the formulas for the person-speci c SEm, the
conditional SEm and the single SEm discussed previously
are all based on this continuous scenario. The “rounded
and truncated” scenario, however, provides a more realistic
re ection of test practice.

Number of repeated test takes. In this simulation studg, w
simulate 10,000 repeated test takes for each of the examinees
This large number makes it possible to estimate the long run
bias, estimation variance and MSE. In practice, however, we
do not have 10,000 test takes per examinees and therefore
we will also look at fewer test takes (e.g., 1, 2, 3, 4, 5, 10, 25,
50, and 500) to see how accurate SEms estimates are in the
short run.

Number of items. Respectively 12, 24, and 48 items are used
in this simulation study. Based on previous studies (see,
for instance, §]) 12 items can be perceived as a small test,
whereas between 24 and 48 items can be seen as a realistic
test size. To keep the simulation results comparable over the
varying number of items, for the “rounded and truncated”
scenario the relative proportion of items correct of the 1,000
examinees for a certain test take were kept equal (i.e., if
personi has 6 items correct on a 12-item test at test tpke

has 12 items correct on a 24-item test at the same test take,
et cetera). For the “continuous” scenario, the average item
score was kept the same for the varying number of items.

4) Number of parallel test parts. To compare the e ectiveness of

various partitions, the 12, 24, and 48 items were respectively
divided in parallel parts oK D 2,K D 4,K D 6, andK D
12. For the tests with items 12, we additionally added
K D 24 (24- and 48-item test) and D 48 (48-item test).
By keepingk xed over the di erent number of items, the
number of items per parallel test part varies. Kob 2, for
instance, there are respectively 6, 12, and 24 items in each of
the 2 parallel test parts, depending on the number of items
in the test. The simulation of the parallel test parts is based
on the premise that division of the test in parallel test parts
is possible (something that should be checked by the test
maker or user in a realistic test situation). On the item leve
we thus implicitly assume that theeanitem di culty of
the items in every parallel test part is the same. Note that
this assumption is harder to ful Il when there are few items
in a parallel test part.
Relationship true score and error variance. The choice fo
either the single-, conditional-, or person-specic SEm
also depends on the anticipated relationship between
examinees' true scores and their error variance. Users of
the conditional SEm, for instance, assume that there is a
relationship between true score and error variance whereas
such an assumption is not (necessarily) considered when
opting for the single SEm or the person-speci c SEm. In
this simulation study we investigate the in uence of four
di erent relationships between true score and error varignce
which are all depicted ifrigure 5.

The relationships inFigure5 are all based on the
“continuous” scenario. Thus, these relationships show what

Frontiers in Applied Mathematics and Statistics | www.frotmersin.org 9

August 2018 | Volume 4 | Article 40


https://osf.io/6km3z/
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Lek and Van De Schoot

The Single, Conditional and Person-Speci ¢ SEM

h
relationships 12
L
o i 8 xg
=2
3 =)
7 8 5 83
S =2 1]
E
7 8 9 7 8 9
7 8 9 7 8 9 —
continuous
relationships 12
P 7 8 ‘ xa
I =20
o
3 | o8
= o x
7 8 o
1 q I
7 8 9 ! 7 8 .9
|
7 8 .9 7 8 9 |— —
S 78 9
1
rounded & truncated

FIGURE 4 | Schematic overview of the simulation design. The charactestics number of repeated test takes (2), number of items (3humber of parallel test partsK
(4), relationship between “true” test score and error variece (5), and overall test reliability (6) are varied for bothe scenario with continuous test scores (1; upper part
of the gure) and rounded and truncated test scores (lower parof the gure). Each slide within “continuous” and “rounded &d truncated” belongs to a speci ¢
number of parallel test partsK. Within each slide K D 12, 3 (number of items) 4 (relationships) 3 (reliabilitiesP 36 conditions are being simulated. The slide&

D 24 and K D 48 add another 24 K D 24) and 12 K D 48) conditions.

error variances we might expect for di erent true scores
if there were no test restrictions (i.e., no minimum or
maximum scores and no rounding). It is important to stress
that the error variances (y-axis) in the “continuous” sceoa

might di er somewhat from the error variances when test
restrictions such as truncation and rounding are taken into

account. Due to rounding and truncation, examinees at the
extremes, for instance, might have a lower error variance
over test takes than in the scenario with continuous scores.
On the scale of the te#fte results of these examinees are thus
relatively consistent and even though the test might make an
error theoreticall((i.e., the “true” score of an examinee &5
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FIGURE 5 | Visualization of the four simulated relationships betweettrue” total test score (x-axis) and error variance (y-aXisEach dot represents one of the 1,000
ctional examinees. To ease comparison, the error variancera the true score are divided by the number of items in the plst Note that the y-axis scale depends on
the chosen level of reliability(A) Quadratic relationship between true score and error variare, with lower error variances for examinees with extremeue scores.
(B) Quadratic relationship between true score and error variae, with higher error variances for examinees with extremetue scores. (C) Absence of a relationship
between true score and error variance(D) Linearly decreasing relationship between true score and gr variance.

while he/she keeps getting the minimum score 0 at the test),
the test makes this erraonsistentlpver test takes, lowering
the error variance 2(E ;) over test takes. In the results
section, the continuous “true” error variancesdure 5) are
used to assess bias and the MSE in the “continuous” scenario
whereas the bias and MSE in the “rounded and truncated”
scenario are assessed with error variances that are adijuste
to take this rounding and truncation into account.

Overall reliability of the test. To test the in uence aierall)
reliability, we created data for an overall reliability a7 0

0.8, and 0.9. According to often used rules-of-thumb, 0.7 is
the minimum acceptable level of reliability, 0.8 is preferred
and 0.9 is desirable for high stakes assessment £sbe [
As discussed previously, the reliability of a test for a derta

) 2 .
norm population can be expressed a@% the ratio
9

(6)

Si

our simulation study, we simulate “true” scores for the
1,000 examinees once for all scenario's (see “Simulated
dataset(s)” and the x-axis ifrigure 5. Therefore, the
variance term (T ) in the divisor of the ratio is a constant.
To increase the reliability, we manipulated the overall
variance (denominator) by lowering the error variance
2(Eq ). Since %(Ey) D E[ %E )] (see Equation 9), we
divided every of the 1,000 simulated error variancége ;)
by a certain numbed to reach the required reliability level.
Note that this division results in a higher overall reliatyil
but doesnot alter the relationship between true scores and
error variances as depicted ligure 5(see section above).

mulated Dataset(s)

True Scores

of the “true” score variance to the total variance Xy

A Following the simulation design described above, data was
where 2 Xg D 2.T/C “(Ey) (see Equation 7). In

simulated in a top-down way, starting with the simulation of
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the distribution of true test scores over all 1,000 examinees used as grouping factor (in the remainder denoted by “comh’),

in } . To accommodate di erent number of items (sEgure 4)  total score 2 (“con.C2") and total score 3 (“con.C3").

we simulated true scores using a standardized nfetsind ~ When it was impossible to add or subtract a number from the
consequently transformed these scores to the scales of1271@ examinee's total score without crossing the threshold Oher t
48 items. Note that the distribution of true scores is xedeoall maximum score, the largest number was taken which could still

other scenarios depicted Figure 4. be added and subtracted. Thus, “c@R2” means that grouping
) ) of examinees is based on total score2 for all total scores
Error Variances  ©.E i/ 2 and the maximum number of items-2, total score 1

Next, the error variances?.E i/ were simulated. Just as with for total scores 1 and the maximum number of items-1 and
the true scores;, the error variances were rescaled for thejyst the total score for scores 0 and the maximum number of
di erent number of items. Other than in the case of the true jiems, for instance. The single SEm was estimated last based
scores, however, the error variances were not xed overta#o g the Spearman-Brown prophecy formula (s&€]] between
scenarios irFigure 4. Rather, the error variance of all examineesthe parallel test parts over all examinees within every repeate
varied depending on the anticipated relationship betweer trumeasurement; yxo (see Equation 8). Note that this estimation
score and error variance (SEigure 5) and the overall rel|ab|l|ty of the Single SEm was based KD 2, whereas the estimation

of the test (which simply shifts the valuesfigure S5down by a  of the person-speci ¢ and the copditional SEms was based on
factord). In total, four (relationships true score-error variance) !

three (reliabilities)D 12 error variances 2.E i/ were thus
simulated for each of the 1,000 examinees. estimated for all 1,000 examinees and all conditioM(E ;) is
the average estimate of .E i/ over the 10,000 test takes). This
Total-, Item-, and Parallel Test Scores

For each of the 1,000 examinees and their 12 error variancQias Sauared was added to the estimation varianée (%ED) )

2 Eyl (see above), a vector of 10,000 error scdtgswas Over the 10,000 test takes to calculate the MSE.
simulated. Since the three types of SEm are all estimatedeon th
level of parallel test scores, we simulated these error scorthe RESULTS
level of the parallel test partg, ik, rst. For this, we made use of
the factthat 2(E ) is a sum over the parallel test error variancesj,, the simulation design, six characteristics of the tesd &me
E i N(©, *E i)/K). E i simply resulted from adding the ,5m population were varied: (1) whether the parallel test sore
parallel errors for a certain test tagel o create parallel test SCores 4re continuous and unrestricted or rounded to integers and
for each of the 10,000 test takes, the parallel error scorasded truncated, (2) the number of repeated test takes, (3) the nermb
to the examinee's “true” parallel test scoi¢K (scaled to the . items of the test, (4) the number of parallel test pats(5)
number of items in the test). For the “rounded and truncated”y,o relationship between the 1,000 “true” examinee scones a
scenario, these parallel test scores were rounded to thestearyeir error variances and (6) the overall reliability of thest.
integer. When the combination of true score and error resdlt Below, the in uences of each of these characteristics otbihe,

in a rounded parallel test score lower than O or higher than the,stimation variance and MSE of the three kinds of SEm are
number of itemsK, the parallel test score was truncated to be zergjigcssed.

or equal to the number of itemKJ, respectively.

2
varyingK. Finally, the bias squared EZ(E i) 2_Eil )was

Continuous vs. Rounded and Truncated

When parallel test scores were rounded and truncated, we

saw an alteration of the simulation results. This alteration

h(ad two general causes: (1) the error variances as depicted in
i ure 5were altered and (2) rounding and truncation limited

the 1,000 examinees and each Of. Fhe 10,000 test takes. T between variance over( p)arallel tegt parts. Each of these two

process was repeated for all cond|.t|ons and the ‘.‘contmuous(’;auses is discussed below. Because of the in uence of nogindi

and “rounded and_truncated" scenario separat(_ely eare _4)' nd truncation, in the other sections results are discussed

The person-specic SEm was es“m.?ted using E_quat|on _1 eparately for the “continuous” and the “rounded and trurext

We subsequently calculated the conditional SEm with Eguati case

16, using the total score as grouping factor. Since liteeatur

on the conditional SEm (see for instancg])[ mentions the  ajieration of the Error Variances

additional possibility of grouping examinees in narrow intels a4 error variances 2 . E i/ as displayed irFigure 5 are based

of lt%tgl Scores, we "?“Eczj, used Et?uatlg.n 16 for glroupmgén continuousparallel test scores. Rounding and truncating these

gc u .|ng”exam|nee§ with dl erept—h_uLahjacentl—totz; SE8 nharallel test scores alters the total test scores—the suntiwe
peci cally, we used groupings in which the total scoré was parallel test scores—and thus the error variances. In a sense,

Y . _ rounding and truncation thus “push” the error variances in a
We simulated the “true” scores based on a Gaussian distributibis ghoice certain direction that takes into account the limitations the

is rather arbitrary; Classical Test Theory does not assum@® be normally . A

distributed in the norm population. Note that the resulting estinmtf 2(E ;) §cale of the test. |E|gure 6 an example of the possible e.Xtreme

are not in uenced by this choice. in uence of rounding and truncation on the error variances

Estimation of the SEms, Their Bias and

Estimation Variance
After creating the data (see above), the single SEm, conditio
SEm and the person-speci c SEm were estimated for each
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FIGURE 6 | In uence of rounding and truncation on error variances for a t&t with 12 items, a .8 reliability andK D 2, 4, 6, and 12 respectively. Note the difference in
scale of (A) and (B) vs. (C) and (D).

2 E i/ is showed. This example is based on the relationship ect of the error on the rounded parallel test score. Since the
in Figure 5A and 12 items; comparable plots for the otherscore 4 is divisible biX D 4, the continuous “true” parallel test
relationships ofFigure 5 and 24 and 48 items can be found in score is 1. Only when the parallel test error is larger or equal
the Supplementary Material, Part | to 0.5 or smaller or equal to 0.5, the parallel test score will be

Based orFigure 6and Supplementary Material, Part| afew rounded one score up and down, respectively. Since the score
observations can be made. First, since rounding and triagat 6 is not divisible byK D 4, the continuous “true” parallel test
take place on the level of parallel test scores, the choic& for score is 1.5. Any negative error larger thaf.000 1 leads to
in uences the error variancegigures 7 8 illustrate why this is a rounding down to 1 whereas any positive error smaller than
the case. These two gures are based on two example examin€e899 9 has no in uence on the rounded score. Thus, although
for atest with 12 items anl{ D 4. The rst examinee has a “true” the original errors of examinee 1 and 2 are similar due torthei
test score of 4; the second a “true” test score of 6. Beforediog ~ similar (continuous) error variance, the e ect of these eson
and truncation, these two examinees have the exact same erttbe rounded parallel test scores is di erent. Would we change
variance of 0.20; after that an error variance of respectivelf to another number, say 3, then theeect of the error on the
0.10 and 1.00. Looking at the distribution of parallel tesires  rounded parallel test score would change accordingly.
(Figure 7) for the examinee with true score Eigure 7A) and the A second observation is that the truncated and rounded
examinee with true score €igure 7B) we see thatthere isindeed error variances reassemble the continuous error variances
very little variation in the parallel test scores for the estaminee more closely when the number of items is larger (see
while there is a relatively large variation in the secondheix@e's Supplementary Material, Part). Generally, when there are
case, due to an (almost) equal amount of parallel scores 1 andr@ore than 3 items within each parallel test part, the distribati
Looking at the underlying continuous error distributionsrfone  of truncated and rounded error variances is very similarhatt
of the parallel test partd{gure 8), we see that there is (almost) of the continuous one. Last, in the extreme case of having onl
no di erence between the two examinees. Wisadi erentisthe  one item within each parallel test part, the relationship begw
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FIGURE 7 | Parallel and total test scores for two example examinees wittrue score 4 (A) and true score 6 (B), both having a true error variance of 0.2 on a 12 item
test with K D 4.

true score =4 true score =6

05 0.0 05 05 0.0 05 1.0
errors errors

Effect on score . —1i +0 . +1

FIGURE 8 | Error score distribution for the rst parallel test and the déct on the parallel test score for the two examinees ofFigure 7.

“true” score and error variance becomes more or less pambolof 2.Ei/. As visualized inFigure 10 this holds when
regardless of the “original” relationship as depicted-igure 5.  parallel test scores are continuousFigure 104 and
In that case, the error variances approximate those of a binbmiwhen parallel test scores are rounded and truncated
distribution (see 23)); they become a compromise between the(Figure 10B. Equation 11 thus holds when we use it
simulated relationship and a binomial one. llrigure 9, the based on continuous parallel test scores to estimate the
relationship between “true” scores and error variancehiis&  continuous 2.E;/ as depicted inFigure 5. Likewise, when
for 12 items andK D 12 together with the binomial error for we use the person-specic SEm based oounded and
comparison. truncated parallel test scores we obtain an unbiased estimate
In the section “Bias-Variance Trade-O ! it was explainedof the rounded and truncated 2.E;/ counterpart (see
that the person-specic SEm provides an unbiased estimatS8upplementary Material, Part). The person-specic SEm
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FIGURE 9 | When the parallel test scores are truncated and rounded, theelationships between “true” scores and error variances adepicted in Figure 5 change. In
the extreme case, when there are only 12 items and D 12, the relationship between “true” scores and error variares of an originally quadratic increas€A),
quadratic decrease(B), at relationship (C) and linear decrease(D) all more or less reassemble that of the red parabola, which aeesponds to the binomial error of a
12-item, dichotomously scored test.

| ’Jfl-mnﬂ_h)]-ﬂm |
[

- 20 rounded & truncated
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o

0.5 0.5

=

0.0
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1 1 1 1 1
0.0 0.5 1.0 149 20 0.0 0.5 1.0 L5 20
truth truth

FIGURE 10 | Visualization of unbiasedness of the person-speci ¢ SEm owel0,000 repeated test takes. The left gure(A) is based on continuous parallel test scores;
the right gure (B) on rounded and truncated test scores. The two gures are examjpes of a test with 12-items,K D 2, a reliability of 0.8 and a relationship between
“true” score and error variance as shown irfFigure 5B .

based on rounded and truncated parallel scores only givdsimits on Between Variance

an unbiased estimate of the continuous’.E i/ in so far When the number of items in a parallel test part is small and/or

as the continuous and rounded and truncated.E i/ are the size oK is small, truncation and rounding lead to another

similar. problem: the number of possible between variances becomes
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FIGURE 11 | All options of the between variance multiplied bK (red vertical lines; see Equation 11) fa D 2 (A), KD 4 (B), K D 6 (C) and K D 12 (D) compared to
the “true” truncated and rounded error variances of the 1,00 examinees (blue dots). Note the difference in x-axis scale

limited. Since the person-specic and the conditional SEm ardé.ooking at Figure 11, there are the fewest options for the
based on the between variance over parallel test parts, #os al 2.E j/-estimate when either the siz¢ is small (i.e.,K D
means that the possible estimates fér. E i/ are limited. With 12 2) or when there are few items within eadk (i.e., K D
items andK D 12, for instance, only 13 unique combinations canl12). An important distinction between having a sm#ll vs.
be made of 0 and 1 scores (note that Equation 24 is an adjustmehaving few items within eaclK is, however, that most of

of the formula for combinations with replacement): the options arewithin the range of the actual error variances
with K D 12 whereas most of these options aoetside
.nsCK 1! _.2C12 1! D 13 24) this range whenK D 2. A reasonable number of items (see

Supplementary Material, Part1) and a balance between not
having too few parallel test parts but also not too few items iwith
wherens denotes the number of possible scores (in this case, 28chK seems essential.
0 and 1). With these 13 combinations, only 7 unique between The conditional SEm also su ers from having few estimation
variances can be obtained. Thus, using Equation 11, there a@ptions whenK and the number of items withinK are -
only 7 possible estimates of the person-speci ¢ SEm at evary tegnall. However, since the conditional SEm consists of taking
take. When there are such few options, there is a high charate than average over similar examinees, t_he number of estimation
none of the possible SEm estimates are close to the tfuE i/ optlons accumulates the more examinees are taken together.
of the examineeln the long runthis is not problematic, since With only one extra examinee, for instance, there are 7
we average over the? .E j/-estimates and thus are still able to possible combinations of between variances for the example of
obtain an unbiased overall estimate. But when we only lumee 12 items andK D 12 of which 27 lead to a unique between
test takgas we usually do) this is troublesome. variance estimate when averaged. This more than doubling
Figure 11 shows the options for the between variance whemotwithstanding, in practice the problem of having few options
there are respectively 12 items with D 2, 4, 6, and 12. can still occur. Especially when there is a notable relatigns
In the Supplementary Material, Partll, the same gure is between “true”score and error variance, itis likely that werage
available but then for tests with respectively 24 and 48 item@Ver just one or a few between variance options.

Kl.ng 1! 121.2 U
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Number of Repeated Test Takes

In the section “Bias-Variance Trade-O " we discussed thego
run properties of the three di erent SEm estimators. However
favorable long run properties do not guarantee that the SEn
estimator is appropriate to use the short runwhen only having
one or just a few test takes. Below, we discuss the short ry
properties of the person-speci ¢ and the conditional SEm (no
the single SEm, since this SEm does not change with morer lg
test takes) and reasons why the person-speci ¢ and condition
SEm might not be as appropriate to use in the short run as in th
long run.

Short Run Performance of SEm

To see how well the conditional and person-specic SEn
perform in the short run, we plotted these SEm estimates afte
only 1, 2, 3, 4, 5, 10, 25, and 50 test takes, together wi
the true error variances we are trying to estinfatéor both
the scenario with continuous parallel test scores and rodnde

and truncated parallel test scores. The result can be seen|i

the Supplementary Material, Part V. The Pearson correlation
between the true error variance and the estimates are shoy
at the right side of the plots. Additionally, a table is preseht
with the within variance at true error variance 0.6 and the
between variance over all examinees. When there is onlyaste t

take, the correlation between the truth and the SEm estimate

is very low for the person-specic SEm (only 0.09 in both the
continuous and rounded and truncated case). The conditiong
SEm is only slightly better (0.20 in the continuous case an
0.12 in the rounded and truncated case). The SEm estimates
di erent true error variances appear to overlap to a large extent
although variation in the SEm estimate increases along-#vax
and higher estimates are observed occasionally for higler tr
error variances. After 50 test takes, the correlation hassiased
notably but the variance in estimated SEm for examinees@ah
as their “true” error variance is still about the same as therall
between variance. ABigure 12 shows, about 100 (conditional
SEm, Figure 12B to 200 (person-speci ¢ SEnfkigure 12A)
test takes are needed to reach high levels of correlatioren’Wh
parallel test scores are rounded and truncated (second pg
Supplementary Material, Part \J, we generally need more test
takes (seSupplementary Material, Part V| which contains the
equivalent toFigure 12for rounded and truncated parallel test
scores). The correlations are therefore generally lower ithéhe
continuous case.

Reasons for Bad Short Run Performance

12 items * 24 items * 48 items

n
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FIGURE 12 | Correlation between the true error variance and the
SEme-estimate for different number of test takes (x-axis) @ha test with
respectively 12, 24, and 48 items.(A) Shows the correlations for the
person-speci ¢ SEm; (B) A comparable gure for the conditional SEm. Both
are based on continuous parallel test scores, an overall fiability of 0.8 and a
r'telationship between “true” score and error variance as depted in Figure 5A .

in the rst plot of the “rounded and truncated” scenario in
Supplementary Material, Part /. There is also another reason
why the person-speci ¢ (and to a certain degree the conditiona
SEm) might not be suitable estimators of the error variance

We found two general reasons for the suboptimal short runfier one or just a few test takes, even when parallel tesescor

performance as observed i8upplementary Material, Part V
and Figure 12 One of these reasons was already discussed
the previous section and visualizedhigure 11 because of few
possible between variances, the SEm for a single test can o
take on few dierent values. This inuence is clearly visible

"The plots in theSupplementary Material, Part Vare all based on a 12-item
test, with an overall reliability of 0.8 anid D 2 and the relationship depicted
in Figure 5A. Plots for any other combination of number of itemk, overall
reliability and relationship between “true” score and error varianes de
requested from the rst author.

are continuous. As visualized ifigure 13 the distribution

8t possible between variances for dierent underlying error
variances overlap to a high extent, especially in the smalldmiw
O4fiances range. Therefore, if we would randomly observe
one between variance it can be the result of very dierent
underlying error variances. ABigure 13 shows, a problematic
feature of the distributions of between variances is that th
variance of this distribution directly depends on the sizett
underlying error variance (see Equations 19 and 20 and the sd
in Figure 13. Therefore, the accuracy of any estimate based
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FIGURE 13 | Overlap in the distributions of possible between variancefor 5 examinees with underlying error variances 0.75 (exanee 1), 0.60 (examinee 2), 0.44
(examinee 3), 0.28 (examinee 4), and 0.12 (examinee 5).

on the between variances directly depends on that what we ate conclude that there is little error variation when we ohse
trying to estimate; the error variance. Since the erroraace is a between variance of zero but the underlying error variance
unknown, we do not know exactly how accurate we can expechight actually be relatively large. With regard to the latter,
one estimate to be. Other problematic features of the distidm ~ for comparison purpose&igure 13 only shows the histogram

of between variances are that zerale/aysthe most probable values until 0.75, but as the blue arrow and the “nfax..”
between variance, no matter how large the underlying erroshows, the distributions are stretched out over a far wicdege.
variance (see agalfigure 13and the overabundance of zeroesThe large between variances are rare, but they are necdssary
in Supplementary Material, Part\j and that the distribution reach an accurate estimate on average. Due to the relatmnsh
has a large tail. Regarding the former, we might be temptetetween error variance and variation in the possible between
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FIGURE 14 | Percentage bias (see Equation 25) for different number okimns, for the relationship depicted inFigure 5A and with continuous parallel test scores.

variances, observing a low between variance does not contastandard deviation expressed as a percentage of the mean:

as much information about the underlying error variance as 2p q 3

does observing a high between variance. Whereas a low betwee P2 2Eil

variance can be the result of small, medium or even largererro cvD4 —|327E_/5 100 (26)
-2 E;

variances, a large between variance is very unlikely todoeegult !
of asmall or even medium error variance. Finally, the disition

of between variances does not become less spread out when
include more items or increade

%ow, we discuss the percentage bias and coe cient of variat
when compared over tests with di erent lengths (i.e., with22,

and 48 items). We also discuss whether and how having a larger
test is bene cial for the SEm-estimates.

Number of Items Percentage Bias

By incrementing the number of items, the scale of the partdktl In Figure 14 the percentage bias is visualized for dierent
scores and hence the size of the true error variances-(gae2 5, number of items, for the relationship depicted Figure 5A and
Supplementary Material, Part ) increased. Consequently, with continuous parallel test scores (for the other relatibips,
comparing the absolute bias, estimation variance and MSE &eSupplementary Material, Part I\). According to this gure,

not very insightful, as it simply re ects this change in scalebias is not dependent on the number of items in the test (all
To compare the bias and estimation variance for the di erentbars are of equal height for the person-specic, conditional
number of items, we therefore decided to useektiveversion. and single SEm). Note that the percentage bias for the person-
Speci cally, we express bias as a percentage of the true ergpeci c and conditional SEm is very close to zero, but not

variances: exactly null. The small deviation from zero stems from the
fact that we have a limited norm population size (1,000) and
2p 3 a limited number of repeated test takes (10,000) over which
i 2 g il ZE we determine the bias. The covariance between the paradiel te
%biasD 4 P— £ 5100 (25) parts (see Equation 10a) over the 10,000 test takes are, for
i T-Ei

instance, very closqgto zero, but nexactlyzero (as Equation
10b assumes). The "2, ., 2(X i X pi)” part in Equation 10a
for the rst ve examinees for a test with 12 items, 2 parallel
and we use the coe cient of variation (se@]) as a relative test parts, an overall reliability of 0.8 and a relationshipi
measure of estimation variance, which is simply the estiomati Figure 5A, are for instance 0.00056, 0.001686, 0.004748,
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FIGURE 15 | Coef cient of variation (see Equation 26) for different nungr of items, for the relationship depicted irFigure 5A and with continuous parallel test scores.

0.000355, and 0.014109. Therefore, the between variancéhe coe cient of variation is exactly the same over di erent
(see Equation 12) on which the person-speci ¢ and conditionahumbers of items for the person-specic SEm and the single
SEm are based is nexactlyequal to the within variance of SEm. As expressed earlier in Equation 19 and Equation 20, the
Equation 10a, leading to a small bias over the limited seesf t estimation variance of the person-speci ¢ SEm does not depend
takes. As Equation 12 postulates, this bias is expected jgpiaa  on the number of items. The single SEm has a small random
with an in nite number of tests. variation from test take to test take (since the scores ofiiren

When parallel test scores are rounded and truncated, thpopulation change randomly over test takes), but this random
percentage bias as observed in the continuous case changesiation also does not depend on the number of items. For the
(seeSupplementary Material, Part I\). Due to truncation and conditional SEm, therissa smallincrease in the CV when moving
rounding, the percentage bias is not exactly the same anymofem a 12- to a 24- and 48-item test. Inspection of Equation 21
for di erent test lengths. The percentage bias now depends en thshows that the estimation variance for the conditional SEsh n
changed relationship between “true” test score and errdemae  only depends oK (as the variance for the personal SEm) but also
(seeSupplementary Material, Part) and the between variances on nj; the number of examinees within one gropsince we kept

that can be estimated with a certain number of items &n(see

the overall number of examinees (1,000) equal over the dinkre

Supplementary Material, Part I)). Additionally, the percentage test lengths, the number of examinees with the same totaksco

bias decreases in the case of the “€di}. “conC2,” and “conC3”

decreased when doubling the number of items from 12 to 24 and

when moving from a 12-item to respectively a 24-item and 48from 24 to 48; leading to the slight increase in CV.

item test. This has to do with the fact tha€1” is a larger step

When parallel test scores are rounded and truncated, the CV

in a 12-item test (1/12th) than in a 24-item test (1/24th) or achanges (seBupplementary Material, Part I\). For the person-

48-item test (1/48th). Hence, we introduce relatively mbras

speci ¢ SEm, the CV is nogxactlythe same anymore over the

when we include examinees withl scores when the scale of di erent test sizes. Additionally, the CV becomes smaller whe

the test is smaller (and similarly for examinees wit andC3
scores).

Coef cient of Variation
Figure 15shows the coe cient of variation for di erent number
of items for the relationship depicted irFigure 5A with

moving from a conditional to a conditionalC1,” “C2,” and
“C3" for a xed test size. This again has to do with thgin
Equation 21. Because of tl@l, C2, andC3, more examinees
are included in a groupleading to a smaller estimation variance.
This decrease in CV is largest for the 12-item test since—as
discussed previously—thel, C2 and C3 are relatively larger

continuous parallel test scores (for the other relationshipsintervals in a smaller test. Including examinees viith therefore

again seeSupplementary Material, Part IV). Not surprisingly,

increases) faster for a smaller test.
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Bene ts of Having a Larger Test Relationship True Score and Error Variance
Looking at Figures14 15 and Supplementary In this simulation, we varied the relationship between #tu
Material, Part IV, in the long runthere is no advantage in score and error variance according Egure 5 The question
having a larger test when estimating the SEm. Thktive is whether the preference for one of the dierent SEms
bias and estimation variance do not change when increasingepends on these underlying relationshigdgure 16 shows
the number of items, as bias and estimation variance do naa grid with all possible combinations oK, the number
depend on test length (see section “Bias-Variance Trade}O ” of items and the overall reliability for the relationships
When using rounded and truncated parallel test parts, howevedepicted in Figure 5A (Figure 16A), Figure 5B (Figure 16B),
thereis an advantage in having a larger test as discussed in thégure 5C (Figure 16Q, and Figure 5D (Figure 16D). The
previous sections. With a larger test size, the estimabler errcolors within this grid show which of the three SEms
variance depends less #hand the between variance can takehad the lowest absolute MSE and thus would be favored
on more dierent values. Additionallyjn the short runthe in which situation. Figure 17 shows similar gures but for
SEm estimates are more accurate when based on a larger tésé case with rounded and truncated parallel test parts. In
As Figure 12 showed, with a larger test, initial correlations these gures, also the conditionalCl”, “C2,” and ‘C3” are
between true error variance and the SEm estimates are highieicluded.
and there are fewer repeated test takes needed to reach a highTurning rst to Figure 16 we see a comparable pattern for
correlation. all relationships exact for the “at” or “no relationship” cas
(Figures 5G 16C). When no relationship between “true” score
and error variance is anticipated, the single SEm is geryetra!
Number of Parallel Test Parts best choice unless the number of items afdire large. When
Figure 15 (previous section) shows why it is bene cial for the we do anticipate a relationship between “true” score and error
person-speci ¢ and conditional SEm to chooBeas high as variance, the conditional SEm is generally favonauless Kis
possible when parallel scores are continuous: the estimatismall relative to the number of items (favoring the singlerSE
variance goes down with increasikgThis relationship between or when both the number of items anid are large (favoring the
the estimation variance anK was also discussed in the person-specic SEm).
section “Bias-Variance Trade-O.” A more puzzling result of Looking atFigure 17, we see again some comparability over
the previous section (sekigure 14 is that the relative bias all relationships except foFigure 17C For the “at” or “no
observed after 10,000 test takes also seems to deperi€l orrelationship” caseRigure 170, the single SEm is again favored
to some extent. InFigure 14 the relative bias oK D 12 is, most, together with the conditional SEm with a large intdrva
for instance, structurally lower than the relative biaskoD 4  width. Opposed to the single SEm, the “cOB”" can adjust its
(also seesupplementary Material, Part IV). It is unclear why estimate such that the error variances for “extreme” truerss
this di erence in bias for di erent valueK occurs, especially are correctly estimated. Since variation at these extreafies
since it is not linearly related td. Since we are using a the scale (se€igure 50 is less than in the middle, having a
limited number of repeated measures (10,000) and a limite@Em-estimate close to the real error variances at theseregtr
sized norm-population (1,000 examinees) aRdas a limited lowers the overall discrepancy between the estimated SEm and
precision in its calculations, the di erences observed may béhe true error variances. In the other three gures, the “c08”
a re ection of these limitations instead of real di erencegeo  option is also a popular choice. To a lesser extent, also the
K. Inspection of the average SEm-estimates with di erent sizégon.C1” and “conC2” options are favored over the person-
for K at least shows that thabsolutedi erences are neglectable specic and the “regular’ conditional SEm. The popularity of
in any practical situation. All in all, the comment that it the conditional SEms with a larger interval makes sense Liseca
is “advantageous to use as many [parallel] parts as possibléley are stable (like the single SEm) but also exible enough
([5] p. 154) seems to hold in the case of continuous parallel tesd capture the anticipated relationship between “true” scame
scores. error variance. They also lead to the largest possible gragp s
When parallel test scores are rounded and truncated, the;, which directly lowers the estimation variance (see sactio
choice forK becomes more delicate. As was already discusséBias-Variance Trade-O ”). Other than in the case of conimus
in the section “Continuous versus rounded and truncated,parallel test scores, the single SEm is not chosen whés
the observable error variance depends on characteristics sfall relative to the number of items. For rounded and truracht
the test, including the size oK. When every parallel part scores, the single SEm is for instance favored when the number
contains few items, the resulting error variance estimatefitemsissmall (i.e., 12) ardrelatively large. In the section on
highly depends orK and therefore the estimate of the error rounding and truncation, we saw that the relationship betwe
variance cannot be generalized to a similar test with largerue score and error variance was highly altered when thelmem
or smaller K. Furthermore, the choice foK inuences the of items was small relative td (seeFigure 6). For a 12-item
between variances that can be observed (see &igime 11). test, this in uence was already present withKalarger than
Instead of opting for the largesK possible, it therefore 2. When such an alteration occurs, it is better to stick with
seems advisable in case of rounded and truncated scorestte single SEm (which is always basedKrD 2, see section
balanceK and the number of items within each parallel test“Simulated Dataset(s)”) than to opt for a conditional SEm with
part. alargerK.
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FIGURE 16 | Preference for the person-speci ¢ SEm (green), the conditizal SEm (pink) or the single SEm (purple) based on the MSE foiffdrentK's, number of
items and overall reliability. PlofA) corresponds to the relationship between “true” scores and eor variances as depicted inFigure 5A, (B) to the relationship of
Figure 5B, (C) to the relationship inFigure 5C and (D) to the relationship inFigure 5D . All four plots are based on continuous parallel test scores

Overall Reliability 25). Additionally, therelative di erences in MSE, bidgs and

As explained under “simulation design,” the overall reliipi estimation variance between the single, person-specic, and
of the test was manipulated by dividing every examinee'srerraconditional SEms are comparable regardless of whether there
variance byd. Since this lowers the size and therefore thés an overall reliability of 0.7, 0.8 or 0.9 (séégure 18.
scale of the error variances, we expect the %iastimation Figure 18 furthermore shows that the proportion of the MSE
variance and MSE to go down when moving from a 0.7 td‘caused” by bias is not notably di erent for the di erent ovédra

a 0.8 and 0.9 overall reliabilityrigure 18 shows that this is reliability exceptfor the conditional SEm (see percentages on
indeed the case for a test with 24 items, with running top of the bars inFigure 18. This bias in ation for relatively
from 2 to 6 and error variances as iRigure 5A (similar low reliabilities is caused by using the total score instead
gures for other number of items,K and error variances of the true score of examinees as grouping factor in the
can be requested from the rst author). In this gure, the calculation of the conditional SEm (se&Z). The higher the
reliability is varied on the x-axis and every type of SEnoverall reliability, the smaller the dierence between tlotal

is shown separately (note the dierence in y-axis for theand true scores and thus the less bias is introduced in the
person-speci ¢ SEm compared to the other SEms). Despitgrouping.

the decrease in bidsin absolute sense, there is no clear The results shown so far are all based upon rounded and
downward trend in thepercentagdias (se€lable 1, Equation truncated parallel test scoreSupplementary Material, Part 111
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FIGURE 17 | Preference for the person-speci ¢ SEm (green), the conditieal SEm (pink), the conditional SEmC1” (light pink), the conditional SEmC2” (yellow), the
conditional SEm ‘C3" (orange) or the single SEm (purple) based on the MSE for fiifent K's, number of items and overall reliability. PlofA) corresponds to the
relationship between “true” scores and error variances asepicted in Figure 5A , (B) to the relationship ofFigure 5B, (C) to the relationship inFigure 5C and (D) to
the relationship inFigure 5D . All four plots are based on rounded and truncated paralleksst scores.

contains similar plots as ifrigure 18 but then for continuous Equation 8). By using this single SEm, two strict assumptares
parallel test scores. Generally, the results with contisuand made regarding measurement (un)certainty. First, it isiessd
rounded and truncated parallel test scores are very similathat all persons are measured with the same accuracy; i.e.,
The MSE, bigsand estimation variance are, however, overalmeasurement error variance is assunmahstant Second, the
somewhat lower when no rounding and truncation have takerperson's intra-individual variation in measurements iswuassd
place. Also, rounding and truncation apparently increase thequal to the inter-individual variation in measurement dfet
biag notably when opting for a conditional SEm; in the norm-population examinees; i.e., intra-individual variatiand
continuous case (se&upplementary Material, PartIll) the inter-individual variation arenterchangeablgs]. To circumvent
MSE of the conditional SEm is almost completely caused byhese assumptions, one can also opt for the conditional

estimation variance. SEm. The conditional SEm relaxes the two assumptions in
that only examinees with the same (expected) true scores
DISCUSSION are assumed to have constant measurement error variance

and interchangeability of inter- and intra-individual \ation.

By convention, the single standard error of measurementr(SE Instead of basing the estimate of SEm on all examinees in
is used to express measurement (un)certainty of examinees (§he normpopulation, like the single SEm, the conditional SEm
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FIGURE 18 | Bias?, variance and MSE for a test with 24-items ancK D 2 (A), KD 4 (B), and KD 6 (C) parallel test parts. The overall reliability of the test isavied on
the x-axis. The numbers on top of the bars show the percentag®f the MSE “caused” by the bia€, which is also re ected in the size of the stacked pink bar. Nag
that these plots are based on the relationship irfFigure 5A ; similar plots for the other relationships can be requesteffom the rst author.
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TABLE 1 | Percentage bias* accompanyingrigures 18A-C .

KD 2 KD4 KD®6

0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9
PS 0.01 0.01 0.00 0.00 0.04 0.08 0.01 0.02 0.01
Con. 0.01 0.01 0.00 0.00 0.04 0.08 0.01 0.02 0.01
Con.C1l 0.33 0.40 0.49 0.38 0.32 0.24 0.41 0.29 0.22
Con.C2 0.82 0.96 1.02 0.95 0.87 1.05 1.01 0.79 0.72
Con.C3 1.24 1.44 1.55 1.46 1.34 1.41 1.55 1.27 1.98
Single 3.29 3.46 2.10

*see Equation 25.

takes the expected value of the person-speci ¢ measure of SEstimate can be close to the real error variance after oméates.
over all examinees with the same obtained total score (sé&ne single estimate also relatively often equals zero, sgrces
Equation 16). In the conditional SEm literature, this person the between variance that most often occurs for any undeglyi
speci ¢ measure of SEm is treated as an intermediate stegror variance (se&upplementary Material, Part \j. It would
but—as this paper showed—can also be used as a result ba dangerous to conclude that this examinee is thus measured
its own. Using this person-speci ¢ SEm has the advantage thaery accurately, since the underlying error variance cédhbs
no assumptions are made regarding measurement (un)ceytaintarge. Third, it is advisable to think about the purpose of the
(see Equation 11). Every relaxation of the two assumptions GEm-estimation, and to choose accordingly. The conditional
the single SEm—however—comes with a price: in practice, tt&Em, for instance, can be suitable in certain test situattorget
estimation variance of the conditional SEm and person-sgeci an idea of how variable we expect the test scores to be. It might
SEmalwaysexceed the estimation variance of the single 8Emnot be so suitable, however, to construct a con dence interva
In this paper, we have illustrated how the mean squared erroaind to see whether this con dence interval overlaps with or is
(MSE)—a measure that is based on both estimation variance amsdhaller/larger than the con dence interval of another exaee.
bias—can be used to make a choice for either the single, ti&nce both the total score and the SEm on which the con dence
person-speci c or the conditional SEm in realistic test sitoas.  intervals are based vary, we don't want to draw conclusibas t
This “optimal” SEm guarantees that the estimated SEm is amight be based on random error in one or all total scores and
close as possible to the true error variance of examineesl&t'e aone or all error variances. It might be fairer to use the sirgjien
showed, using a simulation study, how the person-speci ¢ SEnin that case. As a last example: the person-speci ¢ SEm might
the conditional SEm and the single SEm are in uenced by sixiot be suitable in a certain situation as a direct measureroi e
characteristics of the test situation: (1) whether the garaést variance but it could be suitable to select examinees fochvhi
scores are continuous and unrestricted or rounded to intege the estimate is relatively large. Since large betweenncasaare
and truncated, (2) the number of repeated test takes, (3) theare (or non-existent) for small and medium error varian¢ese
number of items of the test, (4) the number of parallel test part Figure 13, a large between variance points to a large underlying
K, (5) the relationship between the 1,000 “true” examinegesco error variance. This can be a reason to be careful with usieg th
and their error variances and (6) the overall reliability tboe  single SEm for this speci c examinee. In order to help making a
test. Refraining from repeating all ndings for each of these s choice between the single, conditional and person-speci ¢ SEm,
characteristics here, we like to highlight three importamell  we end with a set of practical recommendations.
conclusions from the simulation study. First, it is importaio
realize that the three di erent SEms are developed for a sitnat
with continuous test scores. When scores are rounded anPRACTICAL RECOMMENDATIONS
truncated—as they typically are in practice—we face a number
of challenges in the estimation of the person-speci c and théhis paper shows that there is not one type of SEm (i.e., single,
conditional SEm that we should keep in mind. Second, it isonditional with di erent sizes of intervals or person-spedgi c
important to stress that even though the MSE helps to balanciat is superior in every test situation. Therefore, in order
long run unbiasedness and estimation variance, it does natoose one must rst come to a realistic estimation of theiti’
guarantee that the estimates for a single test take makesen.e., how strong is the anticipated relationship betweemetr
Rounding and truncation can for instance lead to sparseness score and error variance? How “unique” do we expect the error
the possible SEm-estimates ($égure 11), such that no single variances of di erent examinees to be?) and a realistic idea o
the limits and possibilities of the test (i.e., how relialgethe
80nly in the unrealistic case that examinees have the same betvezizmae test for the examinees that you haVe/had in njmd? HOW many
at every test take (seigure 2), the estimation variances of the conditional, Parallel or tau-equivalent parts are feasible, taking for instance
person-speci ¢ and single SEm coincide. the item di culties and item content into account?). Pretasly,

Frontiers in Applied Mathematics and Statistics | www.frotmersin.org 25 August 2018 | Volume 4 | Article 40



Lek and Van De Schoot

The Single, Conditional and Person-Speci ¢ SEM

this endeavor is followed by a small simulation to nd the
optimal balance between bias and variance in the error vagan
estimate(s). Alternatively, one could use the followingesubf
thumb, based on the results of our simulation:

When a test is based on a limited set of items and/or can
only be divided in a limited set of parallel (or tau-equivalen
test partsK, the gain in (less) bias does not make up for
the loss (increase in) estimation variance. In such a sitoat
either use the single SEm or a conditional SEm in which yo
make coarse intervals. When you do not expect a relationsh
between “true” score and error variandédure 50), selecting
the single SEm is most appropriate in this situation.

When the overall reliability of the test for a group of exae@s

is low, be cautious in the interpretation of the conditional

put on the possible between variances (Sigeire 11 and see
whether taking an average over similar examinees (conwitio
SEm) solves these limitations.

When in doubt, choose a conditional SEm with coarse
intervals (i.e., “corC3"). Especially when you anticipate a
relationship between “true” score and error variance, the
conditional SEm with coarse intervals is able to capture the
main trend whilst being a fairly stable estimate.
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