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Abstract: Recent studies have shown that vowels in infant-directed
speech (IDS) are characterized by highly variable formant distributions.
The current study investigates whether vowel variability is partially due to
consonantal context, and explores whether consonantal context could sup-
port the learning of vowel categories from IDS. A computational model is
presented which selects contexts based on frequency in the input and
generalizes across contextual categories. Improved categorization perfor-
mance was found on a vowel contrast in American–English IDS. The
findings support a view in which the infant’s learning mechanism is
anchored in context, in order to cope with acoustic variability in the input.
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1. Introduction

During the first year of life infants begin to discover the vowel categories of their
native language (e.g., Kuhl et al., 1992; Polka and Werker, 1994). Infants initially
have the ability to discriminate categories along both native and non-native phonetic
contrasts (Eimas et al., 1971; Trehub, 1976), and gradually become more attuned to
the contrasts that they experience in their native language (Polka and Werker, 1994;
Werker and Tees, 1984). By the age of 6 months infants are more sensitive to proto-
typical instances of vowel categories from their native language than to prototypes of
non-native vowel categories, suggesting that experience with the native language is
affecting infants’ phonetic perception (Kuhl et al., 1992). The process of phonetic
adaptation continues to develop between 6 and 12 months, a period during which
infants show further decline in non-native vowel discrimination (Polka and Werker,
1994).

The early age at which language-specific knowledge of vowels begins to mani-
fest itself is puzzling in light of the phonetic properties of vowels in infant-directed
speech (IDS). Swingley (2009) showed that vowels in IDS are characterized by highly
variable formant distributions, and that vowel category structure is obscured by the
large degree of overlap between categories. The lack of clear category boundaries indi-
cates that there is no straightforward way for the infant to group together tokens based
on their formants. Moreover, a growing number of studies have demonstrated that
IDS provides the infant with a relatively complex acoustic environment, as compared
to adult-directed speech (ADS). In various languages evidence has been found that
IDS is characterized by decreased between-category distance and increased variability
(e.g., Cristi�a and Seidl, 2014; Miyazawa et al., 2017).

Given the nature of their acoustic input, how are infants able to acquire vowel
categories? The leading view has been that infants use a distributional learning
mechanism that groups together tokens based on similarity along acoustic dimensions
(e.g., Maye et al., 2002). While some analyses of IDS support this possibility (e.g.,
Werker et al., 2007), the large amount of variability reported in recent IDS studies has
led to a growing consensus that category learning cannot be solved by relying exclu-
sively on acoustic clustering (Adriaans and Swingley, 2017; Dillon et al., 2013;
Feldman et al., 2013; Swingley, 2009). It is therefore important to identify and assess
alternative means through which infants might be able to detect category structure
in IDS.

Computational models have been used to explore sources of contextual infor-
mation which might guide the distributional learning of phonetic categories. One such
source might be the infant’s emerging lexicon. Infants around the age of 6–9 months
have already acquired knowledge of some common words (Bergelson and Swingley,
2012; Tincoff and Jusczyk, 1999), and it is possible that the ability to recognize
words in the input might help the infant to impose structure on the acoustic space
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(Feldman et al., 2013; Swingley, 2009). In addition, distributional learning could be
facilitated by prosody. Adriaans and Swingley (2017) investigated whether the exagger-
ated prosody that is typical of IDS (e.g., high pitch, large intonation contours) might
guide the infant to a subset of tokens that are relatively hyperarticulated, and thus eas-
ier to cluster as categories. It was found that models trained on tokens that showed
prosodic exaggeration outperformed models that did not take prosodic status into
account. Prosody thus has the potential to support distributional learning from highly
variable acoustic input.

In addition to lexical and prosodic factors, phonetic category learning might
be supported by phonological context. It has long been known that surrounding conso-
nants affect vowel formants in adult speech (e.g., Hillenbrand et al., 2001). A study by
Dillon et al. (2013) found that the learnability of vowel categories in Inuktitut is
affected by consonantal context. The three vowels of Inuktitut (/i/, /a/, /u/) are system-
atically lowered before uvular consonants. In a series of simulations Dillon et al.
(2013) found that a model that links phonetic subcategories via a contextual phonolog-
ical rule outperformed a Gaussian Mixture Model (GMM) without context. The model
was tested on ADS in a language with a relatively simple vowel system, and the model
employed one single phonological context (“uvular” or “other”). Therefore, fundamen-
tal questions regarding the role of context in category learning remain. For example,
how could an infant discover relevant phonological contexts from input data? To what
extent does consonantal context help the infant navigate through the large amounts of
variability found in IDS?

The current study investigates whether consonantal context could contribute
to the learning of vowel categories from IDS. An analysis of natural
American–English IDS explores whether surrounding consonants affect the formant
structure of vowels. A computational model is then presented, which is used to assess
the effects of consonantal context on the learnability of vowel categories in IDS. The
study contributes to the identification of sources of variability found in IDS, and
explores ways in which an infant could discover phonetic categories in a highly vari-
able linguistic environment.

2. Contextual vowel distributions

Vowel measurements were taken from the Adriaans and Swingley (2017) vowel data-
base.1 The database contains a total of 4435 vowel tokens which were extracted from
recordings of natural mother–infant interactions in the Brent corpus (Brent and
Siskind, 2001). Infants were 10 months old at the time of recording. The database rep-
resents a relatively large sample of IDS vowels, reflecting the high degree of variability
that is found in IDS.

Formants (F1 and F2, measured at midpoint) were analyzed for two vowels:
/i/ and /I/. This pair of vowels was chosen for two reasons. First, these two vowels are
by far the most frequently occurring vowels in the data set. There is a total of 1800 /i/
and /I/ tokens (/i/: 801, /I/: 999), which is 41% of the entire set of nine monophthongs
in the database. Second, /i/ and /I/ are close neighbors in the vowel space, displaying a
large degree of overlap (illustrated in Fig. 1). The /i/-/I/ contrast is thus an important
one because the infant encounters it frequently, and it is a difficult one because of the
acoustic overlap between the two vowels.

To explore whether consonantal context affects the distribution of vowels in
IDS, five different preceding consonants were selected: /d/, /w/, /t/, /m/, and /s/. These

Fig. 1. (Color online) The distribution of /i/ and /I/ tokens in IDS, along with their means and 95% confidence
ellipses.
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consonants were selected because they are the most frequent consonants preceding /i/
and /I/ (see Table 1). This means that infants often hear these vowels in these contexts,
and these contexts thus possibly influence the vowel category learning process. All /i/
and /I/ tokens that occurred in these contexts (regardless of syllable structure) were
used in the current study. This resulted in a dataset of 654 vowel tokens.

The distribution of /i/ and /I/ for the five different consonantal contexts is
shown in Fig. 2. The graph illustrates that there are differences in the distribution of /i/
and /I/ across different contexts. For example, /i/ is lower after /d/ (F1¼ 488 Hz) than
after /t/ (F1¼ 400 Hz). Also, formant variability is larger when the preceding consonant
is /m/. These differences in category means and variances result in a different overlap
between /i/ and /I/ for different contexts.

One way to assess the between-category distance in each context is by calculat-
ing the Bhattacharyya distance (Hennig, 2010), which is a measure of the distance
between two Gaussian distributions based on their means and covariance matrices. A
distance of 0 would mean that the two distributions occupy the exact same acoustic
space, whereas larger values indicate greater distances between the distributions. Using
this measure, the distance between /i/ and /I/ in specific consonantal contexts can be
compared to the distance between /i/ and /I/ in the overall distribution. The
Bhattacharyya distance between /i/ and /I/ in the overall distribution (Fig. 1) was
0.3888. For each consonantal context the between-category distance was larger than in
the overall distribution: /d/: 0.5108 (þ31.4%), /m/: 0.5586 (þ43.7%), /s/: 0.4679
(þ20.3%), /t/: 0.5366 (þ38.0%), and /w/: 0.4978 (þ28.0%).

Vowel category distance is thus affected by consonantal context, which sug-
gests that consonantal context is a factor that contributes to the overall variability in
IDS vowel distributions. The question is whether a distributional learner that has
access to a small selection of highly frequent consonantal contexts could learn vowel
categories more effectively than a distributional learner without context. This possibil-
ity is explored in a series of simulations assessing the effects of consonantal context on
the learnability of vowel categories from IDS.

3. Anchored distributional learning

A new model was developed to assess the effects of consonantal context on distribu-
tional category learning. This model, which will be referred to as Anchored

Table 1. Frequency of occurrence of vowels in different consonantal contexts.

d_ w_ t_ m_ s_ Total

/i/ 52 67 100 90 76 385
/I/ 112 65 30 32 30 269
Total: 164 132 130 122 106 654

Fig. 2. (Color online) Distribution of /i/ and /I/ tokens in the five most frequent preceding consonantal contexts
(/d_/, /m_/, /s_/, /t_/, and /w_/), along with their means and 95% confidence ellipses.
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Distributional Learning (ADL), selects multiple consonantal contexts based on their
frequency in the input and uses these contexts to learn contextual categories. During
training, vowel tokens are anchored in their context (in this case, the particular conso-
nant preceding the vowel). This leads to a set of anchored distributions, from which
contextual category parameters are estimated. The learner then estimates the vowel
categories by generalizing across different contexts.

In line with earlier studies, formant distributions are represented as multivari-
ate GMMs (e.g., de Boer and Kuhl, 2003), where each category is defined by its mean,
covariance matrix, and mixing proportion. For the current study on /i/ and /I/, the
model builds separate GMMs for each of the five most frequent consonantal contexts
(/d_/, /m_/, /s_/, /t_/, and /w_/). This means that the model learns a mean, covariance
matrix, and mixing proportion for each vowel in each context. As a final step the
model makes a generalization across different contexts. The generalized parameters are
obtained by averaging over the contextual category parameters. The prediction is that
this model would obtain higher vowel classification accuracies than a distributional
learner that estimates vowel categories directly from formant distributions.

To assess the model’s performance, a series of simulations was performed
which compared the model to a baseline model. The baseline model was a
Distributional Learning (DL) model, implemented as a single GMM which does not
make use of context to estimate category parameters. In addition to this baseline
model, a supervised learning model was implemented which estimates category param-
eters based on labeled training data. This was done to obtain an upper bound on the
classification accuracy that can be obtained given the structure of the data and the
maximum likelihood classification criterion that is imposed on the overlapping
Gaussian distributions. The ADL model is expected to outperform the baseline model
while approaching the performance of the supervised learner.

Model parameters were estimated using the EM algorithm in MCLUST for R
(Fraley and Raftery, 2006). The algorithm searches for two ellipse categories, with no
constraints on the ellipses’ size, shape, and orientation. To compensate for scale differ-
ences, formant values (F1, F2) were transformed to z scores. For each model 2000
training points were sampled from each vowel category’s multivariate normal distribu-
tion in the appropriate context (e.g., Vallabha et al., 2007). The test set that was used
to assess each model’s classification accuracy consisted of 2000 newly sampled data
points for each category. To obtain a reliable estimate of each model’s performance, a
total of 100 repeated runs were done for each model.

Table 2 shows the classification accuracies for the three tested models. The
ADL model outperforms the baseline DL model, which means that the category
parameters that are obtained by generalizing over different anchored distributions (i.e.,
formant distributions in different phonological contexts) are more accurate than
parameters that are estimated directly from the entire formant distribution. While the
increase in classification accuracy from the DL to the ADL model might appear mod-
est (from 0.7797 to 0.8169), the ADL model’s performance approaches that of the
supervised learning model (0.8211). This means that there is not much more room for
improvement beyond the ADL model’s performance in this experimental setup. The
classification performance of each model is illustrated in Fig. 3. Here it can be seen
that the DL model has difficulty estimating parameters for /I/, while the ADL and
supervised models look nearly identical, and have a closer resemblance to the underly-
ing distribution of the test data.

4. Discussion

A growing number of studies have reported on the large degree of variability found in
IDS. In order to advance our knowledge of how phonetic categories are formed during
early language acquisition, there is a need to identify factors that may contribute to
this variability, and to explore ways in which infants could discover category structure

Table 2. Classification accuracies on the /i/-/I/ dataset. For each model the mean accuracy over 100 repeated
runs is displayed, along with the 95% confidence interval (CI).

95% CI

Model Mean Lower Upper

Distributional learning 0.7797 0.7742 0.7868
Anchored distributional learning 0.8169 0.8158 0.8180
Supervised learning 0.8211 0.8204 0.8218
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in light of this variability. The results of the current study suggest that consonantal
context could be used as a possible source of information to facilitate distributional
vowel learning from IDS. The ADL model generalizes across different contexts, and
this strategy improved categorization performance on a difficult contrast in natural
American–English IDS.

The improved performance of the model could be due to the fact that it com-
pensates for consonant-vowel (CV) coarticulation. Vowel variability is partially pre-
dictable from the consonantal context, and knowing the context can thus reduce unex-
plained variability, leading to improved classification performance (see also Dillon
et al., 2013). It is important to note that the vowel tokens used in this study had been
measured at midpoint. This means that only those coarticulation effects that were still
present halfway through the vowel’s duration had an impact on the results. It is possi-
ble that the learnability advantage might have been larger if formant measurements
had been taken closer to the actual CV transition point.

From a language development perspective, it is important to note that the
model presented here only relies on a small set of highly frequent consonant environ-
ments, and does not need the full consonant inventory. This is important because con-
sonants are generally thought to be acquired later than vowels (e.g., Werker and Tees,
1984). However, 1-month-old infants can already discriminate consonant contrasts
(Eimas et al., 1971), and 6- to 8-month-old infants show evidence of consonant distri-
butional learning (Maye et al., 2002). While the exact developmental path toward
acquiring phonetic categories remains unclear, these findings give some support for the
use of consonants as anchors.

There is an ongoing debate regarding the role of variability in early language
acquisition. For instance, it has been argued that talker variability might help the
learner to identify and focus on contrastive acoustic dimensions (e.g., Rost and
McMurray, 2010). The current study adds to earlier computational studies exploring
how variability in IDS might be navigated successfully by using contextual information
such as lexical context (Feldman et al., 2013) and prosodic context (Adriaans and
Swingley, 2017). It is possible that multiple contextual factors affect early language
development, and the general model presented here could be used to integrate different
factors. The findings support a view in which the infant’s distributional learning mech-
anism is anchored in various types of context, in order to cope with puzzling amounts
of variability in the input.
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