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In 1977, scientists at Mobile published the first patent on the meth-
anol-to-hydrocarbons (MTH) process1, claiming that “A lower 
alcohol and/or ether feed is selectively converted to a mixture of 

light olefins, including ethylene and propylene, by catalytic contact 
of the feed, for example methanol or dimethyl ether, at sub-atmo-
spheric partial pressure, with certain crystalline aluminosilicate 
zeolite catalysts exemplified by ZSM-5” (Fig. 1a). The possibility 
to obtain olefins (methanol-to-olefins, MTO or DMTO if the feed-
stock is dimethylether), aromatics (methanol-to-aromatics, MTA)  
and/or gasoline (methanol-to-gasoline, MTG) without relying 
on oil (methanol can be produced from a wide range of carbon- 
containing sources, such as biomass, waste, coal, natural gas or even 
carbon dioxide) makes this family of processes a convenient alter-
native to the classical production routes of high-demand chemicals 
and intermediates.

As it is the case for other established methods of the petrochemi-
cal industry, such as fluid catalytic cracking (FCC)2, the MTH pro-
cess — despite being already commercialized — still attracts a great 
deal of attention from both industry and academia. Apart from the 
obvious economic driving force in improving the process, from a 
scientific point of view, understanding (and eventually controlling) 
the complex reaction mechanism behind such a complex overall 
stoichiometry remains a challenge. As we will elaborate below, the 
process is dictated by a large set of elementary reactions and the full 
picture of the MTH reaction mechanism is still elusive (Fig. 1b). On 
one hand, the chosen reaction conditions are important, as not all 
reactions have the same kinetic order and energies of activation; on 
the other hand, the zeolite microenvironment plays an even bigger 
role in defining product distribution and catalyst lifetime3. MTH 
therefore serves as an outstanding example of complexity in zeolite 
chemistry and heterogeneous catalysis, as pinpointed in a number 
of classical4 and more recent reviews5–9.

In this Review, we highlight current challenges of MTH chemis-
try by critically analysing the existing literature to give an updated 

picture on the mechanism of reaction and to provide guidelines 
for catalyst design. We believe that, despite a number of excellent 
reviews in this field, knowledge on mechanistic aspects and struc-
ture–property relationships in MTH has advanced tremendously 
over the last few years and we expect this Review to bridge the 
gap between those earlier reviews dedicated to mechanism ratio-
nalization and catalyst engineering. To do so, we first summarize 
the recent efforts to unravel the mechanism that leads to the for-
mation of the first C–C bond (that is, the coupling of two metha-
nol or dimethyl ether molecules), a topic of intense debate over the 
last few decades. Formation of the direct C–C bond continues with 
the formation of longer hydrocarbons inside the zeolite pores, this 
mechanism along with the most recent spectroscopic evidences of 
its different steps are discussed in the second section. Finally, with 
this mechanistic information in hand, we define a number of cata-
lyst design rules that should help the reader understand the effect 
of catalyst topology, acidity and reaction conditions on product dis-
tribution and catalyst deactivation. The Review is completed with 
our personal view on future challenges both from the process and 
fundamental point of view.

The direct C–C bond
The MTH process involves a very complex reaction mechanism5–8,10. 
As of now, more than 20 different proposals have been postulated 
in the literature4. Surprisingly, the exact route for the formation of 
the first carbon–carbon (C–C) bond during MTH was only very 
recently unveiled11–18. For a long time, the scientific community 
assumed that the presence of traces of impurities (for example, in 
the methanol, catalyst and/or carrier gas) was responsible for the 
formation of the direct C–C bond over any direct mechanism (that 
is, the coupling of two methanol molecules). This assumption was 
primarily attributed to the lack of concrete experimental evidence 
in support of the direct mechanism19,20. Moreover, the feasibility 
of such direct coupling was anticipated to be low by theoreticians  
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because of the high activation energies and unstable reaction inter-
mediates21,22. In 2006, Hunger and co-workers23 systematically 
demonstrated that traces of organic impurities neither have any sig-
nificant influence on product distribution, nor do they control the 
formation of hydrocarbon pool (HCP, vide infra) species during the 
MTH reaction (Fig. 1a). That means a direct mechanism may be 
operative, at least in the early stages of the MTH reaction16. Since 
then, research groups (for example, Kondo, Fan, Copéret, Lercher, 
Weckhuysen and Liu) have delivered both experimental and theo-
retical evidence in support of the existence of a direct mechanism 
during the initial stages of MTH11–18,23–30. In essence, this reaction 
can be sub-divided into two parts: direct mechanism and the con-
ventional HCP/dual-cycle mechanism, during the induction and 
autocatalytic periods, respectively.

There are several excellent reviews available in the literature 
on this topic that adequately describe the history and develop-
ments of direct mechanisms4,6. Although a consensus has currently 
been reached regarding the existence of the direct mechanism, its 
actual nature/course of action is yet to be fully established. In all 
direct mechanistic proposals, a surface methoxy species (SMS), 
formed upon adsorption of methanol onto a Brønsted acid site, 
is indisputably the most experimentally verified intermediate  
(Fig. 2)13,14,18,26. The ability of the SMS to form a C–C bond at higher 
reaction temperatures is a well-established phenomenon during any 
zeolite-catalysed hydrocarbon conversion process18. The idea of a 
carbene-insertion mechanism by the SMS was first introduced by 
Hunger and colleagues18,26,27, and was mostly based on NMR spec-
troscopy and carbene-trapping experiments. The carbene charac-
ter of the SMS was proposed to form through the polarization of 
the C–H bond of the SMS by a neighboring adjacent oxygen (as 
depicted in Fig. 2a–c)31,32. The carbene/ylide nature of the SMS was 
confirmed by a carbene trapping experiment with cyclohexane act-
ing as a probe molecule at ≥ 493 K, where methylcyclohexane was 
formed through an insertion reaction of a carbene/ylide into the 
sp3 C–H bond of cyclohexane (Fig. 2a)18. Later, Kondo and col-
leagues11,12 also arrived to the same conclusion with the help of 
IR spectroscopy: the C–C bond containing hydrocarbon species  

originated from the coupling between the carbene-like SMS and 
methanol/dimethyl ether (DME) (Fig. 2b). Another convincing evi-
dence in support of the existence of a carbene-type mechanism was 
provided recently by Weckhuysen et al.13, by employing 2D magic-
angle spinning (MAS) solid-state NMR (both 1H–13C and 13C–13C) 
spectroscopy (Fig. 2c). The strong signals at 52.2 (13C) and 3.59 (1H) 
ppm were assigned to surface adsorbed methanol, whereas the sig-
nals at 57.7 (13C) and 3.54 (1H) ppm were attributed to the SMS (red 
strip in Fig. 3a). Interestingly, a strong cross-peak between these 13C 
signals was also observed, which was due to the close proximity of 
surface adsorbed methanol and the SMS (blue strip in Fig. 3a and 
schematic illustrated in Fig. 2c). Such close proximity does not only 
reveal the ongoing reaction between SMS and methanol (through 
the polarization of the C–H bond of the SMS by a neighboring adja-
cent oxygen atom), but also showcases the carbene/ylide-character 
of SMS.

Apart from the carbene mechanism, multiple analogues of oxo-
nium and methane–formaldehyde-type direct mechanistic propos-
als have also been shown in the recent literature. The conventional 
methane–formaldehyde mechanism of the MTH reaction was origi-
nally postulated by Hutchings and colleagues33 in 1987. The direct 
C–C bond coupling reaction between methane and formaldehyde, 
as a result of disproportionation of methanol (through its hydride 
abstraction by the SMS, as illustrated in Fig. 2d), was hypothesized 
to pose an unrealistically high energy barrier22. However, several 
recently postulated proposals are conceptually similar to this mech-
anism. The methoxymethyl cation mechanism proposed by Fan  
et al.28,29 was developed from the original proposal of Hutchings and 
colleagues, in order to make it energetically feasible. Their experi-
mentally and theoretically verified proposal involves the formation 
of direct C–C bond via: (i) a methoxymethyl cation (CH3OCH2

+ 
from SMS and DME, that is, instead of direct formation of formal-
dehyde), and (ii) its subsequent direct C–C coupling with another 
DME/methanol molecule to form CH3OCH2CH2OR (R =  H, CH3) 
(a precursor for olefins, as shown in Fig. 2e)28,29. Similarly, the meth-
yleneoxy mechanism was recently reported by Liu and co-workers14;  
based on in situ solid-state NMR spectroscopy by measuring  
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13C-methanol conversion over H-ZSM-5 using a rotor reactor  
(Fig. 2f,g & Fig. 3b). Three major bands at 59.5, 69.0 and 80.0 
ppm were generated almost instantaneously and were assigned to 
the SMS, surface-adsorbed DME and trimethyl oxonium (TMO), 
respectively. The appearance of these three bands was accompanied 
by formation of ethylene (detected by GC-MS) as well as higher 
hydrocarbons (chemical shifts of δ =  20–40 ppm). Therefore, the 
direct C–C bond was proposed to be formed as a result of direct 
interaction between the reactant (methanol/DME) and zeolite-
bound surface intermediates: the SMS and TMO (Fig. 2f,g). The 
important C–H bond-activation step could be assisted by frame-
work oxygen to form active methyleneoxy species (R–O–CH2–
H···zeolite), which eventually leads to the simultaneous formation 
of both an olefin (Fig. 2h) and methane/formaldehyde (Fig. 2i). The 
unprecedented downfield response and relatively broader nature of 
the SMS at 69.0 ppm under in situ reaction conditions (compared 
to δ =  59.0 ppm under ex situ reaction conditions) was attributed 
to the strong interaction between the activated DME species and 

active surface–zeolite catalyst (Fig. 2f,g). Although both methane 
and formaldehyde are proposed to be involved in the catalytic cycle 
(by assisting the regeneration of SMS), their role towards the forma-
tion of the direct C–C bond was not clarified14.

Although numerous mechanistic reports have identified form-
aldehyde as a side-product, its fate/role during the MTH reaction 
is still a subject of debate. Formation of formaldehyde on solid 
acid catalysts from methanol is quite predictable, particularly at 
high temperatures. Interestingly, it could be easily associated to 
the Koch carbonylation mechanism of the MTH reaction (Fig. 2j), 
another direct mechanistic route proposed independently by the 
groups of Lercher and Weckhuysen13,16 at the same time. Lercher 
and co-workers16 first proposed methyl acetate (CH3CO2CH3, 
derived via carbonylation of methanol/DME) as the very first 
C–C bond-containing intermediate during the MTH reaction over 
H-ZSM-5. Spectroscopic evidence for this proposal came from the 
Weckhuysen group13, whom employed a combination of solid-state 
NMR spectroscopy (coupled with operando UV-visible diffuse 
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Fig. 2 | several proposed direct mechanistic routes during the early stages of the zeolite-catalysed MTH process. a,b, The proposed mechanism of the 
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reflectance spectroscopy (DRS) and online mass spectrometry); it 
was shown that the Koch-carbonylation route occurred during the 
MTH over H-SAPO-34. In this case, the direct C–C bond contain-
ing zeolite-bound acetate species (Fig. 2j) is a Koch carbonylation 
product of the SMS. Here, either methanol or formaldehyde, in 
principle, could act as a carbonylating agent under MTH reaction 
conditions. Next, methyl acetate was formed after methoxylation 
of surface-bound acetate species, which independently could initi-
ate the formation of HCP species and thus, olefins. In the carbonyl 
region of the NMR spectrum, clear cross-peaks to methyl carbon 
atoms were observed at both long and short mixing times (Fig. 3c). 
The signal at 180.5 ppm shows only one cross-peak — correspond-
ing to a zeolite–acetate species — at 22.5 ppm (Fig. 3c). Moreover, 
the signal at 178.5 ppm has a clear cross-peak with a 13C signal at 
55.1 ppm at longer mixing times only (that is, the methoxy carbon 
is not directly attached to the carbonyl carbon). This 13C-methoxy 
signal correlates with a H signal at 3.82 ppm and has an additional 
very weak correlation signal with a methyl at 22.3 ppm (13C) at 
longer C–C mixing times (Fig. 3c). This cross-peak pattern is a 
signature response from a methyl acetate molecule. Thus, all three 
responsible intermediates of this mechanism (SMS, zeolite-acetate 
and methyl acetate) were spectroscopically identified by solid-
state NMR spectroscopy. This Koch carbonylation mechanism 
of the MTH reaction has recently been theoretically verified by 
Plessow and Studt30. Interestingly, the simultaneous existence of 
(at least) two different direct C–C bond-forming routes (that is, 
carbene and Koch carbonylation) were spectroscopically identi-
fied (Fig. 2c,j & Fig. 3a,c).

Another interesting recent report by Copéret et al.17 should be 
mentioned: the formation of the direct C–C bond from DME alter-
natively proposed to be catalysed by extra-framework aluminium 
atoms in acidic zeolites (Fig. 2k). Herein, the C–C bond forming 
step initially involves generation of a transient aluminium–oxonium 
species (that is, formaldehydic oxygen coordinated to a Lewis acidic 
aluminium) through hydrogen abstraction from an aluminium–
methoxy species. Next, aluminium–oxonium species react with a 
methane molecule to yield the direct C–C bond containing surface–
ethanolic species (that is, a precursor for ethylene). This contribu-
tion inevitably sparks the controversy about the actual involvement 
of the zeolitic Lewis acid sites during the direct mechanism of the 
MTH reaction15,17. However, such discussion is beyond the scope of 
the current review and demands further research to understand the 
phenomenon at the molecular level.

Dual-cycle concept
After a rather short induction period assigned to the formation of 
the direct C–C bond, the MTH process continues with the steady-
state formation of hydrocarbons in the so-called autocatalytic 
dual-cycle concept34. This notation is the result of merging the two 
mechanistic schemes developed in parallel for ZSM-5 and SAPO-
345. For cage-like zeolites (SAPO-34), able to accommodate large 
aromatics, light olefins are believed to form via an indirect way 
through HCP species (Fig. 4). They can be visualized as typical 
ship-in-a-bottle molecules that can be formed in zeolites but can-
not desorb. These species are methylated yielding light olefins such 
as ethylene and propylene by elimination reactions, thus restoring 
the initial HCP species. For ZSM-5 and its analogues, formation of 
hydrocarbons was rationalized as a result of consecutive methyla-
tion and cracking reactions already in the 1980s by Dessau35. The 
dual cycle represents a compromise between both mechanisms (ole-
finic and aromatic cycles) running in parallel (Fig. 4). Both cycles 
can be subcategorized further to elementary steps described by six 
types of reactions: methylation and cracking of olefins, methylation 
and dealkylation of aromatics, hydrogen transfer and cyclization, 
the latter two acting as the bridging step between the two cycles8. 
Using transient switching experiments 12C/13C Svelle et al.36 showed 

that, for ZSM-5, all olefins except ethylene are produced from the 
olefinic cycle. Ethylene evolution was linked to the presence of 
lower methylbenzenes, suggesting that ethylene is mostly a prod-
uct of the aromatic cycle37. Sun and co-workers38 further contrib-
uted to this topic by performing seminal kinetic investigations at 
different conversion levels in the presence of aromatic and olefinic 
co-feeds. They concluded that both cycles are active for ethylene 
and propylene production, with the aromatic cycle giving similar 
selectivity for both olefins. The olefinic cycle, on the other hand, 
was far more selective to propylene than ethylene, which implies 
that, if the two cycles equally contribute to the product distribution, 
most ethylene will be formed in the aromatic cycle39. The coexis-
tence of the two cycles naturally renders them as competing40. In 
this spirit, one can speculate that a desired hydrocarbon range can 
be obtained by either stimulating or suppressing one over the over. 
Such co-catalytic features of HCP species during the MTH reaction 
were later theoretically verified by van Speybroeck and colleagues41, 
indirectly reinforcing the concept of hybrid organic-inorganic 
nature of a working MTH catalyst, as originally proposed by Svelle 
and co-workers36.

UV-visible DRS is possibly the most utilized spectroscopic tech-
nique for the characterization and identification of zeolite-trapped 
organics. The biggest advantage of UV-visible DRS is its ability to 
differentiate between carbocationic HCP species and their neutral 
counterparts. For instance, the absorption band of any arenium 
HCP cation is lower in energy than any electronic transition of its 
neutral counterpart. Moreover, UV-visible DRS provides insightful 
information regarding the zeolite framework dependent formation 
of deactivating species during the course of reaction. In general, 
multiple bands at around ≤ 295, 340–360, 385–410, 460–500 and 
≥ 600 nm are observed during a MTH reaction and were typically 
attributed to neutral benzene/cyclopentadienyl species; dienylic 
carbocationic/methylbenzeniums (up to three methyl groups); 
highly methylated areniums (specifically hexamethylbenzenium 
ions, HMB+); trienylic and methylated polyarenium ions, respec-
tively (Fig. 3d,e)25,26,42–47. The formation and characteristics of 
these bands are quite unique depending on the zeolite framework 
topology and acidity; for instance, the specific role of alkyl cyclo-
pentadienium ions over an MFI zeolite (for example, H-ZSM-5) 
was identified by Jentoft and Wulfers using in situ UV-visible DRS  
(Fig. 3d)46. Similarly, the Weckhuysen group identified the nature of 
governing active and deactivating methylated aromatic species dur-
ing the MTH process over CHA zeolites (for example, H-SAPO-34 
and H-SSZ-13) employing a combination of operando UV-visible 
DRS and online gas chromatography/mass spectrometry13,42,47. 
Using a similar strategy involving operando UV-visible DRS, the 
same group very recently monitored the formation of active HCP 
species and the accumulation of coke molecules during both 
H-ZSM-5 and Mg-ZSM-5-catalysed MTH48. Such spatiotemporal 
UV-visible spectroscopic approach reveals the formation of a coke 
front at the beginning of reactor bed, which travels towards the end 
until full deactivation. Magnesium modification resulted in slower 
progression of the coke front and higher olefin selectivity. However, 
identification/assignment of zeolite-trapped any organic reaction 
intermediates by UV-visible DRS in combination with theoretical 
calculations is not always straightforward and, to some extent, con-
fusing. For example, HMB+ and the 1-methylnaphthyl cation dis-
play a similar absorption band at ~390 nm (refs 41,44). Unfortunately, 
both are probable intermediates of the MTH reaction, whereas 
HMB+ is an active HCP species and the other is formed during the 
deactivation period41. This is the reason behind the enormous rise 
of utilization of solid-state NMR spectroscopy in recent years for 
the accurate structural elucidation of trapped organics within zeo-
lites (vide supra)13,14,17. The combination of solid-state NMR with 
UV-visible DRS has made significant advancement by the groups of 
Hunger18,25,43 and Haw49–51.
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Due to its capability to provide information at the molecular 
level, the utilization of solid-state NMR spectroscopy is increas-
ing gradually in the field of heterogeneous catalysis13. Using 
13C-enriched methanol not only significantly increases NMR sen-
sitivity, but also allows multi-dimensional solid-state NMR correla-
tion experiments to be performed in order to construct the accurate 
molecular structures along with structural information of dominant 
carbenium ions involved in the HCP of the MTH-mechanism6,18,49. 
For instance, the alkylated cyclopentadienium ion was detected as 
the primary HCP species over HMB+ within H-ZSM-5 and H-SSZ-
13 zeolites during MTH reaction, whereas hexa-/hepta-methylben-
zenium cations are widely acknowledged as the governing HCP 
species within SAPO-type molecular sieves (like SAPO-34, DNL-6) 
and H-Beta (Fig. 3f)6,13,24,51–54. This observation was quite consis-
tent with the UV-visible DRS reports by the groups of Jentoft and 
Weckhuysen13,42,47. These results demonstrate that the formation of 
dominant carbenium HCP species is entirely dependent on the zeo-
lite’s framework and acidity.

In a nutshell, the scientific community now accepts that the 
direct mechanism exists during the early stages of MTO reaction 
and that HCP species vary depending on zeolite framework, acid-
ity and reaction conditions. Numerous recent mechanistic reports 
provide solid experimental and spectroscopic evidence and the 
simultaneous existence of multiple direct C–C bond forming routes 
during the MTO reaction is quite likely6.

Based on this mechanistic knowledge, several strategies can be 
put forward to drive selectivity of the process in different directions 
depending on the desired product. The first approach is related to 
the manipulation of the organic counterpart, that is, changing the 
concentration of olefin and/or aromatic species. Obviously, the sec-
ond approach deals with the inorganic element and can be achieved 
by making use of catalyst engineering. Taking propylene and ethyl-
ene (and/or aromatics) yields as the measure of cycle dominance, 
we will now analyse how certain factors selectively propagate one 
cycle over the other.

Towards improved selectivity in MTH
When talking about catalyst and process design, the induction 
period was disregarded as a possible tool to manipulate both 
selectivity and lifetime because for a long time it was considered 
as a negligible part of the entire MTH mechanistic picture. Recent 
investigations indicated that formaldehyde — formed through dis-
proportionation of methanol during direct C–C bond formation — 
causes catalyst deactivation via interaction with aromatic molecules 
resulting in the formation of polycondensed aromatics55. Besides, 
formaldehyde formation is accompanied with the production of 
CH4 (ref. 56). It thus becomes clear that in order to achieve better 
catalyst stability and selectivity, the induction period should be 
re-engineered to avoid formaldehyde formation. This issue can be 
addressed at both the catalyst and reactor level. At the reactor level, 
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utilization of a continuously stirred tank reactor (CSTR) instead of 
a plug flow reactor (PFR) leads to lower local methanol concentra-
tions and lower oxygen containing species, thus mitigating catalyst 
deactivation57. Moreover, utilization of DME instead of metha-
nol avoids the potential formation of formaldehyde and results in 
higher methylation rates in comparison to methanol, substantially 
prolonging catalyst lifetime56. At the catalyst level, it was proposed 
that addition of rare-earth oxides, such as Y2O3, should selectively 
decompose formaldehyde thus preventing its further interaction 
with aromatic species58. Utilization of DME (DME/water) instead of 
methanol seems to be the best solution, since apart from mitigating 
catalyst deactivation it decreases the overall heat release (the reac-
tion enthalpy of DME dehydration is lower than that of methanol) 
making it more attractive from an industrial perspective59.

Taking advantage of autocatalysis
Both olefins and aromatics are recognized as competitive co-cata-
lysts, the excessive presence of a certain product promotes the cycle 
from which it originates38,40. So the most straightforward strategy to 
enhance the yield of olefins (propylene and butenes) or aromatics is 
to increase their concentration by co-processing them with metha-
nol. Several works report the effect of co-feeding a wide range of 
olefins and/or aromatics with methanol on the product distribution, 
however, with the main aim to shed light on mechanism details60,61.

In a wide range of temperatures and at different methanol con-
version levels, co-feeding of toluene results in an increase of ethyl-
ene and methylbenzene concentration at the expense of propylene 
and higher olefins as a result of the aromatic cycle propagation40,62–64. 
This strategy can be used to respond to the constantly fluctuating 
market demands to produce a mixture of olefins with pre-assigned 
C2

=/C3
= ratio. Olefins co-feeding turns out to be less straightforward 

and the propagation of the corresponding cycle depends on other 
parameters. The JGC corporation reported significantly enhanced 
propylene yield (up to 60–70%) when C4–C5 products were recycled 
with methanol feed at temperatures higher than 843 K (refs 65,66). 
Co-feeding a small amount of propylene at low conversion levels 
at 548–623 K results in a higher contribution of the olefin cycle, 
confirmed by higher selectivity towards C3

+ products63, whereas at 
723 K and higher conversion levels there is no notable effect of ole-
fins co-feed40. In the first scenario, methylation reactions are pro-
moted over cracking, therefore any inclusion of short chain olefins 
such as propylene results in a dramatic increase of C3

+ products. At 
high methanol conversion levels (> 70%), the olefinic cycle becomes 
more important38, whereas further addition of olefins promotes 
both formation of higher olefins, which — with equal success — are 
either cracked or aromatized, thus contributing to both cycles. This 
brings another important conclusion: process parameters such as 
temperature and methanol space–time also contribute to the pro-
motion of one cycle over the other when bed effects come into play. 
Temperature is another decisive parameter in determining the type 
of prevailing reactions. Higher temperatures promote cracking of 
higher olefins rather than their cyclization, which can be perceived 
as promotion of the olefinic cycle. Therefore, to maximize propyl-
ene production, the MTP process is carried out at temperatures 
higher than 723 K.

Influence of zeolite topology on product selectivity
The zeolite skeleton dictates its shape-selective properties, allowing 
the participation in the chemical reaction of only those molecules 
that are able to fit inside the zeolite pores67. This broad definition can 
be further subcategorized into reactant-, product- and transition-
state selectivity; thus, being an inherent attribute of zeolitic materi-
als, shape selectivity can be effectively utilized to propagate one cycle 
over another via product- and transition-state selectivity68,69.

Small-pore 8-membered ring (8MR) zeolites are composed 
of large cavities interconnected by narrow window openings  

(Fig. 5a,b)70,71. Window openings are limited by eight atoms: big 
enough to let short-chain olefins pass through, but sufficiently 
small as to retain bigger molecules inside of their cages, thus creat-
ing an ideal playground to incubate the aromatic-based HCP7. In 
such an architecture, cavity dimensions can influence the nature 
of the aromatic intermediates (transition-state selectivity)72, 
whereas window dimensions impose restrictions for the mol-
ecules formed inside (product selectivity). Thus, slight differences 
in both dimensions can affect product distribution and propylene/
ethylene ratio, however, such dimensions guarantee high selectiv-
ity to short-chain olefins (up to 90%)73. Note that the HCP trapped 
inside also serves as a scaffold for the formation of polycondensed 
species, eventually leading to catalyst deactivation. The challenge 
for this type of zeolites is to achieve steady-state performance 
of the aromatic cycle by slowing down coke formation, accom-
plished by utilization of silicoaluminophosphates (SAPOs) with 
milder acidity74. On the other hand, steady-state performance 
with a constant coke content can be achieved by utilizing fluidized 
bed reactors, which additionally provide the advantage of a better 
heat dissipation7. Such reactor design, however, requires applica-
tion of fluidizable catalysts; that is, with specific particle size and 
density. CHA — the most studied topology — is composed from 
cylinder-like cavities with big dimensions able to host aromatic 
molecules up to pyrene (Fig. 5a,b)75. Such large dimensions ensure 
long lifetime in comparison to other 8MR zeolites. Linked to the 
product distribution, the following conclusion can be drawn on 
the effect of cage dimensions: the more spacious is the cage the 
higher is selectivity to propylene72,76,77. Compared at the same 
temperature (350 and 400 °C), LEV with the smallest dimensions  
(7.5 ×  6.5 Å) yields higher amount of ethylene, whereas more spa-
cious CHA (10.9 ×  6.7 Å) and AEI (12.7 ×  11.6 Å) yield propylene76. 
The product distribution can be further linked to the confined aro-
matics; that is, steric limitations imposed by LEV favour formation 
of methylbenzenes with limited amount of methyl groups which 
are responsible for ethylene formation. The pear-shape of AEI is 
able to hold bulky aromatics, resulting in an unusually high selec-
tivity to butenes (propylene/ethylene/butane =  2.8/1/1.1) at 400 °C  
(ref.78). Large cage dimensions do not guarantee high selectivity 
to propylene/butenes if combined with very narrow pores hinder-
ing diffusion of the latter79. An example is AFX (13.0 ×  8.3 Å)  
with very small window-openings (3.4 ×  3.6 Å) promoting rapid 
growth of polycondensed species and therefore fast deactivation77. 
Similarly, the more spacious cage of ERI delivers higher selectivity 
to ethylene in comparison to CHA, which might be due to nar-
rower window openings of ERI (3.6 ×  5.1 Å) in comparison to 
CHA (3.8 ×  3.8 Å)80.

Medium pore 10-membered ring (10MR) zeolites, on the other 
hand, are composed of straight and/or curved channels (Fig. 5c–f).  
In such structures, the aromatic cycle is only able to operate in 
the more spacious channel intersections81,82. Choosing zeolites 
with absence of those ensures discarding the aromatic cycle. One-
dimensional ZSM-22 with TON topology was the first zeolite for 
which suppression of the aromatic cycle was postulated83, the same 
observations latter being made for other one-dimensional 10MR 
zeolites (Fig. 5c,d)84,85. The prevalence of the olefinic cycle com-
bined with product shape selectivity results in the predominant 
formation of C5+ products ranging from 50 up to 75% depending on 
the conversion levels. The obtained product mixture rather meets 
the requirements for gasoline (after hydrogenation step), with the 
formation of propylene being fairly low. Selectivity to propylene 
can be further improved by optimizing acidic properties of zeolites 
leading to up to 53% of propylene selectivity at 450 °C (ref. 86), while 
optimization of textural properties dramatically prolongs catalyst 
lifetime87. For zeolites with intersections, two cycles work in paral-
lel, and propagation of one cycle over the other can be achieved by 
other means (Fig. 5e,f)88.
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Logically, further increase of the number of T-atoms in window 
openings corresponding to 12-membered ring (12MR) zeolites 
allows the aromatic cycle to proceed inside the zeolite channels. 
Therefore, 1D SSZ-24 with tubular channels comparable to the 
size of CHA cavities is almost exclusively selective to aromatics at 
low conversion levels (~90%) and > 26% at high conversion levels  
(Fig. 5g,h)89. Besides, wider window dimensions result in the forma-
tion of much more alkylated aromatics for zeolite beta and MOR 
(mainly penta- and hexamethylbenzene) in comparison to 10MR 
ZSM-5 (mainly BTX90). Thus, in 8MR and 12MR zeolites composed 
of large cavities and channels respectively, the aromatic cycle is pre-
ferred. Nevertheless, being imprisoned by narrow 8MR windows it 
selectively produces short chain olefins in one case, and heavy aro-
matics with no such restrictions.

Impact of acidity on stability and product selectivity
Concentration, location and strength of acid sites are the three 
most important parameters in defining the overall acidity in zeo-
lites. Concentration of Brønsted acid sites is primarily linked to the 
amount of Al in the zeolite. A literature survey reveals a linear corre-
lation between propylene selectivity and Si/Al ratio, while a notable 
reduction in aromatics selectivity corresponds to the decrease of 
aluminium content in the zeolite (established for MFI but also hold-
ing for other topologies)91–96. Opposite trends strongly evidence the 
competing nature of the two cycles and that higher acid site density 
propagates the aromatic cycle (Fig. 6a–d). An increase of alumin-
ium content enhances the chance of reactant molecules to interact 
with each other, thus increasing the chance to form aromatics and 
ethylene — the product of the aromatic cycle97. The observed trends 
also account for the improved selectivity to propylene for post-syn-
thetically modified catalysts with different elements as well demeta-
lated zeolites. It has been extensively shown that phosphatation and 

incorporation of alkaline-earth metals lead to a significant reduc-
tion of Brønsted acidity and its effect can be regarded as an increase 
in the Si/Al ratio98,99. Yarulina et al.98 have shown that calcium incor-
poration results in an almost 10-fold reduction of Brønsted acidity. 
As a consequence, hydride transfer and cyclization reactions were 
suppressed, resulting in very low amounts of paraffins and aro-
matics and maximizing propylene yield up to 53%. Apart from the 
development of the second type of porosity improving diffusional 
properties of zeolites, desilication and dealumination of zeolites 
can be also viewed as an instrument to dilute acid site density and 
inhibit secondary reactions94. Zeolites with similar bulk properties 
can still exhibit substantially different catalytic behaviour, which is 
a side effect of a heterogeneous distribution of aluminium within 
the crystal, also called aluminium zoning. For example, an alumin-
ium-rich rim is characteristic for ZSM-5 crystals synthesized using 
TPA+ as structure-directing agent100. Aluminium-zoning obviously 
can be considered as a local enhancement of acid density, which, as 
explained above, promotes the aromatic cycle. Hydrothermal syn-
thesis conditions and the precursor composition mixture can also 
promote different locations of aluminium within the crystal lat-
tice. Here it should be pointed out that the definition of aluminium 
zoning used in the following describes a gradient in the number 
of aluminium atoms per unit volume, not a distribution gradient 
of aluminium over the available T sites per unit cell. Aluminium 
zoning in zeolites has been observed since the 1970s101. Around that 
time and in the following years different distributions and effects 
were observed and in 1993 Althoff and co-workers published102 a 
systematic study of the parameters influencing aluminium zoning.

Besides influencing desilication and dealumination, because 
strength and number of catalytically active sites in zeolites affect 
the effective diffusion path of reactants, the presence and dis-
tribution of aluminium in the zeolite framework also directly 
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Fig. 5 | Impact of topology on cycles propagation. a,b, 8-membered ring zeolites are composed of large cavities with small window openings; in such 
structures aromatics can be formed but cannot escape the cage. The aromatic cycle is prevailing and such topologies are characterized by high selectivity 
to short-chain olefins. c,d, 1D 10-membered ring zeolites cannot accommodate aromatic molecules, therefore the aromatic cycle is suppressed in such 
type of topology. The product distribution is characterized by a gasoline range of hydrocarbons. e, The 3D 10-membered ring MFI structure is described 
by two types of channels — straight and sinusoidal — forming relatively spacious intersections, which can host the aromatic cycle. f, Both the aromatic 
and olefinic cycles are running in zeolite channels and the product is characterized by the presence of a wide range of hydrocarbons. g,h, The channels of 
12-membered ring zeolites are rather big and can host aromatic hydrocarbons, therefore the aromatic cycle can run inside the channels of a 1D AFI zeolite.

NATuRe CATAlYsIs | VOL 1 | JUNE 2018 | 398–411 | www.nature.com/natcatal 405

http://www.nature.com/natcatal


© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. © 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

Review ARticle NATure CATAlysIs

affects catalytic performance (Fig. 6). It was shown that several 
acid-catalysed reactions preferentially occur at the edges of large 
ZSM-5 crystals: in 2007, Roeffaers and colleagues103 applied in situ 
fluorescence microscopy to monitor catalytic, condensed-phase 
reactions in individual zeolite crystals. Specifically, they utilized 
the (acid-catalysed) formation of chromophores during self-con-
densation of furfuryl alcohol to visualize the time-dependent dis-
tribution of the fluorescent reaction products. With their study, 
they showed that the presence of sub-units in large, coffin-shaped 
ZSM-5 crystals is relevant to catalysis, and proposed that the 
interfaces between the components act as diffusion barriers. The 
authors also observed unusual behavior of certain crystals, show-
ing intense fluorescence emission confined to the outer surface 
of specific facets of the ZSM-5 crystals and linked this unusually 
intense emission to aluminium zoning. In the same year Kox and 
co-workers used in-situ UV-Vis microspectroscopy to study the 
oligomerization of styrene occurring in the micropores of ZSM-5 
zeolite crystals104, linking reaction kinetics to the diffusion and 
catalytic properties of straight and zigzag channels in large ZSM-5 
zeolite crystals. One year later Tzoulaki et al.105 studied the dif-
fusion properties of large (aluminium-free) silicalite-1 crystals 
using interference microscopy for monitoring time-dependent 
concentration profiles during molecular uptake and release and 

found no evidence for a significant effect of internal transport 
resistances (at the interface of sub-units) or surface barriers on 
mass transport in these crystals. They therefore concluded that an 
inhomogeneous aluminium distribution — preferentially located 
close to the surface and at the interfaces of the crystal segments — 
enhances catalytic activity and coke formation, and is responsible 
for the observed diffusion barriers. In line with this hypothesis, 
later in 2008 Mores et al.106 confirmed the heterogeneous distri-
bution of coke as a function of reaction time and temperature in 
large H-ZSM-5 and H-SAPO-34 crystals during the MTO reac-
tion by a combination of in situ UV-visible and confocal fluores-
cence microscopy. Three years later Weckhuysen and colleagues107 
showed that with decreasing aluminium concentration in large 
MFI crystals, coke formation decreases as well. Furthermore, a 
higher Brønsted acid site density did not influence the type of coke 
species generated, but instead increased the rate of formation of 
methyl-substituted aromatic species and the subsequent growth 
towards larger coke species. One year later, in 2012, Chen and co-
workers74 reviewed the effect of acid site density, acid site strength 
and the role of coke formation on deactivation of SAPO zeolites 
and in 2015 Olsbye et al.6 reviewed the MTH process inter alia 
discussing catalyst deactivation by coke formation.

Catalyst deactivation by (hydro-) carbon residues is an impor-
tant deactivation pathway in MTH. However, as discussed, after 
the formation of the first C–C bond species hydrocarbons are 
formed according to the autocatalytic dual-cycle concept, which 
implies that hydrocarbon species can be both activating and 
deactivating species6. It is therefore interesting to obtain insights 
about the nature and location of the first seeds of coke in zeo-
lites. Intuitively one would expect the first coke species to form 
in regions with (i) highest accessibility and (ii) highest activity — 
both of which can be influenced by aluminium gradients in the 
catalyst. However, resolving the location of the first coke species 
formed at the length scale of nanometers and relating it to (local) 
aluminium gradients remains extremely challenging. Recently, the 
first use of atom probe tomography (APT) to investigate the 3D 
distribution of elements in zeolites at the sub-nm scale has been 
reported (Fig. 7)108,109. In 2016 Schmidt et al.109 used APT to study 
coke formation and its relation to inhomogeneous aluminium dis-
tribution in large ZSM-5 crystals after MTH (using 13C-labelled 
methanol to distinguish the formed coke species from contamina-
tions). APT samples were taken from the (aluminium rich) surface 
and the (aluminium poor) core of the ZSM-5 crystal showing a 
clear correlation of coke formation and Brønsted acid site density. 
The authors reported the presence of carbon clusters (using the 
term cluster as synonym for a group of closely positioned atoms), 
which revealed insights into the coke formation mechanism, 
showing that the coke clusters form preferentially around areas 
with elevated aluminium content, even in the aluminium-poor 
core of the crystal. The median size of the observed 13C clusters 
was around 36–69 carbon atoms, which suggests that these clus-
ters could contain several occluded aromatic species. Independent 
of the location of the APT (that is, taken from the surface or core 
of the large ZSM crystal), 13C clusters were found in each sample, 
suggesting that in the beginning of the reaction methanol is pres-
ent throughout the crystal (Fig. 7). As the MTH reaction and cata-
lyst deactivation progress these large clusters merge into the coke 
rich regions observed for example, in the surface of large ZSM 
crystals, that is, in regions of elevated aluminium concentrations. 
These observations were found to be in line with the previously 
suggested mechanism of coke formation in ZSM-5 during MTH 
(see refs6,93–96, among others).

Variation in silicon sources was taken as a strategy by Wang  
et al.81 to obtain ZSM-5 zeolites with acid sites located either in inter-
sections or in straight and sinusoidal channels. Having the same 
Si/Al ratio, zeolites with acid sites located in channels exhibited  
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Fig. 6 | Impact of acidity on cycles propagation. a,b, A literature survey91–96 
reveals a noticeable increase of propylene (a) and a reduction of aromatics 
(b) formed along with an increase of the SiO2/Al2O3 ratio for microporous 
ZSM-5 zeolites tested in the MTH reaction at 673–773 K and in the 
wide range of WHSV. Opposite trends highlight the competing nature 
of aromatics and olefins. c, A significant reduction of aluminium in the 
zeolite framework leads to a decrease of Brønsted acid site (BAS) density, 
consequently propagating the olefinic cycle as a result of a decreased 
amount of secondary reactions leading to olefins cyclization and aromatic 
formation. d, An increase of acid site density results in a higher probability 
for olefins to interact forming aromatic molecules. A reduction of Brønsted 
acidity can be achieved by post-synthetic modification with alkaline earth 
metals or demetallation procedures (c,d) leading to similar trends.
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significantly higher selectivity to propylene and longer lifetime. 
Such a location of aluminium inhibited the aromatic cycle which 
is operative in the more spacious intersections and resulted in the 
similar effect as if utilization of 1D 10MR zeolites.

Finally, the effect of acid strength was extensively compared over 
aluminosilicates and their SAPO versions. The general observation 
is that C3

=/C2
= ratio and methanol conversion capacity over SAPOs 

is higher, suggesting lower formation rates of polycondensed spe-
cies110; however, any speculation on the dominating cycle is rather 
dubious as it was studied over 8MR zeolites where the aromatic 
cycle is prevailing due to topology features. A similar compari-
son performed for 12MR zeolites reveals that although the prod-
uct distribution is dominated by aromatics for H-SSZ-24 (AFI), 
H-SAPO-5 (AFI) displays high selectivity to butenes and shows 
almost no aromatics. A combination of co-reaction experiments 
and theoretical calculations reveals that the acid strength has a 
profound effect on the reactivity of co-catalytic HCP species89. For 
H-SSZ-24, benzene methylation is significantly higher than that for 
propylene bringing the aromatic cycle into the dominating role — 
in sharp contrast to H-SAPO-5 exhibiting similar rates for olefins 
and aromatics methylation111.

Host–guest interactions
Throughout this Review, zeolites’ framework topology and acid-
ity dependent formation of products (both olefins and HCP spe-
cies) during the MTH reaction have been highlighted. This feature 
could easily be linked to the host–guest chemistry between inor-
ganic zeolite and organic HCP species during the reaction. More 
importantly, it also provides the necessary evidence in support 
of the hybrid organic–inorganic nature of working MTH catalyst 
(vide supra)36,41. During evaluation by Goetze and colleagues112 of 
HCP species throughout the MTH process over three small-pore 
and eight-ring windows zeolites (CHA, DDR, LEV), generation of 
non-identical organics was noticed due to very small differences in 
cage size, shape and pore structure of the zeolite frameworks. By 
encompassing a combination of multivariate analysis of operando 
UV-visible spectroscopy and online gas chromatography, along 
with bulk chemical analysis of the hydrocarbon deposits by GC/
MS of extracted coke species and thermogravimetric analysis, it 
was observed that CHA, DDR and LEV preferentially formed alkyl-
ated aromatics and pyrene, 1-methylnaphthalene, and methylated 
benzene and naphthalene, respectively. The molecular dimension 
of these retained organic species (that is, the guest molecule) is 
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comparable to the dimensions of the respective zeolite cages (that is, 
the host molecule). As a result, the lattices of all three zeolites were 
expanded during the MTH process, as revealed by operando X-ray 
diffraction (XRD)113. The expansion of the c-axis of the CHA and 
LEV lattices (that is, longitudinal direction of their cages) is about 
0.9% and 0.5% during the MTH process, which is more than in the 
direction of a- and b-axes (that is, in the direction of the width of 
the cage). On the contrary, relatively further expansion in the direc-
tion of a- and b-axes of DDR lattice (that is, 0.5% compared to 0.3% 
along the c-axis) means it becomes wider during the MTH process 
due to coke deposition, whereas both CHA and LEV lattices become 
longer. This observation provides further evidence for distinctive 
host–guest chemistry between zeolite and retained organics during 
catalysis. To further elucidate the concept of host–guest interactions 
during catalysis, the report from Liu et al. should be mentioned72. 
With the help of isotopic tracing and theoretical calculations, they 
showed that the cavity size of different SAPO molecular bearing 
identical 8MR pore openings (that is, SAPO-35, SAPO-34, and 
DNL-6) control the molecular size as well as reactivity of the con-
fined HCP species, which eventually influences the conversion and 
selectivity of olefins during the MTH reaction72. Although such con-
fined/retained/trapped organics within the zeolite framework are 
believed to be rigid in nature, this is not completely true. Although 
elucidating the reaction mechanisms of zeolite-catalysed MTH  
(Fig. 3a,c) and alkylation of aromatics, the same group adapted dif-
ferent solid-state NMR magnetization transfer techniques that were 
previously developed for spectral separation of biomolecules on the 
basis of their mobility in order to distinguish between mobile (that 
is, a molecule or group with fast tumbling or rotation) and rigid 
(that is, molecule physisorbed in/on zeolite) species (both were 
trapped within zeolite)13,114. However, this host–guest feature of 
zeolite catalysis has recently been developed and demands further 
research activities to confirm its implications in the actual process. 
Nevertheless, it contributes to the fundamental understandings of 
the zeolite-catalysed hydrocarbon conversion chemistry.

summary and outlook
After more than 40 years, the methanol-to-hydrocarbons process 
remains as one of the most popular topics of research within the 
zeolite catalysis community. The recent industrial implementation, 
with several new commercial plants already running, has triggered 
even more attention from the academic and industrial communi-
ties. In this line, the interest towards the formation of the direct C–C 
bond, which until very recently was believed to be due to impurities, 
has risen over the last few years. The combined effort by several 
research groups helped identify several feasible low-barrier direct 
coupling pathways for this key mechanistic step, although feedstock 
impurities (in principle) could still shorten the induction period115. 
Among them, formaldehyde formed through disproportionation 
of methanol was identified as a deactivating species due to its high 
reactivity with aromatics and the undesired formation of polyaro-
matic species. This important discovery calls for new reactor con-
cepts where reactant feeding should be performed carefully to avoid 
high concentrations of methanol and the consequences thereof, 
including heat effects.

The next mechanistic step, the dual-cycle, is now better under-
stood and can be viewed as the main machine for controlling life-
time and selectivity to the desired products. The combination of 
NMR and UV-visible DRS helped pinpoint not only active inter-
mediates, but also deactivating ones, although there is a fine line 
between them. It has been extensively shown that deactivating spe-
cies can become reaction intermediates if, for example, higher reac-
tion temperatures are used. Moreover, their reactivity depends on 
zeolite topology: channel/cage dimensions can cause spatial restric-
tions preventing certain intermediates to participate in the mecha-
nistic cycle. In 2012, Olsbye et al.5 posed the question whether the 

two cycles — olefinic and aromatic — can be promoted one over 
another and whether one of them can independently exist. The 
challenge has been partially addressed: recent catalytic results dem-
onstrate that it is possible to extend catalyst lifetime up to approxi-
mately 1 kg CH3OH per gram zeolite while maintaining high 
propylene selectivities (> 50%). However, it should be further clari-
fied if deactivating species in these cases are also of aromatic nature.

Considering that for both cycles the active intermediates act as 
co-catalysts, reaction conditions (temperature and methanol partial 
pressure), feed composition (that is, the presence of olefinic or aro-
matic co-feed), zeolite topology and acidity can be tuned to further 
enhance performance. Having this said, most of the efforts over the 
last few years have been directed towards the selective formation of 
propylene (the main product from the olefinic cycle). In a potential 
scenario of lack of ethylene, it would be desirable to apply similar 
concepts towards the selective formation of this highly important 
chemical. How to achieve this objective without compromising 
catalyst lifetime is however still an open question, as ethylene is the 
main product of the aromatic cycle, its formation would in principle 
always be accompanied by a high rate of formation of aromatics. 
Along the same line, considering potential fluctuations in the ole-
fin market, in an ideal scenario there should be a catalyst whose 
selectivity can easily be tuned by changing the reaction conditions. 
Here the best solutions seem to go in the direction of co-feeding the 
required products to promote the cycle of interest. This aspect again 
calls for additional efforts at the reactor level.

In summary, in our opinion, MTH is still a fascinating research 
topic with a number of scientific and engineering challenges to 
be addressed in the near future. Surprisingly, the latter (engineer-
ing) challenges have hardly been touched upon in the open lit-
erature, while these have been key in the success of the currently 
most applied MTH technology, which relies on the fast deactivat-
ing SAPO-34 and on fluidized bed technology. On a more funda-
mental note, we are looking forward to seeing the implications that 
the recent discoveries in MTH chemistry may have on other high 
temperature hydrocarbon chemistries, such as catalytic cracking 
and even direct methane activation, as well as bifunctional cataly-
sis concepts, in which MTH chemistry may play an instrumental 
role. Indeed, the combination of zeolites with other functionalities 
opens new avenues for the direct conversion of CO2 or syngas to 
olefins, hydrocarbons and aromatics116,117. In such a bifunctional 
systems, CO2 or CO are first hydrogenated to methanol which is 
subsequently converted to hydrocarbons, the zeolite of choice being 
responsible for the second step. This is a rather promising concept, 
yet there are a number of obstacles to overcome, such as overhydro-
genation of olefins to paraffins, high selectivity to CO and methane 
associated with metal functionality and how to find a proper cata-
lyst matching in terms of deactivation.
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