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1. Introduction

Networks can change during time: roads can be blocked 
or built, friendships can wither or new friendships are 
formed, connections in a computer network can go down 
or be made available, etc. Temporal graphs can serve as a 
model for such changing networks.

A temporal graph is a finite sequence of graphs with 
the same vertex set, i.e., a temporal graph G is given by 
a series of graphs G1 = (V , E1), G2 = (V , E2), . . . , G L =
(V , E L). Each i, 1 ≤ i ≤ L is called a time step. The graph Gi
is called the current graph at time step i. Note that while the 
vertex set is the same at each time step, the set of edges 
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can (and in general will) be different at the different time 
steps. The main intuition is that at time step i, only the 
edges in Gi exist and can be used.

The underlying graph is formed by taking the union of 
the graphs at the different time steps, i.e., for a tempo-
ral graph G1 = (V , E1), G2 = (V , E2), . . . , G L = (V , E L), the 
underlying graph is the graph (V , E1 ∪ E2 ∪ · · · ∪ E L), so an 
edge exists in the underlying graph if and only if it exists 
in at least one time step.

In temporal graphs, we can define a temporal walk: we 
have an explorer who at time step 0 is at some s; at each 
time step i she can move over an edge in Gi or remain 
at her current location. More precisely, a temporal walk 
in temporal graph G1 = (V , E1), G2 = (V , E2), . . . , G L =
(V , E L) is a sequence of vertices v0, v1, . . . , v K with K ≤ L, 
such that for each i, 1 ≤ i ≤ K , vi−1 = vi or {vi−1, vi} ∈ Ei . 
We say that the walk is at vi−1 at the beginning of time 
step i, and at vi at the end of time step i.

In this note, we study the complexity of a problem on 
temporal graphs: the Temporal Graph Exploration prob-
lem, as introduced by Michail and Spirakis [9]. In the Tem-

poral Graph Exploration problem, we are given a tempo-
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ral graph, a specified start vertex s, and an integer L, and 
ask if there is a temporal walk with L time steps that visits 
all vertices in the temporal graph at least once. A variant 
is when we require that the walk ends at the starting ver-
tex s; we denote this by RTB Temporal Graph Exploration, 
with RTB the acronym of return to base. (See [1].)

Background It is easy to see that even if the graphs do 
not change over time, the Temporal Graph Exploration

problem is NP-complete, as it contains Hamiltonian Path

as a special case (set L = n − 1.) Michail and Spirakis [9]
introduced the problem, showed that it does not have a 
c-approximation, unless P = NP, and obtained approxima-
tion algorithms for several special cases.

Recently, Akrida et al. [1] studied the Temporal Graph 
Exploration problem when the underlying graph is a star 
K1,r . Even when each edge exists in at most six time steps, 
the problem is NP-complete. We use the following of their 
results as starting point.

Theorem 1 (Akrida et al. [1]). RTB Temporal Graph Explo-

ration is NP-complete, when the underlying graph is a star, and 
each edge exists in at most six graphs Gi, and the start and end 
vertex is the center of the star.

An important special case is when we require that at 
each time step, the current graph Gi is connected. We use 
the term always-connected to denote this case, i.e., a tem-
poral graph G1, . . . , G L is always-connected, if and only 
if each Gi is a connected graph. Now, if the number of 
time steps L is sufficiently large compared to the number 
of vertices n, it is always possible to explore an always-
connected temporal graph. Specifically, Erlebach et al. [5]
showed that an always-connected temporal graph can be 
explored in O (t2n

√
n log(n)) time steps, where t is the 

treewidth of the underlying graph. Similarly, if the under-
lying graph is a 2 by n grid then O (n log3 n) time steps 
always suffice.

For more results, including special cases, approximation 
algorithms and inapproximability results, see [1,5,9], and 
see [8] for a survey.

Graphs of small treewidth and pathwidth and our contribu-
tion It is well known that problems that are intractable 
(e.g., NP-hard) on general graphs become easier (e.g., lin-
ear time solvable) when restricted to graphs of bounded 
treewidth (see e.g., [3, Chapter 7].) An example is Hamil-

tonian Path, which can be solved in O (2O (t)n) time on 
graphs of treewidth t [2,4]. Unfortunately, these positive 
results appear not to carry over to temporal graphs: we 
show that the Temporal Graph Exploration problem is 
NP-hard for always-connected temporal graphs, even when 
the underlying graph has pathwidth 2 (and thus also 
treewidth 2); moreover, at each time step, the current 
graph is a tree. Our result builds upon the hardness re-
sult by Akrida 1, adding a construction that ensures the 
always-connectedness; a star has pathwidth one; applying 
our construction adds one to the pathwidth. One easily 
observes that the Temporal Graph Exploration problem 
for always-connected graphs with treewidth 1 is trivial: a 
connected graph with treewidth 1 is a tree, and thus, all 
graphs Gi are equal to each other, and one can easily com-
pute in linear time the number of steps to explore this 
fixed tree.

Interestingly, there are other problems on temporal 
graphs that do become tractable when the treewidth is 
bounded. Specifically, Fluschnik et al. [6] showed that find-
ing a small temporal separator becomes tractable when the 
underlying graph has bounded treewidth; the problem is 
NP-hard in general [7].

Some graph theoretic definitions The pathwidth of graphs 
was defined by Robertson and Seymour [11]. A path de-
composition of a graph G = (V , E) is a sequence of subsets 
(called bags) of V (X1, . . . , Xr), such that 

⋃
1≤i≤r Xr = V , 

for all {v, w} ∈ E , there is an i with v, w ∈ Xi , and if 
1 ≤ i1 < i2 < i3 ≤ r, then Xi1 ∩ Xi3 ⊆ Xi2 . The width of a 
path decomposition (X1, . . . , Xr) equals max1≤i≤r |Xi | − 1; 
the pathwidth of a graph G is the minimum width of a 
path decomposition of G . The pathwidth of a graph is an 
upper bound for its treewidth. (See e.g. [3, Chapter 7].)

K1,r is a star graph with r + 1 vertices, i.e., we have 
one vertex of degree r which is adjacent to the remaining 
r vertices, which have degree 1.

2. Hardness result

We now give our main result.

Theorem 2. The Temporal Graph Exploration Problem is 
NP-complete, even if each graph Gi = (V , Ei) is a tree, and the 
underlying graph has pathwidth 2.

Proof. We use a polynomial-time reduction from RTB Tem-

poral Graph Exploration for graphs whose underlying 
graph is a star (see Theorem 1) to our problem. Sup-
pose we have a temporal graph K1,n−1, whose underlying 
graph is a star, given by a series of subgraphs of K1,n−1, 
G1 = (V , E1), . . ., G L = (V , E L), and a start vertex s, which 
is the center of the star. We denote the vertices of K1,n−1
by v0, . . . , vn−1, with s = v0.

We now build a new temporal graph, as follows. Set 
Q = L · (n + 3).

The vertex set of the new graph consists of V and Q +1
new vertices. The new vertices will form a path. The new 
vertices are denoted p0, . . . , p Q and called path vertices; 
the vertices in V are called star vertices.

We now define a temporal graph G′ , given by a series 
of graphs G ′

i , 1 ≤ i ≤ L + Q +1. G ′
i has the following edges:

• For each i, the vertices p0, . . . , p Q form a path: we 
have edges {p j, p j+1} for 1 ≤ j < Q .

• If i ≤ L, all edges in Gi are also edges in G ′
i .• If i ≤ L, for each star vertex v j ∈ V : if there is a con-

nected component of Gi with vertex set W , such that 
j = minv j′ ∈W j′ , then we have an edge {v j, pL·( j+2)}. 
I.e., v j has the smallest index j over all vertices in the 
same connected component of Gi .

• If i > L, we have an edge from each star vertex vi 
= s
to s, and an edge from s to p0.
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Fig. 1. Illustration to the proof of Theorem 2. Note that edges between 
path vertices are present at each time step; other edges are present in a 
subset of the time steps.

We look for a temporal walk that starts at s, visits all 
vertices, and takes L + Q + 1 time steps. See Fig. 1 for an 
illustration of the construction.

It is not hard to see that each G ′
i is a tree. If i ≤ L, then 

G ′
i is obtained by adding the path to Gi and one edge from 

the path to each connected component of Gi . If i ≥ L, then 
G ′

i is obtained taking a path and K1,n and adding an edge 
between a path and star vertex.

The idea behind the proof is that during the first L
time steps, we explore the star vertices as normal, while 
the path serves to keep the graph connected but can not 
be explored. To explore the path vertices, we must make 
one single pass from p0 to p Q , as we do not have suffi-
cient time steps to traverse either the section from p0 to 
p2L−1 or that from p Q −2L+1 twice: traversing the edges 
between star vertices and path vertices (other than edge 
{s, p0}) cannot contribute to a solution.

Lemma 3. There is a temporal walk in G′ that starts at s and 
visits all vertices in G ′ in L + Q + 1 time steps, if and only if 
there is a temporal walk in the temporal star K1,n−1 that starts 
at s, ends in s and visits all vertices in K1,n−1 in L time steps.

Proof. First, suppose that there is a temporal walk in 
K1,n−1 that starts at s, ends at s and visits all vertices in at 
most L time steps. Then, we visit all vertices in G′ , by first 
making the temporal walk in the star, if necessary wait in 
s until the end of time step L and at time step L + 1 move 
from s to p0, and then visit all path vertices by traversing 
the path in the remaining Q time steps.

Suppose we have a temporal walk that starts at s and 
visits all vertices in G′ in at most L + Q + 1 time steps.

Claim 4. If we are at a path vertex pi at the end of time step 
α ≤ L, then L < i < Q − L.

Proof. If we are at a path vertex pi at the end of time step 
α ≤ L, then we moved one or more times from a star ver-
tex to a path vertex during the first α time steps. Consider 
the last of these moves, say that we moved at time step 
β ≤ α from a star vertex v j to a path vertex p j′ ; between 
time step β + 1 and α we stay at path vertices. As β ≤ L, 
the only path vertex adjacent to v j in Gβ is pL·( j+2) , so 
j′ = L · ( j + 2).

We can make less than L steps after reaching p j′ until 
time step α ≤ L, hence j′ − L < i < j′ + L. Now, L = L · (0 +
2) − L ≤ L · ( j +2) − L = j′ − L < i < j′ + L = L · ( j +2) + L ≤
L · (n − 1 + 2) + L = (n + 2) · L = Q − L. This ends the proof 
of Claim 4. �
Claim 5. At the end of time step L, we are in vertex s.

Proof. Suppose not. Note that both p0 and p Q are not yet 
visited, by Claim 4. If we are at a star vertex vi 
= s at the 
end of time step L, then we can only visit the path vertices 
by first moving to s, then to p0, and then visiting the path 
vertices in order; this costs one time step too many.

Suppose we are at a path vertex pi at the end of time 
step L. First, suppose we visit p0 before p Q . Then, we must 
make at least i steps from pi to p0, and then Q steps from 
p0 to p Q . By Claim 4, i > L. So we need to make at least 
i + Q > L + Q steps after time step L, which is a contra-
diction with the assumption that the walk takes L + Q + 1
time steps. Now, suppose we visit p Q before p0. Then we 
must make at least Q − i steps from pi to p Q , and then 
Q steps from p Q to p0. By Claim 4, Q − i > L; we need to 
make at least 2Q − i > L + Q steps after time step L, again 
contradicting the assumption that the walk takes L + Q +1
time steps. This ends the proof of Claim 5. �
Claim 6. If at time step i ≤ L we move from a star vertex vi to 
a path vertex p j , then the first star vertex visited after time step 
i is again vi , and this move to vi will be made before the end of 
time step L.

Proof. By Claim 5, we must move to a star vertex before 
the end of time step L. If p j′ is a neighbor of a star vertex 
and j 
= j′ , then p j′ is at least L steps on the path away 
from p j , so we cannot reach p j′ before time step L, hence 
we must move back to the star from p j , and thus move to 
vi . This ends the proof of Claim 6. �

Now, we can finish the proof of Lemma 3. Take from the 
walk in G′ the first L time steps. Change this by replacing 
each move to a path vertex by a step where the explorer 
does not move. I.e., when the walk in G′ moves from star 
vertex vi to a path vertex, then we stay in vi until the 
time step where the walk in G ′ moves back to the star — 
by Claim 6, this is a move to vi . In this way, we obtain a 
walk in K1,n−1 that visits all vertices in L time steps. This 
ends the proof of Lemma 3. �

It remains to show that the underlying graph has path-
width 2. If we remove s from the underlying graph, then 
we obtain a caterpillar: a graph that can be obtained by 
taking a path, and adding vertices of degree one, adjacent 
to a path vertex. These have pathwidth 1 [10]; now add 
s to all bags and we obtain a path decomposition of the 
underlying graph of G′ of width 2. �

A minor variation of the proof gives also the following 
result.

Theorem 7. The RTB Temporal Graph Exploration Problem 
is NP-complete, even if each graph Gi = (V , Ei) is a tree, and 
the underlying graph has pathwidth 2.

Proof. Modify the proof of Theorem 2 as follows: add one 
time step; the current graph in the last time step has an 
edge, from p Q to s, with additional edges added to make 
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the graph into a tree (e.g., we could take the graph from 
the previous time step, add the edge (p Q , s) and break the 
thus created cycle by removing one (other) edge). �

3. Conclusions

In this note, we showed that the Temporal Graph Ex-

ploration Problem is NP-complete, even when we require 
that at each time step, the graph is connected (i.e., we have 
an ‘always-connected temporal graph’), or more specifically 
a tree, and the underlying graph (i.e., the graph where 
an edge exists whenever it exists for at least one time 
step) has pathwidth 2, and hence treewidth 2. This con-
trasts many other results for graphs of bounded treewidth, 
including a polynomial time algorithm for finding small 
temporal separators for graphs of small treewidth [6].

For always-connected temporal graphs, the case that 
the treewidth is 1 becomes trivial (as this deletes all tem-
poral effects). For temporal graphs without the condition 
of always-connectedness, the Temporal Graph Exploration 
Problem is NP-complete for graphs of treewidth 1 by the 
results of Akrida et al. [1]. Interesting open cases are when 
the underlying graph is outerplanar, or an almost tree, i.e., 
can be obtained by adding one edge to a tree, and the tem-
poral graph is always-connected.
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