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The incidence of acute myeloid leukaemia (AML) increases with age 
and mortality exceeds 90% when diagnosed after age 65. Most cases 
arise without any detectable early symptoms and patients usually 
present with the acute complications of bone marrow failure1. 
The onset of such de novo AML cases is typically preceded by the 
accumulation of somatic mutations in preleukaemic haematopoietic 
stem and progenitor cells (HSPCs) that undergo clonal expansion2,3. 
However, recurrent AML mutations also accumulate in HSPCs 
during ageing of healthy individuals who do not develop AML, 
a phenomenon referred to as age-related clonal haematopoiesis 
(ARCH)4–8. Here we use deep sequencing to analyse genes that are 
recurrently mutated in AML to distinguish between individuals 
who have a high risk of developing AML and those with benign 
ARCH. We analysed peripheral blood cells from 95 individuals 
that were obtained on average 6.3 years before AML diagnosis 
(pre-AML group), together with 414 unselected age- and gender-
matched individuals (control group). Pre-AML cases were distinct 
from controls and had more mutations per sample, higher variant 
allele frequencies, indicating greater clonal expansion, and showed 
enrichment of mutations in specific genes. Genetic parameters were 
used to derive a model that accurately predicted AML-free survival; 
this model was validated in an independent cohort of 29 pre-AML 

cases and 262 controls. Because AML is rare, we also developed 
an AML predictive model using a large electronic health record 
database that identified individuals at greater risk. Collectively our 
findings provide proof-of-concept that it is possible to discriminate 
ARCH from pre-AML many years before malignant transformation. 
This could in future enable earlier detection and monitoring, and 
may help to inform intervention.

To examine the occurrence of somatic mutations before the develop-
ment of AML, we carried out deep error-corrected targeted sequencing 
of AML-associated genes in a discovery cohort of 95 pre-AML cases 
and 414 age- and gender-matched controls (Supplementary Table 1). 
A validation cohort comprising 29 pre-AML cases and 262 controls 
(Supplementary Table 1) was analysed using deep sequencing with 
an overlapping gene panel. Taking both cohorts together, ARCH, 
defined on the basis of putative driver mutations (ARCH-PD), was 
found in 73.4% of the pre-AML cases at a median of 7.6 years before 
diagnosis. By contrast, ARCH-PD was observed in 36.7% of controls 
(P < 2.2 × 10−16, two-sided Fisher’s exact test; Fig. 1a), consistent with 
data from a study of more than 2,000 unselected individuals assayed 
using a similarly sensitive method9,10. Additionally, 39% of pre-AML 
cases above the age of 50 had a driver mutation with a variant allele 
frequency (VAF) of more than 10%, compared to only 4% of controls, 
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a prevalence that is in line with the largest studies of ARCH in the 
general population4 (P < 2.2 × 10−16, two-sided Fisher’s exact test; 
Extended Data Fig. 1).

The median number of ARCH-PD mutations per individual 
increased with age and was significantly higher in the pre-AML group 
relative to controls (Fig. 1b and Supplementary Table 2). Furthermore, 
examination of ARCH-PD VAF distribution revealed significantly 
larger clones among the pre-AML cases (P = 1.2 × 10−13, two-
sided Wilcoxon rank-sum test; Fig. 1c). To gain insight into clonal  
growth dynamics, we examined serially collected samples that  
were available for a subset of the validation cohort. We did not find 
significant differences in clonal expansion rates between pre-AML 
cases and controls (Extended Data Fig. 2a, b), although this may 
in part reflect the shorter follow-up of pre-AML cases, small sam-
ple size and large variance in growth rates (Extended Data Fig. 2c).  
The observed differences between pre-AML cases and controls  
may arise through cell-intrinsic or -extrinsic factors. Although  
these variables have not been adequately studied in ARCH, a  
number of observations in different contexts, such as aplasia,  
advanced age and after chemotherapy, have shown that increased 
clonal fitness is associated with distinct mutations depending on 
context10–12. Notably, mutations in splicing factor genes were signif-
icantly enriched among the pre-AML cases relative to the controls 
(odds ratio, 17.5; 95% confidence interval, 8.1–40.4; P = 5.2 × 10−16, 
two-sided Fisher’s exact test) and were present in significantly younger 
individuals (median age 60.3 compared to 77.3 years, P = 1.7 × 10−4, 
two-sided Wilcoxon rank-sum test; Fig. 2a). Previous work suggests 
that spliceosome mutations appear to confer a competitive advantage 
in the context of ageing10. Therefore, it is possible that the signifi-
cantly higher prevalence of such clones in younger pre-AML cases 
may reflect extrinsic selection pressures rather than earlier mutation 
acquisition.

In line with previous reports5,6, we found that DNMT3A and TET2 
were the most commonly mutated genes in both groups (Fig. 2b). 
We could not identify any canonical NPM1 mutations nor any FLT3-
internal tandem duplication mutations, consistent with these arising 
late in leukaemogenesis10,13. Recurrent CEBPA mutations, which are 
implicated in around 10% of de novo AML14, were also absent, sug-
gesting that driver events in this gene may also be late events in AML 
evolution. In order to quantify the effect of different mutations on 
the likelihood of progression to AML, we ranked ARCH-PD muta-
tions based on the number of times that they have been reported 
in Catalogue of Somatic Mutations in Cancer (COSMIC) database 
among individuals with haematological malignancies15. We found that 
mutations that are highly recurrent in cancer specimens were more 
common in pre-AML cases than in controls with ARCH-PD, whereas  
driver events in the controls tended to affect loci that are less  
frequently mutated in haematological malignancies and occurred at 
significantly lower VAF (Fig. 2c, d). Overall, these findings demon-
strate notable differences in the mutational landscape of ARCH and 
pre-AML. Moreover, this work, in conjunction with recent insights 
into the origins of AML relapse16, suggests that AML progression 
typically occurs over many years through clonal evolution of pre- 
leukaemic HSPCs before acquisition of late mutations leads to overt 
malignant transformation.
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Fig. 1 | Prevalence of ARCH, number of mutations and clone size in 
individuals who developed AML. a, Prevalence of ARCH-PD among 
pre-AML cases (red) and controls (blue). b, The number of ARCH-PD 
mutations detected in cases and controls according to age. Box plot 
centres, hinges and whiskers represent the median, first and third quartiles 
and 1.5× interquartile range, respectively. Individual values are indicated 
as dots. c, VAF of ARCH-PD mutations. *P < 0.0005, two-sided Wilcoxon 
rank-sum test with Bonferroni multiple testing correction. All panels show 
data for n = 800 biologically independent samples.
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On the basis of these findings, we next developed an approach to 
quantify the relative contributions of driver mutations and clone sizes 
to the risk of progressing to AML. We tested different regularised 
logistic and Cox proportional hazards regression approaches, which 
achieved similar performance in both the discovery cohort (concord-
ance (C) = 0.77 ± 0.03) and the validation cohort (C = 0.84 ± 0.05; 
Extended Data Figs. 3, 4 and Supplementary Table 3). Models that were 
only trained on data from the discovery or validation cohort had sim-
ilar coefficients (Fig. 3a). We therefore combined the datasets for a 
more accurate analysis of the contributions of mutations in individual 
genes to risk (C = 0.77 ± 0.05; area under curve, 0.79; Supplementary 
Table 3). Quantitatively, we found that driver mutations in most genes 
conferred an approximately twofold increased risk of developing AML 
per 5% increase in clone size (Fig. 3a and Supplementary Table 3). 
Notable exceptions to this trend are the most frequently mutated ARCH 
genes, DNMT3A and TET2, which confer a lower risk of progression to 
AML (Fig. 3a, b and Supplementary Table 3). By contrast, a larger effect 
size was apparent for TP53 (hazard ratio, 12.5; 95% confidence inter-
val, 5.0–160.5) and U2AF1 (hazard ratio, 7.9; 95% confidence interval,  
4.1–192.2) mutations (Fig. 3a, b). However, we note that other ARCH-PD  
genes, such as SRSF2, can contribute a similar relative risk owing to 
their presence at a higher VAF in pre-AML cases (Fig. 3a, Extended 
Data Fig. 5a and Supplementary Note). Of note, mutations in TP53 and 
spliceosome genes (including U2AF1) are also associated with a poorer 
prognosis in AML14. Because the effect of each ARCH-PD mutation 
is deleterious and the effect of multiple mutations that are present in 
the same individual is multiplicative, a higher number of mutations is 
predicted to increase the risk of progression to AML (Fig. 3c). Similarly, 

the size of the largest driver clone was also strongly associated with the 
risk of progression to AML, in agreement with the risk of individual 
mutations generally being proportional to VAF (Fig. 3c). Collectively, 
although the VAF and the number of mutations confer much of the 
predictive value, this model does demonstrate distinct gene-level risk 
factors, and is able to quantify the cumulative impact of multiple muta-
tions and clonal size on the likelihood of progression to AML.

Although our predictive model performs well in identifying those 
at risk of developing AML in our experimental cohorts, AML inci-
dence rates in the general population are low (4:100,000)1, and thus 
millions of individuals would need to be screened to identify the 
few pre-AML cases, with many false positives. We therefore sought 
to determine whether routinely available clinical information could 
improve prediction accuracy or identify a high-risk population for 
targeted genetic screening. We first analysed complete blood count 
and biochemistry data that were available for 37 of the pre-AML cases 
and 262 controls. As reported previously5,10,17, ARCH-PD was over-
whelmingly associated with normal blood counts and this was also 
the case for pre-AML cases, indicating that these did not represent 
undiagnosed myelodysplastic syndrome18. We identified a significant 
association between higher red blood cell distribution width (RDW) 
and risk of progression to AML (P = 0.0016, Wald test with Bonferroni 
multiple-testing correction, Fig. 3d). Although traditionally used in the 
evaluation of anaemia, raised RDW has been correlated with inflam-
mation, ineffective erythropoiesis, cardiovascular disease and adverse 
outcomes in several inflammatory and malignant conditions19. The 
correlation between RDW and risk of AML development remained 
highly significant when controls without ARCH-PD were excluded 
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from the analysis (P = 3.5 × 10−6, Wald test with Bonferroni multiple 
testing correction; Extended Data Fig. 5b). Higher RDW has previously 
been associated with ARCH and overall mortality5, but has never been 
shown to distinguish ARCH from pre-leukaemia. In order to verify 
RDW as a predictive factor and determine whether additional clinical 
parameters are associated with risk of AML development, we studied 
the Clalit database20, which contains electronic health records that 
include an average of 3.45 million individuals per year and data that 
were collected over a 15-year period21. We identified 875 cases with 
AML using stringent criteria based on diagnostic codes and treatment 
records (Extended Data Fig. 6 and Supplementary Table 4). Analysis 
of RDW trends revealed significantly raised measurements several 
years before AML diagnosis relative to age and sex-matched controls 
(Fig. 4a). Additional parameters that correlated with risk of AML 
development included reductions in monocyte, platelet, red blood 
cell and white blood cell counts, albeit usually remaining above the 
thresholds for clinically relevant cytopenias18 (Fig. 4a and Extended 
Data Fig. 7). These findings suggest that evolving de novo AML may 
sometimes have a considerable prodrome with subtle but discernible 
clinical manifestations. We next applied a machine-learning approach 
to construct an AML prediction model based entirely on variables that 
are routinely documented in electronic health records (Extended Data 
Fig. 8 and Supplementary Table 4). This model was able to predict AML 
6–12 months before diagnosis with a sensitivity of 25.7% and overall 
specificity of 98.2%. The model performed consistently across different 
age groups with an increased relative risk of 28 and 24 for males and 
females, respectively, between the age of 60 and 70 years (Fig. 4b). To 
better understand which patients are most likely to be accurately clas-
sified by this model, we compared absolute laboratory values for true 
positives and false negatives. We found that 35.5% of false-negative 
predictions were for patients for whom infrequent blood count data 
were available (Extended Data Fig. 9). Some of the true-positive cases 

had mildly abnormal blood counts that would not initiate a diagnostic 
work-up (Fig. 4c), and cytopenias that would be compatible with undi-
agnosed myelodysplastic syndrome18 were uncommon.

Collectively, our findings provide new insights into the pre-clinical 
evolution of AML and support the hypothesis that individuals at high 
risk of AML development can be identified years before they develop 
overt disease. To this end, we present two distinct models for the pre-
diction of de novo AML: one based on somatic point mutations and 
the other on routinely documented clinical information. We find that 
basic clinical and laboratory data can identify a high-risk subgroup 
6–12 months before AML presentation, while genetic information can 
identify a substantial fraction of cases several years to more than a 
decade before diagnosis. By characterizing features that distinguish 
benign ARCH from pre-leukaemia, our models give valuable insights 
into leukaemogenesis. It is evident from the current study, together with 
our recent analysis of mutation acquisition from pre-leukaemic devel-
opment through to relapse16, that long-term pre-leukaemic HSPCs fre-
quently carry mutations and undergo considerable clonal expansion 
while retaining differentiation capacity for years before AML diagnosis. 
Furthermore, it is clear that some mutations, particularly those affect-
ing TP53 and U2AF1, impart a relatively high risk of subsequent AML, 
whereas mutations in other genes, for example DNMT3A and TET2, 
confer a lesser risk of malignant transformation. Previous studies sug-
gest that oncogenic mutations in TP53 and spliceosome genes confer 
little or no competitive advantage in the absence of particular selective 
pressures11,22, indicating that cell-extrinsic factors may be important 
determinants of clonal trajectory.

Cancer predictive models have enabled successful early detection 
and intervention programmes for several solid tumours23–25. However, 
screening tests are unavailable for the sub-clinical stages of most  
haematological malignancies. Our study provides proof-of-concept 
for the feasibility of early detection of healthy individuals at high risk 
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of developing AML, and is a first step in the design of future clinical 
studies to investigate the potential benefits of early interventions in 
this deadly disease. However, the infrequency of AML necessitates 
that future screening tests provide high sensitivity and specificity. Our 
findings suggest that basic clinical data may identify a higher risk pop-
ulation that might benefit from targeted genetic screening. Equally, 
combining clinical and genetic information in a single model and 
including structural driver events is likely to improve model accuracy 
further. Nevertheless, establishing the utility of such a tandem approach 
will require extensive clinical and genetic analysis on the same popula-
tion cohort, in a prospective setting. Furthermore, ARCH is associated 
with several non-malignant conditions4,5, and may have a causal role in 
cardiovascular disease26,27. Therefore, genetic testing for ARCH may 
also prove useful in the management of common age-related diseases. 
Moreover, this study has broader implications for cancer screening and 
early intervention beyond AML. Advances in sequencing technologies 
have revealed a remarkable degree of somatic genetic diversity in nor-
mal ageing tissues, often characterized by the presence of clones that 
have canonical oncogenic mutations28. The degree to which clones at 
high risk of malignant transformation can be reliably distinguished 
from their indolent counterparts is an important biological question 
with compelling clinical ramifications. Understanding the selective 
pressures and cell-intrinsic mechanisms governing clonal fate is the 
next important step in developing strategies to predict and prevent 
progression to overt malignancy.

Online content
Any Methods, including any statements of data availability and Nature Research 
reporting summaries, along with any additional references and Source Data files, 
are available in the online version of the paper at https://doi.org/10.1038/s41586-
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MEthodS
Data reporting. No statistical methods were used to predetermine sample size. 
The experiments were not randomized and the investigators were not blinded to 
allocation during experiments and outcome assessment.
Study participants. Samples for both the discovery and validation cohort were 
obtained from participants in the EPIC study29. All relevant ethical regulations 
were followed. Written informed consent was obtained from all participants in 
accordance with the Declaration of Helsinki and protocols were approved by 
the relevant ethics committees (IARC Ethics Committee approval #14-31, the 
Weizmann Institute of Science Ethics board approval #60-1 and East of England–
Cambridgeshire and Hertfordshire Research Ethics Committee reference num-
ber 98CN01). Patients with AML were identified based on the following ICD9 
codes: 9861/3, 9860/3, 9801/3, 9866/3, 9891/3, 9867/3, 9874/3, 9840/3, 9872/3, 
9895/3, 9873/3, which included only cases of de novo AML, and no secondary 
AML. All patients provided peripheral blood samples for which the buffy coat 
fractions were separated and aliquoted for long-term storage in liquid nitrogen 
before DNA extraction.
Discovery cohort. In total, 509 DNA samples were collected from individuals 
upon enrolment into the EPIC study between 1993 and 1998 across 17 different  
centres29 (Supplementary Table 1). Altogether, 95 individuals who developed AML 
an average of 6.3 years (interquartile range (IQR) = 4.8 years) after the sample was 
collected were included in the pre-AML group. For the control group, 414 age- and 
gender-matched individuals were selected, as they did not develop any haematolog-
ical disorders during the average follow-up period of 11.6 years (IQR = 2.1 years). 
The median age at recruitment was 56.7 years (range, 36.08–74.42). In order to 
minimize any possible demographic biases, an approximate 1:4.5 pre-AML to con-
trol ratio was maintained across the different centres.
Validation cohort. Samples were obtained from individuals enrolled in the EPIC-
Norfolk longitudinal cohort study between 1994 and 2010. Samples and clinical 
metadata were available from 37 patients with AML (of which 8 were already 
included in the discovery cohort) and 262 age- and gender-matched controls with-
out a history of cancer or any haematological conditions. The average time between 
the first blood sampling and AML diagnosis was 10.5 years (IQR = 8.3 years). The 
average follow-up period for the control cohort was 17.5 years (IQR = 3.8). For 
12 individuals in the pre-AML cohort, 2–3 blood specimens were available, taken 
a median of 3.4 years apart. Of the 262 controls, 141 had multiple blood samples 
available, spanning a median of 10.5 years. Blood counts and other clinical param-
eters were available for all study participants (Supplementary Table 1).
Targeted sequencing. Discovery cohort sequencing. Targeted deep sequencing was 
performed using error-corrected sequencing as follows.

Shearing of genomic DNA, preparation of pre-capture sequencing libraries, 
hybridization-based enrichment, assessment of the libraries quality and enrich-
ment following hybridization were performed as previously described30. In brief, 
100 ng of genomic DNA was sheared before library construction (KAPA Hyper 
Prep Kit KK8504, Kapa Biosystems) with a Covaris E220 instrument using the 
recommended settings for 250-bp fragments. Following end repair and A-tailing, 
adaptor ligation was performed using 100-fold molar excess of Molecular Index 
Adaptor. Library clean-up was performed with Agencourt AMPure XP beads 
(Beckman-Coulter) and the ligated fragments were then amplified for eight cycles 
using 0.5 μM Illumina universal and indexing primers.

Targeted capture was carried out on pools containing three indexed libraries. 
Each pool of adaptor-ligated DNA was combined with 5 μl of 1 mg ml−1 Cot-I 
DNA (Invitrogen), and 1 nmol each of xGEN Universal Blocking Oligo, TS-p5, 
and xGen Universal Blocking Oligo, TS-p7 (8 nucleotides). The mixture was 
dried using a SpeedVac and then re-suspended in 1.1 μl water, 8.5 μl NimbleGen 
2× hybridization buffer and 3.4 μl NimbleGen hybridization component A. The 
mixture was heat denatured at 95 °C for 10 min before addition of 4 μl of xGen 
Lockdown Probes (xGen AML Cancer Panel v.1.0, 3 pmol). Each pool was then 
hybridized at 47 °C for 72 h. Washing and recovery of the captured DNA was 
performed according to the manufacturer’s specifications. In brief, 100 μl of clean 
streptavidin beads was added to each capture. Following separation and removal 
of the supernatant using a magnet, 200 μl 1× Stringent Wash Buffer was added and 
the reaction was incubated at 65 °C for 5 min. The supernatant containing unbound 
DNA was removed before repeating the high stringency wash one additional time. 
Then, the bound DNA was washed as follows: (1) 200 μl 1× Wash Buffer I and 
separation of the supernatants by magnetic separation; (2) 200 μl 1× Wash Buffer 
II after magnetic separation; (3) 200 μl 1× Wash Buffer III and removal of the 
supernatants using magnetic separation. The captured DNA on beads was resus-
pended in 40 μl of Nuclease-Free water before dividing the total volume into two 
PCR tubes and subjecting the libraries to 10 cycles of post-capture amplification 
(manufacturer-recommended conditions; Kapa Biosystems). Before sequencing, 
libraries were spiked with 2% PhiX.
Validation cohort sequencing. Targeted sequencing was performed using a  
custom complementary RNA bait set (SureSelect, Agilent, ELID 0537771) designed 

complementary to all coding exons of 111 genes that have been implicated in mye-
loid leukaemogenesis (Extended Data Table 1). Genomic DNA was extracted from 
peripheral whole blood and sheared using the Covaris M220. Equimolar pools of 
10 libraries were prepared and sequenced on the Illumina HiSeq 2000 using 75-bp 
paired-end sequencing as per Illumina and Agilent SureSelect protocols.
Variant calling. Discovery cohort variant calling and error correction. The 126-bp  
paired-end reads sequencing data from the Illumina platform were converted  
to FASTQ format, the 2-bp molecular barcode information at each read of the 
pair was trimmed and was written in the reads’ name. The thymine nucleotide 
required for ligation was removed from the sequences. Burrows–Wheeler aligner 
(BWA-mem)31 was used for alignment of the processed FASTQ files to the refer-
ence hg19 genome, after realignment of insertions and deletions (indels) using 
GATK32. An in-house algorithm was written to collapse read families that share 
the same molecular barcode sequence, the left-most genomic position of where 
each read of the pair maps to the reference and the CIGAR string. Families that 
consisted of at least two reads were used to generate consensus reads and a con-
sensus base was called when there was at least 70% agreement. When a consensus 
base was called, it was assigned with the maximum base quality score observed in 
its corresponding pre-collapsed reads. Furthermore, when possible, duplex reads33 
were generated from two consensus reads, from a singleton read and a consensus 
read, or from two singleton reads. For each sequenced sample, we generated two 
BAM files, called BAM1 and BAM2. BAM1 consisted of duplex reads, consensus 
reads and singleton reads, thereby including some error-corrected and non-error 
corrected reads, while still containing all the genomic information encoded in the 
data in the form of unique DNA molecules. BAM2 consisted of duplex reads and 
consensus reads but not singleton reads. Both files were then analysed to detect 
single nucleotide variants (SNVs) and small indels using Varscan234. To further 
remove sequencing artefacts and improve sensitivity, we applied a two-step pol-
ishing statistical approach that models the error rate for each sequenced genomic 
position. For both steps, BAM1 was used and all samples except the sample that 
was investigated were included for error rate modelling. At step one, as previously 
described30, the error rates were modelled by fitting Weibull distribution curves to 
the non-reference allele fractions. SNVs with allele fractions that were statistically 
distinguishable from the background error rates (P = 0) were further analysed. 
At step 2, the coverage of the non-reference allele fractions was considered using 
linear line fitting that describes the negative correlation that exist between the 
log(non-reference allele fraction) and the corresponding log(coverage) values. This 
allowed us to estimate different error rates at different coverage depths. Because 
indel errors are rare and cannot be appropriately modelled by the same statistical 
framework, they were called using barcode-mediated error correction alone. At 
least 10 consensus reads, 5 supporting reads on the forward strand, 5 supporting 
reads on the reverse strand and 2 duplex reads were required to call an indel. 
Additional post-processing steps applied to data from both the discovery cohort 
and validation cohort are detailed in ‘Additional post-processing filters applied to 
discovery and validation cohort data’. Variants were annotated using Annovar35.
Validation cohort variant calling. Sequencing reads were aligned to the refer-
ence genome (GRCh37d5) using the Burrows–Wheeler aligner (BWA-aln)31. 
Unmapped reads, PCR duplicates and reads mapping to regions outside the target 
regions (merged exonic regions and 10 bp either side of each exon) were excluded 
from analysis. Sequencing depth at each base was assessed using Bedtools coverage 
v.2.24.036.

Somatic SNVs were called using shearwater, an algorithm developed for 
detecting subclonal mutations in deep-sequencing experiments (https://github.
com/gerstung-lab/deepSNV v.1.21.5)37–39 considering only reads with minimum 
nucleotide and mapping quality of 25 and 40, respectively. This algorithm models 
the error rate at individual loci using information from multiple unrelated sam-
ples. Additionally, allele counts at the recurrent AML mutation hotspots listed in 
‘Curation of oncogenic variants’ were generated using an in-house script (https://
github.com/cancerit/alleleCount) and manually inspected in the Jbrowse genome 
browser40. To further complement our SNV calling approach, we applied an exten-
sively validated in-house version of CaVEMan v.1.11.2 (Cancer variants through 
expectation maximization)41. CaVEMan compares sequencing reads between 
study and nominated normal samples and uses a naive Bayesian model and  
expectation-maximization approach to calculate the probability of a somatic  
variant at each base (https://github.com/cancerit/CaVEMan).

Post-processing filters required that the following criteria were met for 
CaVEMan to call a somatic substitution. (1) If coverage of the mutant allele was 
less than 8, at least one mutant allele was detected in the first two-thirds of the 
read. (2) Less than 3% of the mutant alleles with base quality ≥15 were found in 
the nominated normal sample. (3) Mean mapping quality of the mutant allele reads 
was ≥21. (4) The mutation does not fall in a simple repeat or centromeric region. 
(5) Fewer than 10% of the reads covering the position contained an indel according 
to mapping. (6) Less than 80% of the reads report the mutant allele at the same 
read position. (7) At least a third of the reads calling the variant had a base quality 
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of 25 or higher. (8) Not all mutant alleles reported in the second half of the read. 
(9) Position does not fall within a germline insertion or deletion.

The following additional post-processing criteria were applied to all SNV calls. 
(1) Minimum VAF = 0.5% with a minimum of five bidirectional calls reporting 
the mutant allele (with at least two reads in forward and reverse directions). (2) No 
indel called within a read length (75 bp) of the putative substitution.

Small indels were sought using two complementary bioinformatics approaches. 
First, an in-house version of Pindel v.2.242 (https://github.com/cancerit/cgpPindel) 
was applied. We additionally used the aforementioned deepSNV algorithm in order 
to increase sensitivity for indels present at low VAF. VAF correction was performed 
using an in-house script (https://github.com/cancerit/vafCorrect).

Post-processing filters required that the following criteria were met for a variant 
to be called. (1) A minimum of five reads supporting the variant with a minimum 
of two reads in each direction. For Pindel, the total read count was based on the 
union of the BWA and Pindel reads reporting the mutant allele. (2) VAF ≥ 0.5%. 
(3) Variant not present within an unmatched normal panel of approximately 400 
samples. (4) No reads supporting the variant identified in the nominated normal 
sample.

Mutations were annotated according to ENSEMBL v.58 using VAGrENT43 
for transcript and protein effects (https://github.com/cancerit/VAGrENT) and 
Annovar35 for additional functional annotation.
Additional post-processing filters applied to discovery and validation cohort data. The 
following variants were flagged for additional inspection for potential artefacts, 
germline contamination or index-jumping event. (1) Any mutant allele reported 
within 75 bp of another variant. (2) Any mutant allele with a population allele 
frequency >1 in 1,000 according to any of five large polymorphism databases 
(ExAC, 1000 Genomes Project, ESP6500, CG46 and Kaviar) that is not a canon-
ical hotspot driver mutation with COSMIC recurrence >100. (3) Mutations that 
were present in >10% of the control cohort but not recurrent in COSMIC were 
flagged as potential germline variants or sequencing artefacts. (4) As artefactual 
indels tend to be recurrent, any indels occurring in >2 samples were flagged as 
for additional inspection.
Curation of oncogenic variants. Putative oncogenic variants were identified 
according to evidence for functional relevance in AML as previously described 
and used to define ARCH-PD14.

Variants were annotated as likely driver events if they fulfilled any of the follow-
ing criteria. (1) Truncating mutations (nonsense, essential splice site or frameshift 
indel) in the following genes implicated in AML pathogenesis by loss-of-function: 
NF1, DNMT3A, TET2, IKZF1, RAD21, WT1, KMT2D, SH2B3, TP53, CEBPA, 
ASXL1, RUNX1, BCOR, KDM6A, STAG2, PHF6 and KMT2C. (2) Truncating vari-
ants in CALR exon 9. (3) JAK2V617F. (4) FLT3 internal tandem duplication. (5) Non-
synonymous variants at the following hotspot residues: CBL E366, L380, C384, 
C404, R420 and C396; DNMT3A R882; FLT3 D835; IDH1 R132; IDH2 R172 and 
R140; KIT W557, V559 and D816; KRAS A146, Q61, G13 and G12; MPL W515; 
NRAS Q61, G12 and G13; SF3B1 K700 and K666; SRSF2 P95; U2AF1 Q157, R156 
and S34. (6) Non-synonymous variants reported at least 10 times in COSMIC 
with VAF <42% and population allele frequency <0.003. (7) Non-synonymous 
variants clustering within a functionally validated locus or within four amino acids 
of a hotspot variant with population allele frequency <0.003 and VAF <42%. (8) 
Non-synonymous variants reported in COSMIC >100 times with population allele 
frequency <0.003 regardless of VAF.

Our driver curation strategy inevitably runs a small risk of including germline 
variants in familial AML genes. We feel that in the real world, where a matched 
constitutional DNA sample would be unavailable, this is the best approach.
Statistical analysis. All statistical analyses were performed in the R statistical 
programming environment. A two-sided Wilcoxon rank-sum test was used to 
assign significance level for differences in the median number of somatic mutations 
among the pre-AML and control groups, the median VAF of mutations among 
groups. and the age of individuals with spliceosome mutations. Fisher’s exact test 
was used to assess the significance of differences in the prevalence of ARCH among 
the groups and spliceosome mutations in the pre-AML group.
Predictive modelling. Cox proportional hazards model with random effects. We 
used a Cox proportional hazards regression to model AML progression-free sur-
vival as previously described14,38. We used random effects for the Cox proportional 
hazards model in the CoxHD R package (http://github.com/gerstung-lab/CoxHD). 
A key strength of this approach is the ability to include many variables in one 
model while shrinking estimated effects for parameters with weak support in the 
data, thus controlling for overfitting. We used weighting to minimize the biases 
introduced by the artificial case–control ratio44,45 and calculated hazard ratios 
relative to the (approximate) true cumulative incidence of about 1–3/1,000 in the 
given age range over a follow up of 10–20 years. The observed driver mutation 
frequency and VAF in pre-AML cases closely resembled values expected based 
on the estimated risks, indicating that risk model and driver prevalence are well 
aligned (Extended Data Fig. 4). Full details of model derivation and comparisons 

with alternative methods are included in the accompanying code (Supplementary 
Note, also available at https://github.com/gerstung-lab/preAML). In brief, variables 
comprised age, gender and the VAF of putative driver mutations (see ‘Curation of 
oncogenic variants’ for details of variant curation). We performed agnostic impu-
tation of missing variables by mean and linear rescaling of gene variables by a 
power of 10 to a magnitude of 1. The model was first trained separately on the 
discovery cohort and validation cohort. For each of these two models, we evalu-
ated the following measures of predictive accuracy before and after leave-one-out 
cross-validation (LOOCV): concordance (C)46 and time-dependent area under 
the receiver-operating characteristic curve (AUC)47. The models trained on the 
validation and discovery cohorts were then cross-validated using the data from the 
other cohort. In view of the cross-validation results and close correlation between 
coefficients (Supplementary Table 3), we derived a model on the combined cohorts 
using both cohorts in order to achieve greater accuracy on the individual effects. 
Confidence intervals were calculated using 100 bootstrap samples. The coeffi-
cients and performance metrics for each iteration of the model are included in 
Supplementary Table 3.

Concordance measures were obtained using the survConcordance() function 
implemented in the survival R package45. Dynamic AUC was calculated with 
AUC.uno() implemented in the survAUC package. Time-independent AUCs were 
calculated using the performance function implemented in the ROCR package. 
The expected incidence of AML was calculated from the UK office of national 
statistics, available at http://www.cancerresearchuk.org/health-professional/ 
cancer-statistics/statistics-by-cancer-type/leukaemia-aml/incidence. All-cause 
mortality data was obtained from the office of national statistics (https://www.ons.
gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/lifeexpectan-
cies/datasets/nationallifetablesunitedkingdomreferencetables).
Ridge-regularized logistic regression. Using the same covariates as in ‘Cox propor-
tional hazards model with random effects’, we fitted a ridge-regularized logistic 
regression model to dichotomised outcome data. While logistic regression is a 
common choice for case–control analyses, a downside of this approach is the 
inability to explicitly use time-dependent covariates. The penalty parameter was 
chosen using LOOCV on the full cohort; this value was then used on the discovery 
cohort and validation cohort to yield the same scaling of coefficients. Confidence 
intervals were calculated using 100 bootstrap samples. Fitting was performed using 
the glmnet R package. AUC as the primary performance metric was calculated 
using the ROCR R package.
Additional regression models. Two alternative predictive models were developed. 
Model 1 performs logistic-regression-based predictions using four types of  
features: gender, age at blood sampling, the sum of the VAFs ARCH-PD reported 
in COSMIC v.80 to be recurrent (at least two case reports in haematopoietic and 
lymphoid tissues) and somatic mutation burden of selected genes, where each gene 
was represented by the sum of the VAFs corresponding to ARCH-PD mutations 
in that gene. We measured the predictive performance of each gene via the AUC 
obtained in a fivefold cross-validation when using only the gene as a predictive 
feature, and only retained genes with AUC > 55% in the final model.

For model 2 we applied LASSO regression as implemented in the glmnet R 
package, while enabling LOOCV to fit a Cox regression model. A minimal subset 
of ARCH-PD variants was selected for which the respective weighted combined 
VAFs were highly predictive of AML development in the training set. Scores were 
calculated for each patient as a linear combination of VAF of mutations weighted by 
regression coefficients that were estimated from the training data. As most scores 
were zero in the training subset, non-zero scores were discretized to take on a value 
of 1 that corresponds to AML prediction.

Models 1 and 2 were trained on the discovery cohort and tested for their asso-
ciation with AML development using the validation cohort data. Survival analysis 
was performed using the Kaplan–Meier and Cox proportional hazards models. 
Wald’s test was used to evaluate the significance of hazard ratios. Logistic regression 
models were used with the positive predictive value metric to determine the ability 
of various mutations and other patient parameters to predict AML development. 
The rms R package was used for logistic regression analysis, and the pROC 1.8 R 
package was used for receiver-operating characteristic curve analysis.
AML-predictive model based on electronic health records. Clalit database. The 
Clalit database includes information from patients covered by the Clalit health 
services in Israel20 during the years 2002–2017. The Clalit training-set data, con-
tains the electronic health records (EHR) of 3.45 million individuals per year on 
average. All data was anonymized through hashing of personal identifiers and 
addresses and randomization of dates by sampling a random number of weeks 
for each patient and adding it to all dates in the patient diagnoses, laboratory 
and medication records. This approach maintained differential data analysis per 
patient. Diagnoses codes were acquired from both primary care and hospitalization 
records, and were mapped to the ICD-9 coding system for historical reasons, with 
few exceptions that used a partial ICD-10 coding system. Laboratory records were 
normalized for age and gender by subtracting raw test values from the median 
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levels observed among all test values with matching gender and age (using a bin 
size of five years). We observed some chronological biases in laboratory ranges, 
but avoid normalizing these and instead insured case and controls are matched 
for chronological distributions.
Defining AML cases. We screened for all active patients (18 < age < 100) who 
were diagnosed with AML (ICD-9 code 205.0*) between the years 2003 and 2016. 
We then excluded cases based on the following criteria. (1) We excluded patients 
with prior myeloid malignancies to omit secondary AML, consistent with the 
case selection for the genetic model. The following diagnosis were excluded if  
documented within five years before the diagnosis of AML: essential thrombo-
cythemia (ICD-9 238.71), low-grade myelodysplastic syndrome (MDS) (ICD-9 
238.72); high-grade MDS lesions (ICD-9 238.73); MDS with 5q deletion (ICD-9 
238.74); MDS, unspecified (ICD-9 238.75); polycythemia vera (ICD-9 238.4);  
myelofibrosis (ICD-9 289.83); chronic myelomonocytic leukaemia (ICD-9 206.10-
206.22).

(2) Patients that had any procedures performed on bone marrow or spleen 
(ICD-10 code Z41) in the five-year period before first mention of AML diagnosis 
code in their record. These patients were presumed to have an inaccurate AML 
diagnosis date or misdiagnosis recorded.

(3) Patients that received medications suggestive of an alternative diagnosis 
of chronic myeloid leukaemia, lymphoid malignancy or acute promyelocytic 
leukaemia (APL). At any time before diagnosis: imatinib, dasatinib, anagrelide, 
hydroxycarbamide, asparaginase, pegaspargase or arsenic trioxide. At any time 
after diagnosis: imatinib, dasatinib, methotrexate, tretinoin or arsenic trioxide. At 
any time after diagnosis, along with any acute lymphoblastic leukaemia diagnosis 
(ICD-9 204) or more than single dose: mercaptopurine. APL cases were excluded 
as early diagnosis of APL will most probably not change its outcome, as treatment 
is successful already.

(4) Patients without a hospitalization record within three months before or after 
the onset diagnosis. This parameter was used as it is unlikely that a patient with 
AML will not be hospitalized close to diagnosis. This filter reduced false-positive 
cases and better defined the onset date.

We refined the estimated time of onset using the earliest time at which any of the 
following diagnosis appeared in the patient’s history: amyloidosis (ICD-9 277.3), 
lymphoid leukaemia (ICD-9 204), myeloid leukaemia (ICD-9 205), leukaemia of 
unspecified cell type (ICD-9 208).

This strategy retained 875 AML cases in the training set for further analysis. 
These were further validated by manual expert inspection of the complete records 
of 8% of the cases.

To define the control set, we included all Clalit individuals that were not cases. 
Since our analysis was aggregating data from a historical time window of 15 years, 
we associated each control with a randomized time point for evaluation. Using this 
approach, both cases and controls represented a specific time point in the historical 
record of a patient, with matching calendric, age and gender distributions. Through 
this strategy 5,238,528 controls were used.
Defining features for construction of a predictive a score. We extracted the follow-
ing features for discriminative analysis of cases and controls (this procedure was 
applied repeatedly in cross-validation as discussed below). (1) Age (in years) at time 
point. (2) Gender. (3) Laboratory features. Out of 2,770 different types of labora-
tory tests, we selected the top 50 most frequent laboratory tests (Supplementary 
Table 4). For each laboratory measurement, we used median age- and gender- 
normalized test values per patient in three time windows for 6–12 months before 
onset, 1–2 years before onset and 2–3 years before onset. In addition, we compute 
the slope of the normalized laboratory measurements for the 6–12 month time 
window using a linear regression model. (4) Diagnosis features. Of the 1780 differ-
ent major ICD-9 diagnosis codes, we selected only diagnoses that were previously 
observed in at least 10 different cases and have an increased relative risk for AML 
>twofold (as observed in the training set, Supplementary Table 4). For each diag-
nosis code, we mark whether it appeared in each of the patients in time intervals of 
6 months to 3 years, and 3–5 years before onset. (5) BMI features. For each patient 
in the cohort, we extracted median BMI, weight and height as measured in time 
intervals of 6 months to 2 years, and 2–3 years before onset.
Gradient boosting. We used the R package xgboost to infer parameters for a clas-
sifier given cases and controls. Objective was set to binary:logistic, the evaluation 
metric to AUC. We set nrounds = 5000, eta = 0.001, gamma = 0.1, lambda = 0.01, 
alpha = 0.01, max_depth = 6, min_child_weight = 2, subsample = 0.7 and col-
sample_bytree = 0.7. The boosting algorithm reports a function f that computes 
a predictive score given the features. Given a threshold T the expression f(patient 
features) > T defines a classifier. To standardise thresholds we estimate quantiles 
for the scores on the training set T(p) = quantile(f(train),p) and define the clas-
sifier for specificity level p as f(patient features) > T(p) (Supplementary Table 4).
Cross-validation and relative risk evaluation. To evaluate the predictive value 
of the classification scheme while considering the strong age and gender biases in 
the incidence of AML, we performed fivefold cross-validation after splitting the 

cases and controls into five age- and gender-matched groups. For each fold, we 
sampled 100,000 controls and combined with the cases, constructed the feature 
set and trained the model. The model was then tested on the fold cases along 
with 200,000 sampled controls. We used standardized classifier parameters and 
standardized thresholds that were inferred based on each training set to generate 
a series of classifications on each test set and merged these based on the control 
quantiles in the test as described above. Given a threshold p to define high and 
low prediction score, we counted for each bin b that defines a patient in a specific 
age (<40, 40–50, 50–60, 60–70, 70–80, >80) and gender group: the number of 
cases in bin b (Nb

case) and the number of controls in bin b (Nb
control) where Nb is 

the number of patients in bin b (entire database minus recall controls that are only 
a sample of the cohort). Nb(case, high score) = Nb

TP indicates the number of true 
positives (TP); Nb(case, low score) = Nb

FN indicates the number of false negatives 
(FN); Nb(control, high score) = Nb

FP indicates the number of false positives (FP); 
Nb(control, low score) = Nb

TN indicates number of true negatives (TN).
For each age and gender group, the absolute risk for AML in the bin is com-

puted by rb
abs = Nb

case/Nb. The absolute risk given a high score is estimated 
as rb

abs,high = Nb
TP/(Nb

FP+ Nb
TP). The relative risk in the bin is defined by 

rrb = rb
abs,high/rb

abs where the sensitivity level for the classifier threshold level is 
defined as senseb = Nb

TP/Nb
case.

=
+

+

×
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×
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Clonal growth rate calculation. Individual clones were defined by different muta-
tions in different study participants. Per clone we calculated α according to the 
following equation:

= / / −a V V T Tlog( ) ( )0 0

where T and T0 indicate the age of the individual at the two measurement time 
points. V and V0 correspond to the VAF at T and T0, respectively.
Reporting summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this paper.
Code availability. Code for derivation of the prediction model is publically availa-
ble on Github (https://github.com/gerstung-lab/preAML). Code for the analysis of 
error-corrected sequencing is available from the Shlush lab upon request.
Data availability. Targeted sequencing data for the discovery cohort are deposited 
as BAM files at the European Genome-phenome Archive (http://www.ebi.ac.uk/
ega/) under accession number EGAD00001003583. All other data are available 
from the corresponding authors upon reasonable request. Sequencing data for the 
validation cohort are deposited at the European Genome-phenome Archive with 
accession number EGAD00001003703.
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Extended Data Fig. 1 | Prevalence of ARCH-PD mutations with VAF ≥ 10% according to age. Red and blue lines represent the proportion of pre-
AML cases and controls, respectively, that had ARCH-PD mutations with VAF ≥ 10%.
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Extended Data Fig. 2 | Serially collected sampling supports a long-
lived HSPCs as the cell of origin for most ARCH-PD clones. a, b, VAF 
trajectory of persistent clones carrying putative driver mutations in 
controls (a) and pre-AML cases (b). Age is indicated on the x axis. Top, 
VAF is shown on the y axis and each persistent mutation is shown in a 
different colour, with circles denoting individual serial samples and solid 
lines representing the growth trajectory between serial samples. Bottom, 

dashed lines indicate the time interval between the last sampling and the 
end of follow-up (controls) or AML diagnosis (cases). c, Clonal growth 
rates (α) are shown for 27 control clones corresponding to 54 time points 
and 13 pre-AML clones corresponding to 15 time points. Box plot centres, 
hinges and whiskers represent the median, first and third quartiles and 
1.5 × interquartile range, respectively.
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Extended Data Fig. 3 | Performance of the combined model in 
predicting progression to AML. a, Receiver operating characteristic curve 
for prediction of AML development using model 1 (see Methods). The red 
dot indicates the point on the curve with the highest positive predictive 
value with sensitivity of 41.9% and specificity of 95.7%. b, c, Kaplan–Meier 

estimates of time to AML diagnosis for individuals predicted to develop 
AML (red) and not develop AML (blue) using model 1 (b; hazard ratio, 
10.38; P = 4.2 × 10−10, Wald test) and model 2 (c; hazard ratio, 10.75; 
P = 1.75 × 10−8, Wald test), from the point of enrolment until the end of 
follow-up for patients enrolled in the EPIC study.
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Extended Data Fig. 4 | AML predictive models. a–c, Time-dependent 
receiver operating characteristic curve for Cox proportional hazards 
model trained on the discovery cohort (n = 505 unique individuals, 
91 pre-AML and 414 controls) (a), validation cohort (n = 291 unique 
individuals, 29 pre-AML and 262 controls) (b) and combined cohorts (c). 

d–f, Dynamic AUC for Cox proportional hazards models trained on the 
discovery cohort (d), validation cohort (e) or combined cohort (f).  
g, h, Red and blue bars indicate the observed and expected VAF (g) 
and driver frequency (h) of pre-AML cases and controls for each gene 
indicated on the x axis.
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Extended Data Fig. 5 | AML-free survival based on mutation status 
and RDW. a, Kaplan–Meier curves of AML-free survival, defined as 
the time between sample collection and AML diagnosis, death or last 
follow-up. Survival curves are stratified according to mutation status in 
genes mutated in at least three samples across the combined validation and 
discovery cohorts. n = 796 unique individuals. b, Kaplan–Meier curve of 

AML-free survival stratified according to RDW value >14 or ≤14. Plot 
represents data for n = 128 biologically independent individuals who had 
RDW measurements, including all pre-AML cases regardless of ARCH-PD 
status, and controls with ARCH-PD (controls without detectable 
mutations were omitted).
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Extended Data Fig. 6 | Description of the cohort and the EHR-derived 
measurements. a, Kaplan–Meier curves showing age stratified survival 
rates for 875 individuals who developed AML. b, Line plot representation 

of the number of cases per 100,000 control individuals in the EHR 
database. The centre values and error bars define the mean and s.d., 
respectively.
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Extended Data Fig. 7 | Laboratory measurements contributing to the 
EHR model. Normalized laboratory measurements for pre-AMLs (red) 
and controls (blue) (middle) and their association (bottom) with higher 
risk of AML are shown. The grey bars indicate the percentage of pre-AML 

cases with laboratory results either below the 1st percentile or above 
the 99th percentile. Box plot centres, hinges and whiskers represent the 
median, first and third quartiles and 1.5 × interquartile range, respectively.
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Extended Data Fig. 8 | Top 50 parameters for the EHR model. The 
relative contribution of the top 50 features incorporated into the EHR 
prediction model, ranked according to their predictive value (gain). 1Y, 
one year before AML diagnosis; 2Y, two years before AML diagnosis; 
3Y, three years before AML diagnosis; BASO%, percentage of basophils; 
BMI, body mass index; EOS.abs, absolute eosinophil count; EOS%, 
percentage of eosinophils; HYPO%, percentage of hypochromia; LUC, 

large unstained cells; LYM%, percentage of lymphocytes; LYMPH.abs, 
absolute lymphocyte count; MACRO%, percentage of macrocytosis; MCH, 
mean corpuscular haemoglobin; MCV, mean corpuscular volume; MON%, 
percentage of monocytes; MONO.abs, absolute monocyte count; MPV, 
mean platelet volume; NEUT.abs, absolute neutrophil count; NEUT%, 
percentage of neutrophils; PLT, platelet count; RBC, red blood cell count; 
RDW, red cell distributiom width; WBC, white blood cell count.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Distribution of EHR model parameters. Heat 
map illustrating absolute values of clinical measurements. Blue, white and 
red indicate low, intermediate and high values, respectively. Light grey 
indicates missing data. False-negative and true-positive annotations are 
indicated at the bottom as dark-grey and yellow colour bars, respectively. 
1Y, one year before AML diagnosis; 2Y, two years before AML diagnosis; 
3Y, three years before AML diagnosis; BASO%, percentage of basophils; 
EOS%, percentage eosinophils; EOS.abs, absolute eosinophil count; HCT, 
haematocrit; HDL; high density lipoprotein; HGB, haemoglobin; Hyper%, 
percentage of hyperchromia; Hypo%, percentage of hypochromia; LDL, 
low density lipoprotein; LUC, large unstained cells; LYM%, percentage 

of lymphocytes; LYMP.abs, absolute lymphocyte count; MACRO%, 
percentage of macrocytosis; MCH, mean corpuscular haemoglobin; 
MCHC, mean corpuscular haemoglobin concentration; MCV, mean 
corpuscular volume; MICR%, percentage of microcytosis; MON%, 
percentage of monocytes; MONO.abs, absolute monocyte count; MPV, 
mean platelet volume; PLT, platelet count; NEUT%, percentage of 
neutrophils; NEUT.abs, absolute neutrophil count; RBC, red blood cell 
count; RDW, red cell distribution width;  Transamina, transaminase; 
Transpeptid., transpeptidase; TSH, thyroid stimulating hormone; WBC, 
white blood cell count.
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Extended data table 1 | Genes sequenced by cRNA bait pull-down in the validation cohort
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    Experimental design
1.   Sample size

Describe how sample size was determined. Sample size was determined by the availability of the samples from EPIC (European 
Prospective Investigation into Cancer and Nutrition) while assuring large enough 
cohort for the reported statistical analyses. (124 pre-AML samples and 676 
controls). As detailed in Methods, we used weighting to minimise the biases 
introduced by the artificial case-control ratio and calculated hazard ratios relative 
to the (approximate) true cumulative AML incidence of about 1-3/1,000 in the 
given age range over a follow up of 10-20 years. 

2.   Data exclusions

Describe any data exclusions. For the model described in figure 3 we have excluded samples taken less than 6 
months prior AML diagnosis from model training and validation in order to avoid 
skewing the model towards significance (as per reviewer comments). This resulted 
in the removal of 4 individuals from the discovery cohort, leaving 91 individuals in 
the discovery cohort pre-AML group. 

3.   Replication

Describe whether the experimental findings were 
reliably reproduced.

Experimental replication was not attempted but rather validated in a second 
independent cohort

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

AML patients were identified based on the following ICD9 codes: 9861/3 9860/3 
9801/3 9866/3 9891/3 9867/3 9874/3 9840/3 9872/3 9895/3 9873/3, which 
included only cases of de novo AML, and no secondary AML. Age and gender 
matched individuals that were not diagnosed for any hematological disorders 
during the average follow-up period of 12.6 were selected as the control group, 

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

For assessment of statistical significant differences between the cases as controls 
blinding is impractical as the groups must be defined.  Machine learning algorithms 
were blind in a sense as they been configure to be trained and tested in different 
set of samples.

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.
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6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.

   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

1) Sequencing reads were aligned using BWA-aln and BWA-mem 
2) indel-realignment was done using GATK 
2) Variant calling was done using deepSNV, Varscan2, Pindel v2.2 and CaVEMan 
v1.11.2. All of these algorithms are extensively described and validated in the 
published literature.  
3) Code used to generate predictive models will be deposited on GitHub at the 
time of manuscript publication 
For full description please refer to the appropriate method sections 

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a for-profit company.

No unique material were used in this study

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

No antibodies were used in this study

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. No cell lines were used in this study

b.  Describe the method of cell line authentication used. No cell lines were used in this study

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

No cell lines were used in this study

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

No cell lines were used in this study
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    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived 
materials used in the study.

No animals were used in this study

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

For the discovery cohort, samples were collected from individuals upon enrollment 
into the EPIC study between 1993 and 1998.  
95 individuals (39 males and 56 females) who developed AML an average of 6.26 
years (IQR=4.88 years) after the sample was collected were included in the pre-
AML group. 414 age and gender (167 males and 247 females) matched individuals 
were selected for the control group, as they did not develop any hematological 
disorders during the average follow-up period of 11.6 years (IQR=2.13 years). The 
median age at recruitment was 56.75 years (range, 36.08 to 74.42) 
 
For the validation cohort, samples were ascertained from participants in the EPIC-
Norfolk longitudinal cohort study enrolled between 1994 and 2010. 
37 individuals (15 males and 22 females) who developed AML an average of 10.5 
years from first sampling (IQR=8.3 years) were included in the pre-AML group. 262 
age and gender (135 males and 127 females) matched individuals were selected 
for the control group, as they did not develop any hematological disorders during 
the average follow-up period of 17.5 years from first sampling (IQR=3.8 years). The 
median age at recruitment was 65.05 years (range, 43.9 to 88.1) 
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